Resonances of the Laplacian on noncompact Riemannian symmetric spaces of low rank

Angela Pasquale

Institut Élie Cartan de Lorraine
Université de Lorraine - Metz

(joint work with Joachim Hilgert and Tomasz Przebinda)

"Symmetries in Geometry, Analysis and Spectral Theory" Conference on the occasion of Joachim Hilgert's 60th Birthday

Paderborn, July 23, 2018

Statement of the problem

$X=G / K$ is a Riemannian symmetric space of the noncompact type, where:
$G=$ connected noncompact real semisimple Lie group with finite center
$K=$ maximal compact subgroup of G
Examples:

- $H^{n}(\mathbb{R})=\mathrm{SO}_{0}(1, n) / \mathrm{SO}(n)$ real hyperbolic space
- $\mathrm{SU}(p, q) / \mathrm{S}(\mathrm{U}(p) \times \mathrm{U}(q)), q \geq p \geq 1$, Grassmannian of p subspaces of \mathbb{C}^{p+q} (complex hyperbolic space if $p=1$)
$\Delta=$ (positive) Laplacian on X, with continuous spectrum $\sigma(\Delta)=\left[\rho_{X}^{2},+\infty\left[\right.\right.$ with $\rho_{X}^{2}>0$.
The resolvent of Δ

$$
R_{\Delta}(u)=(\Delta-u)^{-1}
$$

is a bdd operator on $L^{2}(X)$ depending holomorphically on $u \in \mathbb{C} \backslash \sigma(\Delta)$, i.e.

$$
\mathbb{C} \backslash \sigma(\Delta) \ni u \longrightarrow R_{\Delta}(u)=(\Delta-u)^{-1} \in \mathcal{B}\left(L^{2}(X)\right) .
$$

is a holomorphic operator-valued function.
As operator on $L^{2}(X)$, the resolvent R_{Δ} has no extension across $\sigma(\Delta)$.
Letting R_{Δ} act on a smaller dense subspace of $L^{2}(X)$, e.g. $C_{c}^{\infty}(X)$, a meromorphic continuation of R_{Δ} across $\sigma(\Delta)$ is possible.

Theorem (Strohmaier, Mazzeo-Vasy, 2005)

Let X be an arbitrary Riemannian symmetric space of the noncompact type. There are $\Omega \nsubseteq \mathbb{C}$ open with $\sigma(\Delta) \subset \Omega$ and M Riemann surface above Ω such that

$$
R_{\Delta}: \Omega \backslash \sigma(\Delta) \ni u \longrightarrow R_{\Delta}(u) \in \operatorname{Hom}\left(C_{c}^{\infty}(X), C_{c}^{\infty}(X)^{\prime}\right)
$$

admits holomorphic extension to M.
$\rightsquigarrow \Omega$ is not large enough to find resonances.
Special cases showing that there might be resonances are classical:

Theorem (Guillopé-Zworski, 1995)

For $X=H^{n}(\mathbb{R})$ and $\Omega=\mathbb{C}$, the resolvent R_{Δ} has:
\diamond holomorphic extension, if n is odd
\diamond meromorphic extension (with infinitely many poles) if n even.
Problem 1: For general $X=G / K$, does R_{Δ} admit a meromorphic extension to a Riemann surface above $\Omega=\mathbb{C}$?
If so: what are the poles? What are the residues?
The poles of the meromorphically extended R_{Δ} are called the (quantum) resonances of the Laplacian.

(Quantum) resonances

In physics:

- Quantum mechanical systems which are bound can only assume certain discrete values of energy (=energy levels) which are constant in time.
- Quantum mechanical systems which are unbound might have states with energy that a certain starting time can assume certain discrete values, but are not constant in time, usually decreasing exponentially (=metastable states).
- Energy at a metastable state is described by a complex number ζ (a resonance): $\operatorname{Re} \zeta=$ energy at the starting time $\operatorname{Im} \zeta=$ rate of exponential time decreasing of the energy.
- The resonances are the poles of the meromorphic extension of the resolvent

$$
\mathbb{C} \backslash \sigma(H) \ni u \longrightarrow R_{H}(u)=(H-u)^{-1}
$$

of the Hamiltonian H, with continuous spectrum $\sigma(H)$, describing the unbound system.

