
EXAMPLES FOR SEGAL’S PLANCHEREL THEOREM

LUKAS LANGEN

Let G be a locally compact, separable, unimodular, CCR group.

The regular representation U : G×G ↷ L2(G), (x, y).f(z) := f(x−1zy) disintegrates into a direct
integral of irreducibles. We call this isometric isomorphism the Fourier(-Plancherel) transform

F : (U, L2(G))
∼−→

(∫ ⊕

Ĝ

π ⊗̂π′ dζ(π),

∫ ⊕

Ĝ

Hπ ⊗̂H ′
π dζ(π)

)
with Plancherel measure ζ uniquely determined by the isometric property

∥f∥22 =

∫
Ĝ

tr(π(f)∗π(f)) dζ(π)

for f ∈ L1(G) ∩ L2(G).

It is part of the theorem that π(f) is a Hilbert-Schmidt operator for f ∈ L1(G)∩L2(G). Indeed
note thatHπ ⊗̂H ′

π
∼= HS(Hπ) is isometrically isomorphic with the Hilbert-Schmidt inner product

⟨A,B⟩π = tr(A∗B) (A,B ∈ HS(Hπ).

Recall that for f ∈ L1(G), the Fourier transform is defined via the integrated representation

f̂(π) := π(f) :=

∫
G

f(x)π(x) dx ∈ End(Hπ).

Now let f ∈ L1(G) ∩ L2(G) and denote h = Ff ∈ H =
∫ ⊕
Ĝ

Hπ⊗̂H ′
π dζ(π). Then h is (up to

identification of nullsets) a square integrable section

h : Ĝ →
⋃
τ∈Ĝ

Hτ ⊗̂H ′
τ , π 7→ h(π) ∈ Hπ⊗̂H ′

π = HS(Hπ).

Furthermore, since F intertwines the actions U : G×G ↷ L2(G) with M : G×G ↷ H, where

M(x, y) =

∫ ⊕

Ĝ

π(x) ⊗̂π′(y) dζ(π) ∈ End(H),

we see1

F(U(x, y)f)(π) = M(x, y)h(π) = π(x) ◦ h(π) ◦ π(y)−1 = π(x) ◦ Ff(π) ◦ π(y)−1.

This corresponds to the classical principle ”translation becomes multiplication in the Fourier
image”.

On the other hand, direct calculation also gives

(U(x, y)f)∧(π) = π(x) ◦ f̂(π) ◦ π(y)−1.

Thus F extends the Fourier transform ·̂ , i.e. Ff = f̂ for f ∈ L1(G) ∩ L2(G).

Date: December 2, 2025.
1at least almost everywhere

1



2 LUKAS LANGEN

1. The case G = R

Since R is abelian, Schur’s Lemma implies that unitary irreducible representations of R are
1-dimensional and thus correspond to continuous multiplicative characters R → S1 ⊆ C. Thus

R̂ = {(φξ, Vξ) : ξ ∈ R} with φξ(t) := e−iξt, Vξ = C.

Note that R̂ is again a locally compact topological group (the dual group) isomorphic to R via
ξ 7→ (φξ, Vξ), as R is self-dual as a LCA group.

For f ∈ L1(R) and πξ = (φξ, Vξ), we have

πξ(f) =

∫
R
f(t)φξ(t) dt,

defining an operator πξ(f) : Vξ → Vξ. Upon fixing the basis {1} ⊆ C = Vξ, we identify πξ(f)
with a complex number. Thus

tr(πξ(f)
∗πξ(f)) = |πξ(f)|2 = |f̂(ξ)|2,

where

f̂(ξ) =

∫
R
f(t)φξ(t) dt =

∫
R
f(t)e−iξt dt

denotes the classical Fourier transform.

Thus for f ∈ L1(R) ∩ L2(R)∫
R
tr(πξ(f)

∗πξ(f)) dξ =

∫
R
|f̂(ξ)|2 dξ

!
= ∥f∥22

shows the Plancherel measure on R̂ ∼= R to be the (suitably renormalized) Lebesgue measure.

