Resonances of the Laplacian on noncompact Riemannian symmetric spaces of low rank

Angela Pasquale

Institut Élie Cartan de Lorraine Université de Lorraine – Metz

(joint work with Joachim Hilgert and Tomasz Przebinda)

"Symmetries in Geometry, Analysis and Spectral Theory" Conference on the occasion of Joachim Hilgert's 60th Birthday

Paderborn, July 23, 2018

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Statement of the problem

X = G/K is a Riemannian symmetric space of the noncompact type, where:

G = connected noncompact real semisimple Lie group with finite center

K = maximal compact subgroup of G

Examples:

- $H^n(\mathbb{R}) = SO_0(1, n) / SO(n)$ real hyperbolic space
- $SU(p,q)/S(U(p) \times U(q)), q \ge p \ge 1$, Grassmannian of p subspaces of \mathbb{C}^{p+q} (complex hyperbolic space if p = 1)

 Δ = (positive) Laplacian on *X*, with continuous spectrum $\sigma(\Delta) = [\rho_X^2, +\infty[$ with $\rho_X^2 > 0$. The resolvent of Δ

$$R_{\Delta}(u) = (\Delta - u)^{-}$$

is a bdd operator on $L^2(X)$ depending holomorphically on $u \in \mathbb{C} \setminus \sigma(\Delta)$, i.e. $\mathbb{C} \setminus \sigma(\Delta) \ni u \longrightarrow R_{\Delta}(u) = (\Delta - u)^{-1} \in \mathcal{B}(L^2(X)).$

is a holomorphic operator-valued function.

As operator on $L^2(X)$, the resolvent R_{Δ} has no extension across $\sigma(\Delta)$.

Letting R_{Δ} act on a smaller dense subspace of $L^2(X)$, e.g. $C_c^{\infty}(X)$, a meromorphic continuation of R_{Δ} across $\sigma(\Delta)$ is possible.

Theorem (Strohmaier, Mazzeo-Vasy, 2005)

Let X be an arbitrary Riemannian symmetric space of the noncompact type. There are $\Omega \subsetneq \mathbb{C}$ open with $\sigma(\Delta) \subset \Omega$ and M Riemann surface above Ω such that

 $\mathcal{R}_{\Delta}: \Omega \setminus \sigma(\Delta) \ni u \longrightarrow \mathcal{R}_{\Delta}(u) \in \operatorname{Hom}(\mathcal{C}^{\infty}_{c}(X), \mathcal{C}^{\infty}_{c}(X)')$

admits holomorphic extension to M.

 $\rightsquigarrow \Omega$ is not large enough to find resonances.

Special cases showing that there might be resonances are classical:

Theorem (Guillopé-Zworski, 1995)

For $X = H^n(\mathbb{R})$ and $\Omega = \mathbb{C}$, the resolvent R_{Δ} has:

◊ holomorphic extension, if n is odd

o meromorphic extension (with infinitely many poles) if n even.

Problem 1: For general X = G/K, does R_{Δ} admit a meromorphic extension to a Riemann surface above $\Omega = \mathbb{C}$?

If so: what are the poles? What are the residues?

The poles of the meromorphically extended R_{Δ} are called the (quantum) resonances of the Laplacian.

A. Pasquale (IECL, Lorraine)

(Quantum) resonances

In physics:

- Quantum mechanical systems which are bound can only assume certain discrete values of energy (=energy levels) which are constant in time.
- Quantum mechanical systems which are unbound might have states with energy that a certain starting time can assume certain discrete values, but are not constant in time, usually decreasing exponentially (=metastable states).
- Energy at a metastable state is described by a complex number ζ (a resonance): Re ζ = energy at the starting time

Im ζ = rate of exponential time decreasing of the energy.

• The resonances are the poles of the meromorphic extension of the resolvent

$$\mathbb{C} \setminus \sigma(H) \ni u \longrightarrow R_H(u) = (H-u)^{-1}$$

of the Hamiltonian *H*, with continuous spectrum $\sigma(H)$, describing the unbound system.

