Howe's correspondence and characters for dual pairs over Archimedean and non-Archimedean fields

Tomasz Przebinda

University of Oklahoma
Norman, OK, USA

Symmetries in Geometry, Analysis and Spectral Theory,
Paderborn, July 23-27, 2018
On the occasion of Joachim Hilgert's 60th Birthday

The Cauchy determinantal identity, 1812

$$
\frac{1}{\prod_{1 \leq i, j \leq n}\left(1-h_{i} h_{j}^{\prime}\right)}=\sum_{k_{1}>k_{2}>\ldots>k_{n}} \frac{\left|h^{k_{1}} h^{k_{2}} \ldots h^{k_{n}}\right|}{\left|h^{n-1} h^{n-2} \ldots h^{0}\right|} \cdot \frac{\left|h^{\prime k_{1}} h^{\prime k_{2}} \ldots h^{\prime k_{n}}\right|}{\left|h^{\prime n-1} h^{\prime n-2} \ldots h^{\prime 0}\right|}
$$

$$
\text { where } \quad\left|h^{k_{1}} h^{k_{2}} \ldots h_{n}^{k_{n}}\right|=\operatorname{det}\left(\begin{array}{cccc}
h_{1}^{k_{1}} & h_{1}^{k_{2}} & \ldots & h_{1}^{k_{n}} \\
h_{2}^{k_{1}} & h_{2}^{k_{2}} & \ldots . h_{2}^{k_{n}} \\
\ldots \ldots \ldots \ldots \ldots \ldots . \\
h_{n}^{k_{1}} & h_{n}^{k_{2}} & \ldots & h_{n}^{k_{n}}
\end{array}\right)
$$

An interpretation of Cauchy's identity

The formula

$$
\omega\left(g, g^{\prime}\right) x=g \times g^{\prime t} \quad\left(x \in M_{n, n}(\mathbb{C}),\left(g, g^{\prime}\right) \in \mathrm{U}_{n} \times \mathrm{U}_{n}\right)
$$

defines a representation ω of the group $\mathrm{U}_{n} \times \mathrm{U}_{n}$ on space $\mathcal{H}_{\omega}=\operatorname{Sym}\left(M_{n, n}(\mathbb{C})\right)$ of the symmetric tensors of $M_{n, n}(\mathbb{C})$.
Taking the trace of of $\omega\left(g, g^{\prime}\right)$, one obtains the character formula

$$
\Theta_{\omega}\left(g, g^{\prime}\right)=\sum_{\Pi} \Theta_{\Pi}(g) \Theta_{\Pi^{\prime}}\left(g^{\prime}\right) \quad\left(\Pi=\Pi^{\prime} \in \widehat{\mathrm{U}}_{n}\right)
$$

Hence one deduces the decomposition

$$
\mathcal{H}_{\omega}=\bigoplus_{\square} \mathcal{H}_{\Pi} \otimes \mathcal{H}_{\Pi^{\prime}}
$$

We get a correspondence of representations $\Pi \leftrightarrow \Pi^{\prime}$ and a character formula

$$
\Theta_{\Pi}(g)=\int_{U_{n}} \Theta_{\omega}\left(g, g^{\prime}\right) \Theta_{\Pi^{\prime}}\left(g^{\prime-1}\right) d g
$$

Gaussians and Weil factors on a field

$\mathbb{F}=\mathbb{R}$ or a p-adic field (finite commutative extension of \mathbb{Q}_{p}), $p \neq 2$; $d x$ the Haar measure on \mathbb{F} normalized so that the volume of the closed unit ball is 1 .
If $\mathbb{F}=\mathbb{R}$, then choose $\chi(r)=e^{2 \pi i r}, r \in \mathbb{R}$, and define

$$
\begin{aligned}
\gamma(a) & =\lim _{b \rightarrow 0+} \int_{\mathbb{R}} \chi\left(\frac{1}{2}(a+i b) x^{2}\right) d x \\
& =|a|^{-\frac{1}{2}} \gamma_{W}(a), \quad \gamma_{W}(a)=e^{\frac{\pi i}{4} \operatorname{sgn}(a)} \quad(a \in \mathbb{R} \backslash\{0\})
\end{aligned}
$$

