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LIMITS OF BESSEL FUNCTIONS FOR ROOT SYSTEMS AS

THE RANK TENDS TO INFINITY

DOMINIK BRENNECKEN AND MARGIT RÖSLER

In memory of Gerrit van Dijk

Abstract. We study the asymptotic behaviour of Bessel functions associ-
ated to root systems of type An−1 and type Bn with positive multiplicities
as the rank n tends to infinity. In both cases, we characterize the possible
limit functions and the Vershik-Kerov type sequences of spectral parameters
for which such limits exist. In the type A case, this gives a new and very
natural approach to recent results by Assiotis and Najnudel in the context of
β-ensembles in random matrix theory. These results generalize known facts
about the approximation of the positive-definite Olshanski spherical functions
of the space of infinite-dimensional Hermitian matrices over F = R,C,H (with
the action of the associated infinite unitary group) by spherical functions of
finite-dimensional spaces of Hermitian matrices. In the type B case, our re-
sults include asymptotic results for the spherical functions associated with the
Cartan motion groups of non-compact Grassmannians as the rank goes to in-
finity, and a classification of the Olshanski spherical functions of the associated
inductive limits.

1. Introduction

The asymptotic analysis of multivariate special functions has a long tradition
in infinite dimensional harmonic analysis, tracing back to the work of Olshanski,
Vershik, and Kerov, see [Ol90, OV96, VK82]. Of particular interest in this context
are the behaviour of spherical representations and the limits of spherical functions
of increasing families of Gelfand pairs as specific dimensions tend to infinity.

Bessel functions associated with root systems generalize the spherical functions
of Riemannian symmetric spaces of Euclidean type, which occur for special values
of the multiplicity parameters. They appear naturally in rational Dunkl theory,
with an intimate connection to the Dunkl kernel and the associated harmonic anal-
ysis. We refer to [Op93] for a general treatment of such Bessel functions and to
[Ro03, dJ06, RV08, DX14] for an overview of rational Dunkl theory including the
connection with symmetric spaces. There are two classes of particular interest, in-
cluding applications to β-ensembles in random matrix theory, namely those of type
An−1 and type Bn. We refer to [Fo10] for a general background and to [BCG22]
for some recent developments. In the cases of type A and B, the Bessel functions
can be expressed as hypergeometric series involving Jack polynomials, c.f. Sec-
tion 2. Bessel functions of type An−1 have a continuous multiplicity parameter
k ≥ 0 and include as special cases the spherical functions of the motion groups
Un(F) ⋉ Hermn(F) over F = R,C or H, where the unitary group Un(F) acts by
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conjugation on the space Hermn(F) of Hermitian matrices over F. These cases
correspond to k = d

2 with d = dimRF ∈ {1, 2, 4}. Bessel functions of type Bq have
non-negative multiplicity parameters of the form κ = (k′, k), with k the multiplicity
on the roots ±(ei ± ej) and k

′ that on the roots ±ei. They generalize the spherical
functions of the motion groups (Up(F) × Uq(F)) ⋉Mp,q(F), with p ≥ q. Here the

multiplicities are k = d
2 , k

′ = d
2 (p − q + 1) − 1

2 . In [RV13], limits of the spherical
functions of these motion groups as p→ ∞ and the associated Olshanski spherical
pairs were studied, where the rank q remained fixed.

In the present paper, we study Bessel functions of type An−1 and type Bn

with arbitrary positive multiplicities and imaginary spectral parameters as the rank
tends to infinity. We characterize the sequences of spectral parameters for which a
limit exists, and we uniquely parametrize the sets of possible limit functions.

In the group cases, the obtained limits are exactly the (positive definite) Ol-
shanski spherical functions of the associated infinite dimensional motion groups
U∞(F) ⋉ Herm∞(F) and (U∞(F) × U∞(F)) ⋉M∞(F), which are obtained as in-
ductive limits of the above finite dimensional motion groups. These Olshanski
spherical functions were already determined by Pickrell [Pi91] (Section 5). In
the case of U∞(C) ⋉ Herm∞(C), their approximation by positive definite spher-
ical functions of the corresponding finite-dimensional Cartan motion groups is a
classical result of Olshanski and Vershik [OV96], where the limits showed up as the
characteristic functions of the ergodic measures on the space of infinite complex
Hermitian matrices with respect to the action of U∞(C). The same method was
used in [Ra08] to obtain approximations of the Olshanski spherical functions of
(U∞(C)× U∞(C)) ⋉M∞(C) by spherical functions of (Un(C) × Un(C)) ⋉Mn(C).
In [Bo07], the limit results of [OV96] were extended, by somewhat different meth-
ods, to F = R and H. In the context of β-ensembles from random matrix theory,
Assiotis and Najnudel [AN21] extended the approximation results of [OV96] for
the group cases of type A to Bessel functions of type A with arbitrary positive
multiplicity parameter k = β/2. Their approach is probabilistic and again different
from that of [OV96], and it provides a larger, complex domain of convergence in
the approximation.

For Bessel functions of type A, we mainly recover the results of Assiotis and
Najnudel [AN21]. However, we follow the method of [OV96] and obtain very natural
direct proofs based on the expansion of the Dunkl-type Bessel functions in terms
of Jack polynomials. These results, in the spirit of the work of Okounkov and
Olshanski [OO98], are contained in Theorem 3.6, the main result of Section 3.

To become precise, we consider the Bessel functions JAn−1
(iλ(n), (z, 0, . . . , 0))

with fixed multiplicity k > 0 and z ∈ Cr for sequences of spectral parameters λ(n) ∈
Rn as n → ∞. Following [OO98, Fa08, AN21], we characterize those sequences
(λ(n))n∈N for which the associated sequence of Bessel functions converges, in terms
of specific real parameters α = (αi)i∈N, β, γ with γ ≥ 0. These parameters describe
the growth of (λ(n)) (a so-called Vershik-Kerov-sequence) as n → ∞. We obtain
that

lim
n→∞

JAn−1
(iλ(n), z) =

∞∏

j=1

eiβzj−
γ
2k

z2
j

∞∏

l=1

e−iαlzj

(
1− iαlzj

k

)k , (1.1)

where for each r ∈ N, the convergence is locally uniform in the complex domain
{
z ∈ C

r : ‖Im z‖∞ <
k

r|α1|
}
.
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This coincides with the result of [AN21]. Our proof becomes even simpler if all
entries of λ(n) are non-negative, which is described in Remark 3.14. Moreover,
in Proposition 3.16 we uniquely characterize the set of possible limit functions
in (1.1). In the group cases k = d

2 , the limit functions are products of Polya
functions (in the sense of [Fa08]) and determine the positive-definite Olshanski
spherical functions of the pairs (U∞(F)⋉Herm∞(F), U∞(F)), c.f. [Pi91]. They are
approximated, uniformly on compact sets, by sphercial functions of the associated
finite-dimensional Gelfand pairs.

