LIMITS OF BESSEL FUNCTIONS FOR ROOT SYSTEMS AS THE RANK TENDS TO INFINITY

DOMINIK BRENNECKEN AND MARGIT RÖSLER

In memory of Gerrit van Dijk

Abstract

We study the asymptotic behaviour of Bessel functions associated of root systems of type A_{n-1} and type B_{n} with positive multiplicities as the rank n tends to infinity. In both cases, we characterize the possible limit functions and the Vershik-Kerov type sequences of spectral parameters for which such limits exist. In the type A case, this generalizes known results about the approximation of the (positive-definite) Olshanski spherical functions of the space of infinite-dimensional Hermitian matrices over $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ (with the action of the associated infinite unitary group) by spherical functions of finite-dimensional spaces of Hermitian matrices. In the type B case, our results include asymptotic results for the spherical functions associated with the Cartan motion groups of non-compact Grassmannians as the rank goes to infinity, and a classification of the Olshanski spherical functions of the associated inductive limits.

1. Introduction

The asymptotic analysis of multivariate special functions has a long tradition in infinite dimensional harmonic analysis, tracing back to the work of Olshanski, Vershik, and Kerov, see Ol90, OV96, VK82. Of particular interest in this context are the behaviour of spherical representations and the limits of spherical functions of increasing families of Gelfand pairs as specific dimensions tend to infinity.

Bessel functions associated with root systems generalize the spherical functions of Riemannian symmetric spaces of Euclidean type, which occur for special values of the multiplicity parameters. They appear naturally in rational Dunkl theory, with an intimate connection to the Dunkl kernel and the associated harmonic analysis. We refer to Op93 for a general treatment of such Bessel functions and to Ro03, dJ06, RV08, DX14 for an overview of rational Dunkl theory including the connection with symmetric spaces. There are two classes of particular interest, including applications to β-ensembles in random matrix theory, namely those of type A_{n-1} and type B_{n}. We refer to Fo10] for a general background and to BCG22] for some recent developments. In the cases of type A and B, the Bessel functions can be expressed as hypergeometric series involving Jack polynomials, c.f. Section 2 Bessel functions of type A_{n-1} have a continuous multiplicity parameter $k \geq 0$ and include as special cases the spherical functions of the motion groups $U_{n}(\mathbb{F}) \ltimes H_{n}(\mathbb{F})$ over $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}, where the unitary group $U_{n}(\mathbb{F})$ acts by conjugation on the space $H_{n}(\mathbb{F})$ of Hermitian matrices over \mathbb{F}. These cases correspond to $k=\frac{d}{2}$ with $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F} \in\{1,2,4\}$. Bessel functions of type B_{q} have non-negative multiplicity

[^0]parameters of the form $\kappa=\left(k^{\prime}, k\right)$, with k the multiplicity on the roots $\pm\left(e_{i} \pm e_{j}\right)$ and k^{\prime} that on the roots $\pm e_{i}$. They generalize the spherical functions of the motion groups $\left(U_{p}(\mathbb{F}) \times U_{q}(\mathbb{F})\right) \ltimes M_{p, q}(\mathbb{F})$, with $p \geq q$. Here the multiplicities are $k=\frac{d}{2}, k^{\prime}=\frac{d}{2}(p-q+1)-\frac{1}{2}$. In RV13], the limits of the spherical functions of these motion groups as $p \rightarrow \infty$ and the associated Olshanski spherical pairs were studied, where the rank q remained fixed.

In the present paper, we shall study Bessel functions of type A_{n-1} and type B_{n} with arbitrary positive multiplicities as the rank tends to infinity, in the spirit of the work of Okounkov and Olshanski OO98, OO06 about Jack polynomials (type A) and multivariate Jacobi polynomials (type $B C$). See also Cu18 for a more recent extension of their results.

We obtain explicit asymptotic results for Bessel functions of type A and type B with arbitrary positive multiplicities as the rank goes to infinity. In the type A case, our results generalize those of OV96 and Bo07 for the limits of the spherical functions of the Gelfand pairs $\left(U_{n}(\mathbb{F}) \ltimes H_{n}(\mathbb{F}), U_{n}(\mathbb{F})\right)$ as $n \rightarrow \infty$. In contrast to Bo07, whose results in the geometric cases are also weaker than ours (c.f. Remark 3.6), we follow the direct approach of [OV96 for $\mathbb{F}=\mathbb{C}$ via spherical expansions of the involved Bessel functions, which are replaced by hypergeometric expansions in terms of Jack polynomials in our general setting. To become more precise, we consider the Bessel functions $J_{A_{n-1}}(i \lambda(n),(x, 0, \ldots, 0))$ with fixed multiplicity $k>0$ and $x \in \mathbb{R}^{r}$ for sequences of spectral parameters $\lambda(n) \in \mathbb{R}^{n}$ as $n \rightarrow \infty$. Following OV96, OO98, we characterize those sequences $(\lambda(n))_{n \in \mathbb{N}}$ for which the associated sequence of Bessel functions converges (locally uniformly), in terms of specific real parameters $\alpha=\left(\alpha_{i}\right)_{i \in \mathbb{N}}, \beta, \gamma$ with $\gamma \geq 0$. These parameters describe the growth of the so-called Vershik-Kerov sequence $(\lambda(n))$ as $n \rightarrow \infty$. In Theorem 3.5] the main result of Section 3, we obtain that for $x \in \mathbb{R}^{(\infty)}=\cup_{n=1}^{\infty} \mathbb{R}^{n}$,

$$
\lim _{n \rightarrow \infty} J_{A_{n-1}}(i \lambda(n), x)=\prod_{j=1}^{\infty} e^{i \beta x_{j}-\frac{\gamma}{2 k} x_{j}^{2}} \prod_{l=1}^{\infty} \frac{e^{-i \alpha_{l} x_{j}}}{\left(1-\frac{i \alpha_{l} x_{j}}{k}\right)^{k}}
$$

where the convergence is locally uniform on \mathbb{R}^{r} for each $r \in \mathbb{N}$. In the group cases $k=\frac{d}{2}$, the limiting functions are products of Polya functions (in the sense of [Fa08]). They coincide with the positive definite Olshanski spherical functions of the spherical pairs $\left(U_{\infty}(\mathbb{F}) \ltimes \operatorname{Herm}_{\infty}(\mathbb{F}), U_{\infty}(\mathbb{F})\right)$ which were already determined by Pickrell Pi91; see also OV96, where they occur in the characterization of the ergodic measures of $\operatorname{Herm}_{\infty}(\mathbb{F})$ with respect to the action of $U_{\infty}(\mathbb{F})$.

In the type B case, we consider Bessel functions $J_{B_{n}}\left(\kappa_{n}, i \lambda(n),(x, 0, \ldots, 0)\right)$ for $n \rightarrow \infty$, where the multiplicity is of the form $\kappa_{n}=\left(k_{n}^{\prime}, k\right)$, i.e. the first multiplicity parameter may also vary with n. This is motivated by the geometric cases. Again we characterize the sequences $(\lambda(n))$ for which the associated Bessel functions converge locally uniformly on \mathbb{R}^{r} as $n \rightarrow \infty$, and we determine the possible limits, which are now given by the functions

$$
\varphi_{(\alpha, \beta)}(x)=\prod_{j=1}^{\infty} e^{-\frac{\beta x_{j}^{2}}{4}} \prod_{l=1}^{\infty} \frac{e^{\frac{\alpha_{l} x_{j}^{2}}{4}}}{\left(1+\frac{\alpha_{l} x_{j}^{2}}{4 k}\right)^{k}}, \quad x \in \mathbb{R}^{(\infty)}
$$

with real parameters $\beta \geq 0$ and $\alpha_{l} \geq 0$ with $\sum_{l=1}^{n} \alpha_{l} \leq \beta$. It turns out that for $k=\frac{d}{2}$ with $d=1,2,4$, these can be identified with the positive definite Olshanski spherical functions of spherical pairs $\left(G_{\infty}, K_{\infty}\right)$, which are obtained as inductive
limits of the motion groups $\left(U_{p}(\mathbb{F}) \times U_{q}(\mathbb{F})\right) \ltimes M_{p, q}(\mathbb{F})$ as both dimension parameters p and q tend to infinity.

The organization of this paper is as follows: After a brief overview of Bessel functions associated with root systems in Section 2, the type A case is treated in Section 3. While in this case our results generalize known results in the geometric cases, our results for type B, which are developed in Section 4, seem to be new even in the geometric cases.

Acknowledgements

The authors received funding from the Deutsche Forschungsgemeinschaft German Research Foundation (DFG), via RO 1264/4-1 and SFB-TRR 358/1 2023 491392403 (CRC Integral Structures in Geometry and Representation Theory).

2. Bessel functions of type A and type B

In this section, we recall some basic facts about Bessel functions in Dunkl theory. We shall not go into details, but refer the reader to [DX14, Ro03] for some general background on Dunkl theory, and to Op93, dJ06, RV08 for Dunkl-type Bessel functions and their relevance in the symmetric space context. For a reduced (but not necessarily essential) root system $R \subset \mathbb{R}^{n}$ we fix a multiplicity function k : $R \mapsto[0, \infty)$, i.e. k is invariant under the associated Weyl group W. Let $E=$ $E_{R}(k ; .,):. \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ denote the associated Dunkl kernel, where $E(\lambda,$.$) is$ characterized as the unique analytic solution of the joint eigenvalue problem for the associated rational Dunkl operators with spectral variable $\lambda \in \mathbb{C}^{n}$, normalized according to $E(\lambda, 0)=1$. The kernel E is holomorphic on $\mathbb{C}^{n} \times \mathbb{C}^{n}$ and symmetric in its arguments. For each $\lambda \in \mathbb{R}^{n}$, there exists a compactly supported probability measure μ_{λ} on \mathbb{R}^{n} such that

$$
\begin{equation*}
E(i \lambda, x)=\int_{\mathbb{R}^{n}} e^{i\langle\xi, x\rangle} d \mu_{\lambda}(\xi) \quad \text { for all } x \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

In particular, the kernel $E(i \lambda,$.$) is positive-definite on the additive group \mathbb{R}^{n}$. If $k=0$, then $E(i \lambda, x)=e^{i\langle\lambda, x\rangle}$. The Bessel function associated with R and k is defined by

$$
J(\lambda, z)=\frac{1}{|W|} \sum_{w \in W} E(\lambda, w z)
$$

It is W-invariant in both arguments and for $\lambda \in \mathbb{R}^{n}$, the function $J(i \lambda,$.$) is also$ positive-definite on \mathbb{R}^{n}. We shall be concerned with the root systems $A_{n-1}=$ $\left\{ \pm\left(e_{i}-e_{j}\right): 1 \leq i<j \leq n\right\} \subset \mathbb{R}^{n}$ and $B_{n}=\left\{ \pm e_{i}, \pm\left(e_{i} \pm e_{j}\right): 1 \leq i<j \leq n\right\} \subset \mathbb{R}^{n}$, where $\left(e_{i}\right)$ denotes the standard basis of \mathbb{R}^{n}. In both cases, the Bessel functions can be written as hypergeometric series in terms of Jack polynomials. For A_{n-1}, the multiplicity function is given by a single parameter $k \in[0, \infty)$. We write Λ_{n}^{+}for the set of partitions $\kappa=\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ of length $l(\kappa) \leq n$ and denote by $C_{\kappa}^{(n)}, \kappa \in \Lambda_{n}^{+}$the (symmetric) Jack polynomials in n variables of index $\alpha=\frac{1}{k} \in[0, \infty]$, normalized such that

$$
\sum_{|\kappa|=m} C_{\kappa}^{(n)}(z)=\left(z_{1}+\ldots+z_{n}\right)^{m}, \quad m \in \mathbb{N}_{0}
$$

The Jack polynomials are stable with respect to the number of variables, i.e. for $\kappa \in \Lambda_{r}^{+}$with $r<n$ we have

$$
C_{\kappa}^{(r)}\left(z_{1}, \ldots, z_{r}\right)= \begin{cases}C_{\kappa^{\prime}}^{(n)}\left(z_{1}, \ldots, z_{r}, \underline{0}_{n-r}\right) & \text { if } \kappa^{\prime}=(\kappa, 0, \ldots) \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

with the notation $\underline{a}_{j}:=(a, \ldots, a) \in \mathbb{C}^{j}$ for $a \in \mathbb{C}$. See [St89, Prop. 2.5] together with Ka93, formula(16)]. Therefore the Jack polynomials $C_{\kappa}^{(n)}$ uniquely extend to continuous functions C_{κ} on $\mathbb{C}^{(\infty)}=\bigcup_{n=1}^{\infty} \mathbb{C}^{n}$, equipped with the inductive limit topology. We shall often consider elements from $\mathbb{C}^{(\infty)}$ as sequences $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} with $x_{n} \neq 0$ for at most finitely many n; for $\mathbb{R}^{(\infty)}$ accordingly.

