EXAMPLES FOR SEGAL’S PLANCHEREL THEOREM

LUKAS LANGEN

Let G be a locally compact, separable, unimodular, CCR group.
The regular representation U: G x G ~ L?(G), (x,y).f(z) == f(x~'zy) disintegrates into a direct

integral of irreducibles. We call this isometric isomorphism the Fourier(-Plancherel) transform

F: (U L*Q) = </A@7T®7r’ d¢(m), /;Hﬂé@H; dC(w))

G
with Plancherel measure ¢ uniquely determined by the isometric property

112 = /@tr(W(f)*W(f)) ac ()

for f € LY(G) N L*(G).

It is part of the theorem that 7(f) is a Hilbert-Schmidt operator for f € L*(G) N L?(G). Indeed
note that H, ® H’. = HS(H,) is isometrically isomorphic with the Hilbert-Schmidt inner product
(A,B)r =tr(A*B) (A, B € HS(H,).

Recall that for f € L'(G), the Fourier transform is defined via the integrated representation

f(ﬂ') =n(f) = /Gf(x)w(x) dx € End(H,).

Now let f € L*(G) N L*(G) and denote h = Ff € H = fg? H,®H! d¢(r). Then h is (up to
identification of nullsets) a square integrable section
h: G — | ) H,®H,, 7+ h(r) € Hy@H], = HS(H,).
red
Furthermore, since F intertwines the actions U: G x G ~ L*(G) with M: G x G ~ H, where

@ o~
M(z,y) = / r(2) &' (y) d¢(r) € End(H),

we seel
F(U(z,y)f)(7) = M(z,y)h(r) = x(x) o h(r) o m(y) ™" = m(x) o Ff(m) om(y) "

This corresponds to the classical principle ”translation becomes multiplication in the Fourier
image”.

On the other hand, direct calculation also gives
(U@, 9)f)"(w) = m(2) o f(m) om(y) ™.
Thus F extends the Fourier transform =, i.e. Ff = f for f € LY(G) N L*(G).
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1. THE CASE G =R

Since R is abelian, Schur’s Lemma implies that unitary irreducible representations of R are
1-dimensional and thus correspond to continuous multiplicative characters R — S; C C. Thus

R ={(ge,Ve): £ €R} with oe(t) =e " V; =C.

Note that R is again a locally compact topological group (the dual group) isomorphic to R via
& (pe, Ve), as R is self-dual as a LCA group.

For f € L*(R) and m¢ = (¢, Vg), we have

mmzégwww%

defining an operator m¢(f): Ve — V. Upon fixing the basis {1} C C = V¢, we identify 7¢(f)
with a complex number. Thus

~

tr(me(f) me () = |me () = [F(©F,

where
Fi&) = [ 500eete) de= [ s a

denotes the classical Fourier transform.

Thus for f € L'(R) N L*(R)
/tr(ﬂs(f)*ﬂs(f)) dg = / F(&)1* de = || £113
R R

shows the Plancherel measure on R 2 R to be the (suitably renormalized) Lebesgue measure.
Now

(me @m)(t,8): Ve @ Vi = Ve@Vy for (t,s) e R xR

corresponds to the complex number mg(t, s) == @¢(t)pe(s) = e =€ acting on V ® V¢ =Cby
multiplication.

Thus
2 @ / @ !
(U, L*(R)) = (/@ e ® T dE, /@ Ve® Ve d§)
@ @
= (/ mgdf,/ (Cdﬁ)
R R

= (M, L*(R))

with M(t,s)f(z) = e *t=9)%f(2) recovers the classical Plancherel theorem on R, which gives

an isometric isomorphism F: L?(R) — L?(R) transforming translations into multiplication op-
erators in the Fourier image, i.e.

F(U(,y)f)(€) = (M(z,y)Ff)(E)-
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2. THE CASE G =T =R/Z

Similarly to before T consists of the continuous group morphisms T — S;, which can be shown
to consist of

T= {(0k, Vi) : k € Z} with @g(2) = z*k’ V. =C.
Reasoning as before

JGOIRIETE
Z

shows the Plancherel measure on T 2 Z (as topological groups) to be the counting measure (the
suitably normalized Haar measure of Z). Thus

(U, L2(T)) = </A@7rk®7rk,/ Vi Vy dg)
/mkdk / Cdk)

>~ (M, (*(Z

recovers the classical Plancherel theorem on the torus, giving an isometric isomorphism F: L?(T) —
(?(Z) intertwining translations U (z, y) with the multiplication operators M (x,y)f(n) = 2= "y" f(n),
ie.

FU(z,y)f)(n) = (M(z,y)Ff)(n).
3. THE cASE OF LCA GRouPS G

Again, if G is a locally compact separable? abelian group, by Schur’s Lemma all irreducible
unitary representations are given by continuous characters G — Sy, thus we identify G with the
Pontryagin dual group

G ={a: G —S; cont. group hom.}

with each character a acting on the one-dimensional space V,, = C by multiplication with a com-
plex number. Just as before, we reason the Plancherel measure to be the (suitably normalized)
Haar measure on the dual group G and conclude

(U, I2(G </ me da, /A Va®V(;da>

(M, L*(G))
with M (x,y) f(a) = a(m)@f(a). Thus we recover the Plancherel theorem for locally compact
abelian groups establishing an isometric isomorphism
F: L*(G) — L*(G)
such that
F(U(z,y)f)(a) = (M(z,y)F f)(a).

Note that there is a slight inconsistency in the definition of the Fourier transform in the general
setting opposed to the abelian setting, as one normally defines

_ /G F@)r(z) do

2we require separable in the genral setting; this is not important for the LCA theory
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in the general setting but

fla) = /G f(@)a(@) da

in the LCA setting, which introduces a minor inconsistency due to the complex conjugation
(which we fixed in the previous two examples by using a slightly different enumeration of the
unitary dual).

4. THE CASE OF COMPACT GROUPS

Suppose now G is a compact separable® group. By the Peter-Weyl theorem, G consists of the
irreducible finite-dimensional representations and G carries the discrete topology with Plancherel
measure just being the counting measure. Thus

(U, I2(G)) = (/j r @ dC(r), /j Vo V! d(j(w))

(é;vreé T, @weévw ® Vé) ‘
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Swe require separability in our general setting; this is not needed for Peter-Weyl. Actually, separability is

neither needed in the general setting, see [3]
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