Our approach for Bessel functions of type A extends to the type B case in
a natural way, where the Bessel functions also have an explicit Jack polynomial
expansion. In this case, matters are even a bit easier, because one may restrict
to non-negative Vershik-Kerov sequences, contained in Weyl chambers of type B.
This is done in Section 4. To become precise again, we consider Bessel functions
JBn

(κn, iλ(n), (z, 0, . . . , 0)) for n→ ∞, where λ(n) ∈ Rn and the multiplicity is of
the form κn = (k′n, k) with kn ≥ 0, k > 0. Here the first multiplicity parameter may
also vary with n, which is motivated by the geometric cases. Again, we characterize
the sequences of spectral parameters for which a limit exists; the condition now

being that the sequence
(λ(n)2

νn

)
n∈N

has to be Vershik-Kerov, where νn = k′n +

k(n− 1) + 1
2 . We obtain limits of the form

lim
n→∞

JBn
(κn; iλ(n), z) =

∞∏

j=1

e−
βz2j
4

∞∏

l=1

e
αlz

2
j

4

(
1 +

αlz2
j

4k

)k ,

with specific non-negative parameters α = (αl)l∈N and β satisfying
∑∞

l=1 αl ≤ β.
The convergence is uniform on compact subsets of the complex domain

{
z ∈ C

(∞) : ‖Im z‖∞ < 2

√
k

α1

}
.

This is contained in Theorem 4.1, the main result of Section 4. The possible range of
parameters α, β is determined in Proposition 4.5. It finally turns out that for k = d

2
with d = 1, 2, 4, the above limits can be precisely identified with the positive definite
Olshanski spherical functions of spherical pairs (G∞,K∞), which are obtained as
inductive limits of the motion groups (Up(F)×Uq(F))⋉Mp,q(F) as both dimension
parameters p, q (with p ≥ q) tend to infinity. Moreover, these Olshanski spherical
functions are explicitly approximated by spherical functions of the corresponding
finite dimensional spaces. Our parametrization of the Olshanski sphercial functions
slightly differs from that of [Pi91, Ra08] (but is equivalent).

We finally mention that certain limits of type B Bessel functions and methods
from Dunkl theory also play a role in [Xu23], where the distribution of the singular
values of sums of rectangular matrices is studied for low and high temperatures,
i.e. in the limits k → 0 and k → ∞.
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2. Bessel functions of type A and type B

In this section, we recall some basic facts about Bessel functions in Dunkl theory.
We shall not go into details, but refer the reader to [DX14, Ro03] for some general
background on Dunkl theory, and to [Op93, dJ06, RV08] for Dunkl-type Bessel
functions and their relevance in the symmetric space context. For a reduced (but
not necessarily essential) root system R ⊂ Rn we fix a non-negative multiplicity
function k : R 7→ [0,∞), i.e. k is invariant under the associated Weyl group W. Let
E = ER(k; . , . ) : C

n ×Cn → C denote the associated Dunkl kernel, where E(λ, . )
is characterized as the unique analytic solution of the joint eigenvalue problem for
the associated rational Dunkl operators with spectral variable λ ∈ C

n, normalized
according to E(λ, 0) = 1. The kernel E is holomorphic on Cn ×Cn and symmetric
in its arguments. For each λ ∈ Rn, there exists a compactly supported probability
measure µλ on Rn such that

E(iλ, z) =

∫

Rn

ei〈ξ,z〉dµλ(ξ) for all z ∈ C
n, (2.1)

where 〈w, z〉 = ∑n
j=1 wjzj . Let us emphasize that the existence of such an integral

representation hinges on the non-negativity of k. If k = 0, then E(iλ, z) = ei〈λ,z〉.
The Bessel function associated with R and k is defined by

J(λ, z) =
1

|W |
∑

w∈W

E(λ,wz).

It is W -invariant in both arguments. Note that in view of (2.1),

|J(iλ, z)| ≤ J(λ,−Im z) for λ ∈ R
n. (2.2)

We shall be concerned with the root systems An−1 = {±(ei − ej) : 1 ≤ i < j ≤
n} ⊂ Rn and Bn = {±ei,±(ei ± ej) : 1 ≤ i < j ≤ n} ⊂ Rn, where (ei) denotes
the standard basis of Rn. In both cases, the Bessel functions can be written as
hypergeometric series in terms of Jack polynomials. For An−1, the multiplicity
function is given by a single parameter k ∈ [0,∞). We write Λ+

n for the set of

partitions κ = (κ1, κ2, . . . ) of length l(κ) ≤ n and denote by C
(n)
κ , κ ∈ Λ+

n the
(symmetric) Jack polynomials in n variables of index α = 1

k ∈ [0,∞], normalized
such that ∑

|κ|=m

C(n)
κ (z) = (z1 + . . .+ zn)

m, m ∈ N0.

The Jack polynomials are stable with respect to the number of variables, i.e. for
κ ∈ Λ+

r with r < n we have

C(r)
κ (z1, . . . , zr) =

{
C

(n)
κ′ (z1, . . . , zr, 0n−r) if κ′ = (κ, 0, ...)

0 otherwise;
(2.3)

with the notation aj := (a, . . . , a) ∈ Cj for a ∈ C. See [St89, Prop. 2.5] together

with [Ka93, formula(16)]. Therefore the Jack polynomials C
(n)
κ uniquely extend to

continuous functions Cκ on C(∞) =
⋃∞

n=1 C
n, equipped with the inductive limit

topology. We shall often consider elements from C(∞) as sequences x = (xn)n∈N in
C with xn 6= 0 for at most finitely many n; for R(∞) accordingly.
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By [BF98], the Bessel function of type An−1 with multiplicity k is given by the
Jack hypergeometric series

JAn−1
(λ, z) = 0F0(λ, z) =

∑

κ∈Λ+
n

Cκ(λ)Cκ(z)

|κ|!Cκ(1n)
(2.4)

with the Jack polynomials of index α = 1/k as above.
Bessel functions of type An−1 occur as the (zonal) spherical functions of the

Gelfand pair (Gn,Kn) := (Un(F) ⋉ Hermn(F), Un(F)), where the unitary group
Un(F) over F = R,C,H acts by conjugation on the space Hermn(F) of Hermitian
matrices over F. Recall that the spherical functions of a Gelfand pair (G,K) can be
characterized as the continuous,K-biinvariant, non-zero functions ϕ on G satisfying
the product formula

ϕ(g)ϕ(h) =

∫

K

ϕ(gkh)dk (g, h ∈ G).