By BF98, the Bessel function of type A_{n-1} with multiplicity k is given by the Jack hypergeometric series

$$
\begin{equation*}
J_{A_{n-1}}(\lambda, z)={ }_{0} F_{0}(\lambda, z)=\sum_{\kappa \in \Lambda_{n}^{+}} \frac{C_{\kappa}(\lambda) C_{\kappa}(z)}{|\kappa|!C_{\kappa}\left(\underline{1}_{n}\right)} \tag{2.3}
\end{equation*}
$$

with the Jack polynomials of index $\alpha=1 / k$ as above.
Bessel functions of type A_{n-1} occur as the (zonal) spherical functions of the Gelfand pair $\left(G_{n}, K_{n}\right):=\left(U_{n}(\mathbb{F}) \ltimes \operatorname{Herm}_{n}(\mathbb{F}), U_{n}(\mathbb{F})\right)$, where the unitary group $U_{n}(\mathbb{F})$ over $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ acts by conjugation on the space $\operatorname{Herm}_{n}(\mathbb{F})$ of Hermitian matrices over \mathbb{F}. Recall that the spherical functions of a Gelfand pair (G, K) can be characterized as the continuous, K-biinvariant, non-zero functions φ on G satisfying the product formula

$$
\varphi(g) \varphi(h)=\int_{K} \varphi(g k h) d k \quad(g, h \in G)
$$

The following characterization is possibly folklore, but not well documented in the literature. For the reader's convenience, we therefore provide a proof.

Lemma 2.1. The spherical functions of $\left(G_{n}, K_{n}\right)$, considered as $U_{n}(\mathbb{F})$-invariant functions on $\operatorname{Herm}_{n}(\mathbb{F})$, are given by the Bessel functions

$$
\varphi_{\lambda}(X)=J_{A_{n-1}}\left(\frac{d}{2} ; i \lambda, \sigma(X)\right), \quad \lambda \in \mathbb{C}^{n}
$$

where $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$ and $\sigma(X) \in \mathbb{R}^{n}$ denotes the eigenvalues of $X \in \operatorname{Herm}_{n}(\mathbb{F})$, decreasingly ordered by size and counted according to their multiplicity. Moreover, $\varphi_{\lambda}=\varphi_{\mu}$ iff there exists some $w \in S_{n}$ with $\mu=w . \lambda$, and φ_{λ} is positive definite iff $\lambda \in \mathbb{R}^{q}$.

Proof. Consider the Gelfand pair $\left(\widetilde{G}_{n}, \widetilde{K}_{n}\right)=\left(S U_{n}(\mathbb{F}) \ltimes \operatorname{SHerm}_{n}(\mathbb{F}), S U_{n}(\mathbb{F})\right)$. Note that \widetilde{G}_{n} is the Cartan motion group of $S L_{n}(\mathbb{F})$, which is connected and semisimple. Thus by [JJ06, Sect.6] (c.f. also RV08, Sect.3]), the spherical functions of ($\widetilde{G}_{n}, \widetilde{K}_{n}$) are given, as functions on $\mathrm{SHerm}_{n}(\mathbb{F})$, by

$$
\widetilde{\varphi}_{\lambda}(X)=J_{A_{n-1}}\left(\frac{d}{2} ; i \lambda, \sigma(X)\right), \quad \lambda \in \mathbb{C}_{0}^{n}:=\left\{z \in \mathbb{C}^{n}: z_{1}+\ldots+z_{n}=0\right\}
$$

Consider the mapping $\pi: \mathbb{C}^{n} \rightarrow \mathbb{C}_{0}^{n}, z \mapsto z-\frac{1}{n}\left\langle z, \underline{1}_{n}\right\rangle \underline{1}_{n}$, where the inner product $\langle.,$.$\rangle is extended to \mathbb{C}^{n} \times \mathbb{C}^{n}$ in a bilinear way. The restriction of π to \mathbb{R}^{n} is the orthogonal projection onto $\mathbb{R}_{0}^{n}=\mathbb{R}^{n} \cap \mathbb{C}_{0}^{n}$. Then for $z, w \in \mathbb{C}^{n}$ and arbitrary multiplicity $k \geq 0$,

$$
\begin{equation*}
J_{A_{n-1}}(k ; z, w)=e^{\left\langle z, \underline{1}_{n}\right\rangle\left\langle w, \underline{1}_{n}\right\rangle / n} \cdot J_{A_{n-1}}(k ; \pi(z), \pi(w)) . \tag{2.4}
\end{equation*}
$$

This follows e.g. from BF98, Propos. 3.19]. Now suppose ψ is a spherical function of $\left(G_{n}, K_{n}\right)$, considered as an S_{n}-invariant function on \mathbb{R}^{n}. Then

$$
\psi(x) \psi(y)=\int_{K_{n}} \psi\left(x+k y k^{-1}\right) d_{n} k
$$

where $x, y \in \mathbb{R}^{n}$ are identified with the corresponding $n \times n$-diagonal matrices. It follows that

$$
\psi(x)=\psi(x-\pi(x)+\pi(x))=\psi(x-\pi(x)) \cdot \psi(\pi(x))=e^{\alpha\left\langle x, \underline{1}_{n}\right\rangle} \cdot \psi(\pi(x))
$$

where $\alpha \in \mathbb{C}$ is a constant and the restriction of ψ to \mathbb{R}_{0}^{n} is spherical for $\left(\widetilde{G}_{n}, \widetilde{K}_{n}\right)$. Conversely, it is easily checked that each spherical function of $\left(\widetilde{G}_{n}, \widetilde{K}_{n}\right)$ extends to a spherical function of $\left(G_{n}, K_{n}\right)$ in this way. The assertion now follows from (2.4). The assertion concerning the positive-definite spherical functions follows from Wo06, Theorem 5.4].

For the root system $R=B_{n}$, we denote the multiplicity (by slight abuse of notation) as $\left(k^{\prime}, k\right)$, where k is the value on the roots $\pm\left(e_{i} \pm e_{j}\right)$ and k^{\prime} is the value on $\pm e_{i}$. Put $\nu_{n}:=k^{\prime}+k(n-1)+\frac{1}{2}$. Then the Bessel function of type B_{n} with multiplicity $\left(k^{\prime}, k\right)$ can be written as

$$
\begin{equation*}
J_{B_{n}}(\lambda, z)={ }_{0} F_{1}\left(\nu_{n} ; \frac{\lambda^{2}}{2}, \frac{z^{2}}{2}\right)=\sum_{\kappa \in \Lambda_{n}^{+}} \frac{1}{4^{|\kappa|}\left[\nu_{n}\right]_{\kappa}} \frac{C_{\kappa}\left(\lambda^{2}\right) C_{\kappa}\left(z^{2}\right)}{|\kappa|!C_{\kappa}\left(\underline{1}_{n}\right)} \tag{2.5}
\end{equation*}
$$

with the hypergeometric series

$$
{ }_{0} F_{1}(\nu ; \lambda, z)=\sum_{\kappa \in \Lambda_{n}^{+}} \frac{1}{[\nu]_{\kappa}} \frac{C_{\kappa}(\lambda) C_{\kappa}(z)}{|\kappa|!C_{\kappa}\left(\underline{1}_{n}\right)}
$$

Here the squares in the arguments are understood componentwise and again, the Jack polynomials are those of index $\alpha=1 / k$. It is easily seen that both ${ }_{0} F_{0}$ and ${ }_{0} F_{1}$ converge locally uniformly on $\mathbb{C}^{n} \times \mathbb{C}^{n}$; c.f. BR23 for precise convergence properties of Jack hypergeometric series.

Bessel functions of type B occur as the spherical functions of the Gelfand pairs (G, K) with

$$
G=\left(U_{p}(\mathbb{F}) \times U_{q}(\mathbb{F})\right) \ltimes M_{p, q}(\mathbb{F}), K=U_{p}(\mathbb{F}) \times U_{q}(\mathbb{F}), \quad p \geq q
$$

where $M_{p, q}(\mathbb{F})$ is the space of $p \times q$ matrices over $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ and K acts on $M_{p, q}(\mathbb{F})$ via $(U, V) \cdot X=U X V^{-1}$. The group G is the Cartan motion group of the non-compact Grassmann manifold $U(p, q ; \mathbb{F}) / U_{p}(\mathbb{F}) \times U_{q}(\mathbb{F})$ which is of rank q. The spherical functions of (G, K) may be considered as K-invariant functions on $M_{p, q}(\mathbb{F})$ and thus depend only on the singular values of their argument. Again as a consequence of dJ06, they are given by the Bessel functions

$$
\varphi_{\lambda}(X)=J_{B_{q}}\left(\kappa, i \lambda, \sigma_{\operatorname{sing}}(X)\right), \lambda \in \mathbb{C}^{q}
$$

where $\kappa=\left(k^{\prime}, k\right)=\left(\frac{d}{2}(p-q+1)-\frac{1}{2}, \frac{d}{2}\right)$ and $\sigma_{\text {sing }}(X)=\sigma\left(\sqrt{X^{*} X}\right) \in \mathbb{R}^{q}$ denotes the set of singular values of $X \in M_{p, q}(\mathbb{F})$, ordered by size. We may therefore also consider the φ_{λ} as functions on the closed Weyl chamber

$$
\begin{equation*}
\bar{C}_{q}=\left\{x=\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}^{q}: x_{1} \geq \ldots \geq x_{q} \geq 0\right\} \tag{2.6}
\end{equation*}
$$

i.e. $\varphi_{\lambda}(x)=J_{B_{q}}(\kappa ; i \lambda, x), x \in \bar{C}_{q}$. Moreover, $\varphi_{\lambda}=\varphi_{\mu}$ iff there exists some $w \in W=S_{n} \ltimes \mathbb{Z}_{2}^{n}$ with $\mu=w \cdot \lambda$. The positive-definite spherical functions are the φ_{λ} with $\lambda \in \bar{C}_{n}$, which again follows from Wo06, Theorem 5.4].