< 日 > < 同 > < 回 > < 回 > < □ > <

In mathematics:

- Classical situation: Resonances for Schrödinger operators H = Δ_{Rⁿ} + V where:
 - $\diamond \quad \Delta_{\mathbb{R}^n} = -\sum_{j=1}^n rac{\partial^2}{\partial x_j^2}$ is the positive Euclidean Laplacian
 - ◊ V is a potential

(V chosen so that H is s.a. and $\sigma(H) \subset [0, +\infty[$ is continuous; e.g. V = 0).

 Geometric scattering: Resonances for the Laplacian ∆ of complete non-compact Riemannian manifolds (with bounded geometry).
 Motivations: scattering, dynamical systems, spectral analysis...
 Very active field of research.

Why studying resonances on symmetric spaces?

- well understood geometry
- ◊ well developed Fourier analysis: HF (=Helgason-Fourier) transform
- ◊ radial part of △ on a Cartan subspace is a Schrödinger operator
- tools from representation theory

Some usual renormalizations

X = G/K Riemannian symmetric space of the noncompact type.

- Translate the spectrum [ρ_X², +∞) to [0, +∞)
 i.e. consider Δ − ρ_X² instead of Δ
- Change variables $u = z^2 \quad \rightsquigarrow$ choice of square root: $\sqrt{-1} = i$ $u \in \mathbb{C} \setminus [0, +\infty[$ corresponds to $z \in \mathbb{C}^+ = \{w \in \mathbb{C} : \operatorname{Im} w > 0\}.$

Define

$$R(z) = R_{\Delta -
ho_X^2}(z^2) = (\Delta -
ho_X^2 - z^2)^{-1}$$

So $R : \mathbb{C}^+ \to \mathcal{B}(L^2(X))$ is a holomorphic operator-valued function.

Goal:

Meromorphic continuation across \mathbb{R} of $R : \mathbb{C}^+ \to \operatorname{Hom} (C^{\infty}_c(X), C^{\infty}_c(X)')$

$$C^{\infty}(X)$$
 instead of $C^{\infty}_{c}(X)'$
for $X = G/K$ symmetric
(Paley-Wiener theorem)

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Residue operators

Suppose we have a meromorphic continuation of $R : \mathbb{C}^+ \to \operatorname{Hom}(C^{\infty}_c(X), C^{\infty}(X))$ across \mathbb{R} , i.e.

- a Riemann surface \int_{π}^{π} with $\Omega \subset \mathbb{C}$ open, $\Omega \cap \mathbb{R} \neq \emptyset$
- \widetilde{R} : $M \to \text{Hom}(C_c^{\infty}(X), C^{\infty}(X))$ meromorphic and extending a lift of R to M:

$$\begin{array}{ccc} M & \stackrel{\widetilde{R}}{\longrightarrow} & \operatorname{Hom}(C^{\infty}_{c}(X), C^{\infty}(X)) \\ \uparrow & & & \\ \Omega \cap \mathbb{C}^{+} \end{array}$$

 $\begin{array}{l} \rightsquigarrow \quad \forall f, g \in C_c^{\infty}(X): \\ \langle \widetilde{R}(\cdot)f, g \rangle_{L^2(X)} \text{ lifts and extends} \\ \text{ to } M \text{ the function } \langle R(\cdot)f, g \rangle_{L^2(X)} \end{array}$

• z_0 is a resonance (=pole of \widetilde{R}).

The residue operator at z_0 is the linear operator

$$\operatorname{Res}_{Z_0}\widetilde{R}: C^{\infty}_c(X) \to C^{\infty}(X)$$

"defined" for $f \in C^{\infty}_{c}(X)$ by

$$\operatorname{Res}_{z_0}\widetilde{R}(f): X \ni y \longrightarrow \operatorname{Res}_{z=z_0}[\widetilde{R}(z)(f)](y) \in \mathbb{C}$$

["defined": residues are computed wrt charts in *M*, so up to nonzero constant multiples] **Well-defined:** the subspace $\operatorname{Res}_{z_0} := \widetilde{R}(C_c^{\infty}(X))$ of $C^{\infty}(X)$.

The rank of the residue operator at z_0 is dim (Res_{z_0}).