In mathematics:

- Classical situation: Resonances for Schrödinger operators $H=\Delta_{\mathbb{R}^{n}}+V$ where:
$\diamond \Delta_{\mathbb{R}^{n}}=-\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}$ is the positive Euclidean Laplacian
$\diamond V$ is a potential
(V chosen so that H is s.a. and $\sigma(H) \subset[0,+\infty[$ is continuous; e.g. $V=0$).
- Geometric scattering: Resonances for the Laplacian Δ of complete non-compact Riemannian manifolds (with bounded geometry).
Motivations: scattering, dynamical systems, spectral analysis...
Very active field of research.
Why studying resonances on symmetric spaces?
\diamond well understood geometry
\diamond well developed Fourier analysis: HF (=Helgason-Fourier) transform
\diamond radial part of Δ on a Cartan subspace is a Schrödinger operator
\diamond tools from representation theory

Some usual renormalizations

$X=G / K$ Riemannian symmetric space of the noncompact type.

- Translate the spectrum $\left[\rho_{X}^{2},+\infty\right)$ to $[0,+\infty)$ i.e. consider $\Delta-\rho_{X}^{2}$ instead of Δ
- Change variables $u=z^{2} \rightsquigarrow$ choice of square root: $\sqrt{-1}=i$ $u \in \mathbb{C} \backslash\left[0,+\infty\left[\right.\right.$ corresponds to $z \in \mathbb{C}^{+}=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.
- Define

$$
R(z)=R_{\Delta-\rho_{X}^{2}}\left(z^{2}\right)=\left(\Delta-\rho_{X}^{2}-z^{2}\right)^{-1}
$$

So $R: \mathbb{C}^{+} \rightarrow \mathcal{B}\left(L^{2}(X)\right)$ is a holomorphic operator-valued function.

Goal:

Meromorphic continuation across \mathbb{R} of $R: \mathbb{C}^{+} \rightarrow \operatorname{Hom}\left(C_{c}^{\infty}(X), C_{c}^{\infty}(X)^{\prime}\right)$

Residue operators

Suppose we have a meromorphic continuation of $R: \mathbb{C}^{+} \rightarrow \operatorname{Hom}\left(C_{c}^{\infty}(X), C^{\infty}(X)\right)$ across \mathbb{R}, i.e.

- a Riemann surface $\downarrow^{\pi} \quad$ with $\Omega \subset \mathbb{C}$ open, $\Omega \cap \mathbb{R} \neq \emptyset$
Ω
- $\widetilde{R}: M \rightarrow \operatorname{Hom}\left(C_{c}^{\infty}(X), C^{\infty}(X)\right)$ meromorphic and extending a lift of R to M :

- z_{0} is a resonance (=pole of \widetilde{R}).

The residue operator at z_{0} is the linear operator

$$
\operatorname{Res}_{z_{0}} \widetilde{R}: C_{c}^{\infty}(X) \rightarrow C^{\infty}(X)
$$

"defined" for $f \in C_{C}^{\infty}(X)$ by

$$
\operatorname{Res}_{z_{0}} \widetilde{R}(f): X \ni y \longrightarrow \operatorname{Res}_{z=z_{0}}[\widetilde{R}(z)(f)](y) \in \mathbb{C}
$$

["defined": residues are computed wrt charts in M, so up to nonzero constant multiples]
Well-defined: the subspace $\operatorname{Res}_{z_{0}}:=\widetilde{R}\left(C_{C}^{\infty}(X)\right)$ of $C^{\infty}(X)$.
The rank of the residue operator at z_{0} is $\operatorname{dim}\left(\operatorname{Res}_{z_{0}}\right)$.

Problem 2: Find image and rank of the residue operator at z_{0}.

Additional properties appear as X is endowed with a G-invariant Riemannian metric.
The Laplacian Δ of X is G-invariant
$\rightsquigarrow R(z)$ and its mero extension $\widetilde{R}(z)$ are G-invariant
\rightsquigarrow the residue operator at a resonance z_{0} is a G-invariant operator $C_{c}^{\infty}(X) \rightarrow C^{\infty}(X)$
\rightsquigarrow its image $\operatorname{Res}_{z_{0}} \subset C^{\infty}(X)$ is a G-module (a K-spherical representation of G in our case)

Problem 3: Which (spherical) representations of G do we obtain? Rank of residue operator \equiv dimension of the corresponding representation Irreducible? Unitary?