The following characterization is possibly folklore, but not well documented in the
literature. For the reader’s convenience, we therefore provide a proof.

Lemma 2.1. The spherical functions of (Gn,Kn), considered as Un(F)-invariant
functions on Hermn(F), are given by the Bessel functions

ϕλ(X) = JAn−1

(
d
2 ; iλ, σ(X)

)
, λ ∈ C

n

where d = dimRF and σ(X) ∈ Rn denotes the eigenvalues of X ∈ Hermn(F),
decreasingly ordered by size and counted according to their multiplicity. Moreover,
ϕλ = ϕµ iff there exists some w ∈ Sn with µ = w.λ, and ϕλ is positive definite iff
λ ∈ Rn.

Proof. Consider the Gelfand pair (G̃n, K̃n) = (SUn(F)⋉SHermn(F), SUn(F)). Note

that G̃n is the Cartan motion group of SLn(F), which is connected and semisimple.

Thus by [dJ06, Sect.6] (c.f. also [RV08, Sect.3]), the spherical functions of (G̃n, K̃n)
are given, as functions on SHermn(F), by

ϕ̃λ(X) = JAn−1

(
d
2 ; iλ, σ(X)

)
, λ ∈ C

n
0 := {z ∈ C

n : z1 + . . .+ zn = 0}.
Consider the mapping π : Cn → Cn

0 , z 7→ z− 1
n 〈z, 1n〉1n, where again the standard

inner product 〈 . , . 〉 on Rn is extended to Cn×Cn in a bilinear way. The restriction
of π to Rn is the orthogonal projection onto Rn

0 = Rn ∩ Cn
0 . Then for z, w ∈ Cn

and arbitrary multiplicity k ≥ 0,

JAn−1
(k; z, w) = e〈z,1n〉〈w,1n〉/n · JAn−1

(k;π(z), π(w)). (2.5)

This follows e.g. from [BF98, Propos. 3.19]. Now suppose ψ is a spherical function
of (Gn,Kn), considered as an Sn-invariant function on Rn. Then

ψ(x)ψ(y) =

∫

Kn

ψ(x+ kyk−1)dnk,

where x, y ∈ Rn are identified with the corresponding n × n-diagonal matrices. It
follows that

ψ(x) = ψ(x− π(x) + π(x)) = ψ(x− π(x)) · ψ(π(x)) = eα〈x,1n〉 · ψ(π(x)),
where α ∈ C is a constant and the restriction of ψ to Rn

0 is spherical for (G̃n, K̃n).

Conversely, it is easily checked that each spherical function of (G̃n, K̃n) extends
to a spherical function of (Gn,Kn) in this way. The assertion now follows from
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(2.5). The assertion concerning the positive-definite spherical functions follows
from [Wo06, Theorem 5.4]. �

For the root system R = Bn, we denote the multiplicity (by slight abuse of
notation) as (k′, k), where k is the value on the roots ±(ei± ej) and k

′ is the value
on ±ei. Put νn := k′ + k(n − 1) + 1

2 . Then the Bessel function of type Bn with
multiplicity (k′, k) can be written as

JBn
(λ, z) = 0F1

(
νn;

λ2

2 ,
z2

2

)
=

∑

κ∈Λ+
n

1

4|κ|[νn]κ

Cκ(λ
2)Cκ(z

2)

|κ|!Cκ(1n)
(2.6)

with the hypergeometric series

0F1

(
ν;λ, z

)
=

∑

κ∈Λ+
n

1

[ν]κ

Cκ(λ)Cκ(z)

|κ|!Cκ(1n)
.

Here the squares in the arguments are understood componentwise and again, the
Jack polynomials are those of index α = 1/k. It is easily seen that both 0F0 and

0F1 converge locally uniformly on C
n × C

n; c.f. [BR23] for precise convergence
properties of Jack hypergeometric series.

Bessel functions of type B occur as the spherical functions of the Gelfand pairs
(G,K) with

G = (Up(F)× Uq(F))⋉Mp,q(F), K = Up(F)× Uq(F), p ≥ q,

where Mp,q(F) is the space of p × q matrices over F = R,C,H and K acts on
Mp,q(F) via (U, V ).X = UXV −1. The group G is the Cartan motion group of
the non-compact Grassmann manifold U(p, q;F)/Up(F)×Uq(F) which is of rank q.
The spherical functions of (G,K) may be considered as K-invariant functions on
Mp,q(F) and thus depend only on the singular values of their argument. Again as
a consequence of [dJ06], they are given by the Bessel functions

ϕλ(X) = JBq
(κ, iλ, σsing(X)), λ ∈ C

q,

where κ = (k′, k) =
(
d
2 (p− q + 1)− 1

2 ,
d
2

)
and σsing(X) = σ(

√
X∗X) ∈ Rq denotes

the set of singular values of X ∈ Mp,q(F), ordered by size. We may therefore also
consider the ϕλ as functions on the closed Weyl chamber

Cq = {x = (x1, . . . , xq) ∈ R
q : x1 ≥ . . . ≥ xq ≥ 0}, (2.7)

i.e. ϕλ(x) = JBq
(κ; iλ, x), x ∈ Cq. Moreover, ϕλ = ϕµ iff there exists some

w ∈ W = Sq ⋉ Z
q
2 with µ = w.λ.

The positive-definite spherical functions are the ϕλ with Rq, which again follows
from [Wo06, Theorem 5.4].