3. The type A Case

We start with some motivation from asymptotic spherical harmonic analysis, see Ol90, Fa08 for a general background. Suppose that $\left(G_{n}, K_{n}\right), n \in \mathbb{N}$ is an increasing sequence of Gelfand pairs, where $G_{n} \subseteq G_{n+1}, K_{n} \subseteq K_{n+1}$ are closed subgroups satisfying $K_{n}=G_{n} \cap K_{n+1}$. Then the pair (G_{∞}, K_{∞}) with the inductive limit groups $G_{\infty}:=\lim _{n \rightarrow} G_{n}, K_{\infty}:=\lim _{n \rightarrow} K_{n}$ is called an Olshanski spherical pair. The spherical functions of $\left(G_{\infty}, K_{\infty}\right)$ are defined as the continuous, non-zero and K_{∞}-biinvariant functions $\varphi: G_{\infty} \rightarrow \mathbb{C}$ satisfying

$$
\varphi(g) \varphi(h)=\lim _{n \rightarrow \infty} \int_{K_{n}} \varphi(g k h) d_{n} k \quad\left(g, h \in G_{\infty}\right)
$$

where $d_{n} k$ is the normalized Haar measure on K_{n}. We remark that this definition is according to [Fa08, whereas in Ol90 spherical functions are in addition required to be positive definite. Consider now the sequence of Gelfand pairs $\left(G_{n}, K_{n}\right)=$ $\left(U_{n}(\mathbb{F}) \ltimes \operatorname{Herm}_{n}(\mathbb{F}), U_{n}(\mathbb{F})\right)$ as above. We regard G_{n} and K_{n} as closed subgroups of G_{n+1} and K_{n+1} in the usual way. Then $\left(G_{\infty}, K_{\infty}\right)$ with the inductive limits

$$
\begin{equation*}
K_{\infty}:=\lim _{\rightarrow} K_{n}=U_{\infty}(\mathbb{F}), \quad G_{\infty}:=\lim _{\rightarrow} G_{n}=U_{\infty}(\mathbb{F}) \ltimes \operatorname{Herm}_{\infty}(\mathbb{F}) \tag{3.1}
\end{equation*}
$$

is an Olshanski spherical pair. The positive definite spherical functions of (G_{∞}, K_{∞}) were completely determined by Pickrell [Pi91, Sect.5], see also OV96 for $\mathbb{F}=\mathbb{C}$, and [Fa08, Section 3]. As functions on $\operatorname{Herm}_{\infty}(\mathbb{F})$, they are given by

$$
\varphi(X)=\prod_{j=1}^{\infty} e^{i \beta x_{j}-\frac{\gamma}{d} x_{j}^{2}} \prod_{l=1}^{\infty} \frac{e^{-i \alpha_{l} x_{j}}}{\left(1-i \frac{2}{d} \alpha_{l} x_{j}\right)^{d / 2}}
$$

where $\beta, \gamma \in \mathbb{R}, \gamma \geq 0, \alpha_{l} \in \mathbb{R}$ with $\sum_{l=1}^{\infty} \alpha_{l}^{2}<\infty$, and $\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{(\infty)}$ are the eigenvalues of X, ordered by size and counted according to their multiplicity. The product is invariant under rearrangements of the α_{l}. For $\mathbb{F}=\mathbb{C}$ it is also noted in OV96 that the set of positive definite spherical functions is bijectively parametrized by the set
$\left\{(\alpha, \beta, \gamma): \beta \in \mathbb{R}, \gamma \geq 0, \alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}\right.$ a multiset with $\alpha_{l} \in \mathbb{R}$ and $\left.\sum_{l} \alpha_{l}^{2}<\infty\right\}$.
In OV96, explicit approximations of the positive definite spherical functions by positive definite spherical functions of the pairs $\left(G_{n}, K_{n}\right)$ with $n \rightarrow \infty$ by use of spherical expansions were obtained in the case $\mathbb{F}=\mathbb{C}$. In Bo07, this was generalized by completely different methods to $\mathbb{F}=\mathbb{R}, \mathbb{H}$.

In the present paper, we shall obtain the result of Pickrell and explicit approximations of Olshanski spherical functions as particular cases of a more general asymptotic result for Bessel functions of type A_{n-1} with an arbitrary multiplicity parameter $k>0$.

Let us first turn to the spectral parameters to be considered for $n \rightarrow \infty$. Instead of working with multisets, it will be convenient for us to work with sequences (or finite tuples) with a prescribed order of their components. We introduce the following order on \mathbb{R} :

$$
x \ll y \text { iff either }|x|<|y| \text { or }|x|=|y| \text { and } x \leq y
$$

For instance, the sequence $(3,-3,2,1,-1,-1,0,0, \ldots)$ is decreasing w.r.t. \ll.

Definition 3.1. Consider $\lambda(n) \in \mathbb{R}^{n}$ such that its entries are decreasing with respect to \ll. We regard $(\lambda(n))_{n \in \mathbb{N}}$ as a sequence in $\mathbb{R}^{(\infty)}=\bigcup_{n=1}^{\infty} \mathbb{R}^{n}$ and call it a Vershik-Kerov sequence (VK sequence for short), if the following limits exist:

$$
\begin{aligned}
\alpha_{i} & :=\lim _{n \rightarrow \infty} \frac{\lambda(n)_{i}}{n} \quad(i \in \mathbb{N}), \\
\beta & :=\lim _{n \rightarrow \infty} \frac{p_{1}(\lambda(n))}{n}, \\
\delta & :=\lim _{n \rightarrow \infty} \frac{p_{2}(\lambda(n))}{n^{2}},
\end{aligned}
$$

where

$$
p_{m}(x)=\sum_{i=1}^{\infty} x_{i}^{m} \quad \text { for } m \in \mathbb{N}, p_{0} \equiv 1
$$

are the power sum symmetric functions on $\mathbb{R}^{(\infty)}$. They span the space of symmetric functions on $\mathbb{R}^{(\infty)}$, i.e. the polynomial functions in arbitrary many variables.

Lemma 3.2. (i) If $(\lambda(n))_{n \in \mathbb{N}}$ is a Vershik-Kerov sequence with associated parameters $\left(\alpha_{i}\right), \beta, \delta$ as above, then

$$
\gamma:=\delta-\sum_{i=1}^{\infty} \alpha_{i}^{2} \geq 0 .
$$

In particular, the sequence $\alpha=\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ is square-summable.
(ii) If in addition $\lambda(n)_{i} \geq 0$ for all $i, n \in \mathbb{N}$, then $\gamma=0$.

Definition 3.3. Suppose that $(\lambda(n))_{n \in \mathbb{N}}$ is a VK sequence. Then the triple $\omega=$ (α, β, γ) with $\alpha=\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ are called the VK parameters of the sequence $(\lambda(n))_{n \in \mathbb{N}}$. Note that the entries of α are also ordered w.r.t. \ll.

Proof of Lemma 3.2. For fixed $N \in \mathbb{N}$ and all $n \geq N$ one has

$$
\sum_{i=1}^{N} \alpha_{i}^{2} \leq \sum_{i=1}^{N}\left(\alpha_{i}^{2}-\frac{\lambda(n)_{i}^{2}}{n^{2}}\right)+\sum_{i=1}^{n} \frac{\lambda(n)_{i}^{2}}{n^{2}} .
$$

By definition of $\left(\alpha_{i}\right)$ and δ, the right-hand side tends to δ as $n \rightarrow \infty$. This proves part (i).
(ii) By the ordering of the entries of $\lambda(n)$, we obtain for $N \in \mathbb{N}$ and $n \geq N$ that

$$
\begin{aligned}
\frac{p_{2}(\lambda(n))}{n^{2}} & =\sum_{i=1}^{N-1}\left(\frac{\lambda(n)_{i}}{n}\right)^{2}+\sum_{i=N}^{n}\left(\frac{\lambda(n)_{i}}{n}\right)^{2} \\
& \leq \sum_{i=1}^{N-1}\left(\frac{\lambda(n)_{i}}{n}\right)^{2}+\frac{\lambda(n)_{N}}{n} \sum_{i=1}^{n} \frac{\lambda(n)_{i}}{n} .
\end{aligned}
$$

Taking the limit $n \rightarrow \infty$ on both sides, we obtain that

$$
\delta \leq \sum_{i=1}^{N-1} \alpha_{i}^{2}+\alpha_{N} \beta
$$

As $\lim _{N \rightarrow \infty} \alpha_{N}=0$, this implies that $\delta \leq \sum_{i=1}^{\infty} \alpha_{i}^{2}$ and therefore $\gamma=0$.

We shall throughout fix a strictly positive multiplicity $k>0$ on A_{n-1} and suppress it in our notation.

For sequences $(\lambda(n))_{n \in \mathbb{N}}$ of spectral parameters $\lambda(n) \in \mathbb{R}^{n}$ with growing dimension n, we are interested in the convergence behaviour of the Bessel functions $J_{A_{n-1}}(i \lambda(n),$.$) as n \rightarrow \infty$. For this, we consider $J_{A_{n-1}}(\lambda,$.$) as a function on \mathbb{C}^{r}$ for all $r \leq n$ by

$$
\begin{equation*}
J_{A_{N-1}}(\lambda, z):=J_{A_{n-1}}\left(\lambda,\left(z, \underline{0}_{n-r}\right)\right), \quad z \in \mathbb{C}^{r} \tag{3.2}
\end{equation*}
$$

For later use, we record the following representation.
Proposition 3.4. For $\lambda \in \mathbb{C}^{n}$ and $z \in \mathbb{C}^{r}$ with $r \leq n$,

$$
J_{A_{n-1}}(\lambda, z)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{C_{\kappa}(\lambda)[k r]_{\kappa}}{[k n]_{\kappa}|\kappa|!} \mathcal{P}_{\kappa}(z)
$$

with the renormalized Jack polynomials

$$
\mathcal{P}_{\kappa}(z)=\frac{C_{\kappa}(z)}{C_{\kappa}\left(\underline{1}_{r}\right)}
$$

and the generalized Pochhammer symbol

$$
[\mu]_{\kappa}=\prod_{j=1}^{l(\kappa)}(\mu-k(j-1))_{\kappa_{j}} \quad(\mu \in \mathbb{C})
$$

Proof. Consider formula (2.3). From Ka93, formula (17)] it is known that for all $\kappa \in \Lambda_{r}^{+}$,

$$
\frac{C_{\kappa}\left(\underline{1}_{r}\right)}{C_{\kappa}\left(\underline{1}_{n}\right)}=\frac{[k r]_{\kappa}}{[k n]_{\kappa}}
$$

Together with the stability property (2.2), the assertion follows.
We shall prove the following theorem:
Theorem 3.5. Let $(\lambda(n))_{n \in \mathbb{N}}$ be a sequence of spectral parameters $\lambda(n) \in \mathbb{R}^{n}$ such that each $\lambda(n)$ is decreasing with respect to \ll. Then for fixed multiplicity $k>0$, the following statements are equivalent.
(1) $(\lambda(n))_{n \in \mathbb{N}}$ is a Vershik-Kerov sequence.
(2) The sequence of Bessel functions $\left(J_{A_{n-1}}(i \lambda(n), .)\right)_{n \in \mathbb{N}}$ converges locally uniformly on compact subsets of $\mathbb{R}^{(\infty)}$, i.e. the convergence is locally uniform on each of the spaces $\mathbb{R}^{r}, r \in \mathbb{N}$.
(3) For each fixed multi-index of length r, the corresponding coefficients in the Taylor of expansion of $J_{A_{n-1}}(i \lambda(n),$.$) around 0 \in \mathbb{R}^{r}$ converge as $n \rightarrow \infty$.
(4) For all symmetric functions $f: \mathbb{R}^{(\infty)} \rightarrow \mathbb{C}$, the limit

$$
\lim _{n \rightarrow \infty} \frac{f(\lambda(n))}{n^{\operatorname{deg} f}}
$$

exists.
Moreover, in this case one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{A_{n-1}}(i \lambda(n), x)=\prod_{j=1}^{\infty} e^{i \beta x_{j}-\frac{\gamma}{2 k} x_{j}^{2}} \prod_{l=1}^{\infty} \frac{e^{-i \alpha_{l} x_{j}}}{\left(1-\frac{i \alpha_{l} x_{j}}{k}\right)^{k}} \tag{3.3}
\end{equation*}
$$

where $\left(\alpha=\left(\alpha_{i}\right), \beta, \gamma\right)$ are the VK parameters of the VK sequence $(\lambda(n))_{n \in \mathbb{N}}$, and the product on the right side extends analytically to \mathbb{R}^{r} for each $r \in \mathbb{N}$.
Remark 3.6. In the geometric case $k=1$, i.e. for Hermitian matrices over \mathbb{C}, this result essentially goes back to OV96, while in Bo07, where also $\mathbb{F}=\mathbb{R}$ and \mathbb{H} are considered, only the limit (3.3) is established, by completely different methods and under the additional condition $\gamma=0$.