Overview of results

General X of real rank one:

- R. Miatello and C. Will (2000):
meromorphic continuation of the resolvent (in the context of Damek-Ricci spaces).
- J. Hilgert and A.P. (2009):
meromorphic continuation of the resolvent (using HF transform).
\diamond no resonances if $X=H^{n}(\mathbb{R})$ with n odd.
\diamond (infinitely many) resonances for $X \neq H^{n}(\mathbb{R})$ with n odd.
\diamond Finite rank residue operators, image: irreducible finite dim K-spherical reps of G.
General X of real rank ≥ 2 : (R. Mazzeo and A. Vasy (2005), A. Strohmaier (2005))
\diamond analytic continuation of the resolvent of Δ from \mathbb{C}^{+}across \mathbb{R}
$\begin{cases}\text { to an open domain in } \mathbb{C}, & \text { if the real rank of } X \text { is odd } \\ \text { to a logarithmic cover of an open domain in } \mathbb{C}, & \text { if the real rank of } X \text { is even }\end{cases}$ The open domain is not large enough to find resonances.
\diamond If any, resonances are along the negative imaginary axis.
\diamond No resonances in the even multiplicity case (= Lie algebra of G has one conjugacy class of Cartan subalgebras)
Specific $X=G / K$ of real rank 2: (J. Hilgert, A.P., T. Przebinda)
Complete answers to the three problems:
\diamond for almost all rank 2 irreducible X
\diamond for direct products $X=X_{1} \times X_{2}$, with X_{1}, X_{2} of rank one.

The resolvent of Δ on $X=G / K$

Explicit formula for the resolvent $R(z)$ of Δ on $C_{c}^{\infty}(X)$ via HF transform:
For $z \in \mathbb{C}^{+}$

$$
R(z)=\left(\Delta-\rho_{X}^{2}-z^{2}\right)^{-1}: C_{c}^{\infty}(X) \ni f \rightarrow R(z) f \in C^{\infty}(X)
$$

is given by

$$
[R(z) f](y) \asymp \int_{\mathfrak{a}^{*}} \frac{1}{\langle\lambda, \lambda\rangle-z^{2}}\left(f \times \varphi_{i \lambda}\right)(y) \frac{d \lambda}{c(i \lambda) c(-i \lambda)} \quad(y \in X),
$$

where
$\mathfrak{a}^{*}=$ dual of a Cartan subspace $\mathfrak{a} \quad \rightsquigarrow$ real rank of $X:=\operatorname{dim} \mathfrak{a}^{*}$
$\langle\cdot, \cdot\rangle=$ inner product on \mathfrak{a}^{*} induced by the Killing form of the Lie algebra of G
\rightsquigarrow extend $\langle\cdot, \cdot\rangle$ to the complexification $\mathfrak{a}_{\mathbb{C}}^{*}$ of \mathfrak{a}^{*} by \mathbb{C}-bilinearity
$\varphi_{\lambda}=$ spherical function on X of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
\rightsquigarrow spherical functions $=($ normalized $) K$-invariant joint eigenfunctions of the commutative algebra of G-invariant diff ops on X
$f \times \varphi_{i \lambda}=$ convolution on X of f and $\varphi_{i \lambda}$
\rightsquigarrow by the Paley-Wiener thm for the HF-transform: entire and rapidly decreasing in $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$
$c(\lambda)=$ Harish-Chandra's c-function
$\frac{1}{c(i \lambda) c(-i \lambda)}=$ Plancherel density for the HF-fransform