If $\mathbb{F} \neq \mathbb{R}$, then choose a unitary character $\chi: \mathbb{F} \rightarrow \mathbb{C}^{\times}$of the additive group \mathbb{F}, and define

$$
\begin{aligned}
\gamma(a) & =\lim _{r \rightarrow \infty} \int_{x \in \mathbb{F},|x|<r} \chi\left(\frac{1}{2}(a) x^{2}\right) d x, \\
& =|a|^{-\frac{1}{2}} \gamma_{w}(a), \quad \gamma_{W}(a)^{8}=1 \quad(a \in \mathbb{F} \backslash\{0\}) .
\end{aligned}
$$

γ_{W} is the Weil factor.

Gaussians and Weil factors on a vector space

U finite dimensional vector space over \mathbb{F} with Haar measure μ_{U}; q a nondegenerate quadratic form on U .
If $\mathbb{F}=\mathbb{R}$, then define

$$
\begin{aligned}
\gamma(q) & =\lim _{p \rightarrow 0} \int_{U} \chi\left(\frac{1}{2}(q+i p)(u)\right) d \mu_{U}(u), \\
\gamma_{w}(q) & =\frac{\gamma(q)}{|\gamma(q)|}=\chi\left(\frac{1}{4} \operatorname{sgn}(q)\right) .
\end{aligned}
$$

If $\mathbb{F} \neq \mathbb{R}$, then define

$$
\begin{aligned}
\gamma(q) & =\lim _{r \rightarrow \infty} \int_{u \in \mathrm{U},|u|<r} \chi\left(\frac{1}{2} q(u)\right) d \mu_{\mathrm{U}}(u), \\
\gamma_{W}(q) & =\frac{\gamma(q)}{|\gamma(q)|}, \quad \gamma_{W}(a)^{8}=1 .
\end{aligned}
$$

Determinants

(W, 〈•, •〉); Sp \ni.
If $\mathbb{F}=\mathbb{R}$, pick $J \in \mathfrak{s p}, J^{2}=-I, B(\cdot \cdot)=\langle J \cdot, \cdot\rangle>0$. Define

$$
\operatorname{det}(g-1: \mathrm{W} / \operatorname{Ker}(g-1) \rightarrow(g-1) \mathrm{W})=\operatorname{det}\left(\left\langle(g-1) w_{i}, w_{j}\right\rangle_{1 \leq i, j \leq m}\right),
$$

where w_{1}, \ldots, w_{m} is any B-orthonormal basis of $\operatorname{Ker}(g-1)^{\perp_{B}} \subseteq \mathbf{W}$.
If $\mathbb{F} \neq \mathbb{R}$, fix a lattice $\mathcal{L} \subseteq \mathrm{W}$ and the corresponding norm

$$
N_{\mathcal{L}}(w)=\inf \left\{|a|^{-1}: a \in \mathbb{F}^{\times}, a w \in \mathcal{L}\right\} \quad(w \in W) .
$$

Let $\mathfrak{o}_{\mathbb{F}} \subseteq \mathbb{F}$ denote the ring of integers. Define

$$
\begin{aligned}
& \operatorname{det}(g-1: \mathrm{W} / \operatorname{Ker}(g-1) \rightarrow(g-1) \mathrm{W}) \\
&=\operatorname{det}\left(\left\langle(g-1) w_{i}, w_{j}\right\rangle_{1 \leq i, j \leq m}\right)\left(\mathfrak{o}_{\mathbb{F}}^{\times}\right)^{2} \in \mathbb{F}^{\times} /\left(\mathfrak{o}_{\mathbb{F}}^{\times}\right)^{2},
\end{aligned}
$$

where w_{1}, \ldots, w_{m} are such that the spaces

$$
\mathbb{F} \boldsymbol{w}_{1}, \ldots, \mathbb{F} \boldsymbol{w}_{m}, \operatorname{Ker}(g-1)
$$

span W and are $N_{\mathcal{L}}$-orthogonal, i.e.