Problem 2: Find image and rank of the residue operator at z_0 .

Additional properties appear as X is endowed with a G-invariant Riemannian metric.

The Laplacian Δ of X is G-invariant

- \rightarrow R(z) and its mero extension $\widetilde{R}(z)$ are G-invariant
- \rightsquigarrow the residue operator at a resonance z_0 is a *G*-invariant operator $C_c^{\infty}(X) \to C^{\infty}(X)$
- \rightsquigarrow its image $\operatorname{Res}_{z_0} \subset C^{\infty}(X)$ is a *G*-module

(a K-spherical representation of G in our case)

Problem 3: Which (spherical) representations of *G* do we obtain? Rank of residue operator \equiv dimension of the corresponding representation Irreducible? Unitary?

Overview of results

General X of real rank one:

R. Miatello and C. Will (2000):

meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).

J. Hilgert and A.P. (2009):

meromorphic continuation of the resolvent (using HF transform).

- no resonances if $X = H^n(\mathbb{R})$ with *n* odd. \diamond
- (infinitely many) resonances for $X \neq H^n(\mathbb{R})$ with *n* odd. \diamond
- **Finite rank** residue operators, image: irreducible finite dim K-spherical reps of G. \diamond

General X of real rank > 2: (R. Mazzeo and A. Vasy (2005), A. Strohmaier (2005))

analytic continuation of the resolvent of Δ from \mathbb{C}^+ across \mathbb{R}

 $\begin{cases} \text{to an open domain in } \mathbb{C}, & \text{if the real rank of } X \text{ is odd} \\ \text{to a logarithmic cover of an open domain in } \mathbb{C}, & \text{if the real rank of } X \text{ is even} \end{cases}$ The open domain is **not large enough** to find resonances.

- If any, resonances are along the negative imaginary axis. \diamond
- **No resonances** in the even multiplicity case (= Lie algebra of G has one conjugacy \diamond class of Cartan subalgebras)

Specific X = G/K of real rank 2: (J. Hilgert, A.P., T. Przebinda)

Complete answers to the three problems:

- for almost all rank 2 irreducible X \diamond
- for direct products $X = X_1 \times X_2$, with X_1, X_2 of rank one. \diamond

The resolvent of Δ on X = G/K

Explicit formula for the resolvent R(z) of Δ on $C_c^{\infty}(X)$ via HF transform:

For $z \in \mathbb{C}^+$

$$\mathsf{P}(z) = (\Delta - \rho_X^2 - z^2)^{-1} : C_c^{\infty}(X) \ni f \to \mathsf{R}(z)f \in C^{\infty}(X)$$

is given by

$$[R(z)f](y) \asymp \int_{\mathfrak{a}^*} \frac{1}{\langle \lambda, \lambda \rangle - z^2} (f \times \varphi_{i\lambda})(y) \frac{d\lambda}{c(i\lambda)c(-i\lambda)} \qquad (y \in X),$$

where

 $\mathfrak{a}^* = \text{dual of a Cartan subspace } \mathfrak{a} \longrightarrow \text{real rank of } X := \dim \mathfrak{a}^*$

 $\langle \cdot, \cdot \rangle$ = inner product on \mathfrak{a}^* induced by the Killing form of the Lie algebra of G

 \leadsto extend $\langle\cdot,\cdot\rangle$ to the complexification $\mathfrak{a}_{\mathbb C}^*$ of \mathfrak{a}^* by $\mathbb C\text{-bilinearity}$

 φ_{λ} = spherical function on X of spectral parameter $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$

→ spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative algebra of G-invariant diff ops on X

 $f \times \varphi_{i\lambda}$ = convolution on X of f and $\varphi_{i\lambda}$

 \rightsquigarrow by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$

 $c(\lambda)$ = Harish-Chandra's *c*-function

 $\frac{1}{c(i\lambda)c(-i\lambda)}$ = Plancherel density for the HF-fransform

The Plancherel density $[c(i\lambda)c(-i\lambda)]^{-1}$

 \mathfrak{a} (=Cartan subspace) $\frown \mathfrak{g}$ (=Lie algebra of *G*) by adjoint action $\operatorname{ad} H$ with $H \in \mathfrak{a}$ Σ = roots of ($\mathfrak{g}, \mathfrak{a}$)