The Plancherel density $[c(i \lambda) c(-i \lambda)]^{-1}$

\mathfrak{a} (=Cartan subspace) $\curvearrowright \mathfrak{g}$ (=Lie algebra of G) by adjoint action ad H with $H \in \mathfrak{a}$
$\Sigma=$ roots of $(\mathfrak{g}, \mathfrak{a})$
$\Sigma^{+}=$choice of positive positive roots in Σ
$\mathfrak{g}_{\alpha}=\{X \in \mathfrak{g}: \operatorname{ad} H(X)=\alpha(H) X$ for all $H \in \mathfrak{a}\}=$ root space of $\alpha \in \Sigma$
$m_{\alpha}=\operatorname{dim}_{\mathbb{R}} \mathfrak{g}_{\alpha}=$ multiplicity of the root α
$\rho=1 / 2 \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \alpha \in \mathfrak{a}^{*}$
Notation: For $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $\alpha \in \Sigma$ set $\lambda_{\alpha}=\frac{\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle}$
Harish-Chandra c-function:
$\Sigma_{*}^{+}=\left\{\beta \in \Sigma^{+}: 2 \beta \notin \Sigma\right\} \quad$ (the unmultipliable positive roots)
$C_{\beta}(\lambda)=\frac{2^{-2 \lambda_{\beta}} \Gamma\left(2 \lambda_{\beta}\right)}{r\left(\lambda_{\beta}+\frac{m_{\beta / 2}}{4}+\frac{1}{2}\right) r\left(\lambda_{\beta}+\frac{m_{\beta / 2}}{4}+\frac{m_{\beta}}{2}\right)} \quad$ for $\beta \in \Sigma_{*}^{+}$
$c(\lambda)=c_{0} \prod_{\beta \in \Sigma_{*}^{+}} c_{\beta}(\lambda)$
where c_{0} is a normalizing constant so that $c(\rho)=1$.
Many rules: e.g. if both β and $\beta / 2$ are roots, then $m_{\beta / 2}$ is even and m_{β} is odd. Many simplifications using classical formulas for Γ : e.g. $\Gamma(i x) \Gamma(-i x)=\frac{i \pi}{x \sinh (\pi x)}$.
Example: If G / K of even multiplicities, then $[c(i \lambda) c(-i \lambda)]^{-1}$ is a polynomial
$\widetilde{\rho}_{\beta}=\frac{1}{2}\left(\frac{m_{\beta / 2}}{2}+m_{\beta}\right)$

Lemma

Set:
$\Pi(\lambda)=\prod_{\beta \in \Sigma_{*}^{+}} \lambda_{\beta}$,
$P(\lambda)=\prod_{\beta \in \Sigma_{*}^{+}}\left(\prod_{k=0}^{\left(m_{\beta / 2}\right) / 2-1}\left[i \lambda_{\beta}-\left(\frac{m_{\beta / 2}}{4}-\frac{1}{2}\right)+k\right] \prod_{k=0}^{2 \widetilde{\rho}_{\beta}-2}\left[i \lambda_{\beta}-\left(\widetilde{\rho}_{\beta}-1\right)+k\right]\right)$,
$Q(\lambda)=\prod_{\substack{\beta \in \Sigma_{\text {od }}^{+} \\ m_{\beta} \text { odd }}} \operatorname{coth}\left(\pi\left(\lambda_{\beta}-\widetilde{\rho}_{\beta}\right)\right)$.
(empty products are equal to 1)
Then:

$$
[c(\lambda) c(-\lambda)]^{-1} \asymp \Pi(\lambda) P(\lambda) Q(\lambda) .
$$

Hence: $[c(i \lambda) c(-i \lambda)]^{-1}$ has at most first order singularities along the hyperplanes

$$
\mathcal{H}_{\beta, k, \pm}=\left\{\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}: \lambda_{\beta}= \pm i\left(\widetilde{\rho}_{\beta}+k\right)\right\}
$$

where $\beta \in \Sigma_{*}^{+}$has multiplicity m_{β} odd and $k \in \mathbb{Z}_{\geq 0}$.
$\Sigma_{*, \text { odd }}^{+}=\left\{\alpha \in \Sigma_{*}^{+}: m_{\alpha}\right.$ is odd $\}$

Extension of the resolvent of Δ on $X=G / K$

Suppose: real rank of $X=\operatorname{dim} \mathfrak{a}^{*}=: n \geq 2$.
Let $f \in C_{c}^{\infty}(X)$ and $y \in X$ be fixed.
Recall

$$
[R(z) f](y) \asymp \int_{\mathfrak{a}^{*}} \underbrace{\frac{1}{\langle\lambda, \lambda\rangle-z^{2}}}_{\text {singularities along } \mathbb{C} \text {-spheres radius } \pm z}\left(f \times \varphi_{i \lambda}\right)(y) \underbrace{\frac{d \lambda}{c(i \lambda) c(-i \lambda)}}_{\text {singularities along hyperplanes }}
$$