$$
N_{\mathcal{L}}\left(a_{1} w_{1}+\cdots+a_{m} w_{m}+w\right)=\max \left\{N_{\mathcal{L}}\left(a_{1} w_{1}\right), \ldots, N_{\mathcal{L}}\left(a_{m} w_{m}\right), N_{\mathcal{L}}(w)\right\} .
$$

The Metaplectic Group [A.-M. Aubert and T.P., 2014]

For $g, g_{1}, g_{2} \in \mathrm{Sp}$, let

$$
\Theta^{2}(g)=\gamma(1)^{2 \operatorname{dim}(g-1) \mathrm{W}-2}[\gamma(\operatorname{det}(g-1: \mathbf{W} / \operatorname{Ker}(g-1) \rightarrow(g-1) \mathrm{W}))]^{2}
$$

$$
C\left(g_{1}, g_{2}\right)=\sqrt{\left|\frac{\Theta^{2}\left(g_{1} g_{2}\right)}{\Theta^{2}\left(g_{1}\right) \Theta^{2}\left(g_{2}\right)}\right|} \gamma_{w}\left(q_{g_{1}, g_{2}}\right),
$$

where

$$
\begin{aligned}
q_{g_{1}, g_{2}}\left(u^{\prime}, u^{\prime \prime}\right)= & \frac{1}{2}\langle \\
& \left.\left(g_{1}+1\right)\left(g_{1}-1\right)^{-1} u^{\prime}, u^{\prime \prime}\right\rangle \\
& +\frac{1}{2}\left\langle\left(g_{2}+1\right)\left(g_{2}-1\right)^{-1} u^{\prime}, u^{\prime \prime}\right\rangle \\
\quad\left(u^{\prime}, u^{\prime \prime}\right. & \left.\in\left(g_{1}-1\right) \mathrm{W} \cap\left(g_{2}-1\right) \mathrm{W}\right) .
\end{aligned}
$$

The Metaplectic Group

$$
\begin{aligned}
& \widetilde{\mathrm{Sp}}=\left\{\tilde{g}=(g, \xi) \in \mathrm{Sp} \times \mathbb{C}, \xi^{2}=\Theta^{2}(g)\right\} \\
& \left(g_{1}, \xi_{1}\right)\left(g_{2}, \xi_{2}\right)=\left(g_{1} g_{2}, \xi_{1} \xi_{2} C\left(g_{1}, g_{2}\right)\right) .
\end{aligned}
$$

Normalization of Haar measures on vector spaces

Let $\mathbb{F}=\mathbb{R}$.
For any subspace $\mathrm{U} \subseteq \mathrm{W}$ we normalize the Haar measure μ_{U} on U so that the volume of the unit cube with respect to form B is 1 .
If $\mathrm{V} \subseteq \mathrm{U}$, then B induces a positive definite form on the quotient U / V and hence a normalized Haar measure $\mu_{\mathrm{U} / \mathrm{V}}$ so that the volume of the unit cube is 1 .

Let $\mathbb{F} \neq \mathbb{R}$.
For any subspace $\mathrm{U} \subseteq \mathrm{W}$ we normalize the Haar measure μ_{U} on U so that the volume of the lattice $\mathcal{L} \cap U$ is 1 .
If $\mathrm{V} \subseteq \mathrm{U}$, then we normalized Haar measure $\mu_{\mathrm{U} / \mathrm{V}}$ so that the volume of the lattice $(\mathcal{L} \cap \mathrm{U}+\mathrm{V}) / \mathrm{V}$ is 1 .