Our proof of Theorem 3.5 is inspired by the methods of OV96, OO98 and Fa08, Chapter 3]. We start with the following observation.

Theorem 3.7. Assume that $(\lambda(n))_{n \in \mathbb{N}}$ is a VK sequence with parameters $\omega=$ (α, β, γ). Then

$$
\lim _{n \rightarrow \infty} \frac{p_{m}(\lambda(n))}{n^{m}}=\widetilde{p}_{m}(\omega):= \begin{cases}1, & m=0 \\ \beta, & m=1 \\ \delta=\gamma+\sum_{i=1}^{\infty} \alpha_{i}^{2}, & m=2 \\ \sum_{i=1}^{\infty} \alpha_{i}^{m}, & m \geq 3\end{cases}
$$

where the series in the last case is absolutely convergent. In particular, for each symmetric function f on $\mathbb{R}^{(\infty)}$, the limit

$$
\widetilde{f}(\omega):=\lim _{n \rightarrow \infty} \frac{f(\lambda(n))}{n^{\operatorname{deg} f}}
$$

exists.
Proof. We only have to consider the case $m \geq 3$. In view of the ordering of $\lambda(n)$ we have for arbitrary $N \in \mathbb{N}$ that

$$
\begin{equation*}
\sum_{i=N}^{\infty}\left|\frac{\lambda(n)_{i}}{n}\right|^{m} \leq\left|\frac{\lambda(n)_{N}}{n}\right|^{m-2} \cdot \frac{p_{2}(\lambda(n))}{n^{2}} \tag{3.4}
\end{equation*}
$$

The expression on the right side converges to $\alpha_{N}^{m-2} \delta$ as $n \rightarrow \infty$. As α is squaresummable by Lemma 3.2 this implies that for each $\epsilon>0$, there exists an index $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{i=N}^{\infty}\left|\alpha_{i}\right|^{m}+\sum_{i=N}^{\infty}\left|\frac{\lambda(n)_{i}}{n}\right|^{m}<\epsilon \tag{3.5}
\end{equation*}
$$

Estimate (3.5) further leads to

$$
\begin{aligned}
\left|\frac{p_{m}(\lambda(n))}{n^{m}}-p_{m}(\alpha)\right| & \leq \sum_{i=N}^{\infty}\left|\alpha_{i}\right|^{m}+\sum_{i=N}^{\infty}\left|\frac{\lambda(n)_{i}}{n}\right|^{m}+\sum_{i=1}^{N-1}\left|\frac{\lambda(n)_{i}^{m}}{n^{m}}-\alpha_{i}^{m}\right| \\
& \leq \epsilon+\sum_{i=1}^{N-1}\left|\frac{\lambda(n)_{i}^{m}}{n^{m}}-\alpha_{i}^{m}\right|
\end{aligned}
$$

By the definition of a VK sequence, the last sum tends to zero as $n \rightarrow \infty$. As $\epsilon>0$ was arbitrary, this finishes the proof.

We next consider for $\lambda \in \mathbb{C}^{(\infty)}$ the complex function

$$
\Phi(\lambda ; z):=\prod_{j=1}^{\infty} \frac{1}{\left(1-\lambda_{j} z\right)^{k}}
$$

where $\zeta \mapsto \zeta^{k}$ denotes the principal holomorphic branch of the power function on $\mathbb{C} \backslash]-\infty, 0]$. For fixed λ, the product is finite and $\Phi(\lambda ;$.$) is holomorphic in a$ neighborhood of 0 in \mathbb{C}. According to formula (2.9) of OO98,

$$
\Phi(\lambda ; z)=\sum_{j=0}^{\infty} g_{j}(\lambda) z^{j}
$$

with

$$
\begin{equation*}
g_{j}(\lambda)=\sum_{i_{1} \leq \ldots \leq i_{j}} \frac{(k)_{m_{1}}(k)_{m_{2}} \cdots}{m_{1}!m_{2}!\cdots} \cdot \lambda_{i_{1}} \cdots \lambda_{i_{j}} \tag{3.6}
\end{equation*}
$$

where $m_{l}:=\#\left\{r \in \mathbb{N}: i_{r}=l\right\}$ denotes the multiplicity of the number l in the tuple $\left(i_{1}, \ldots, i_{j}\right)$ and $(k)_{m}=k(k+1) \cdots(k+m-1)$ is the Pochhammer symbol.

Moreover, from OO98, formula (2.8)] and the connection between the C - and P-normalizations of the Jack polynomials according to formula (12.135) of [Fo10], one calculates that

$$
\begin{equation*}
g_{j}(\lambda)=\frac{(k)_{j}}{j!} \cdot C_{(j)}(\lambda) \tag{3.7}
\end{equation*}
$$

(For partitions $\kappa=(j)$ with just one part, the Jack polynomials $C_{(j)}$ and $P_{(j)}$ coincide).

Lemma 3.8. Suppose $\omega=(\alpha, \beta, \gamma)$ are the VK parameters of a Vershik-Kerov sequence. Then the following hold.
(1) The infinite product

$$
\Psi(\omega ; z):=e^{k \beta z+\frac{k \gamma}{2} z^{2}} \prod_{l=1}^{\infty} \frac{e^{-k \alpha_{l} z}}{\left(1-\alpha_{l} z\right)^{k}}
$$

is holomorphic in $\left.S:=\mathbb{C} \backslash(]-\infty,-\frac{1}{\left|\alpha_{1}\right|}\right] \cup\left[\frac{1}{\left|\alpha_{1}\right|}, \infty[)\right.$. If $\alpha_{l} \geq 0$ for all $l \in \mathbb{N}$, then $\Psi(\omega ;$.$) is holomorphic in \widetilde{S}:=\mathbb{C} \backslash\left[\frac{1}{\alpha_{1}}, \infty[\right.$.
(2) ω is uniquely determined by $\Psi(\omega ;$.).

Proof. (1) Power series expansion around $z=0$ shows that for $\left|\alpha_{l} z\right| \leq \delta<1$,

$$
\left|1-\frac{e^{-k \alpha_{l} z}}{\left(1-\alpha_{l} z\right)^{k}}\right| \leq C_{\delta}\left|\alpha_{l} z\right|^{2}
$$

with some constant $C_{\delta}>0$. Recall that α is decreasing w.r.t. \ll and squaresummable. Hence for fixed $n \in \mathbb{N}$, the product

$$
\prod_{l=n}^{\infty} \frac{e^{-k \alpha_{l} z}}{\left(1-\alpha_{l} z\right)^{k}}
$$

defines a holomorphic function in the open $\operatorname{disc}\left\{z \in \mathbb{C}:|z|<1 /\left|\alpha_{n}\right| \in[0, \infty]\right\}$. Moreover,

$$
\prod_{l=1}^{n-1} \frac{e^{-k \alpha_{l} z}}{\left(1-\alpha_{l} z\right)^{k}}
$$

is holomorphic in S and even in \widetilde{S} if $\alpha_{l} \geq 0$ for all l. As $\lim _{l \rightarrow \infty} \alpha_{l}=0$, it follows that $\psi(\omega ;$.$) is holomorphic in S$ or even in \widetilde{S}. Unless α is identical zero (which is equivalent to $\left.\alpha_{1}=0\right), \Psi\left(\omega ;\right.$.) has a singularity in $z=\frac{1}{\alpha_{1}}$.
(2) If $\psi\left(\omega ;\right.$.) is entire, then $\alpha_{1}=0$. Otherwise $\lim _{z \rightarrow 1 / \alpha_{1}}|\Psi(\omega ; z)|=\infty$. Thus α_{1} is uniquely determined by $\Psi\left(\omega ;\right.$.). Multiplying successively by $\left(1-\alpha_{1} z\right)^{k}, \ldots$,
we further obtain that $\alpha_{2}, \alpha_{3}, \ldots$ are uniquely determined by $\Psi(\omega ;$. as well. It is then obvious that also β and γ are uniquely determined by $\Psi(\omega ;$. $)$.

Proposition 3.9. (1) For $\lambda \in \mathbb{C}^{(\infty)}$ and $|z|$ small enough,

$$
\begin{equation*}
\Phi(\lambda ; z)=\exp \left(k \sum_{m=0}^{\infty} p_{m}(\lambda) \frac{z^{m}}{m}\right) \tag{3.8}
\end{equation*}
$$

(2) Moreover, if $(\lambda(n))_{n \in \mathbb{N}}$ is a VK sequence with parameters $\omega=(\alpha, \beta, \gamma)$, then

$$
\lim _{n \rightarrow \infty} \Phi\left(\frac{\lambda(n)}{n} ; z\right)=\Psi(\omega ; z)
$$

where the convergence is uniform in z in some compact neighborhood of 0 .
Proof. (1) Since both sides of (3.8) have value 1 in $z=0$, it suffices to verify that they have the same logarithmic derivative. Let log be the principle holomorphic branch of the logarithm in $\mathbb{C} \backslash]-\infty, 0]$. Then for $|z|$ small enough,

$$
\frac{d}{d z} \log \Phi(\lambda ; z)=\sum_{j=0}^{\infty} \frac{k \lambda_{j}}{1-\lambda_{j} z}=k \sum_{m=0}^{\infty} p_{m+1}(\lambda) z^{m}
$$

This is exactly the logarithmic derivative of the right-hand side in (3.8).
(2) For the second assertion, note that for $m \geq 2$ we may estimate

$$
\left|\frac{p_{m}(\lambda(n))}{n^{m}}\right| \leq C_{m} \cdot \frac{p_{2}(\lambda(n))}{n^{2}}
$$

with a constant $C_{m}>0$ independent of n, which follows from (3.4). Since the righthand side converges for $n \rightarrow \infty$, the sequence on the left-hand side is uniformly bounded in n. Hence there exists some $\epsilon>0$ such that for each n, the series

$$
h_{n}(z)=\sum_{m=0}^{\infty} p_{m}\left(\frac{\lambda(n)}{n}\right) \frac{z^{m}}{m}
$$

converges for $|z|<\epsilon$, and the dominated convergence theorem shows that $\left(h_{n}\right)$ converges for $n \rightarrow \infty$ to $\sum_{m=0}^{\infty} \widetilde{p}_{m}(\omega) \frac{z^{m}}{m}$ locally uniformly in $\{|z|<\epsilon\}$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Phi\left(\frac{\lambda(n)}{n} ; z\right)=\exp \left(k \sum_{m=0}^{\infty} \widetilde{p}_{m}(\omega) \frac{z^{m}}{m}\right) \tag{3.9}
\end{equation*}
$$

locally uniformly in $\{z \in \mathbb{C}:|z|<\epsilon\}$.
Now consider $\Psi(\omega ;$.$) , which is holomorphic in a neighborhood of 0$. Taking the logarithmic derivative as in the proof of [Fa08, Prop. 3.12] and recalling Theorem 3.7, we obtain

$$
\frac{d}{d z} \log \Psi(\omega ; z)=k\left[\beta+\gamma z-\sum_{l=1}^{\infty}\left(\alpha_{l}-\frac{\alpha_{l}}{1-\alpha_{l} z}\right)\right]=k \sum_{m=0}^{\infty} \widetilde{p}_{m+1}(\omega) z^{m}
$$

The right-hand side in equation (3.9) has the same logarithmic derivative. Since $\Phi\left(\frac{\lambda(n)}{n} ; 0\right)=1=\Psi(\omega ; 0)$, this proves the stated limit.