Polar coordinates in \mathfrak{a}^{*} give

$$
R(z):=[R(z) f](y)=\int_{0}^{\infty} \frac{1}{r^{2}-z^{2}} F(r) r d r
$$

where

$$
F(r)=F_{f, y}(r)=r^{n-2} \int_{S^{n-1}}\left(f \times \varphi_{i r \sigma}\right)(y) \frac{\omega(\sigma)}{c(i r \sigma) c(-i r \sigma)}
$$

and
$\omega(\sigma)=$ pullback to S^{n-1} of the $\mathrm{SO}(n)$-invariant $(n-1)$-form

$$
\omega(z)=\sum_{j=1}^{n}(-1)^{j-1} z_{j} d z_{1} \cdots \widehat{d z}_{j} \cdots d z_{n}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \equiv \mathfrak{a}_{\mathbb{C}}^{*}
$$

Lemma

- For every fixed $\sigma \in \mathfrak{a}^{*}$ with $|\sigma|=1$, the function $r \mapsto[c(i r \sigma) c(-i r \sigma)]^{-1}$ is holomorphic on $\mathbb{C} \backslash i(]-\infty,-a] \cup[a,+\infty[)$.
- The function

$$
\mathbb{C} \backslash i(]-\infty,-a] \cup[a,+\infty[) \ni w \rightarrow F(w) \in \mathbb{C}
$$

is holomorphic.

- Let $U=\mathbb{C}^{-} \cup\{z \in \mathbb{C}: \operatorname{Re} z>1,0 \leq \operatorname{Im} z<1\}$, where $\mathbb{C}^{-}=\{z \in \mathbb{C}: \operatorname{Im} z<0\}$.
Then \exists holo function $H=H_{f, y}: U \rightarrow \mathbb{C}$ such that

$$
R(z)=H(z)+i \pi F(z) \quad \text { for } z \in U \cap \mathbb{C}^{+}
$$

Corollary

- The mero extension of R across the negative imaginary axis (where the resonances could be) is equivalent to that of F.
- If any, the resonances are located on i] - $\infty,-a$].

The set $\Sigma_{*, \text { odd }}^{+}$

Let Σ be an irreducible root system in \mathfrak{a}^{*} such that $\Sigma_{*, \text { odd }}^{+} \neq \emptyset$.

- Σ_{*} is a reduced and irreducible root system. So it has at most two root lengths.
- Roots of same lenght form a unique Weyl group orbit and have therefore same root multiplicity m_{β}.
- If there is a unique root length, then m_{β} is constant and $\Sigma_{*, \text { odd }}^{+}=\Sigma_{*}^{+}$. (This happens for $\Sigma=\Sigma_{*}$ of type A,D or E)
- If there are two root lengths (i.e. for Σ_{*} of type B,C,F or G), then $\Sigma_{*}^{+}=\Phi_{1} \sqcup \Phi_{2}$, where roots in Φ_{j} have same length, and $\Sigma_{*, \text { odd }}^{+} \in\left\{\Sigma_{*}^{+}, \Phi_{1}, \Phi_{2}\right\}$.
$\Sigma_{*}^{+}=\Phi_{1} \sqcup \Phi_{2}$ is obtained from the following decompositions:

$$
B_{n}=\left(A_{1}\right)^{n} \sqcup D_{n} \quad C_{n}=\left(A_{1}\right)^{n} \sqcup D_{n} \quad F_{4}^{+}=D_{4}^{+} \sqcup D_{4}^{+} \quad G_{2}^{+}=A_{2}^{+} \sqcup A_{2}^{+}
$$

Consequences: If $\Sigma_{*, \text { odd }}^{+} \neq \emptyset$, then:
\diamond The hyperplane arrangement $\mathcal{H}=\left\{\operatorname{ker} \beta: \beta \in \Sigma_{*, \text { odd }}^{+}\right\}$is simplicial (= every connected component of $\mathfrak{a}^{*} \backslash \cup \mathcal{H}$ is the intersection of $n=\operatorname{dim} \mathfrak{a}^{*}$ open halfspaces, i.e. is the positive linear span of n lin. indep. vectors).
\diamond For some Σ of types B, C or $B C$, we have $\Sigma_{*, \text { odd }}^{+}=\left(A_{1}\right)^{n}$.