The Weil Representation

$\mathrm{W}=\mathrm{X} \oplus \mathrm{Y}$ a complete polarization.
Op : $\mathcal{S}^{*}(\mathrm{X} \times \mathrm{X}) \rightarrow \operatorname{Hom}\left(\mathcal{S}(\mathrm{X}), \mathcal{S}^{*}(\mathrm{X})\right)$

$$
\operatorname{Op}(K) v(x)=\int_{X} K\left(x, x^{\prime}\right) v\left(x^{\prime}\right) d \mu_{X}\left(x^{\prime}\right)
$$

Weyl transform $\mathcal{K}: \mathcal{S}^{*}(\mathrm{~W}) \rightarrow \mathcal{S}^{*}(\mathrm{X} \times \mathrm{X})$

$$
\mathcal{K}(f)\left(x, x^{\prime}\right)=\int_{Y} f\left(x-x^{\prime}+y\right) \chi\left(\frac{1}{2}\left\langle y, x+x^{\prime}\right\rangle\right) d \mu_{Y}(y)
$$

An imaginary Gaussian on $(g-1) \mathrm{W}$

$$
\chi_{c(g)}(u)=\chi(\frac{1}{4}\langle\underbrace{(g+1)(g-1)^{-1}}_{c(g)} u, u\rangle) \quad(u=(g-1) w, w \in \mathrm{~W}) .
$$

For $\tilde{g}=(g, \xi) \in \widetilde{\text { Sp }}$ define

$$
\Theta(\tilde{g})=\xi, \quad T(\tilde{g})=\Theta(\tilde{g}) \chi_{c(g)} \mu(g-1) \mathrm{W}, \quad \omega(\tilde{g})=\mathrm{Op} \circ \mathcal{K} \circ T(\tilde{g})
$$

$\left(\omega, L^{2}(X)\right)$ is the Weil representation of $\widetilde{S p}$ attached to the character χ.

Dual Pairs

Subgroups $\mathrm{G}, \mathrm{G}^{\prime} \subseteq \mathrm{Sp}(\mathrm{W})$ acting reductively on W .
G^{\prime} is the centralizer of G in $S p$ and G is the centralizer of G^{\prime} in Sp.
The preimages $\widetilde{G}, \widetilde{G}^{\prime} \subseteq \widetilde{\mathrm{Sp}}(\mathrm{W})$ are also mutual centralizers in the metaplectic group.
For $\mathbb{F}=\mathbb{R}$:

$\mathrm{G}, \mathrm{G}^{\prime}$	stable range
$\mathrm{GL}_{n}(\mathbb{D}), \mathrm{GL}_{m}(\mathbb{D})$	$n \geq 2 m$
$\mathrm{O}_{p, q}, \mathrm{Sp}_{2 n}(\mathbb{R})$	$p, q \geq 2 n$
$\mathrm{Sp}_{2 n}(\mathbb{R}), \mathrm{O}_{p, q}$	$n \geq p+q$
$\mathrm{O}_{p}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$	$p \geq 4 n$
$\mathrm{Sp}_{2 n}(\mathbb{C}), \mathrm{O}_{p}(\mathbb{C})$	$n \geq p$
$\mathrm{U}_{p, q}, \mathrm{U}_{r, s}$	$p, q \geq r+s$
$\mathrm{Sp}_{p, q}, \mathrm{O}_{2 n}^{*}$	$p, q \geq n$
$\mathrm{O}_{2 n}^{*}, \mathrm{Sp}_{p, q}$	$n \geq 2(p+q)$