3. The type A case

We start with some motivation from asymptotic spherical harmonic analysis,
see [Ol90, Fa08] for a general background. Suppose that (Gn,Kn), n ∈ N is an
increasing sequence of Gelfand pairs, where Gn ⊆ Gn+1, Kn ⊆ Kn+1 are closed
subgroups satisfying Kn = Gn∩Kn+1. Then the pair (G∞,K∞) with the inductive
limit groups G∞ := limn→Gn, K∞ := limn→Kn is called an Olshanski spherical



LIMITS OF BESSEL FUNCTIONS AS THE RANK TENDS TO INFINITY 7

pair. The spherical functions of (G∞,K∞) are defined as the continuous, non-zero
and K∞-biinvariant functions ϕ : G∞ → C satisfying

ϕ(g)ϕ(h) = lim
n→∞

∫

Kn

ϕ(gkh)dnk (g, h ∈ G∞),

where dnk is the normalized Haar measure onKn. We remark that this definition is
according to [Fa08], whereas in [Ol90] spherical functions are in addition required
to be positive definite. Consider now the sequence of Gelfand pairs (Gn,Kn) =
(Un(F) ⋉ Hermn(F), Un(F)) as above. We regard Gn and Kn as closed subgroups
of Gn+1 and Kn+1 in the usual way. Then (G∞,K∞) with the inductive limits

K∞ := lim
→
Kn = U∞(F), G∞ := lim

→
Gn = U∞(F)⋉Herm∞(F) (3.1)

is an Olshanski spherical pair. The positive definite spherical functions of (G∞,K∞)
were completely determined by Pickrell [Pi91, Sect.5], see also [OV96] for F = C,
and [Fa08, Section 3]. As functions on Herm∞(F), they are given by

ϕ(X) =

∞∏

j=1

eiβxj−
γ
d
x2
j

∞∏

l=1

e−iαlxj

(1− i 2dαlxj)d/2
,

where β, γ ∈ R, γ ≥ 0, αl ∈ R with
∑∞

l=1 α
2
l < ∞, and (x1, x2, . . . ) ∈ R

(∞) are
the eigenvalues of X, ordered by size and counted according to their multiplicity.
The product is invariant under rearrangements of the αl. For F = C it is also
noted in [OV96] that the set of positive definite spherical functions is bijectively
parametrized by the set

{(α, β, γ) : β ∈ R, γ ≥ 0, α = {α1, α2, . . .} a multiset with αl ∈ R and
∑

l

α2
l <∞}.

In [OV96], explicit approximations of the positive definite spherical functions by
positive definite spherical functions of the pairs (Gn,Kn) with n → ∞ by use of
spherical expansions were obtained in the case F = C. In [Bo07], this was generalized
by different methods to F = R,H.

In the present paper, we shall extend the approach of [OV96] to obtain limits
for Bessel functions of type An−1 with an arbitrary multiplicity parameter k > 0.

Let us first turn to the spectral parameters to be considered for n→ ∞. Instead
of working with multisets, it will be convenient for us to work with sequences
(or finite tuples) with a prescribed order of their components. We introduce the
following order on R:

x≪ y iff either |x| < |y| or |x| = |y| and x ≤ y.

For instance, the sequence (3,−3, 2, 1,−1,−1, 0, 0, . . .) is decreasing w.r.t. ≪ .

Definition 3.1. Consider λ(n) ∈ R
n such that its entries are decreasing with

respect to ≪. We regard (λ(n))n∈N as a sequence in R(∞) =
⋃∞

n=1 R
n and call it a

Vershik-Kerov sequence (VK sequence for short), if the following limits exist:

αi := lim
n→∞

λ(n)i
n

(i ∈ N),

β := lim
n→∞

p1(λ(n))

n
,

δ := lim
n→∞

p2(λ(n))

n2
,
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where

pm(x) =

∞∑

i=1

xmi for m ∈ N, p0 ≡ 1

are the power sum symmetric functions on R(∞). They generate the algebra of
symmetric functions on R(∞), i.e. the symmetric polynomial functions in arbitrary
many variables.

Remark 3.2. Our definition of a VK sequence is equivalent to the Olshanski-Vershik
conditions of [AN21, Def 2.2], which are slightly weaker than the conditions of
[OO98].

Lemma 3.3. (i) If (λ(n))n∈N is a Vershik-Kerov sequence with associated pa-
rameters (αi), β, δ as above, then

γ := δ −
∞∑

i=1

α2
i ≥ 0.

In particular, the sequence α = (αi)i∈N is square-summable.

(ii) If in addition λ(n)i ≥ 0 for all i, n ∈ N, then γ = 0.

Definition 3.4. Suppose that (λ(n))n∈N is a VK sequence. Then the triple ω =
(α, β, γ) with α = (αi)i∈N are called the VK parameters of the sequence (λ(n))n∈N.
Note that the entries of α are also ordered w.r.t. ≪ .

Proof of Lemma 3.3. For fixed N ∈ N and all n ≥ N one has

N∑

i=1

α2
i ≤

N∑

i=1

(
α2
i −

λ(n)2i
n2

)
+

n∑

i=1

λ(n)2i
n2

.

By definition of (αi) and δ, the right-hand side tends to δ as n → ∞. This proves
part (i).

(ii) By the ordering of the entries of λ(n), we obtain for N ∈ N and n ≥ N that

p2(λ(n))

n2
=

N−1∑

i=1

(
λ(n)i
n

)2

+

n∑

i=N

(
λ(n)i
n

)2

≤
N−1∑

i=1

(
λ(n)i
n

)2

+
λ(n)N
n

n∑

i=1

λ(n)i
n

.

Taking the limit n→ ∞ on both sides, we obtain that

δ ≤
N−1∑

i=1

α2
i + αNβ.

As limN→∞ αN = 0, this implies that δ ≤ ∑∞
i=1 α

2
i and therefore γ = 0. �

We shall throughout fix a strictly positive multiplicity k > 0 on An−1 and sup-
press it in our notation.

For sequences (λ(n))n∈N of spectral parameters λ(n) ∈ Rn with growing di-
mension n, we are interested in the convergence behaviour of the Bessel functions
JAn−1

(iλ(n), . ) as n → ∞. For this, we consider JAn−1
(λ, . ) as a function on Cr

for all r ≤ n by

JAN−1
(λ, z) := JAn−1

(
λ, (z, 0n−r)

)
, z ∈ C

r . (3.2)
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For later use, we record the following representation.

Proposition 3.5. For λ ∈ Cn and z ∈ Cr with r ≤ n,

JAn−1
(λ, z) =

∑

κ∈Λ+
r

Cκ(λ)[kr]κ
[kn]κ|κ|!

Pκ(z),

with the renormalized Jack polynomials

Pκ(z) =
Cκ(z)

Cκ(1r)

and the generalized Pochhammer symbol

[µ]κ =

l(κ)∏

j=1

(µ− k(j − 1))κj
(µ ∈ C).

Proof. Consider formula (2.4). From [Ka93, formula (17)] it is known that for all
κ ∈ Λ+

r ,
Cκ(1r)

Cκ(1n)
=

[kr]κ
[kn]κ

.