Now

(πξ ⊗ π′
ξ)(t, s) : Vξ ⊗ V ′

ξ → Vξ ⊗ V ′
ξ for (t, s) ∈ R× R

corresponds to the complex number mξ(t, s) := φξ(t)φξ(s) = e−i(t−s)ξ acting on Vξ ⊗ V ′
ξ = C by

multiplication.

Thus

(U,L2(R)) ∼=
(∫ ⊕

R̂
πξ ⊗ π′

ξ dξ,

∫ ⊕

R̂
Vξ ⊗ V

′

ξ dξ

)
∼=

(∫ ⊕

R
mξ dξ,

∫ ⊕

R
C dξ

)
∼= (M,L2(R))

with M(t, s)f(z) := e−i(t−s)zf(z) recovers the classical Plancherel theorem on R, which gives
an isometric isomorphism F : L2(R) → L2(R) transforming translations into multiplication op-
erators in the Fourier image, i.e.

F(U(x, y)f)(ξ) = (M(x, y)Ff)(ξ).
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2. The case G = T = R/Z

Similarly to before T̂ consists of the continuous group morphisms T → S1, which can be shown
to consist of

T̂ = {(φk, Vk) : k ∈ Z} with φk(z) := z−k, Vk = C.

Reasoning as before ∫
Z
|f̂(k)|2 dk !

= ∥f∥22

shows the Plancherel measure on T̂ ∼= Z (as topological groups) to be the counting measure (the
suitably normalized Haar measure of Z). Thus

(U,L2(T)) ∼=
(∫ ⊕

T̂
πk ⊗ π

′

k,

∫ ⊕

T̂
Vk ⊗ V

′

k dξ

)
= (

∫ ⊕

Z
mk dk,

∫ ⊕

Z
C dk)

∼= (M, ℓ2(Z))

recovers the classical Plancherel theorem on the torus, giving an isometric isomorphism F : L2(T) →
ℓ2(Z) intertwining translations U(x, y) with the multiplication operatorsM(x, y)f(n) := x−nynf(n),
i.e.

F(U(x, y)f)(n) = (M(x, y)Ff)(n).

3. The case of LCA groups G

Again, if G is a locally compact separable 2 abelian group, by Schur’s Lemma all irreducible
unitary representations are given by continuous characters G → S1, thus we identify G with the
Pontryagin dual group

Ĝ = {α : G → S1 cont. group hom.}
with each character α acting on the one-dimensional space Vα = C by multiplication with a com-
plex number. Just as before, we reason the Plancherel measure to be the (suitably normalized)

Haar measure on the dual group Ĝ and conclude

(U,L2(G)) ∼=
(∫ ⊕

Ĝ

mα dα,

∫ ⊕

Ĝ

Vα ⊗ V
′

α dα

)
∼= (M,L2(Ĝ))

with M(x, y)f(α) := α(x)α(y)f(α). Thus we recover the Plancherel theorem for locally compact
abelian groups establishing an isometric isomorphism

F : L2(G) → L2(Ĝ)

such that

F(U(x, y)f)(α) = (M(x, y)Ff)(α).

Note that there is a slight inconsistency in the definition of the Fourier transform in the general
setting opposed to the abelian setting, as one normally defines

f̂(π) =

∫
G

f(x)π(x) dx

2we require separable in the genral setting; this is not important for the LCA theory
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in the general setting but

f̂(α) =

∫
G

f(x)α(x) dx

in the LCA setting, which introduces a minor inconsistency due to the complex conjugation
(which we fixed in the previous two examples by using a slightly different enumeration of the
unitary dual).

4. The case of compact groups

Suppose now G is a compact separable 3 group. By the Peter-Weyl theorem, Ĝ consists of the

irreducible finite-dimensional representations and Ĝ carries the discrete topology with Plancherel
measure just being the counting measure. Thus

(U,L2(G)) ∼=
(∫ ⊕

Ĝ

π ⊗ π′ dζ(π),

∫ ⊕

Ĝ

Vπ ⊗ V ′
π dζ(π)

)
∼=

(
⊕̂π∈Ĝ π ⊗ π′,

⊕̂
π∈Ĝ

Vπ ⊗ V ′
π

)
.
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3we require separability in our general setting; this is not needed for Peter-Weyl. Actually, separability is

neither needed in the general setting, see [3]
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