We now consider the asymptotic behaviour of the Bessel functions $J_{A_{n-1}}$ as $n \rightarrow \infty$. We shall employ the following useful convergence property, see [Fa08, Propos. 3.11]:

Lemma 3.10. Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of smooth, positive-definite functions on \mathbb{R}^{r} with $\varphi_{n}(0)=1$ and φ an analytic function in some neighborhood of $0 \in \mathbb{R}^{r}$. Assume that $\lim _{n \rightarrow \infty} \partial^{\alpha} \varphi_{n}(0)=\partial^{\alpha} \varphi(0)$ for all $\alpha \in \mathbb{N}_{0}^{r}$, i.e. the Taylor coefficients of φ_{n} around 0 converge to those of φ. Then φ has an analytic extension to \mathbb{R}^{r}, and the sequence $\left(\varphi_{n}\right)$ converges to φ locally uniformly on \mathbb{R}^{r}.

For $z \in \mathbb{C}^{(\infty)}$, we put

$$
\widehat{\Psi}(\omega ; z):=\prod_{j=1}^{\infty} \Psi\left(\omega ; z_{j}\right)
$$

which is actually a finite product.
Theorem 3.11. Assume that $(\lambda(n))_{n \in \mathbb{N}}$ is a VK sequence with parameters $\omega=$ (α, β, γ). Then for $x \in \mathbb{R}^{(\infty)}$, the Bessel functions of type A_{n-1} with multiplicity $k>0$ satisfy

$$
\lim _{n \rightarrow \infty} J_{A_{n-1}}(i \lambda(n), x)=\widehat{\Psi}\left(\omega ; \frac{i x}{k}\right)=\prod_{j=1}^{\infty} e^{i \beta x_{j}-\frac{\gamma}{2 k} x_{j}^{2}} \prod_{l=1}^{\infty} \frac{e^{-i \alpha_{l} x_{j}}}{\left(1-\frac{i \alpha_{l}}{k} x_{j}\right)^{k}}
$$

locally uniformly in $x \in \mathbb{R}^{r}$ for all $r \in \mathbb{N}$.
Proof. The Cauchy identity for Jack polynomials, see for instance St89, Prop. 2.1], states for $\lambda \in \mathbb{C}^{(\infty)}$ and $z \in \mathbb{C}^{r}$ with $\left|z_{j}\right|$ small enough that

$$
\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa}}{|\kappa|!} C_{\kappa}(\lambda) \mathcal{P}_{\kappa}(z)=\prod_{j, l} \frac{1}{\left(1-\lambda_{l} z_{j}\right)^{k}}=\prod_{j=1}^{r} \Phi\left(\lambda ; z_{j}\right)
$$

Thus by Proposition 3.9,

$$
\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa} C_{\kappa}\left(\frac{\lambda(n)}{n}\right)}{|\kappa|!k^{|\kappa|}} \mathcal{P}_{\kappa}(i z) \longrightarrow \widehat{\Psi}\left(\omega ; \frac{i z}{k}\right)=: \varphi(z) \quad \text { for } n \rightarrow \infty
$$

where the convergence is locally uniform in z in some open neighborhood of $0 \in \mathbb{C}^{r}$. Therefore, the coefficients in the power series expansion of the left side around $z=0$ must converge (as $n \rightarrow \infty$) to the corresponding coefficients of φ. Moreover, by Lemma 3.8 we know that φ extends analytically to \mathbb{R}^{r}, and by Theorem 3.7 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{\kappa}\left(\frac{\lambda(n)}{n}\right)=\widetilde{C}_{\kappa}(\omega) \tag{3.10}
\end{equation*}
$$

It therefore follows for all z in some neighborhood of $0 \in \mathbb{C}^{r}$ that

$$
\varphi(z)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa} \widetilde{C}_{\kappa}(\omega)}{|\kappa|!k^{|\kappa|}} \mathcal{P}_{\kappa}(i z)
$$

Now consider the functions

$$
\varphi_{n}(x):=J_{A_{n-1}}(i \lambda(n), x)
$$

which are positive definite on \mathbb{R}^{r} for $r \leq n$. In view of Proposition 3.4,

$$
\begin{equation*}
\varphi_{n}(x)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa} C_{\kappa}((\lambda(n))}{|\kappa|![k n]_{\kappa}} \mathcal{P}_{\kappa}(i x) \tag{3.11}
\end{equation*}
$$

As $[k n]_{\kappa} \sim(k n)^{|\kappa|}$ for $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} \frac{C_{\kappa}(\lambda(n))}{[k n]_{\kappa}}=\frac{\widetilde{C}_{\kappa}(\omega)}{k^{|\kappa|}}
$$

So we are able to apply Lemma 3.10 to obtain that $\varphi_{n} \rightarrow \varphi$ locally uniformly on \mathbb{R}^{r}.

Remark 3.12. The proof shows that for $z \in \mathbb{C}^{r}$ with $|z|$ small enough,

$$
\widehat{\Psi}(\omega ; z)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa}}{|\kappa|!} \widetilde{C}_{\kappa}(\omega) \mathcal{P}_{\kappa}(z)
$$

Lemma 3.13. Consider a sequence $(\lambda(n))_{n \in \mathbb{N}}$ such that each $\lambda(n) \in \mathbb{R}^{n}$ is decreasing with respect to \ll. Suppose that the sequence of Bessel functions $J_{A_{n-1}}(i \lambda(n),$. converges pointwise on \mathbb{R} to a function which is continuous at 0 . Then $(\lambda(n))$ is a VK sequence.

Proof. Put $\varphi_{n}(x):=J_{A_{n-1}}(i \lambda(n), x), x \in \mathbb{R}$ and $\varphi(x):=\lim _{n \rightarrow \infty} \varphi_{n}(x)$. In view of representation (2.1), there exist compactly supported probability measures μ_{n} on \mathbb{R} such that

$$
\varphi_{n}(x)=\int_{\mathbb{R}} e^{i x \xi} d \mu_{n}(\xi) \quad \text { for all } x \in \mathbb{R}
$$

By Lévy's continuity theorem, there exists a probability measure μ on \mathbb{R} such that $\mu_{n} \rightarrow \mu$ weakly and

$$
\varphi(x)=\int_{\mathbb{R}} e^{i x \xi} d \mu(\xi) \quad \text { for all } x \in \mathbb{R}
$$

In particular, the family of measures $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is tight. Recall the functions $g_{j}(\lambda)$ from (3.6). By Proposition 3.4 and formula (3.7) we have

$$
\varphi_{n}(x)=\sum_{j=0}^{\infty} \frac{C_{(j)}(\lambda(n)) \cdot(k)_{j}}{(k n)_{j} \cdot j!}(i x)^{j}=\sum_{j=0}^{\infty} \frac{g_{j}(\lambda(n))}{(k n)_{j}}(i x)^{j}
$$

Hence the moments of the measures μ_{n} are given by

$$
\int_{\mathbb{R}} \xi^{j} d \mu_{n}(\xi)=j!\frac{g_{j}(\lambda(n))}{(k n)_{j}}
$$

We now employ Lemma 5.2 of O098. From the definition of the functions g_{j} one can find a constant $C>0$ such that $g_{4}(\lambda) \leq C g_{2}(\lambda)^{2}$ for all $\lambda \in \mathbb{R}^{(\infty)}$, which shows that the quotient

$$
\frac{\int_{\mathbb{R}} \xi^{4} d \mu_{n}(\xi)}{\left(\int_{\mathbb{R}} \xi^{2} d \mu_{n}(\xi)\right)^{2}}
$$

is bounded as a function of $n \in \mathbb{N}$. Hence we conclude from Lemma 5.1. of 0098] that the sequence $\left(\int_{\mathbb{R}} \xi^{2} d \mu_{n}(\xi)\right)_{n \in \mathbb{N}}$ is bounded, which in turn implies that the sequence $\left(\frac{g_{2}(\lambda(n))}{n^{2}}\right)_{n \in \mathbb{N}}$ is bounded. As $2 g_{2}=k^{2} p_{1}^{2}+k p_{2}$, the sequences

$$
\begin{equation*}
\left(\frac{\left|p_{1}(\lambda(n))\right|}{n}\right)_{n \in \mathbb{N}} \quad \text { and }\left(\frac{p_{2}(\lambda(n))}{n^{2}}\right)_{n \in \mathbb{N}} \tag{3.12}
\end{equation*}
$$

are bounded as well. Standard compactness arguments and a diagonalization argument imply that $(\lambda(n))_{n \in \mathbb{N}}$ has a subsequence which is Vershik-Kerov. Finally,
consider two such subsequences $\left(\lambda_{l}(n)\right)_{n \in \mathbb{N}}$ with VK parameters $\omega_{l}, l=1,2$. Then by Theorem 3.11 and our assumptions,

$$
\varphi(x)=\lim _{n \rightarrow \infty} J_{A_{n-1}}\left(i \lambda_{l}(n), x\right)=\Psi\left(\omega_{l} ; \frac{i x}{k}\right) \quad \text { for all } x \in \mathbb{R}
$$

Hence $\Psi\left(\omega_{1} ;.\right)=\Psi\left(\omega_{2} ;\right.$. $)$, and Proposition 3.8 implies that $\omega_{1}=\omega_{2}$. It follows that the full sequence $(\lambda(n))_{n \in \mathbb{N}}$ is Vershik-Kerov.

Putting things together, we are now able to finalize the proof of Theorem 3.5,
Proof of Theorem 3.5. The implication $(1) \Rightarrow(2)$ is contained in Theorem 3.11 The converse implication $(2) \Rightarrow(1)$ is just Lemma 3.13. Further, Theorem 3.7 proves the implication $(1) \Rightarrow(4)$. The equivalence of statements (3) and (4) is obvious from expansion (3.11), because the Jack polynomials span the algebra of symmetric functions. It thus remains to prove the implication $(4) \Rightarrow(1)$. For this, suppose that $(\lambda(n))_{n \in \mathbb{N}}$ is a sequence with each $\lambda(n) \in \mathbb{R}^{n}$ decreasing w.r.t \ll, and such that $\lim _{n \rightarrow \infty} \frac{f(\lambda(n))}{n^{\operatorname{deg} f}}$ exists for all symmetric functions f. Then in particular, the sequences $\left(\frac{p_{1}(\lambda(n))}{n}\right)$ and $\left(\frac{p_{2}(\lambda(n))}{n^{2}}\right)$ are bounded. Again by a compactness argument, $(\lambda(n))$ has a subsequence which is Vershik-Kerov. Suppose $\left(\lambda_{l}(n)\right), l=1,2$ are two such subsequences with VK parameters ω_{l}. Then by Theorem 3.11, the sequences $\left(J_{A_{n-1}}\left(i \lambda_{1}(n),.\right)\right)$ and $\left(J_{A_{n-1}}\left(i \lambda_{2}(n),.\right)\right)$ converge locally uniformly on \mathbb{R}^{r} to the same limit, because for each $\kappa \in \Lambda_{r}^{+}$, the limit

$$
\lim _{n \rightarrow \infty} \frac{C_{\kappa}\left(\lambda_{l}(n)\right)}{n^{|\kappa|}}=\lim _{n \rightarrow \infty} \frac{C_{\kappa}(\lambda(n))}{n^{|\kappa|}}
$$

is independent of l. Arguing further as in the proof of Lemma 3.13 we obtain that $\omega_{1}=\omega_{2}$ and that $(\lambda(n))$ is a VK sequence. This finishes the proof of the theorem.