Howe's Correspondence

[Howe, Waldspurger, Gan, Gan-Sun]
$\mathcal{R}(\widetilde{\mathrm{G}})$ equivalence classes of irreducible admissible representations.
$\mathcal{R}(\widetilde{\mathrm{G}}, \omega) \subseteq \mathcal{R}(\widetilde{\mathrm{G}})$ representations realized as quotients of $\mathcal{S}(X)$ by closed $\widetilde{\mathrm{G}}$-invariant subspaces.
For $\Pi \in \mathcal{R}(\widetilde{\mathrm{G}}, \omega)$ let $N_{\Pi} \subseteq \mathcal{S}(X)$ be the intersection of all the closed $\widetilde{\mathrm{G}}$-invariant subspaces $N \subseteq \mathcal{S}(X)$ such that Π is equivalent to $\mathcal{S}(X) / N$.
Then $\mathcal{S}(X) / N_{\Pi}$ is a representation of both $\widetilde{\mathrm{G}}$ and $\widetilde{\mathrm{G}}^{\prime}$. It is equivalent to

$$
\Pi \otimes \Pi_{1}^{\prime}
$$

for some representation Π_{1}^{\prime} of $\widetilde{\mathrm{G}}^{\prime}$. The representation Π_{1}^{\prime} of $\widetilde{\mathrm{G}}^{\prime}$ has a unique irreducible quotient $\Pi^{\prime} \in \mathcal{R}\left(\widetilde{\mathrm{G}}^{\prime}, \omega\right)$.
Conversely, starting with $\Pi^{\prime} \in \mathcal{R}\left(\widetilde{\mathrm{G}}^{\prime}, \omega\right)$ and applying the above procedure with the roles of G and G^{\prime} reversed, we arrive at the representation $\Pi \in \mathcal{R}(\widetilde{\mathrm{G}}, \omega)$.
The resulting bijection

$$
\mathcal{R}(\widetilde{\mathrm{G}}, \omega) \ni \Pi \longleftrightarrow \Pi^{\prime} \in \mathcal{R}\left(\widetilde{\mathrm{G}}^{\prime}, \omega\right)
$$

is called Howe's correspondence, or local θ correspondence, for the pair $\mathrm{G}, \mathrm{G}^{\prime}$.

The wave front set of a distribution for $\mathbb{F}=\mathbb{R}$

Let V be a finite dimensional vector space over \mathbb{R}. Recall the Fourier transform

$$
\mathcal{F}(\phi)\left(v^{*}\right)=\int_{\mathrm{V}} \phi(v) \chi\left(-v^{*}(v)\right) d \mu_{\mathrm{V}}(v) \quad\left(\phi \in C_{c}^{\infty}(\mathrm{V}), v^{*} \in \mathrm{~V}^{*}\right)
$$

The wave front set of a distribution u on V at a point $v \in V$, denoted $W F_{v}(u)$, is the complement of the set of all pairs $\left(v, v^{*}\right), v^{*} \in \mathrm{~V}^{*}$, for which there is a test function $\phi \in C_{C}^{\infty}(V)$ with $\phi(v) \neq 0$ and an open cone $\Gamma \subseteq V^{*}$ containing v^{*} such that

$$
\left|\mathcal{F}(\phi u)\left(v_{1}^{*}\right)\right| \leq C_{N}\left(1+\left|v_{1}^{*}\right|\right)^{-N} \quad\left(v_{1}^{*} \in \Gamma, N=0,1,2, \ldots\right) .
$$

This notion behaves well under diffeomorphisms. So for any distribution u on a manifold M, one may define $W F(u) \subseteq T^{*} M$ as the union of the wave front sets at the individual points.

The wave front set of a distribution for $\mathbb{F} \neq \mathbb{R} \quad[\mathrm{D} . \mathrm{B}$.