Together with the stability property (2.3), the assertion follows. �

We shall prove the following theorem:

Theorem 3.6. Let (λ(n))n∈N be a sequence of spectral parameters λ(n) ∈ Rn such
that each λ(n) is decreasing with respect to ≪ . Then for fixed multiplicity k > 0,
the following statements are equivalent.

(1) (λ(n))n∈N is a Vershik-Kerov sequence.

(2) The sequence of Bessel functions
(
JAn−1

(iλ(n), . )
)
n∈N

converges uniformly

on compact subsets of R(∞), i.e. the convergence is locally uniform on each
of the spaces Rr, r ∈ N.

(3) The sequence of Bessel functions
(
JAn−1

(iλ(n), . )
)
n∈N

converges pointwise
on R to a function which is continuous at 0.

(4) For each fixed multi-index of length r, the corresponding coefficients in the
Taylor of expansion of JAn−1

(iλ(n), . ) around 0 ∈ Rr converge as n→ ∞.

(5) For all symmetric functions f : R(∞) → C, the limit

lim
n→∞

f(λ(n))

ndegf

exists.

Moreover, suppose in this case that (α, β, γ) are the VK parameters of the VK
sequence (λ(n))n∈N. Then

lim
n→∞

JAn−1
(iλ(n), z) =

∞∏

j=1

eiβzj−
γ
2k

z2
j

∞∏

l=1

e−iαlzj

(
1− iαlzj

k

)k , (3.3)

where for each r ∈ N, the convergence is locally uniform in the domain

Sα
r,k :=

{
z ∈ C

r : ‖Im z‖∞ <
k

r|α1|
}
, (3.4)

with the notation ‖z‖∞ = max1≤j≤n|zj | for z ∈ C
r.
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Remarks 3.7. (1) In the geometric case k = 1 (i.e. for Hermitian matrices over
C) and for real arguments z, this result essentially goes back to [OV96],
while in [Bo07], where also F = R and H are considered, only the limit (3.3)
is established, by completely different methods and under the additional
condition γ = 0.

(2) We shall prove Theorem 3.6 by methods which are inspired by those of
[OV96, OO98] and [Fa08, Chapter 3]. They are based on the expansion of
the Dunkl-type Bessel functions in terms of Jack polynomials. The equiv-
alence of parts (1), (2) and (3) of Theorem 3.6 as well as the convergence
statement on Sα

r,k were already proven in [AN21] by a different, probabilistic
approach. We feel that our method is very natural, which is also suggested
by [AN21, Remark 1.15].

The proof of Theorem 3.6 will be carried out in several steps. We start with the
following observation, which is already noted in [AN21, Prop. 2.3]. For the sake of
completeness, we include a short proof which slightly differs from that of [AN21].

Theorem 3.8. Assume that (λ(n))n∈N is a VK sequence with parameters ω =
(α, β, γ). Then

lim
n→∞

pm(λ(n))

nm
= p̃m(ω) :=





1, m = 0,

β, m = 1,

δ = γ +
∑∞

i=1 α
2
i , m = 2,∑∞

i=1 α
m
i , m ≥ 3,

where the series in the last case is absolutely convergent. In particular, for each
symmetric function f on R

(∞), the limit

f̃(ω) := lim
n→∞

f(λ(n))

ndegf

exists.

Proof. We only have to consider the case m ≥ 3. In view of the ordering of λ(n)
we have for arbitrary N ∈ N that

∞∑

i=N

∣∣∣λ(n)i
n

∣∣∣
m

≤
∣∣∣λ(n)N

n

∣∣∣
m−2

· p2(λ(n))
n2

. (3.5)

The expression on the right side converges to αm−2
N δ as n → ∞. As α is square-

summable by Lemma 3.3, this implies that for each ǫ > 0, there exists an index
N ∈ N such that for all n ∈ N,

∞∑

i=N

|αi|m +

∞∑

i=N

∣∣∣λ(n)i
n

∣∣∣
m

< ǫ. (3.6)

Estimate (3.6) further leads to

∣∣∣pm(λ(n))

nm
− pm(α)

∣∣∣ ≤
∞∑

i=N

|αi|m +

∞∑

i=N

∣∣∣λ(n)i
n

∣∣∣
m

+

N−1∑

i=1

∣∣∣λ(n)
m
i

nm
− αm

i

∣∣∣

≤ ǫ+
N−1∑

i=1

∣∣∣λ(n)
m
i

nm
− αm

i

∣∣∣.
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By the definition of a VK sequence, the last sum tends to zero as n→ ∞. As ǫ > 0
was arbitrary, this finishes the proof. �

We next consider for λ ∈ C(∞) the complex function

Φ(λ; z) :=

∞∏

j=1

1

(1− λjz)k
,

where ζ 7→ ζk denotes the principal holomorphic branch of the power function
on C\] − ∞, 0]. For fixed λ, the product is finite and Φ(λ; . ) is holomorphic in a
neighborhood of 0 in C. According to formula (2.9) of [OO98],

Φ(λ; z) =

∞∑

j=0

gj(λ)z
j

with

gj(λ) =
∑

i1≤...≤ij

(k)m1
(k)m2

· · ·
m1!m2! · · ·

· λi1 · · ·λij , (3.7)

where ml := #{r ∈ N : ir = l} denotes the multiplicity of the number l in the
tuple (i1, . . . , ij) and (k)m = k(k + 1) · · · (k +m− 1) is the Pochhammer symbol.

Moreover, from [OO98, formula (2.8)] and the connection between the C- and
P -normalizations of the Jack polynomials according to formula (12.135) of [Fo10],
one calculates that

gj(λ) =
(k)j
j!

· C(j)(λ). (3.8)

(For partitions κ = (j) with just one part, the Jack polynomials C(j) and P(j)

coincide).

Lemma 3.9. Suppose ω = (α, β, γ) are the VK parameters of a Vershik-Kerov
sequence. Then the following hold.

(1) The infinite product

Ψ(ω; z) := ekβz+
kγ
2
z2

∞∏

l=1

e−kαlz

(1 − αlz)k

is holomorphic in S := C \
( ]

−∞,− 1
|α1|

]
∪
[

1
|α1|

,∞
[ )
. If αl ≥ 0 for all

l ∈ N, then Ψ(ω; . ) is holomorphic in S̃ := C \
[

1
α1
,∞

[
.

(2) ω is uniquely determined by Ψ(ω; . ).