 Σ^+ = choice of positive positive roots in Σ

 $\begin{array}{l} \mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} : \mathrm{ad} \ H(X) = \alpha(H)X \ \text{for all} \ H \in \mathfrak{a}\} = \mathrm{root} \ \mathrm{space} \ \mathrm{of} \ \alpha \in \Sigma \\ \hline m_{\alpha} = \dim_{\mathbb{R}} \mathfrak{g}_{\alpha} = \mathrm{multiplicity} \ \mathrm{of} \ \mathrm{the} \ \mathrm{root} \ \alpha \\ \rho = 1/2 \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha \in \mathfrak{a}^{*} \end{array}$

Notation: For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ and $\alpha \in \Sigma$ set $\lambda_{\alpha} = \frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}$

Harish-Chandra *c*-function:

$$\begin{split} \boldsymbol{\Sigma}_{*}^{+} &= \{\beta \in \boldsymbol{\Sigma}^{+} : 2\beta \notin \boldsymbol{\Sigma}\} \quad \text{(the unmultipliable positive roots)} \\ \boldsymbol{c}_{\beta}(\lambda) &= \frac{2^{-2\lambda_{\beta}} \Gamma(2\lambda_{\beta})}{\Gamma\left(\lambda_{\beta} + \frac{m_{\beta/2}}{4} + \frac{1}{2}\right) \Gamma\left(\lambda_{\beta} + \frac{m_{\beta/2}}{4} + \frac{m_{\beta}}{2}\right)} \quad \text{for } \beta \in \boldsymbol{\Sigma}_{*}^{+} \end{split}$$

 $c(\lambda) = c_0 \prod_{\beta \in \Sigma^+_*} c_{\beta}(\lambda)$

where c_0 is a normalizing constant so that $c(\rho) = 1$.

Many rules: e.g. if both β and $\beta/2$ are roots, then $m_{\beta/2}$ is even and m_{β} is odd. *Many simplifications using classical formulas for* Γ : e.g. $\Gamma(ix)\Gamma(-ix) = \frac{i\pi}{x \sinh(\pi x)}$.

Example: If G/K of even multiplicities, then $[c(i\lambda)c(-i\lambda)]^{-1}$ is a polynomial

$$\widetilde{
ho}_{eta} = rac{1}{2} \Big(rac{m_{eta/2}}{2} + m_{eta} \Big)$$

Lemma

Set:

$$\begin{aligned} \Pi(\lambda) &= \prod_{\beta \in \Sigma_*^+} \lambda_{\beta} ,\\ P(\lambda) &= \prod_{\beta \in \Sigma_*^+} \left(\prod_{k=0}^{(m_{\beta/2})/2-1} \left[i\lambda_{\beta} - \left(\frac{m_{\beta/2}}{4} - \frac{1}{2} \right) + k \right] \prod_{k=0}^{2\widetilde{\rho}_{\beta}-2} [i\lambda_{\beta} - (\widetilde{\rho}_{\beta} - 1) + k] \right),\\ Q(\lambda) &= \prod_{\substack{\beta \in \Sigma_*^+ \\ m_{\beta} \text{ odd}}} \operatorname{coth}(\pi(\lambda_{\beta} - \widetilde{\rho}_{\beta})). \end{aligned}$$
(empty products are equal to 1)
Then:

$$[c(\lambda)c(-\lambda)]^{-1} \asymp \Pi(\lambda)P(\lambda)Q(\lambda).$$

Hence: $[c(i\lambda)c(-i\lambda)]^{-1}$ has at most first order singularities along the hyperplanes

$$\mathcal{H}_{\beta,\boldsymbol{k},\pm} = \{\lambda \in \mathfrak{a}^*_{\mathbb{C}} : \lambda_{\beta} = \pm i(\widetilde{\rho}_{\beta} + \boldsymbol{k})\}$$

where $\beta \in \Sigma_*^+$ has multiplicity m_β odd and $k \in \mathbb{Z}_{\geq 0}$.

