

DOKTORANDENSEMINAR WS25/26

The seminar takes place on Mondays from 2 p.m. to 3 p.m. in J2.138.

Topics		
03.11.25	Segal's Plancherel Theorem - part I	L. Langen
10.11.25	Segal's Plancherel Theorem - part II	L. Langen
17.11.25	Segal's Plancherel Theorem - part III	L. Langen
24.11.25	Segal's Plancherel Theorem - part IV	L. Langen
01.12.25	Segal's Plancherel Theorem - part V	L. Langen

Below you find a list of abstracts.

1. SEGAL'S PLANCHEREL THEOREM - L. LANGEN

Plancherel theorems come in many different flavours in harmonic analysis. Typical examples include:

- (1) The classical Plancherel theorems establishing isometric isomorphisms $\mathcal{F}: L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})$ and $\mathcal{F}: L^2(\mathbb{T}) \rightarrow \ell^2(\mathbb{Z})$ for the Fourier transform on \mathbb{R} and the Fourier series of periodic signals, i.e. on the torus \mathbb{T} .
- (2) The Plancherel theorem establishing an isometric isomorphism $\mathcal{F}: L^2(G) \rightarrow L^2(\widehat{G})$ for the Fourier transform on locally compact abelian groups G with corresponding dual group $\widehat{G} = \{\alpha: G \rightarrow \mathbb{T} \mid \alpha \text{ continuous group morphism}\}$.
- (3) The Peter-Weyl theorem establishing an isometric isomorphism $\mathcal{F}: L^2(G) \rightarrow \widehat{\bigoplus}_{\pi \in \widehat{G}} \text{End}(V_\pi)$ for the Fourier transform on compact groups G . Here, \widehat{G} denotes the unitary dual of G , i.e. (equivalence classes of) unitary irreducible representations of G .

Note that the case $G = \mathbb{R}$ is covered by (1) and (2), while the case $G = \mathbb{T}$ is covered by (1) and (3). In fact, in these cases the respective Plancherel theorems agree. The common property of all these Fourier transforms \mathcal{F} is that they intertwine the left-regular action $L: G \curvearrowright L^2(G)$ with the left-regular action $G \curvearrowright \mathcal{F}(L^2(G))$, i.e. "translation becomes multiplication by a phase factor in the Fourier image". Viewing this intertwining property as the distinctive property of Plancherel theorems, we understand a Plancherel theorem as a disintegration of the regular representation.

We aim to prove Segal's Plancherel theorem ([1]) for locally compact, separable, unimodular, CCR groups G , which disintegrates the regular representation $U: G \times G \curvearrowright L^2(G)$, $(x, y).f(z) := f(x^{-1}zy)$ (G acts from the left and the right) into a direct integral of irreducibles:

$$(U, L^2(G)) \cong \left(\int_{\widehat{G}}^{\oplus} \pi \hat{\otimes} \pi' d\zeta(\pi), \int_{\widehat{G}}^{\oplus} H_\pi \hat{\otimes} H'_\pi d\zeta(\pi) \right)$$

Date: November 25, 2025.

To reach this goal we will encounter the following topics: the group C^* -algebra, the Jacobson topology on \widehat{G} , direct integrals of Hilbert spaces, the spectral theorem for commutative von Neumann algebras, constructing the Plancherel measure ζ .

Segal's Plancherel theorem encompasses the above examples (1)-(3) and many more groups such as real reductive groups.

We will follow the exposition in [2, Ch. 14]. A complete treatise in more generality can be found in [3]. Some conditions (separable, unimodular, CCR) on the group can be weakened, see [3].

Contents of the talks:

Part I: Motivation: Classical Plancherel theorems on $\mathbb{R}, \mathbb{R}/\mathbb{Z}$, LCA groups and compact groups.
Basic representation theory of locally compact groups.

Part II: Integrated representations, the group C^* -algebra, Jacobson topology on $\text{Prim}(\mathcal{C}) \cong \widehat{\mathcal{C}}$ for CCR groups.

Part III: Direct integrals of Hilbert spaces, the spectral theorem for commutative von Neumann algebras.

Part IV: Direct integrals of representations, disintegration into irreducible representations and into factor representations, multiplicities.

Part V: The Plancherel theorem.

REFERENCES

- [1] I. E. Segal, "An Extension of Plancherel's Formula to Separable Unimodular Groups." *Ann. Math.*, vol. 52, no. 2, 1950, pp. 272–292.
- [2] N. R. Wallach, *Real reductive groups II*, Pure and Applied Mathematics, vol. 132, Academic Press, Boston, MA, 1992.
- [3] J. Dixmier, *C^* -algebras*, North-Holland Mathematical Library, vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, Translated from the French by Francis Jellett.

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT PADERBORN, WARBURGER STR. 100, D-33098 PADERBORN, GERMANY

Email address: llangen@math.upb.de