Degenerate Elliptic Boundary Value Problems with Non-smooth Coefficients

Elmar Schrohe

Leibniz Universität Hannover schrohe@math.uni-hannover.de

On a manifold of bounded geometry with boundary we consider a uniformly strongly elliptic second order operator A that locally is of the form

$$A = -\sum_{j,k} a_{jk} \partial_{x_j} \partial_{x_k} + \sum_j b_j \partial_{x_j} + c$$

together with a degenerate boundary operator T of the form

$$T = \varphi_0 \gamma_0 + \varphi_1 \gamma_1,$$

where γ_0 and γ_1 denote the evaluation of a function and its exterior normal derivative, respectively, at the boundary, and φ_0 , φ_1 are smooth functions on the boundary with $\varphi_0 \ge 0$, $\varphi_1 \ge 0$ and $\varphi_0 + \varphi_1 \ge c_0 > 0$. Unless either $\varphi_0 \equiv 0$ or $\varphi_1 \equiv 0$ this problem is not elliptic in the sense of Lopatinskij and Shapiro.

We show that the realization A_T of A in $L^p(\Omega)$ has a bounded H^{∞} -calculus whenever the a_{jk} are Hölder continuous and b_j as well as c are L^{∞} . For the proof we first treat the operator with smooth coefficients on \mathbb{R}^n_+ . Here we rely on an extension of Boutet de Monvel's calculus to operator-valued symbols of Hörmander type $(1, \delta)$. We then use H^{∞} -perturbation techniques in order to treat the nonsmooth case.

As an application we study the porous medium equation.

(Joint work with Thorben Krietenstein, Hannover)