 $\Sigma^+_{*,\mathrm{odd}} = \{ \alpha \in \Sigma^+_* : m_\alpha \text{ is odd} \}$

イロト 不得 トイヨト イヨト 二日

Extension of the resolvent of Δ on X = G/K

Suppose: real rank of X=dim $a^* =: n \ge 2$.

Let $f \in C_c^{\infty}(X)$ and $y \in X$ be fixed. Recall

$$[R(z)f](y) \asymp \int_{\mathfrak{a}^*} \underbrace{\frac{1}{\langle \lambda, \lambda \rangle - z^2}}_{\text{constraints}} (f \times \varphi_{i\lambda})(y) \underbrace{\frac{d\lambda}{c(i\lambda)c(-i\lambda)}}_{\text{constraints}}$$

singularities along \mathbb{C} -spheres radius $\pm z$ singularities along hyperplanes $\mathcal{H}_{\beta,k,\pm}$

Polar coordinates in a* give

$$R(z) := [R(z)f](y) = \int_0^\infty \frac{1}{r^2 - z^2} F(r)r \, dr$$

where

$$\boldsymbol{F}(r) = \boldsymbol{F}_{f,y}(r) = r^{n-2} \int_{S^{n-1}} (f \times \varphi_{ir\sigma})(y) \ \frac{\omega(\sigma)}{c(ir\sigma)c(-ir\sigma)}$$

and

 $\omega(\sigma)$ = pullback to S^{n-1} of the SO(*n*)-invariant (*n* - 1)-form

$$\omega(z) = \sum_{j=1}^{n} (-1)^{j-1} z_j \, dz_1 \cdots \widehat{dz_j} \cdots dz_n, \qquad z = (z_1, \ldots, z_n) \in \mathbb{C}^n \equiv \mathfrak{a}_{\mathbb{C}}^*$$

A. Pasquale (IECL, Lorraine)

Set $\mathbf{a} = \min\{\widetilde{\rho}_{\beta}|\beta| : \beta \in \Sigma^+_{*,\mathrm{odd}}\}$

(and $a = +\infty$ if m_{β} even for all $\beta \in \Sigma_{+}^{*}$)

Lemma

For every fixed σ ∈ a* with |σ| = 1, the function r → [c(irσ)c(-irσ)]⁻¹ is holomorphic on C \ i(] − ∞, −a] ∪ [a, +∞[).

The function

$$\mathbb{C} \setminus i(] - \infty, -a] \cup [a, +\infty[) \ni w \to F(w) \in \mathbb{C}$$

is holomorphic.

• Let
$$U = \mathbb{C}^- \cup \{z \in \mathbb{C} : \operatorname{Re} z > 1, 0 \le \operatorname{Im} z < 1\}$$
, where
 $\mathbb{C}^- = \{z \in \mathbb{C} : \operatorname{Im} z < 0\}$.
Then \exists holo function $H = H_{f,y} : U \to \mathbb{C}$ such that
 $R(z) = H(z) + i\pi F(z)$ for $z \in U \cap \mathbb{C}$

Corollary

- The mero extension of R across the negative imaginary axis (where the resonances could be) is equivalent to that of F.
- If any, the resonances are located on $i \infty, -a$.

The set $\Sigma^+_{*,odd}$

Let Σ be an irreducible root system in \mathfrak{a}^* such that $\Sigma^+_{*,odd} \neq \emptyset$.

- Σ_* is a reduced and irreducible root system. So it has at most two root lengths.
- Roots of same lenght form a unique Weyl group orbit and have therefore same root multiplicity m_β.
- If there is a unique root length, then m_β is constant and Σ⁺_{*,odd} = Σ⁺_{*}. (This happens for Σ = Σ_{*} of type A,D or E)
- If there are two root lengths (i.e. for Σ_* of type B,C,F or G), then $\Sigma^+_* = \Phi_1 \sqcup \Phi_2$, where roots in Φ_j have same length, and $\Sigma^+_{*,odd} \in \{\Sigma^+_*, \Phi_1, \Phi_2\}$.