We shall now parametrize the possible limit functions in Theorem 3.11. We put $\Omega:=\left\{(\alpha, \beta, \gamma): \beta \in \mathbb{R}, \gamma \geq 0, \alpha=\left(\alpha_{i}\right)_{i \in \mathbb{N}}\right.$ with $\left.\alpha_{i} \in \mathbb{R}, \alpha_{i+1} \ll \alpha_{i}, \sum_{i=1}^{\infty} \alpha_{i}^{2}<\infty\right\}$.
Note that for $(\alpha, \beta, \gamma) \in \Omega$, either all entries of α are non-zero, or all entries up to finitely many are zero.

Proposition 3.14. For any element $\omega=(\alpha, \beta, \gamma) \in \Omega$ there exists a VK sequence $(\lambda(n))$ with $V K$ parameters ω.

Proof. We divide the proof into several steps.
(i) Assume that $\alpha=0$. Then for arbitrary $\epsilon>0$, there exists a sequence $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ in \mathbb{R} such that

$$
\begin{equation*}
\left|x_{i}\right| \leq \epsilon \text { for all } i \in \mathbb{N}, \sum_{i=1}^{\infty} x_{i}=\beta \quad \text { and } \quad \sum_{i=1}^{\infty} x_{i}^{2}=\gamma \tag{3.13}
\end{equation*}
$$

To see this, choose $N \in \mathbb{N}$ such that $\left(\frac{6 \gamma}{\pi^{2} N}\right)^{1 / 2} \leq \epsilon$ and start with the alternating sequence

$$
x_{i}^{\prime}:=\left(\frac{6 \gamma}{\pi^{2} N}\right)^{1 / 2} \cdot \frac{(-1)^{i}}{k+1} \quad \text { if } k<\frac{i}{N} \leq k+1, k \in \mathbb{N}_{0}
$$

It satisfies the first and the third condition of (3.13), and by the Riemann rearrangement theorem, there exists a rearrangement $\left(x_{i}\right)_{i \in \mathbb{N}}$ of $\left(x_{i}^{\prime}\right)_{i \in \mathbb{N}}$ satisfying the second condition as well. For each $m \in \mathbb{N}$ we can therefore find a real sequence
$x^{(m)}=\left(x_{i}^{(m)}\right)$ and and index $n_{m} \in \mathbb{N}$ with $n_{m} \rightarrow \infty$ for $m \rightarrow \infty$, such that for all $n \geq n_{m}$,

$$
\left|x_{i}^{(m)}\right| \leq \frac{1}{m} \quad \text { for all } i \in \mathbb{N}, \quad\left|\sum_{i=1}^{n} x_{i}^{(m)}-\beta\right| \leq \frac{1}{m}, \quad\left|\sum_{i=1}^{n}\left(x_{i}^{(m)}\right)^{2}-\gamma\right| \leq \frac{1}{m}
$$

We may also assume that $n_{m+1}>n_{m}$ for all m. Rearranging the entries of each tuple $\left(x_{1}^{(m)}, \ldots, x_{n_{m}}^{(m)}\right)$ according to \ll, we thus obtain a sequence $\left(\lambda\left(n_{m}\right)^{\prime}\right)_{m \in \mathbb{N}}$ where each $\lambda\left(n_{m}\right)^{\prime} \in \mathbb{R}^{n_{m}}$ is decreasing w.r.t. \ll and satisfies

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \lambda\left(n_{m}\right)_{i}^{\prime}=0 \quad \text { for all } i \in \mathbb{N} \\
& \lim _{m \rightarrow \infty} \sum_{i=1}^{n_{m}} \lambda\left(n_{m}\right)_{i}^{\prime}=\beta \\
& \lim _{m \rightarrow \infty} \sum_{i=1}^{n_{m}}\left(\lambda\left(n_{m}\right)_{i}^{\prime}\right)^{2}=\gamma
\end{aligned}
$$

Finally, put $\lambda\left(n_{m}\right):=n_{m} \lambda\left(n_{m}\right)^{\prime}$ and $\lambda(n):=\left(n \lambda\left(n_{m}\right)^{\prime}, 0, \ldots, 0\right) \in \mathbb{R}^{n}$ for $n_{m}<$ $n<n_{m+1}$. Then $(\lambda(n))_{n \geq n_{1}}$ is a VK sequence with parameters $(\alpha=0, \beta, \gamma)$.
(ii) Assume that α has finitely many non-zero entries and let $m \in \mathbb{N}$ be maximal such that $\alpha_{m} \neq 0$. Let $\left(\lambda(n)^{\prime}\right)_{n \in \mathbb{N}}$ be a VK sequence with parameters $\left(0, \beta^{\prime}, \gamma\right)$, where $\beta^{\prime}=\beta-\sum_{i=1}^{m} \alpha_{i}$. For $n>m$, put

$$
\lambda(n):=\left(n \alpha_{1}, \ldots, n \alpha_{m}, \lambda(n)_{1}^{\prime}, \ldots, \lambda(n)_{n-m}^{\prime}\right)
$$

For n large enough, say $n \geq n_{0}$, the entries of $\lambda(n)$ are decreasing with respect to \ll, because $\lim _{n \rightarrow \infty} \frac{\lambda(n)_{i}^{\prime}}{n}=0$. Then $(\lambda(n))_{n \geq n_{0}}$ is Vershik-Kerov with parameters (α, β, γ).
(iii) Assume that all entries of α are non-zero. For $m \in \mathbb{N}$, put $\omega^{(m)}:=\left(\alpha^{(m)}, \beta, \gamma\right)$, where $\alpha^{(m)}=\left(\alpha_{1}, \ldots, \alpha_{m}, 0, \ldots\right)$. According to part (ii), there exists a VK sequence $\left(\lambda^{(m)}(n)\right)_{n \in \mathbb{N}}$ with VK parameters $\omega^{(m)}$. By a diagonalization argument we obtain a sequence $\lambda\left(n_{m}\right):=\lambda^{(m)}\left(n_{m}\right)$ with $n_{m+1}>n_{m}$ satisfying

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \lambda\left(n_{m}\right)_{i}=\alpha_{i} \quad \text { for all } i \in \mathbb{N}, \\
& \lim _{m \rightarrow \infty} \sum_{i=1}^{n_{m}} \lambda\left(n_{m}\right)_{i}=\beta \\
& \lim _{m \rightarrow \infty} \sum_{i=1}^{n_{m}}\left(\lambda\left(n_{m}\right)_{i}\right)^{2}=\delta=\gamma+\sum_{i=1}^{\infty} \alpha_{i}^{2} .
\end{aligned}
$$

Finally, for $n \in \mathbb{N}$ with $n_{m} \leq n<n_{m+1}$ put $\lambda(n):=\left(\frac{n}{n_{m}} \lambda\left(n_{m}\right), 0, \ldots, 0\right) \in \mathbb{R}^{n}$. Then $(\lambda(n))_{n \geq n_{1}}$ is Vershik-Kerov with VK parameters (α, β, γ).

Together with Lemma 3.8 this result shows that the possible limits (for $n \rightarrow \infty$) of the Bessel functions $J_{A_{n-1}}(i \lambda(n), x)$ with $x \in \mathbb{R}^{r}$ and $\lambda(n) \in \mathbb{R}^{n}$ are exactly all the infinite products $\widehat{\Psi}\left(\omega ; \frac{i x}{k}\right)$, of Theorem 3.11] which are in bijective correspondence with the parameters $\omega \in \Omega$.

Let us finally come back to the Olshanski spherical pair $\left(G_{\infty}, K_{\infty}\right)$ as in (3.14). From our results, we obtain the following result of Pickrell Pi91 mentioned at the beginning of this section:

Corollary 3.15. The set of positive definite spherical functions of the Olshanski spherical pair $\left(G_{\infty}, K_{\infty}\right)=\left(U_{\infty}(\mathbb{F}) \ltimes \operatorname{Herm}_{\infty}(\mathbb{F}), U_{\infty}(\mathbb{F})\right)$, considered as $U_{\infty}(\mathbb{F})$ invariant functions on $\operatorname{Herm}_{\infty}(\mathbb{F})$, is parametrized by the set Ω via

$$
\varphi_{\omega}(X)=\prod_{j=1}^{\infty} e^{i \beta x_{j}-\frac{\gamma}{d} x_{j}^{2}} \prod_{l=1}^{\infty} \frac{e^{-i \alpha_{l} x_{j}}}{\left(1-i \frac{2}{d} \alpha_{l} x_{j}\right)^{d / 2}}, \quad \omega=(\alpha, \beta, \gamma) \in \Omega
$$

Proof. For a topological group H consider the set

$$
P_{1}(H)=\{\varphi \in C(H): \varphi \text { positive definite, } \varphi(e)=1\}
$$

and denote by $\operatorname{ex}\left(P_{1}(H)\right)$ the set of its extremal points. In Ol90, Theorem 22.10] it is proven that each $\varphi \in \operatorname{ex}\left(P_{1}\left(G_{\infty}\right)\right)$ can be approximated locally uniformly by a sequence of functions $\varphi_{n} \in \operatorname{ex}\left(P_{1}\left(G_{n}\right)\right)$. An inspection of the proof shows that this statement remains true for biinvariant functions, i.e. each K_{∞}-biinvariant $\varphi \in \operatorname{ex}\left(P_{1}\left(G_{\infty}\right)\right)$ can be approximated locally uniformly by a sequence of $K_{n^{-}}$ biinvariant functions $\varphi_{n} \in \operatorname{ex}\left(P_{1}\left(G_{n}\right)\right)$. According to Ol90, Theorems 23.3 and 23.6], the positive definite spherical functions of a spherical pair (G, K) (an Olshanski spherical pair or a Gelfand pair) are exactly those elements of ex $\left(P_{1}(G)\right)$ which are K-biinvariant. Thus, for a positive definite spherical function φ of $\left(G_{\infty}, K_{\infty}\right)$, there exists a sequence $\left(\varphi_{n}\right)$ of positive definite spherical functions of $\left(G_{n}, K_{n}\right)$ which converges locally uniformly to φ. (This is also noted in OV96, Theorem 3.5]). By Lemma 2.1. φ_{n} is given by a positive definite Bessel function $J_{A_{n-1}}$ with multiplicity $k=\frac{d}{2}, d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$, i.e.

$$
\begin{equation*}
\varphi_{n}(X)=J_{A_{n-1}}\left(\frac{d}{2} ; i \lambda(n), \sigma(X)\right) \tag{3.14}
\end{equation*}
$$

with some real spectral parameter $\lambda(n) \in \mathbb{R}^{n}$. Without loss of generality we may assume that $\lambda(n)$ is decreasing w.r.t \ll. From Theorem 3.5 it now follows that $(\lambda(n))$ has to be a VK sequence and that $\varphi=\varphi_{\omega}$, where ω are the VK parameters of $(\lambda(n))$.

