

SPECTRAL DECOMPOSITION OF $L^2(\Gamma \backslash G)$

CARLO KAUL

1. ABSTRACT

In the first series of talks, the proof of Segal's Plancherel theorem was sketched which states that for any locally compact, separable, unimodular, CCR group G , the (left and right) regular representation U of $G \times G$ on $L^2(G)$ disintegrates into a direct integral of irreducibles:

$$(U, L^2(G)) \cong \left(\int_{\widehat{G}}^{\oplus} \pi \widehat{\otimes} \pi' d\zeta(\pi), \int_{\widehat{G}}^{\oplus} \mathcal{H}_{\pi} \widehat{\otimes} \mathcal{H}'_{\pi} d\zeta(\pi) \right)$$

for the Plancherel measure ζ on the unitary dual \widehat{G} of G equipped with its natural topology. Moreover, it was shown that this general statement translates for groups like $G = \mathbb{R}$ or $G = \mathbb{T}$ into well-known explicit statements from Fourier theory, using that their commutativity makes \widehat{G} into a particularly simple object. For compact groups, one can at least simplify the direct integral into a completed direct sum to obtain the Peter–Weyl theorem as a special case. Moreover, in this case all irreducible unitary representations are shown to be finite-dimensional, so one can also avoid the need to complete the tensor product.

For non-commutative non-compact groups, things become much more complicated: For many such groups, e.g. already for $G = \mathrm{SL}_2(\mathbb{R})$, the spectrum will have both *continuous* and *discrete* parts and the occurring representations will be generically infinite-dimensional. Nonetheless, in this case, it is possible to classify the unitary dual \widehat{G} and use this to obtain an explicit description of the Plancherel theorem of the following form: For all $f \in C_c^{\infty}(\mathrm{SL}_2(\mathbb{R}))$, we have

$$f(e) = \frac{1}{2\pi} \left(\sum_{n=1}^{\infty} (n-1) \Theta_n(f) + \frac{1}{4i} \int_{i\mathbb{R}} (\Theta_{+, \lambda}(f) \tan(\pi\lambda/2) - \Theta_{-, \lambda}(f) \cot(\pi\lambda/2)) d\lambda \right),$$

where $\Theta_n(f)$ is the global character of the discrete series representations D_n^+ and D_n^- and $\Theta_{\pm, \lambda}$ is the global character of the principal series representation. Here, we use that the global character of any $\pi \in \widehat{G}$, defined a priori as the trace of the trace class operator

$$\pi(f) := \int_G f(g) \pi(g) dg$$

and thus as a distribution on G , is actually given by integration against a locally integrable function Θ_{π} . This is a consequence of Harish-Chandra's famous regularity theorem on invariant eigendistributions, since the conjugation action by G keeps the trace distribution invariant and the universal enveloping algebra acts by the infinitesimal character of π .

Interestingly, not all representations occurring in the unitary dual of $\mathrm{SL}_2(\mathbb{R})$ seem to contribute to the spectral decomposition. In fact, since G is semisimple, there is a concrete expectation: All the tempered unitary irreducible representations will contribute (principal and discrete series)), all the square-integrable unitary irreducible representations (discrete series) will occur discretely and any non-tempered unitary irreducible representation (complementary series and the trivial

Date: December 4, 2025.

representation) will not show up at all in such disintegration formulae. For non-semisimple groups, this statement is no longer valid and it fails for $G = \mathbb{R}$ already.

For more general (even reductive or semisimple) groups, it is much harder to obtain such an explicit disintegration of the regular action on the space of L -functions. The issue already occurs in the desire to classify the unitary dual (the so-called *unitary dual problem*): Expect for some special cases in low rank, the concrete structure of the unitary dual of real semisimple Lie groups remains largely unknown. The key issue in attaining such a classification is that deciding unitarizability is hard: The *Langlands' classification* yields a complete description of all (tempered) irreducible representations of a given reductive group, and one can easily see which of these representations may be equipped with a non-trivial invariant sesquilinear form; however, it is hard to tell whether there is also such a positive-definite form.

Motivated e.g. from the desire to understand the spectral theory of locally symmetric spaces, one natural generalization is to study the right-regular representation on the space $L^2(\Gamma \backslash G(\mathbb{R}))$, where now G denotes a reductive group over \mathbb{Q} and $\Gamma \subseteq G(\mathbb{Q})$ is a discrete subgroup of cofinite volume. Indeed, the non-cocompact cofinite volume case is most interesting, since then there will be both contributions from the discrete and continuous spectrum. One example of this is the case of $\mathrm{SL}_n(\mathbb{Z}) \backslash \mathrm{SL}_n(\mathbb{R})$, which specializes to the upper-half plane for $n = 2$ and whose volume has an interesting expression as follows:

$$\mathrm{vol}(\mathrm{SL}_n(\mathbb{Z}) \backslash \mathrm{SL}_n(\mathbb{R})) = \zeta(2) \cdot \zeta(3) \cdots \zeta(n).$$

This already suggests some connection to Number Theory. More generally, all congruence subgroups Γ in reductive groups G have this property and we will see that the decomposition of the spectrum will be according to so-called automorphic representations in this case. These automorphic representations, a priori of analytic flavour, admit both conjecturally and provably strong connections to Galois representations and motives in the realm of the Langlands program.

In the two talks, I will first explain the case of $G = \mathrm{SL}_2$, where we will see elliptic modular forms occurring in the spectral decomposition of $L^2(\Gamma \backslash G(\mathbb{R}))$, and use this example to motivate the general definition of an automorphic representation. Subsequently, we will shortly explore the landscape of the Langlands program.

REFERENCES

- [L79] *R. P. Langlands*, Automorphic representations, Shimura varieties, and motives. Ein Märchen. Automorphic forms, representations and L -functions, Proc. Symp. Pure Math. Am. Math. Soc., Corvallis/Oregon 1977, Proc. Symp. Pure Math. 33, No. 2, 205–246 (1979).
- [B97] *D. Bump*, Automorphic forms and representations. Cambridge: Cambridge University Press (1997).
- [D10] *A. Deitmar*, Automorphe Formen. Heidelberg: Springer (2010).
- [GH24] *J. R. Getz and H. Hahn*, An introduction to automorphic representations. With a view toward trace formulae. Cham: Springer (2024).

INSTITUT FÜR ARITHMETISCHE GEOMETRIE UND DARSTELLUNGSTHEORIE, EINSTEINSTR. 62, 48149 MÜNSTER

Email address: carlo.kaul@uni-muenster.de