Example: G / K or rank 3 and root system Σ of type $B C, B$ or C
$\Sigma^{+}=\Sigma_{\mathrm{s}}^{+} \sqcup \Sigma_{\mathrm{m}}^{+} \sqcup \Sigma_{1}^{+}$, where:
$\Sigma_{\mathrm{s}}^{+}=\left\{e_{j} ; 1 \leq j \leq n\right\}$, multiplicity m_{s},
$\Sigma_{\mathrm{m}}^{+}=\left\{e_{i} \pm e_{j} ; 1 \leq i \geq j \leq n\right\}$, multiplicity m_{m},
$\Sigma_{1}^{+}=\left\{2 e_{j} ; 1 \leq j \leq n\right\}$, multiplicity m_{1}.

G / K	Σ	m_{α}	$\Sigma_{*, \text { odd }}^{+}$
$\mathrm{SL}(4, \mathbb{R}) / \mathrm{SO}(3)$	A_{3}	1	Σ^{+}
$\mathrm{SU}^{*}(8) / \mathrm{Sp}(8)$	A_{3}	4	\emptyset
$\mathrm{SU}(3, q) / \mathrm{S}(\mathrm{U}(3) \times \mathrm{U}(q))$ $(q \geq 3)$	$C_{3}(q=3)$ $B C_{3}(q>3)$	$(2(q-3), 2,1)$	Σ_{1}^{+}
$\mathrm{SO}(3, q) / \mathrm{SO}(3) \times \mathrm{SO}(q)$ $(q>3)$	B_{3}	$(q-3,1,0)$	$\Sigma_{\mathrm{m}}^{+}(q$ odd $)$
$\mathrm{SO}_{\mathrm{s}}^{*}(12) / \mathrm{U}(6)$	$B C_{3}$	$(4,4,1)$	$\Sigma_{\mathrm{m}}^{+}(q$ even $)$
$\mathrm{Sp}(6, \mathbb{R}) / \mathrm{U}(3)$	C_{3}	$(0,1,1)$	Σ_{1}^{+}
$\mathrm{Sp}(3, q) / \mathrm{Sp}(3) \times \mathrm{Sp}(q)$ $(q \geq 3)$	$B C_{3}^{+}$		
$\mathfrak{c}_{7}(-25) /\left(\mathfrak{e}_{6}+\mathbb{R}\right)$	$(4(q-3), 4,3)$	Σ_{1}^{+}	

When $\Sigma_{*, \text { odd }}^{+}=\Sigma_{1}^{+}$, the mero extension of F for G / K can be deduced from that for a direct product of rank-one symmetric spaces.

Direct products of rank-one symmetric spaces

$X=X_{1} \times \cdots \times X_{n} \quad$ where $\quad X_{j}=$ rank-one Riemannian symmetric noncompact type (the index j indicates objects associated with X_{j})

$$
\begin{aligned}
& \mathfrak{a}^{*}=\mathfrak{a}_{1}^{*} \oplus \cdots \oplus \mathfrak{a}_{n}^{*}, \quad\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{1} \oplus \cdots \oplus\langle\cdot, \cdot\rangle_{n} \\
& \Sigma=\Sigma_{1} \times \cdots \times \Sigma_{n} \quad \text { with } \quad \Sigma_{j} \in\left\{A_{1}, B C_{1}\right\} \\
& \Delta=\sum_{j=1}^{n}\left(\operatorname{id} \otimes \cdots \otimes \Delta_{j} \otimes \cdots \mathrm{id}\right), \quad \sigma(\Delta)=\left[\rho_{X}^{2},+\infty\left[, \quad \rho_{X}^{2}=\rho_{X_{1}}^{2}+\cdots+\rho_{X_{n}}^{2}\right.\right. \\
& c(\lambda)=c_{1}\left(\lambda_{1}\right) \cdots c_{n}\left(\lambda_{n}\right), \quad \lambda=\lambda_{1} \cdots+\lambda_{n} \in \mathfrak{a}_{\mathbb{C}}^{*} \quad \text { with } \quad \lambda_{j} \in \mathfrak{a}_{\mathfrak{c}}^{*}
\end{aligned}
$$