Conversely, starting with $\omega \in \Omega$ we may choose an associated VK sequence $(\lambda(n))$ by Proposition 3.14. Then (3.14) defines a sequence $\left(\varphi_{n}\right)$ of positive definite spherical functions of $\left(G_{n}, K_{n}\right)$ which converge to φ_{ω} locally uniformly according to Theorem 3.5. It is then clear from the definitions that φ_{ω} is a positive definite Olshanski-spherical function of $\left(G_{\infty}, K_{\infty}\right)$.

4. The type B case

Recall from Section 2 the Bessel functions $J_{B_{n}}$ of type B_{n}. As $n \rightarrow \infty$, we shall consider them with the multiplicities $\kappa_{n}:=\left(k_{n}^{\prime}, k\right)$ with value $k>0$ on the roots $\pm\left(e_{i} \pm e_{j}\right)$ and $k_{n}^{\prime} \geq 0$ on the roots $\pm e_{i}$. It will become clear at the end of this section why the multiplicity parameter k_{n} is allowed to vary with n. With $\nu_{n}:=k_{n}^{\prime}+k(n-1)+\frac{1}{2}$ we have

$$
J_{B_{n}}\left(\kappa_{n} ; \lambda, z\right)=\sum_{\kappa \in \Lambda_{n}^{+}} \frac{1}{4^{|\kappa|}\left[\nu_{n}\right]_{\kappa}} \frac{C_{\kappa}\left(\lambda^{2}\right) C_{\kappa}\left(z^{2}\right)}{|\kappa|!C_{\kappa}\left(\underline{1}_{n}\right)}
$$

where the Jack polynomials are of index $1 / k$. Recall the stability property (2.2) of the Jack polynomials. Adopting the notation from (3.2), we therefore have for
$\lambda \in \mathbb{C}^{n}$ and $z \in \mathbb{C}^{r}$ with $r \leq n$ the representation

$$
\begin{equation*}
J_{B_{n}}\left(\kappa_{n} ; \lambda, z\right):=J_{B_{n}}\left(\kappa_{n} ; \lambda,\left(z, \underline{0}_{n-r}\right)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{C_{\kappa}\left(\lambda^{2}\right)[k r]_{\kappa}}{4^{|\kappa|}[k n]_{\kappa}\left[\nu_{n}\right]_{\kappa}|\kappa|!} \mathcal{P}_{\kappa}\left(z^{2}\right) .\right. \tag{4.1}
\end{equation*}
$$

Note that for $\lambda \in \mathbb{R}^{n}, J_{B_{n}}\left(\kappa_{n} ; i \lambda,.\right)$ is positive definite on \mathbb{R}^{r} for each $r \leq n$. Recall our notion (2.6) for the positive Weyl chamber of type B.

The following counterpart of Theorem 3.5 will be the main result of this section.
Theorem 4.1. Let $(\lambda(n))_{n \in \mathbb{N}}$ be a sequence of spectral parameters $\lambda(n) \in \bar{C}_{n}$. Then the following statements are equivalent.
(1) $\left(\frac{\lambda(n)^{2}}{\nu_{n}}\right)_{n \in \mathbb{N}}$ is a Vershik-Kerov sequence.
(2) The sequence of Bessel functions $\left(J_{B_{n}}\left(\kappa_{n} ; i \lambda(n), .\right)\right)_{n \in \mathbb{N}}$ converges locally uniformly on each of the spaces $\mathbb{R}^{r}, r \in \mathbb{N}$.
(3) For each fixed multi-index of length r, the corresponding coefficients in the Taylor of expansion of $J_{B_{n}}\left(\kappa_{n} ; i \lambda(n),.\right)$ around $0 \in \mathbb{R}^{r}$ converge as $n \rightarrow \infty$.
(4) For all symmetric functions $f: \mathbb{R}^{(\infty)} \rightarrow \mathbb{C}$, the limit

$$
\lim _{n \rightarrow \infty} \frac{f\left(\lambda(n)^{2}\right)}{\left(n \nu_{n}\right)^{\operatorname{deg} f}}
$$

exists.
In this case, let $\omega=(\alpha, \beta, \gamma)$ be the VK parameters of the sequence $\left(\frac{\lambda(n)^{2}}{\nu_{n}}\right)$. Then $\gamma=0, \alpha_{l} \geq 0$ for all l, and

$$
\lim _{n \rightarrow \infty} J_{B_{n}}\left(\kappa_{n} ; i \lambda(n), x\right)=\widehat{\Psi}\left(\omega ;-\frac{x^{2}}{4 k}\right)=\prod_{j=1}^{\infty} e^{-\frac{\beta x_{j}^{2}}{4}} \prod_{l=1}^{\infty} \frac{e^{\frac{\alpha_{l} x_{j}^{2}}{4}}}{\left(1+\frac{\alpha_{l} x_{j}^{2}}{4 k}\right)^{k}} .
$$

Remarks 4.2. 1. It is a consequence of Lemma 3.2 that the VK parameter γ is 0 in the present situation.
2. Assume that $\lim _{n \rightarrow \infty} \frac{k_{n}^{\prime}}{n}=0$. Then $\nu_{n} \sim k n$ for $n \rightarrow \infty$. In particular, $\left(\frac{\lambda(n)^{2}}{\nu_{n}}\right)$ is Vershik-Kerov with VK parameters $(\alpha, \beta, 0)$ if and only if $\left(\frac{\lambda(n)^{2}}{n}\right)$ is Vershik-Kerov with VK parameters $(k \alpha, k \beta, 0)$.

For the proof of Theorem 4.1] we start with the following
Lemma 4.3. Let $(\lambda(n))_{n \in \mathbb{N}}$ with $\lambda(n) \in \bar{C}_{n}$ be such that $\left(\frac{\lambda(n)^{2}}{\nu_{n}}\right)$ is a Vershik-Kerov sequence with VK parameters $\omega=(\alpha, \beta, 0)$. Then for $x \in \mathbb{R}^{(\infty)}$,

$$
\lim _{n \rightarrow \infty} J_{B_{n}}\left(\kappa_{n} ; i \lambda(n), x\right)=\widehat{\Psi}\left(\omega ;-\frac{x^{2}}{4 k}\right)
$$

The convergence is uniform on compact subsets of $\mathbb{R}^{(\infty)}$, i.e. locally uniform in $x \in \mathbb{R}^{r}$ for all $r \in \mathbb{N}$.

Proof. For $x \in \mathbb{R}^{r}$, consider

$$
\begin{equation*}
\varphi_{n}(x):=J_{B_{n}}\left(\kappa_{n} ; i \lambda(n), x\right)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa}\left(n \nu_{n}\right)^{|\kappa|}}{4^{|\kappa|}|\kappa|![k n]_{\kappa}\left[\nu_{n}\right]_{\kappa}} C_{\kappa}\left(\frac{\lambda(n)^{2}}{n \nu_{n}}\right) \mathcal{P}_{\kappa}\left(-x^{2}\right) . \tag{4.2}
\end{equation*}
$$

As $\lim _{n \rightarrow \infty} \nu_{n}=\infty$, we have for $n \rightarrow \infty$ the asymptotics

$$
\left[\nu_{n}\right]_{\kappa} \sim \nu_{n}^{|\kappa|},[k n]_{\kappa} \sim(k n)^{|\kappa|} .
$$

Moreover, by relation (3.10),

$$
\lim _{n \rightarrow \infty} C_{\kappa}\left(\frac{\lambda(n)^{2}}{n \nu_{n}}\right)=\widetilde{C}_{\kappa}(\omega)
$$

As in the proof of Theorem 3.11, we conclude that the Taylor coefficients of φ_{n} around 0 converge to those of

$$
\varphi(x)=\sum_{\kappa \in \Lambda_{r}^{+}} \frac{[k r]_{\kappa}}{(4 k)^{|\kappa|}|\kappa|!} \widetilde{C}_{\kappa}(\omega) \mathcal{P}_{\kappa}\left(-x^{2}\right)=\widehat{\Psi}\left(\omega,-\frac{x^{2}}{4 k}\right)
$$

This function is actually real-analytic on \mathbb{R}^{r} by Lemma 3.8, since the entries of α are non-negative. As the functions φ_{n} are positive definite on \mathbb{R}^{n}, Lemma 3.10 yields the assertion.

Lemma 4.4. Consider a sequence $(\lambda(n))_{n \in \mathbb{N}}$ with $\lambda(n) \in \bar{C}_{n}$. Assume that the sequence of Bessel functions $J_{B_{n}}(i \lambda(n),$.$) converges pointwise on \mathbb{R}$ to a function which is continuous at 0 . Then the sequence $\left(\frac{\lambda(n)^{2}}{\nu_{n}}\right)$ is Vershik-Kerov.
Proof. The proof is similar to that of Lemma 3.13, For $x \in \mathbb{R}$, put

$$
\varphi_{n}(x):=J_{B_{n}}\left(\kappa_{n} ; i \lambda(n), x\right)=\int_{\mathbb{R}} e^{i x \xi} d \mu_{n}(\xi)
$$

with certain compactly supported probability measures μ_{n} on \mathbb{R}. By the symmetry properties of $J_{B_{n}}$, the measure μ_{n} is even, hence its odd moments vanish. Let further $\varphi(x):=\lim _{n \rightarrow \infty} \varphi_{n}(x)$. Again by Lévy's continuity theorem, there exists a probability measure μ on \mathbb{R} such that $\mu_{n} \rightarrow \mu$ weakly and

$$
\varphi(x)=\int_{\mathbb{R}} e^{i x \xi} d \mu(\xi) \quad \text { for all } x \in \mathbb{R}
$$

Further, the family $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is tight. From (4.1) and formula (3.7) we deduce that

$$
\varphi_{n}(x)=\sum_{j=0}^{\infty} \frac{g_{j}\left(\lambda(n)^{2}\right)}{4^{j}\left(\nu_{n}\right)_{j}(k n)_{j}}(-x)^{2 j}
$$

This shows that the even moments of μ_{n} are given by

$$
\int_{\mathbb{R}} \xi^{2 j} d \mu_{n}(\xi)=(2 j)!\frac{g_{j}\left(\lambda(n)^{2}\right)}{4^{j}(k n)_{j}\left(\nu_{n}\right)_{j}}
$$

As in the proof of Lemma 3.13, we deduce that the quotient

$$
\frac{\int_{\mathbb{R}} \xi^{8} d \mu_{n}(\xi)}{\left(\int_{\mathbb{R}} \xi^{4} d \mu_{n}(\xi)\right)^{2}}
$$

is bounded in $n \in \mathbb{N}$. Now we conclude from OO98, Lemma 5.2] (employing the Lemma for the image measure of μ_{n} under $\left.\xi \mapsto \xi^{2}\right)$ that the sequence $\left(\int_{\mathbb{R}} \xi^{4} d \mu_{n}(\xi)\right)$ is bounded. As $\left(\nu_{n}\right)_{2} \sim \nu_{n}^{2}$ and $(k n)_{2} \sim(k n)^{2}$ for $n \rightarrow \infty$, it follows that the sequence

$$
\left(g_{2}\left(\frac{\lambda(n)^{2}}{n \nu_{n}}\right)\right)_{n \in \mathbb{N}}
$$

is bounded as well. Continuing as in the proof of Lemma 3.13 we obtain that $\left(\frac{\lambda(n)^{2}}{\nu_{n}}\right)$ is a Vershik-Kerov sequence.