 $\Sigma_*^+ = \Phi_1 \sqcup \Phi_2$ is obtained from the following decompositions:

$$B_n = (A_1)^n \sqcup D_n$$
 $C_n = (A_1)^n \sqcup D_n$ $F_4^+ = D_4^+ \sqcup D_4^+$ $G_2^+ = A_2^+ \sqcup A_2^+$

Consequences: If $\Sigma^+_{*,odd} \neq \emptyset$, then:

♦ The hyperplane arrangement $\mathcal{H} = \{\ker \beta : \beta \in \Sigma^+_{*,odd}\}$ is simplicial (= every connected component of $\mathfrak{a}^* \setminus \cup \mathcal{H}$ is the intersection of $n = \dim \mathfrak{a}^*$ open halfspaces, i.e. is the positive linear span of *n* lin. indep. vectors).

♦ For some Σ of types *B*, *C* or *BC*, we have $\Sigma_{*,odd}^+ = (A_1)^n$.

Example: G/K or rank 3 and root system Σ of type BC, B or C

 $\begin{array}{l} \Sigma^+ = \Sigma^+_{\rm s} \sqcup \Sigma^+_{\rm m} \sqcup \Sigma^+_{\rm l}, \mbox{ where:} \\ \Sigma^+_{\rm s} = \{e_j; 1 \leq j \leq n\}, \mbox{ multiplicity } m_{\rm s}, \\ \Sigma^+_{\rm m} = \{e_i \pm e_j; 1 \leq i \geq j \leq n\}, \mbox{ multiplicity } m_{\rm m}, \\ \Sigma^+_{\rm l} = \{2e_j; 1 \leq j \leq n\}, \mbox{ multiplicity } m_{\rm l}. \end{array}$

G/K	Σ	m_{lpha}	$\Sigma^+_{*,odd}$
SL(4, ℝ)/ SO(3)	A ₃	1	Σ^+
SU*(8)/Sp(8)	A ₃	4	Ø
$\mathrm{SU}(3,q)/\mathrm{S}(\mathrm{U}(3) imes\mathrm{U}(q))\ (q\geq 3)$	$egin{array}{llllllllllllllllllllllllllllllllllll$	(2(q-3), 2, 1)	Σ_l^+
${SO_0(3,q)/SO(3) imes SO(q)}\ (q>3)$	B ₃	(q-3,1,0)	$\Sigma^+_{ m m}$ (q odd) $\Sigma^+_{ m s}\sqcup\Sigma^+_{ m m}$ (q even)
SO*(12)/U(6)	BC ₃	(4, 4, 1)	Σ_l^+
Sp(6, ℝ) / U(3)	<i>C</i> ₃	(0, 1, 1)	$\boldsymbol{\Sigma}_m^+ \sqcup \boldsymbol{\Sigma}_l^+$
$ \begin{array}{c} \operatorname{Sp}(3,q)/\operatorname{Sp}(3)\times\operatorname{Sp}(q) \\ (q\geq 3) \end{array} $	BC ₃	(4(q-3), 4, 3)	Σ_l^+
$\mathfrak{e}_{7(-25)}/(\mathfrak{e}_6+\mathbb{R})$	<i>C</i> ₃	(0, 8, 1)	Σ_l^+

When $\Sigma_{*,odd}^+ = \Sigma_1^+$, the mero extension of *F* for *G*/*K* can be deduced from that for a direct product of rank-one symmetric spaces.

A. Pasquale (IECL, Lorraine)

Resonances of the Laplacian

Direct products of rank-one symmetric spaces

 $X = X_1 \times \cdots \times X_n$ where X_j =rank-one Riemannian symmetric noncompact type