Proof. (1) Power series expansion around z = 0 shows that for |αlz| ≤ δ < 1,

∣∣∣1− e−kαlz

(1− αlz)k

∣∣∣ ≤ Cδ|αlz|2

with some constant Cδ > 0. Recall that α is decreasing w.r.t. ≪ and square-
summable. Hence for fixed n ∈ N, the product

∞∏

l=n

e−kαlz

(1− αlz)k
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defines a holomorphic function in the open disc
{
z ∈ C : |z| < 1/|αn| ∈ [0,∞]

}
.

Moreover,
n−1∏

l=1

e−kαlz

(1 − αlz)k

is holomorphic in S and even in S̃ if αl ≥ 0 for all l. As liml→∞ αl = 0, it follows

that ψ(ω; . ) is holomorphic in S or even in S̃. Unless α is identical zero (which is
equivalent to α1 = 0), Ψ(ω; . ) has a singularity in z = 1

α1
.

(2) If ψ(ω; .) is entire, then α1 = 0. Otherwise limz→1/α1
|Ψ(ω; z)| = ∞. Thus

α1 is uniquely determined by Ψ(ω; . ). Multiplying successively by (1− α1z)
k, . . . ,

we further obtain that α2, α3, . . . are uniquely determined by Ψ(ω; . ) as well. It is
then obvious that also β and γ are uniquely determined by Ψ(ω; . ). �

Proposition 3.10. (1) For λ ∈ C(∞) and z ∈ C with |z| < 1/maxj∈N |λj |,

Φ(λ; z) = exp
(
k

∞∑

m=1

pm(λ)
zm

m

)
. (3.9)

(2) Moreover, if (λ(n))n∈N is a VK sequence with parameters ω = (α, β, γ), then

lim
n→∞

Φ
(λ(n)

n
; z
)
= Ψ(ω; z),

where the convergence is locally uniform in {z ∈ C : |z| < 1/|α1|}.
Proof. (1) The left hand side of (3.9) is holomorphic on the domain {z ∈ C :
|z| < 1/maxj |λj |}. As |pm(λ)| ≤ rmaxj |λj |m for λ ∈ C

r, the right hand side is
holomorphic on the same domain. Since both sides of (3.9) have value 1 in z = 0,
it suffices to verify that they have the same logarithmic derivative. Let log be the
principle holomorphic branch of the logarithm in C\] − ∞, 0]. Then for |z| small
enough,

d

dz
logΦ(λ; z) =

∞∑

j=0

kλj
1− λjz

= k

∞∑

m=0

pm+1(λ)z
m .

This is exactly the logarithmic derivative of the right-hand side in (3.9).

(2) For the second assertion, recall from (3.5) that for m ≥ 2 we may estimate
∣∣∣pm

(λ(n)
n

)∣∣∣ ≤
∣∣∣λ(n)1

n

∣∣∣
m−2

· p2(λ(n))
n2

.

Since the right-hand side converges to |α1|m−2δ as n → ∞, the sequence on the
left-hand side is uniformly bounded in n.Moreover, for each ǫ > 0 there exists some
index Nǫ such that

∣∣∣pm
(λ(n)

n

)∣∣∣ ≤ (|α1|+ ǫ)m−2 · 2δ for all n ≥ Nǫ .

Hence for n ≥ Nǫ, the series

hn(z) =
∞∑

m=1

pm

(λ(n)
n

)zm
m

converges for |z| < (|α1| + ǫ)−1, and the dominated convergence theorem shows
that

lim
n→∞

hn(z) =

∞∑

m=1

p̃m(ω)
zm

m
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locally uniformly in {|z| < (|α1|+ ǫ)−1}. Thus

lim
n→∞

Φ
(λ(n)

n
; z
)

= exp
(
k

∞∑

m=1

p̃m(ω)
zm

m

)
(3.10)

locally uniformly in the disc {z ∈ C : |z| < 1/|α1|}. Now consider Ψ(ω; . ), which is
holomorphic in this disc. Taking the logarithmic derivative as in the proof of [Fa08,
Prop. 3.12] and recalling Theorem 3.8, we obtain

d

dz
logΨ(ω; z) = k

[
β + γz −

∞∑

l=1

(
αl −

αl

1− αlz

)]
= k

∞∑

m=0

p̃m+1(ω)z
m.

The right-hand side in equation (3.10) has the same logarithmic derivative. Since

Φ
(λ(n)

n ; 0
)
= 1 = Ψ(ω; 0), this proves the stated limit. �

We now consider the asymptotic behaviour of the Bessel functions JAn−1
as

n→ ∞. For z ∈ C(∞), we put

Ψ̂(ω; z) :=
∞∏

j=1

Ψ(ω; zj),

which is actually a finite product.

Theorem 3.11. Assume that (λ(n))n∈N is a VK sequence with parameters ω =
(α, β, γ). For r ∈ N and k > 0 consider the domain Sα

r,k ⊂ Cr as defined in Theorem
3.6. Then the Bessel functions of type An−1 with multiplicity k satisfy

lim
n→∞

JAn−1
(iλ(n), z) = Ψ̂

(
ω;
iz

k

)
=

∞∏

j=1

eiβzj−
γ
2k

z2
j

∞∏

l=1

e−iαlxj

(
1− iαl

k zj
)k (3.11)

locally uniformly on Sα
r,k.

Remark 3.12. This theorem is already proven in [AN21, Proposition 6.7]. Our
approach via Jack polynomial expansions allows a shorter proof, which is given
below. It does in particular not require the product formula for Bessel functions
used in [AN21].

Proof. (1) As in [AN21, Prop.6.8] we first prove that the family
(
JAn−1

(iλ(n), . )
)
n∈N

is uniformly bounded on compact subsets of Sα
r,k. For this, we start with a rank-one

reduction as in [AN21]. Assume that n ≥ r and recall from representation (2.1)
that there exists a compactly supported probability measure µn on Rn such that
for all z ∈ Cr,

JAn−1
(iλ(n), z) =

∫

Rn

ei〈ξ,(z,0n−r)〉dµn(ξ)

Hence

|JAn−1
(iλ(n), z)| ≤

∫

Rn

e−
∑r

j=1
ξjIm zjdµn(ξ)

≤
r∏

j=1

(∫

Rn

e−rξj·Im zjdµn(ξ)
) 1

r

=

r∏

j=1

JAn−1
(λ(n),−rIm zj)

1
r ,

where Hölder’s inequality was used for the second inequality. In order to prove the
claimed boundedness property, it therefore suffices to show that

(
JAn−1

(λ(n), . )
)
n∈N

is locally uniformly bounded on the interval {x ∈ R : |x| < k
|α1|

}.
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For this, we employ the Jack expansion of JAn−1
. Recall that in rank one, the

Jack polynomials are the monomials P(j)(x) = xj , j ∈ N0. So from Proposition 3.5
we obtain for x ∈ R the estimate

JAn−1
(λ(n), x) =

∞∑

j=0

C(j)(λ(n))(k)j

(kn)j j!
xj ≤

∞∑

j=0

|C(j)(λ(n))|(k)j
(kn)j j!

|x|j

=

∞∑

j=0

∣∣C(j)

(λ(n)
n

)∣∣(k)j
j!