Proof of Theorem 4.1. From Theorem 3.5 it is clear that the statements (1) and (4) are equivalent. The equivalence of (3) and (4) follows from expansion (4.2) and the fact that the Jack polynomials span the algebra of symmetric functions. By Lemma 4.4 statement (2) implies (1). Finally, Lemma 4.3 shows that statement (1) implies statement (2).

We finally want to determine the set of all parameters $\omega=(\alpha, \beta, 0)$ which occur as VK parameters of a non-negative Vershik-Kerov sequence as in Theorem 4.1. Recall that in the non-negative case, the parameter γ is automatically zero by Lemma 3.2

Proposition 4.5. The set Ω_{+}of all pairs (α, β) for which there exists a nonnegative VK sequence with parameters $(\alpha, \beta, 0)$ is given by

$$
\Omega_{+}=\left\{(\alpha, \beta): \beta \geq 0, \alpha=\left(\alpha_{i}\right)_{i \in \mathbb{N}} \text { with } \alpha_{i} \in \mathbb{R}, \alpha_{1} \geq \alpha_{2} \geq \ldots \geq 0, \sum_{i=1}^{\infty} \alpha_{i} \leq \beta\right\}
$$

Proof. 1. If $(\alpha, \beta, 0)$ are the VK parameters of a VK sequence $(\lambda(n))$ with $\lambda(n)_{i} \geq 0$ for all i, then obviously $\beta \geq 0$ and $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq 0$. Moreover, for fixed $N \in \mathbb{N}$ and $n \geq N$ we have

$$
\sum_{i=1}^{N} \alpha_{i} \leq \sum_{i=1}^{N}\left(\alpha_{i}-\frac{\lambda(n)_{i}}{n}\right)+\sum_{i=1}^{n} \frac{\lambda(n)_{i}}{n}
$$

As $n \rightarrow \infty$, the first sum tends to 0 and the second sum tends to β. This proves that $\sum_{i=1}^{\infty} \alpha_{i} \leq \beta$.
2. Conversely, let $(\alpha, \beta) \in \Omega_{+}$. In order to construct an associated non-negative VK sequence, we proceed in two steps.
(i) Assume that α has at most finitely many non-zero entries. If $\alpha \neq 0$, let $m \in \mathbb{N}$ be maximal such that $\alpha_{i} \neq 0$ for $i \leq m$. If $\alpha=0$, let $m:=0$. Put

$$
\beta^{\prime}:=\beta-\sum_{i=1}^{m} \alpha_{i} \geq 0
$$

For $n>m$, define $\lambda(n) \in \mathbb{R}^{n}$ by

$$
\lambda(n)_{i}:= \begin{cases}n \alpha_{i} & \text { if } i \leq m \\ \frac{n \beta^{\prime}}{n-m} & \text { if } m<i \leq n\end{cases}
$$

Note that the entries of $\lambda(n)$ are non-negative and decreasing for n large enough, say $n \geq n_{0}$. It is now straightforward to verify that $(\lambda(n))_{n \geq n_{0}}$ is a VK sequence with parameters $(\alpha, \beta, 0)$.
(ii) Assume that all entries of α are strictly positive. Then a diagonalization argument as in the proof of Proposition 3.14 shows that there exists a VK sequence with parameters $(\alpha, \beta, 0)$.

Let us finally turn to consequences in the geometric cases, related to the Cartan motion groups of non-compact Grassmann manifolds.

For strictly increasing sequences of dimensions $\left(p_{n}\right)_{n \in \mathbb{N}},\left(q_{n}\right)_{n \in \mathbb{N}}$ with $p_{n} \geq q_{n}$ consider the sequence of Gelfand pairs $\left(G_{n}, K_{n}\right)$ with

$$
\begin{equation*}
G_{n}=\left(U_{p_{n}}(\mathbb{F}) \times U_{q_{n}}(\mathbb{F})\right) \ltimes M_{p_{n}, q_{n}}(\mathbb{F}), K_{n}=U_{p_{n}}(\mathbb{F}) \times U_{q_{n}}(\mathbb{F}) \tag{4.3}
\end{equation*}
$$

over $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$. It is easily checked that the associated Olshanski spherical pair $\left(G_{\infty}, K_{\infty}\right)$ is independent of the specific choice of the sequences $\left(p_{n}\right),\left(q_{n}\right)$, and so the same holds for its spherical functions. Recall from Section 2 that the positive definite spherical functions of $\left(G_{n}, K_{n}\right)$, considered as functions on the chamber $\bar{C}_{q_{n}} \subset \mathbb{R}^{q_{n}}$, are given by the Bessel functions

$$
\varphi_{\lambda_{n}}(x)=J_{B_{q_{n}}}\left(\kappa_{n}, i \lambda_{n}, x\right), \lambda_{n} \in \mathbb{R}^{q_{n}}
$$

with $\kappa_{n}=\left(k_{n}^{\prime}, k\right)=\left(\frac{d}{2}\left(p_{n}-q_{n}+1\right)-\frac{1}{2}, \frac{d}{2}\right)$.
Corollary 4.6. (1) The set of positive definite spherical functions of the Olshanski spherical pair $\left(G_{\infty}, K_{\infty}\right)$, considered as functions on

$$
\bar{C}_{\infty}:=\left\{x \in \mathbb{R}^{(\infty)}: x_{1} \geq x_{2} \geq \ldots \geq 0\right\}
$$

is given by the functions

$$
\varphi_{(\alpha, \beta)}(x)=\prod_{j=1}^{\infty} e^{-\frac{\beta x_{j}^{2}}{4}} \prod_{l=1}^{\infty} \frac{e^{\frac{\alpha_{l} x_{j}^{2}}{4}}}{\left(1+\frac{\alpha_{l} x_{j}^{2}}{2 d}\right)^{d / 2}}, \quad(\alpha, \beta) \in \Omega_{+}
$$

(2) Let $\left(p_{n}, q_{n}\right)$ be dimensions with $q_{n}=n$ and $\frac{p_{n}}{n} \rightarrow 1$ for $n \rightarrow \infty$. Consider a sequence $(\lambda(n))_{n \in \mathbb{N}}$ with $\lambda(n) \in \bar{C}_{n}$ such that $\left(\frac{\lambda(n)^{2}}{n}\right)$ is Vershik-Kerov with VK parameters $(k \alpha, k \beta, 0)$. Then the spherical functions of the Gelfand pairs $\left(G_{n}, K_{n}\right)$ as in (4.3) satisfy

$$
\lim _{n \rightarrow \infty} \varphi\left(\kappa_{n} ; i \lambda(n), x\right)=\varphi_{(\alpha, \beta)}(x)
$$

where the convergence is locally uniform on each chamber \bar{C}_{r}.
Proof. For part (1), choose $\left(G_{n}, K_{n}\right)$ with $q_{n}=n$. The proof is then the same as that of Corollary 3.15 in the type A case. Part (2) is then immediate from Theorem 3.5 and Remark 4.2

Remark 4.7. We mention that for $\mathbb{F}=\mathbb{C}$, part (1) of this corollary is in accordance with results of Bo19, where for the semigroup $\operatorname{Herm}_{\infty}^{+}(\mathbb{C})$ of infinite dimensional positive definite matrices over \mathbb{C}, the positive definite Olshanski spherical functions of $\left(U_{\infty}(\mathbb{C}) \ltimes \operatorname{Herm}_{\infty}^{+}(\mathbb{C}), U_{\infty}(\mathbb{C})\right)$ were determined by semigroup methods and a reduction to the type A case.

References

[BF98] T.H. Baker, P.J. Forrester, Non-symmetric Jack polynomials and integral kernels. Duke Math. J. 95 (1998), 1-50.
[BCG22] F. Benaych-Georges, C. Cuenca, V. Gorin, Matrix addition and the Dunkl transform at high temperature. Comm. Math. Phys. 394 (2022), 735-795.
[Bo07] M. Bouali, Application des théorèmes de Minlos et Poincaré à l' étude asymptotique d'une intégrale orbitale. Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), 49-70.
[Bo19] M. Bouali, Olshanski spherical pairs of semigroup type. Infinite dimensional Analysis, Quantum Probability and Related Topics. Vol. 22, No. 3 (2019), 1950021.
[BR23] D. Brennecken, M. Rösler, The Dunkl-Laplace transform and Macdonald's hypergeometric series. Trans. Amer. Math. Soc. 376 (2023), 2419-2447.
[Cu18] C. Cuenca, Pieri integral formula and asymptotics of Jack unitary characters. Selecta Math. (N.S.) 24 (2018), 2737-2789.
[DX14] C.F. Dunkl, Y. Xu, Orthogonal polynomials of Several Variables. Cambridge Univ. Press, 2nd edition, 2014.
[Fa08] J. Faraut, Infinite dimensional Spherical Analysis. COE Lecture Notes Vol. 10 (2008), Kyushu University.
[Fo10] P.J. Forrester, Log-Gases and Random Matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ, 2010.
[dJ06] M. de Jeu, Paley-Wiener Theorems for the Dunkl transform. Trans. Amer. Math. Soc. 358 (2006), 4225-4250.
[Ka93] J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math. Anal. 24 (1993), 1086-1100.
[OO98] A. Okounkov, G. Olshanski, Asymptotics of Jack polynomials as the number of variables goes to infinity. Internat. math. Res. Notices IMRN (1998) no. 13, 641-682.
[OO06] A. Okounkov, G. Olshanski, Asymptotics of $B C$-type orthogonal polynomials as the number of variables goes to infinity. Contemp. Math. 417, Amer. Math. Soc., Providence, RI, 2006, 281-318.
[Ol90] G.I. Olshanski, Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe. In: A. Vershik and D. Zhelobenko (eds.), Representations of Lie Groups and Related topics. Adv. Stud. Contemp. Math. 7, Gordon and Breach, 1990.
[OV96] G. Olshanski, A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices. Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 137-175.
[Pi91] D. Pickrell, Mackey analysis of infinite classical motion groups. Pacific. J. Math. 150 (1991), 139-166.
[Op93] E.M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio Math. 85 (1993), 333-373.
[Ro03] M. Rösler, Dunkl operators: theory and applications. In: E. Koelink, W. van Assche (Eds.), Lecture Notes in Math. 1817, Springer-Verlag, 2003, pp. 93-136.
[Ro07] M. Rösler, Bessel convolution on matrix cones. Compositio Math. 143 (2007), 749 - 779.
[RV08] M. Rösler, M. Voit, Dunkl theory, convolution algebras, and related Markov processes, in: Harmonic and Stochastic analysis of Dunkl processes, P. Graczyk et al. (eds.), Hermann, 2008.
[RV13] M. Rösler, M. Voit, Olshanski spherical functions for infinite dimensional motion groups of fixed rank. J. Lie Theory 23 (2013), 899-920.
[St89] R.P. Stanley, Some combinatorial properties of Jack symmetric functions. Adv. Math. 77 (1989), 76-115.
[VK82] A. Vershik, S. Kerov, Characters and factor representations of the infinite unitary group. Soviet Math. Dokl. 26 No. 3 (1982), 570-574.
[Wo06] J.A. Wolf, Spherical functions on Euclidean space. J. Funct. Anal. 239 (2006), 127-136.
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098
Paderborn, Germany
Email address: bdominik@math.upb.de, roesler@math.upb.de

[^0]: 2020 Mathematics Subject Classification. Primary 33C67; Secondary 33C52, 43A90, 22E66.
 Key words and phrases. Dunkl theory, Bessel functions, asymptotic harmonic analysis.