(the index j indicates objects associated with X_i)

$$\begin{aligned} \mathfrak{a}^{*} &= \mathfrak{a}_{1}^{*} \oplus \cdots \oplus \mathfrak{a}_{n}^{*}, \qquad \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{1} \oplus \cdots \oplus \langle \cdot, \cdot \rangle_{n} \\ \Sigma &= \Sigma_{1} \times \cdots \times \Sigma_{n} \quad \text{with} \quad \Sigma_{j} \in \{A_{1}, BC_{1}\} \\ \Delta &= \sum_{j=1}^{n} (\text{id} \otimes \cdots \otimes \Delta_{j} \otimes \cdots \text{id}), \qquad \sigma(\Delta) = [\rho_{X}^{2}, +\infty[, \qquad \rho_{X}^{2} = \rho_{X_{1}}^{2} + \cdots + \rho_{X_{n}}^{2} \\ \mathfrak{c}(\lambda) &= \mathfrak{c}_{1}(\lambda_{1}) \cdots \mathfrak{c}_{n}(\lambda_{n}), \qquad \lambda = \lambda_{1} \cdots + \lambda_{n} \in \mathfrak{a}_{\mathbb{C}}^{*} \quad \text{with} \quad \lambda_{j} \in \mathfrak{a}_{j\mathbb{C}}^{*} \end{aligned}$$

- The Plancherel density of X_j is singular iff $X_j \neq H^n(\mathbb{R})$ with *n* odd.
- The Plancherel density of X is the product of the Plancherel densities of the X_j's. It has first order singularities along N mutually orthogonal families of hyperplanes parallel to the coordinate axes, where N = #{j ∈ {1,...,n} : X_j ≠ Hⁿ(ℝ), n odd}.

Example: product of two rank-one Riemannian symmetric spaces

- J. Hilgert, A.P. and T. Przebinda (2017):
- \diamond meromorphic continuation of *R* to suitable Riemann surfaces over $\mathbb C$
- ♦ No resonances if **one** of the two spaces is $H^n(\mathbb{R})$ with *n* odd,
- infinitely many resonances in the other cases
- residue operators with finite rank
- \diamond range of the residue operators realized by finite direct sums of tensor products of finite dim irr *K*-spherical reps of *G*₁ and *G*₂

(where $X_1 = G_1/K_1$ and $X_2 = G_2/K_2$ are the symm spaces)

(日)

The integral defining *F* for $X = X_1 \times \cdots \times X_n$

Suppose $X_j \neq H^n(\mathbb{R})$, *n* odd, exactly for j = 1, ..., N with $N \le n$. For j = 1, ..., N define: $p_j : \mathbb{C}^n \ni z = (z_1, ..., z_n) \rightarrow z_j \in \mathbb{C}$, $L_j = (a_j + b_j \mathbb{Z}_{\ge 0}) \cup (-a_j - b_j \mathbb{Z}_{\ge 0})$ with $a_j > 0$, $b_j > 0$ $L = \bigcup_{j=1}^N p_j^{-1}(L_j) = \bigcup_{j=1}^N \bigcup_{l_j \in L_j} \{z \in \mathbb{C}^n : z_j = l_j\}$ $a = \min\{a_1, ..., a_N\}$.

$$\begin{split} S^{n-1}(\mathbb{C}) &= \{ z = (z_1, \dots, z_n) \in \mathbb{C}^n : z_1^2 + \dots + z_n^2 = 1 \} \quad (\text{the complex sphere}) \\ \omega(z) &= \sum_{j=1}^n (-1)^{j-1} z_j \, dz_1 \cdots \widehat{dz_j} \cdots dz_n, \qquad z = (z_1, \dots, z_n) \in \mathbb{C}^n \\ \text{Let } \mathbf{f} : \mathbb{C}^n \to \mathbb{C} \text{ be meromorphic on } \mathbb{C}^n \text{ and holomorphic on } \mathbb{C}^n \setminus iL. \\ \text{Since } \mathbf{f}(z) \omega(z) \text{ is a closed form of top complex dimension on } S^{n-1}(\mathbb{C}) \setminus iL \text{ the function} \end{split}$$

 $\mathbb{C} \setminus i((-\infty, -a] \cup [a, \infty)) \ni w \to F(w) = \int_{S^{n-1}} f(wz)\omega(z) \in \mathbb{C}$ is well defined and holomorphic.

Remark: For the study of the resolvent on *X*, one chooses $f(wz) = w^{n-2}(f \times \varphi_{iwz})(y) [c(iwz)c(-iwz)]^{-1}$, having identified $\mathfrak{a}_{\mathbb{C}}^* \ni \lambda \equiv z \in \mathbb{C}^n$.