( |x|
k

)j

=

∞∑

j=0

∣∣∣gj
(λ(n)

n

)∣∣∣
( |x|
k

)j

(3.12)

with the coefficients gj from formula (3.8). Proposition 3.10 implies that for n→ ∞,

∞∑

j=0

gj

(λ(n)
n

)
zj = Φ

(λ(n)
n

; z
)

−→ Ψ(ω; z), (3.13)

where the convergence is locally uniform in {z ∈ C : |z| < 1/|α1|}. Fix ρ > 0 with
ρ < 1/|α1|. Cauchy’s inequalities for holomorphic functions and the existence of
the limit in (3.13) then imply that for sufficiently large n,

∣∣∣gj
(λ(n)

n

)∣∣∣ ≤ 1

ρj
· sup
|z|=ρ

∣∣∣Φ
(λ(n)

n
; z
)∣∣∣ ≤ C(ρ)

ρj

with a constant C(ρ) > 0 independent of n and j. Together with estimate (3.12),
this proves the assertion and finishes the first step.

(2) In a second step, we prove the stated convergence result for the sequence

ϕn(z) := JAn−1
(iλ(n), z),

which is locally uniformly bounded on Sα
r,k according to step (1). By Montel’s the-

orem we can therefore find a subsequence (ϕnj
) which converges locally uniformly

to a holomorphic function ϕ on Sα
r,k. In some neighborhood of 0 ∈ Cr, this function

has a Jack expansion

ϕ(z) =
∑

κ∈Λ+
r

aκPκ(z)

with certain coefficients ak ∈ C. By the uniform convergence of (ϕnj
), the coeffi-

cients in the Jack expansion of ϕnj
must converge (as j → ∞) to the corresponding

coefficients of ϕ. In view of Proposition 3.5, this means that

lim
j→∞

i|κ|[kr]κCκ((λ(nj)))

[knj ]κ |κ|!
= aκ.

But as [kn]κ ∼ (kn)|κ| for n→ ∞, we obtain from Theorem 3.8 that

aκ =
i|κ|[kr]κC̃κ(ω)

k|κ||κ|! .

The Cauchy identity for Jack polynomials, see for instance [St89, Prop. 2.1], states
for λ ∈ C(∞) and z ∈ Cr with |zj | small enough that

∑

κ∈Λ+
r

[kr]κ
|κ|! Cκ(λ)Pκ(z) =

∏

j,l

1

(1− λlzj)k
=

r∏

j=1

Φ(λ; zj).
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Thus by Proposition 3.10,

∑

κ∈Λ+
r

i|κ|[kr]κCκ

(λ(n)
n

)

|κ|! k|κ| Pκ(z) −→ Ψ̂
(
ω;
iz

k

)
for n→ ∞,

where the convergence is locally uniform in z in some open neighborhood of 0 ∈ Cr.

As limn→∞ Cκ

(λ(n)
n

)
= C̃κ(ω), we conclude that

ϕ(z) = Ψ̂
(
ω;
iz

k

)
for all z ∈ Sα

r,k.

Finally, using Montel’s theorem again, we obtain for the full sequence (ϕn) that

ϕn(z) −→ ϕ(z) = Ψ̂
(
ω; iz

k

)
as n → ∞, locally uniformly in z ∈ Sα

r,k. This finishes
the proof of the theorem. �

Remark 3.13. The above proof shows that for z ∈ Cr with ‖z‖∞ < 1
|α1|

,

Ψ̂(ω; z) =
∑

κ∈Λ+
r

[kr]κ
|κ|! C̃κ(ω)Pκ(z).

Remark 3.14. If the VK sequence (λ(n))n∈N is nonnegative, then the limit result
(3.11) holds uniformly on compact subsets of the domain

Sα
k :=

{
z ∈ C

(∞) : ‖Im z‖∞ <
k

|α1|
}
.

This is obtained as follows: Start from Proposition 3.5 for z ∈ C
r and note that

λ(n) ≥ 0 implies that Cκ(λ(n)) ≥ 0 for all κ ∈ Λ+
r , due to the non-negativity of

the coefficients of the Cκ in their monomial expansion, c.f. [KS97]. Further observe
that

[kn]κ ≥ (k(n− r + 1))|κ|

for κ ∈ Λ+
r . Similar to the proof of Theorem 3.11, but without rank-one reduction

we therefore obtain

∣∣JAn−1
(iλ(n), z)

∣∣ ≤
∑

κ∈Λ+
r

[kr]κ
|κ|! Cκ

( λ(n)

n− r + 1

)
·
∣∣∣Pκ

( Im z

k

)∣∣∣

≤
∑

κ∈Λ+
r

[kr]κ
|κ|! Cκ

( λ(n)

n− r + 1

)
· Pκ

( |Im z|
k

)

=

r∏

j=1

Φ
( λ̃(n)

n
;
|Im zj |
k

)
,

where λ̃(n) = n
n−r+1λ(n) and |Im z| is understood componentwise. Observe that

(λ̃(n)) is also Vershik-Kerov with the same VK parameters as (λ(n)). So for n→ ∞,

r∏

j=1

Φ
( λ̃(n)

n
;
|Im zj|
k

)
−→ Ψ̂

(
ω;

|Im z|
k

)

locally uniformly in z ∈ Sα
k ∩ Cr. This shows that the family (JAn−1

(iλ(n), . )
is uniformly bounded on compact subsets of Sα

k . Proceeding as in the proof of
Theorem 3.11 then yields the assertion.
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Let us now continue with the proof of Theorem 3.6. The implication (2) ⇒ (1)
will be established by the following

Lemma 3.15. Consider a sequence (λ(n))n∈N such that each λ(n) ∈ Rn is decreas-
ing with respect to≪ . Suppose that the sequence of Bessel functions JAn−1

(iλ(n), . )
converges pointwise on R to a function which is continuous at 0. Then (λ(n)) is a
VK sequence.

