Degenerate Elliptic Boundary Value Problems with Non-smooth Coefficients

Elmar Schrohe
Leibniz Universität Hannover
schrohe@math.uni-hannover.de

On a manifold of bounded geometry with boundary we consider a uniformly strongly elliptic second order operator A that locally is of the form

$$
A=-\sum_{j, k} a_{j k} \partial_{x_{j}} \partial_{x_{k}}+\sum_{j} b_{j} \partial_{x_{j}}+c
$$

together with a degenerate boundary operator T of the form

$$
T=\varphi_{0} \gamma_{0}+\varphi_{1} \gamma_{1}
$$

where γ_{0} and γ_{1} denote the evaluation of a function and its exterior normal derivative, respectively, at the boundary, and φ_{0}, φ_{1} are smooth functions on the boundary with $\varphi_{0} \geq 0, \varphi_{1} \geq 0$ and $\varphi_{0}+\varphi_{1} \geq c_{0}>0$. Unless either $\varphi_{0} \equiv 0$ or $\varphi_{1} \equiv 0$ this problem is not elliptic in the sense of Lopatinskij and Shapiro.

We show that the realization A_{T} of A in $L^{p}(\Omega)$ has a bounded H^{∞}-calculus whenever the $a_{j k}$ are Hölder continuous and b_{j} as well as c are L^{∞}. For the proof we first treat the operator with smooth coefficients on \mathbb{R}_{+}^{n}. Here we rely on an extension of Boutet de Monvel's calculus to operator-valued symbols of Hörmander type $(1, \delta)$. We then use H^{∞}-perturbation techniques in order to treat the nonsmooth case.

As an application we study the porous medium equation.
(Joint work with Thorben Krietenstein, Hannover)