- The Plancherel density of X_{j} is singular iff $X_{j} \neq H^{n}(\mathbb{R})$ with n odd.
- The Plancherel density of X is the product of the Plancherel densities of the X_{j} 's. It has first order singularities along N mutually orthogonal families of hyperplanes parallel to the coordinate axes, where $N=\sharp\left\{j \in\{1, \ldots, n\}: X_{j} \neq H^{n}(\mathbb{R}), n\right.$ odd $\}$.

Example: product of two rank-one Riemannian symmetric spaces

J. Hilgert, A.P. and T. Przebinda (2017):
\diamond meromorphic continuation of R to suitable Riemann surfaces over \mathbb{C}
\diamond No resonances if one of the two spaces is $H^{n}(\mathbb{R})$ with n odd,
\diamond infinitely many resonances in the other cases
\diamond residue operators with finite rank
\diamond range of the residue operators realized by finite direct sums of tensor products of finite dim irr K-spherical reps of G_{1} and G_{2}
(where $X_{1}=G_{1} / K_{1}$ and $X_{2}=G_{2} / K_{2}$ are the symm spaces)

The integral defining F for $X=X_{1} \times \cdots \times X_{n}$

Suppose $X_{j} \neq H^{n}(\mathbb{R})$, n odd, exactly for $j=1, \ldots, N$ with $N \leq n$.
For $j=1, \ldots, N$ define:
$p_{j}: \mathbb{C}^{n} \ni z=\left(z_{1}, \ldots, z_{n}\right) \rightarrow z_{j} \in \mathbb{C}$,
$L_{j}=\left(a_{j}+b_{j} \mathbb{Z}_{\geq 0}\right) \cup\left(-a_{j}-b_{j} \mathbb{Z}_{\geq 0}\right)$ with $a_{j}>0, b_{j}>0$
$L=\bigcup_{j=1}^{N} p_{j}^{-1}\left(L_{j}\right)=\bigcup_{j=1}^{N} \bigcup_{j ; \in L_{j}}\left\{z \in \mathbb{C}^{n}: z_{j}=l_{j}\right\}$
$a=\min \left\{a_{1}, \ldots, a_{N}\right\}$.
$S^{n-1}(\mathbb{C})=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: z_{1}^{2}+\cdots+z_{n}^{2}=1\right\} \quad$ (the complex sphere)
$\omega(z)=\sum_{j=1}^{n}(-1)^{j-1} z_{j} d z_{1} \cdots \widehat{d z_{j}} \cdots d z_{n}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$
Let $\mathbf{f}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be meromorphic on \mathbb{C}^{n} and holomorphic on $\mathbb{C}^{n} \backslash i L$.
Since $\mathfrak{f}(z) \omega(z)$ is a closed form of top complex dimension on $S^{n-1}(\mathbb{C}) \backslash i L$ the function

$$
\begin{aligned}
& \qquad \mathbb{C} \backslash i((-\infty,-a] \cup[a, \infty)) \ni w \rightarrow F(w)=\int_{S^{n-1}} \mathbf{f}(w z) \omega(z) \in \mathbb{C} \\
& \text { is well defined and holomorphic. }
\end{aligned}
$$

Remark: For the study of the resolvent on X, one chooses $\mathbf{f}(w z)=w^{n-2}\left(f \times \varphi_{i w z}\right)(y)[c(i w z) c(-i w z)]^{-1}$, having identified $\mathfrak{a}_{\mathbb{C}}^{*} \ni \lambda \equiv z \in \mathbb{C}^{n}$.

Fix $\left.\left.v_{0} \in\right]-\infty,-a\right] \cup\left[a, \infty\left[\right.\right.$. Then $S^{n-1}(\mathbb{R}) \cap \frac{1}{v_{0}} L \neq \emptyset$ is possible and therefore the integral $\int_{S^{n-1}} \mathbf{f}(w z) \omega(z)$, with $w=i v_{0}$, might diverge.