Fix $v_0 \in]-\infty, -a] \cup [a, \infty[$. Then $S^{n-1}(\mathbb{R}) \cap \frac{1}{v_0}L \neq \emptyset$ is possible and therefore the integral $\int_{S^{n-1}} \mathbf{f}(wz)\omega(z)$, with $w = iv_0$, might diverge.

• Suppose $C_{iv_0} \subseteq S^{n-1}(\mathbb{C}) \setminus \frac{1}{v_0}L$ is a cycle homologous to S^{n-1} in $S^{n-1}(\mathbb{C})$. $\rightsquigarrow C_{iv_0}$ is a "deformation" of S^{n-1} within $S^{n-1}(\mathbb{C})$ which is disjoint with $\frac{1}{v_0}L$

Since *L* is a locally finite family of hyperplanes, \exists an open neighborhood $W \subseteq \mathbb{C}$ of iv_0 such that $C_{iv_0} \subseteq S^{n-1}(\mathbb{C}) \setminus \frac{i}{W}L$. So

$$W \ni w o \int_{C_{iv_0}} \mathbf{f}(wz) \omega(z) \in \mathbb{C}$$

is well defined and is holomorphic.

• Fix $w_0 \in W \cap \mathbb{C}_{Re>0}$. Suppose we have found finitely many cycles

$$\mathcal{C}_k \subseteq \mathcal{S}^{n-1}(\mathbb{C}) \setminus rac{i}{w_0} L \qquad (k = 1, 2, \dots, M)$$

such that $[S^{n-1}] = [C_{iv_0}] + \sum_k [C_k]$ in $H_{n-1}(S^{n-1}(\mathbb{C}) \setminus \frac{i}{w_0}L)$.

Then, by Stokes Theorem, for $w \in \mathbb{C}_{\text{Re}>0}$ near w_0

$$\int_{S^{n-1}} \mathbf{f}(wz)\omega(z) = \int_{C_{iv_0}} \mathbf{f}(wz)\omega(z) + \sum_k \int_{C_k} \mathbf{f}(wz)\omega(z).$$

The first integral on the RHS is holo on W. One hopes to choose the C_k 's so that residue computations in z yield a mero function of $w \in W$.

- The homology of Sⁿ⁻¹(C) \ {hyperplane arrangement} is not known, unlike the case of Cⁿ \ {hyperplane arrangement} (Goresky-MacPherson).
- Useful description: $S^{n-1}(\mathbb{C})$ can be identified with the tangent bundle

$$TS^{n-1} = \{(u, v) \in \mathbb{R}^n \times \mathbb{R}^n : |u| = 1, u \cdot v = 0\}$$

to S^{n-1} by means of the isomorphism

$$au: S^{n-1}(\mathbb{C}) \ni z = x + iy \to \left(\frac{x}{|x|}, y\right) \in TS^{n-1}$$

with inverse

$$\tau^{-1}: TS^{n-1} \ni (u, v) \to \sqrt{1+|v|^2}u + iv \in S^{n-1}(\mathbb{C}).$$

- The general construction of the cycles is not yet achieved C_{iv_0} and C_k , even in rank 3.
- Easiest possible case of rank 3: $X = X_1 \times X_2 \times X_3$ with $X_1 \neq H^n(\mathbb{R})$, *n* odd, and $X_2 = X = 3 = H^n(\mathbb{R})$, *n* odd.

One family of parallel singular hyperplanes perpendicular to x_1 -axis.

For
$$v_0 \in]-\infty, -a] \cup [a, \infty[: S^2 \cap \frac{1}{v_0}L \neq \emptyset \text{ if and only if } |\frac{1}{v_0}| \leq 1, \text{ and }$$

- $\left|\frac{l}{v_0}\right| < 1 \Rightarrow$ intersection is a circle perpendicular to x_1 axis (generic case)
- $\left|\frac{l}{v_0}\right| = 1 \Rightarrow$ intersection is a single point $\in \{(\pm 1, 0, 0)\}.$

Theorem. The resolvent R extends holomorphically to \mathbb{C} (no resonances).

Happy Birthday, Joachim!

Happy Birthday, Joachim!