 Heifetz, 1985]Let V be a finite dimensional vector space over \mathbb{F}. Recall the Fourier transform

$$
\mathcal{F}(\phi)\left(v^{*}\right)=\int_{\mathrm{V}} \phi(v) \chi\left(-v^{*}(v)\right) d \mu \mathrm{~V}(v) \quad\left(\phi \in C_{c}^{\infty}(\mathrm{V}), v^{*} \in \mathrm{~V}^{*}\right) .
$$

The wave front set of a distribution u on V at a point $v \in V$, denoted $W F_{v}(u)$ is the complement of the set of all pairs $\left(v, v^{*}\right), v^{*} \in \mathrm{~V}^{*}$, for which there is a test function $\phi \in C_{c}^{\infty}(V)$ with $\phi(v) \neq 0$ and an open cone $\Gamma \subseteq V^{*}$ containing v^{*} such that

$$
\operatorname{supp}(\mathcal{F}(\phi u)) \cap \Gamma \text { is bounded. }
$$

This notion behaves well under analytic isomorphisms. So for any distribution u on a manifold M, one may define $W F(u) \subseteq T^{*} M$ as the union of the wave front sets at the individual points.

The Cauchy Harish-Chandra Integral,

[T.P., 2000] and [H.Y. Loke and T.P. 2018]
Assume that the rank of G^{\prime} is smaller or equal than the rank of G .
For a Cartan subgroup $\mathrm{H}^{\prime} \subseteq \mathrm{G}^{\prime}$ with split part A^{\prime} let $\mathrm{A}^{\prime \prime} \subseteq \mathrm{Sp}$ be the centralizer of A^{\prime} and $A^{\prime \prime \prime} \subseteq S p$ the centralizer of $A^{\prime \prime}$.
Let $d \dot{w}$ measure on $\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}$ defined by

$$
\int_{\mathrm{W}} \phi(w) d \mu_{\mathrm{W}}(w)=\int_{\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}} \int_{\mathrm{A}^{\prime \prime \prime}} \phi(a w) d a d \dot{w}
$$

Define

$$
\operatorname{Chc}(f)=\int_{\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}} \int_{\widetilde{\mathrm{A}^{\prime \prime}}} f(g) T(g)(w) d g d \dot{w} . \quad\left(f \in C_{c}^{\infty}\left(\widetilde{\mathrm{A}^{\prime \prime}}\right)\right)
$$

For any $h^{\prime} \in \mathrm{H}^{\prime \text { reg }}$, the intersection of the wave front set of the distribution Chc with the conormal bundle of the embedding

$$
\widetilde{\mathrm{G}} \ni \widetilde{g} \longrightarrow \widetilde{h^{\prime}} \widetilde{g} \in \widetilde{\mathrm{~A}^{\prime \prime}}
$$

is empty. Hence there is a unique restriction of the distribution Chc to $\widetilde{\mathrm{G}}$, denoted $\mathrm{Ch}_{\widetilde{h^{\prime}}}$.

The distribution $\Theta_{\Pi^{\prime}}^{\prime}$

Recall the Weyl - Harish-Chandra integration formula

Define

$$
\Theta_{\Pi^{\prime}}^{\prime}(f)=c_{\Pi^{\prime}} \sum c_{\mathrm{H}^{\prime}} \int_{\widetilde{\mathrm{H}^{\prime \prime e g}}} D(h) \Theta_{\Pi^{\prime}}\left(\widetilde{h}^{-1}\right) \operatorname{Ch}_{\tilde{h}}(f) d \widetilde{h} .
$$

Recall: for $\left(\mathrm{U}_{n}, \mathrm{U}_{n}\right)$ we had the character formula

$$
\Theta_{\Pi}(g)=\int_{U} \Theta_{\omega}\left(g, g^{\prime}\right) \Theta_{\Pi^{\prime}}\left(g^{\prime-1}\right) d g \stackrel{\text { def }}{=} \Theta_{\Pi^{\prime}}^{\prime}(g)
$$

For $\mathbb{F}=\mathbb{R}$, this is an invariant eigen-distribution on $\widetilde{\mathrm{G}}$ with the correct infinitesimal character.
For $\mathbb{F} \neq \mathbb{R}$, in the general case there are still some unsolved problems with the convergence of the integrals over some $\widetilde{\mathrm{H}^{\text {reg }}}$. These problems are solved in many important cases.