- Suppose $\quad C_{i v_{0}} \subseteq S^{n-1}(\mathbb{C}) \backslash \frac{1}{v_{0}} L$ is a cycle homologous to S^{n-1} in $S^{n-1}(\mathbb{C})$.
$\rightsquigarrow c_{i_{0}}$ is a "deformation" of S^{n-1} within $S^{n-1}(\mathbb{C})$ which is disioint with $\frac{1}{v_{0}} L$
Since L is a locally finite family of hyperplanes, \exists an open neighborhood $W \subseteq \mathbb{C}$ of v_{0} such that $\quad C_{i_{0}} \subseteq S^{n-1}(\mathbb{C}) \backslash \frac{i}{w} L$. So

$$
w \ni w \rightarrow \int_{C_{i_{0}}} \mathbf{f}(w z) \omega(z) \in \mathbb{C}
$$

is well defined and is holomorphic.

- Fix $w_{0} \in W \cap \mathbb{C}_{\text {Re>0 }}$. Suppose we have found finitely many cycles

$$
C_{k} \subseteq S^{n-1}(\mathbb{C}) \backslash \frac{i}{w_{0}} L \quad(k=1,2, \ldots, M)
$$

such that $\left[S^{n-1}\right]=\left[C_{i_{0}}\right]+\sum_{k}\left[C_{k}\right]$ in $H_{n-1}\left(S^{n-1}(\mathbb{C}) \backslash \frac{i}{w_{0}} L\right)$.
Then, by Stokes Theorem, for $w \in \mathbb{C}_{\text {Re>0 }}$ near w_{0}

$$
\int_{S^{n-1}} \mathbf{f}(w z) \omega(z)=\int_{C_{N_{0}}} \mathbf{f}(w z) \omega(z)+\sum_{k} \int_{C_{k}} \mathbf{f}(w z) \omega(z) .
$$

The first integral on the RHS is holo on W. One hopes to choose the C_{k} 's so that residue computations in z yield a mero function of $w \in W$.

- The homology of $S^{n-1}(\mathbb{C}) \backslash\{$ hyperplane arrangement $\}$ is not known, unlike the case of $\mathbb{C}^{n} \backslash$ \{hyperplane arrangement\} (Goresky-MacPherson).
- Useful description: $S^{n-1}(\mathbb{C})$ can be identified with the tangent bundle

$$
T S^{n-1}=\left\{(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}:|u|=1, u \cdot v=0\right\}
$$

to S^{n-1} by means of the isomorphism
with inverse

$$
\tau: S^{n-1}(\mathbb{C}) \ni z=x+i y \rightarrow\left(\frac{x}{|x|}, y\right) \in T S^{n-1}
$$

$$
\tau^{-1}: T S^{n-1} \ni(u, v) \rightarrow \sqrt{1+|v|^{2}} u+i v \in S^{n-1}(\mathbb{C}) .
$$

- The general construction of the cycles is not yet achieved $C_{i v_{0}}$ and C_{k}, even in rank 3.
- Easiest possible case of rank 3: $X=X_{1} \times X_{2} \times X_{3}$ with $X_{1} \neq H^{n}(\mathbb{R})$, n odd, and $X_{2}=X=3=H^{n}(\mathbb{R}), n$ odd.
One family of parallel singular hyperplanes perpendicular to x_{1}-axis.
For $\left.\left.v_{0} \in\right]-\infty,-a\right] \cup\left[a, \infty\left[: S^{2} \cap \frac{1}{v_{0}} L \neq \emptyset\right.\right.$ if and only if $\left|\frac{1}{v_{0}}\right| \leq 1$, and
$\left|\frac{1}{v_{0}}\right|<1 \Rightarrow$ intersection is a circle perpendicular to x_{1} axis (generic case)
$\left|\frac{1}{v_{0}}\right|=1 \Rightarrow$ intersection is a single point $\in\{(\pm 1,0,0)\}$.
Theorem. The resolvent R extends holomorphically to \mathbb{C} (no resonances).

Happy Birthday, Joachim!

Happy Birthday, Joachim!

