Hausaufgaben: Blatt 13

Aufgabe H1 (3 Punkte)

Bestimmen Sie die lokalen und globalen Extrema der Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x, y, z) = x - 2y + 2z$

auf der Einheitssphäre $S^2 \subseteq \mathbb{R}^3$, d.h. unter der Nebenbedingung $g(x,y,z) = x^2 + y^2 + z^2 - 1 = 0$.

Aufgabe H2 (5 Punkte)

Wir betrachten die Gleichung

$$f(x, y, z) := z^3 + z + xy - 1 = 0, \quad x, y, z \in \mathbb{R}.$$

- (a) Zeigen Sie (ohne Verwendung des Satzes über implizite Funktionen), dass die Gleichung f(x, y, z) = 0 zu jedem $(x, y) \in \mathbb{R}^2$ genau eine reelle Lösung z = g(x, y) hat.
- (b) Begründen Sie unter Heranziehen des Satzes über implizite Funktionen, dass die Auflösung z = g(x, y) auf ganz \mathbb{R}^2 stetig differenzierbar ist, und diskutieren Sie ihre Extrema.
- (c) Bestimmen Sie q'(1,1).

Aufgabe H3 (4 Punkte)

Zeigen Sie, dass das Gleichungssystem

$$x^{2} + y^{2} - u^{2} - v^{2} = 0$$
$$x^{2} + 2y^{2} + 3u^{2} + 4v^{2} = 1$$

in einer Umgebung von $(\frac{1}{5}, \frac{2}{5})$ durch eine differenzierbare Abbildung $(x, y) \mapsto (u(x, y), v(x, y))$ mit $u(\frac{1}{5}, \frac{2}{5}) = \frac{2}{5}$ und $v(\frac{1}{5}, \frac{2}{5}) = \frac{1}{5}$ aufgelöst werden kann. Berechnen Sie die Jacobimatrix dieser Auflösung im Punkt $(\frac{1}{5}, \frac{2}{5})$.

Aufgabe H4 (4 Punkte)

Wir untersuchen den Abstand des Punktes P = (1, 1, 1) von den Punkten der Menge

$$M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1 \text{ und } x + y + z = 0\}.$$

Zeigen Sie, dass es in M Punkte gibt, für die dieser Abstand minimal wird, sowie solche, für die er maximal wird. Berechnen Sie den minimalen und den maximalen Abstand des Punktes P von M.

Abgabetermin: Mittwoch, den 14.07.2021, bis 13:00 Uhr, online in PANDA-Kurs L.105.12121 Analysis 2 (Übung).