Pairs of type I in the stable range

The pair $\left(G, G^{\prime}\right)$ is of type I if it acts irreducibly on W and W is a single isotypic component under this action. In this case, there is:
\diamond a division algebra \mathbb{D} with an involution over \mathbb{F}
\diamond two vector spaces V and V^{\prime} with with non-degenerate Hermitian forms (\cdot, \cdot) and $(\cdot, \cdot)^{\prime}$ of opposite type
such that
$\diamond \mathrm{W}=\mathrm{V} \otimes_{\mathbb{F}} \mathrm{V}^{\prime}$,
$\diamond \mathrm{G}$ coincides with the isometry group of $(\mathrm{V},(\cdot, \cdot))$,
$\diamond \mathrm{G}^{\prime}$ coincides with the isometry group of $\left(\mathrm{V}^{\prime},(\cdot, \cdot)^{\prime}\right)$.
The pair $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$ is in the stable range with G^{\prime} - the smaller member if the dimension of the maximal isotropic subspace of V is greater or equal to the dimension of V^{\prime}.

The equality $\Theta_{\Pi^{\prime}}^{\prime}=\Theta_{\Pi}$

Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$ be a dual pair of type I in the stable range with G^{\prime} - the smaller member.
Assume that the representation Π^{\prime} of $\widetilde{\mathrm{G}}^{\prime}$ is unitary.
Theorem (T.P. 2018)
Let $\mathbb{F}=\mathbb{R}$. Then $\Theta_{\Pi^{\prime}}^{\prime}=\Theta_{\Pi}$.
Idea of the proof. We show that the two distributions are equal on a Zariski open subset $\widetilde{\mathrm{G}}^{\prime \prime} \subseteq \widetilde{\mathrm{G}}$. Since both Θ_{Π} and Θ_{Π}^{\prime}, is an invariant eigendistribution, Harish-Chandra Regularity Theorem implies that they are equal everywhere.

Theorem (H.Y. Loke and T.P., preprint)
Let $\mathbb{F} \neq \mathbb{R}$, then the integrals defining $\Theta_{\Pi^{\prime}}^{\prime}$ converge and $\Theta_{\Pi^{\prime}}^{\prime}=\Theta_{\Pi}$ on a Zariski open subset $\widetilde{\mathrm{G}}^{\prime \prime} \subseteq \widetilde{\mathrm{G}}$.

References

(A.-M. Aubert and T. Przebinda: A reverse engineering approach to the Weil Representation. CEJM, 12 (2014), 1200-1285
嗇 R. Howe: Transcending Classical Invariant Theory. J. Amer. Math. Soc., 2 (1989), 535-552
D. B. HEIFETZ p-adic oscillatory integrals and wave front sets. Pacific J. Math., 116 (1985), 285-305
R. Hörmander The Analysis of Linear Partial Differential Operators I. Springer Verlag, (1983)

围 T．PrzebindA：A Cauchy Harish－Chandra Integral，for a real reductive dual pair．Inven．Math．， 141 （2000），299－363
圁 F．Bernon and T．PrzebindA：The Cauchy Harish－Chandra integral and the invariant eigendistributions．International Mathematics Research Notices， 14 （2014）3818－3862
葍 T．Przebinda：The character and the wave front set correspondence in the stable range．J．Funct．Anal． 274 （2018） 1284－1305
围 H．Y．Loke and T．Przebinda：A manuscript in progress．
图 J．－L．Waldspurger：Démonstration d＇une conjecture de dualité de Howe dans le cas p－adique，$p \neq 2$ ． Festschrift in honor of I．I．Piatetski－Shapiro on the occasion of his sixtieth birthday．
Part I，Israel Math．Conf．Proc．， 2 （1989）， 267324

Thank you