Proof. Put ϕn(x) := JAn−1
(iλ(n), x), x ∈ R and ϕ(x) := limn→∞ ϕn(x). Again in

view of (2.1), there are compactly supported probability measures µn on R such
that

ϕn(x) =

∫

R

eixξdµn(ξ) for all x ∈ R.

By Lévy’s continuity theorem, there exists a probability measure µ on R such that
µn → µ weakly and

ϕ(x) =

∫

R

eixξdµ(ξ) for all x ∈ R.

In particular, the family of measures {µn : n ∈ N} is tight. Recall the functions
gj(λ) from (3.7). By Proposition 3.5 and formula (3.8) we have

ϕn(x) =

∞∑

j=0

C(j)(λ(n)) · (k)j
(kn)j · j!

(ix)j =

∞∑

j=0

gj(λ(n))

(kn)j
(ix)j .

Hence the moments of the measures µn are given by
∫

R

ξjdµn(ξ) = j!
gj(λ(n))

(kn)j
.

We now employ Lemma 5.2 of [OO98]. From the definition of the functions gj one

can find a constant C > 0 such that g4(λ) ≤ Cg2(λ)
2 for all λ ∈ R(∞), which shows

that the quotient ∫
R
ξ4dµn(ξ)(∫

R
ξ2dµn(ξ)

)2

is bounded as a function of n ∈ N. Hence we conclude from Lemma 5.1. of [OO98]
that the sequence

(∫
R
ξ2dµn(ξ)

)
n∈N

is bounded, which in turn implies that the

sequence
( g2(λ(n))

n2

)
n∈N

is bounded. As 2g2 = k2p21 + kp2, the sequences

( |p1(λ(n))|
n

)
n∈N

and
(p2(λ(n))

n2

)
n∈N

(3.14)

are bounded as well. Standard compactness arguments and a diagonalization ar-
gument imply that (λ(n))n∈N has a subsequence which is Vershik-Kerov. Finally,
consider two such subsequences (λl(n))n∈N with VK parameters ωl, l = 1, 2. Then
by Theorem 3.11 and our assumptions,

ϕ(x) = lim
n→∞

JAn−1
(iλl(n), x) = Ψ

(
ωl;

ix

k

)
for all x ∈ R.

Hence Ψ(ω1; . ) = Ψ(ω2; . ), and Proposition 3.9 implies that ω1 = ω2. It follows
that the full sequence (λ(n))n∈N is Vershik-Kerov. �

Putting things together, we are now able to finalize the proof of Theorem 3.6.
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Proof of Theorem 3.6. The implication (1) ⇒ (2) is contained in Theorem 3.11.
Implication (2) ⇒ (3) is trivial, while (3) ⇒ (1) is just Lemma 3.15. Further, The-
orem 3.8 proves the implication (1) ⇒ (5). The equivalence of statements (4) and
(5) is obvious from Proposition 3.5, because the Jack polynomials span the algebra
of symmetric functions. It thus remains to prove the implication (5) ⇒ (1). For this,
suppose that (λ(n))n∈N is a sequence with each λ(n) ∈ Rn decreasing w.r.t ≪, and

such that limn→∞
f(λ(n))
ndegf exists for all symmetric functions f. Then in particular,

the sequences
(p1(λ(n))

n

)
and

(p2(λ(n))
n2

)
are bounded. Again by a compactness argu-

ment, (λ(n)) has a subsequence which is Vershik-Kerov. Suppose (λl(n)), l = 1, 2
are two such subsequences with VK parameters ωl . Then by Theorem 3.11, the
sequences

(
JAn−1

(iλ1(n), . )
)
and

(
JAn−1

(iλ2(n), . )
)
converge locally uniformly on

Rr to the same limit, because for each κ ∈ Λ+
r , the limit

lim
n→∞

Cκ(λl(n))

n|κ|
= lim

n→∞

Cκ(λ(n))

n|κ|

is independent of l. Arguing further as in the proof of Lemma 3.15, we obtain that
ω1 = ω2 and that (λ(n)) is a VK sequence.This finishes the proof of the theorem. �

We shall now parametrize the possible limit functions in Theorem 3.11. We put

Ω :=
{
(α, β, γ) : β ∈ R, γ ≥ 0, α = (αi)i∈N with αi ∈ R, αi+1 ≪ αi ,

∞∑

i=1

α2
i <∞

}
.

Note that for (α, β, γ) ∈ Ω, either all entries of α are non-zero, or all entries up to
finitely many are zero.

Proposition 3.16. For any element ω = (α, β, γ) ∈ Ω there exists a VK sequence
(λ(n)) with V K parameters ω.

Proof. We divide the proof into several steps.

(i) Assume that α = 0. Then for arbitrary ǫ > 0, there exists a sequence x = (xi)i∈N

in R such that

|xi| ≤ ǫ for all i ∈ N,

∞∑

i=1

xi = β and

∞∑

i=1

x2i = γ. (3.15)

To see this, choose N ∈ N such that
(

6γ
π2N

)1/2 ≤ ǫ and start with the alternating
sequence

x′i :=
( 6γ

π2N

)1/2 · (−1)i

k + 1
if k <

i

N
≤ k + 1, k ∈ N0.

It satisfies the first and the third condition of (3.15), and by the Riemann re-
arrangement theorem, there exists a rearrangement (xi)i∈N of (x′i)i∈N satisfying
the second condition as well. For each m ∈ N we can therefore find a real sequence

x(m) = (x
(m)
i ) and and index nm ∈ N with nm → ∞ for m → ∞, such that for all

n ≥ nm ,

∣∣x(m)
i

∣∣ ≤ 1

m
for all i ∈ N, |

n∑

i=1

x
(m)
i − β| ≤ 1

m
, |

n∑

i=1

(
x
(m)
i

)2 − γ| ≤ 1

m
.

We may also assume that nm+1 > nm for all m. Rearranging the entries of each

tuple (x
(m)
1 , . . . , x

(m)
nm ) according to ≪, we thus obtain a sequence (λ(nm)′)m∈N
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where each λ(nm)′ ∈ Rnm is decreasing w.r.t. ≪ and satisfies

lim
m→∞

λ(nm)′i = 0 for all i ∈ N,

lim
m→∞

nm∑

i=1

λ(nm)′i = β,

lim
m→∞

nm∑

i=1

(
λ(nm)′i

)2
= γ.

Finally, put λ(nm) := nmλ(nm)′ and λ(n) := (nλ(nm)′, 0, . . . , 0) ∈ Rn for nm <
n < nm+1. Then (λ(n))n≥n1

is a VK sequence with parameters (α = 0, β, γ).

(ii) Assume that α has finitely many non-zero entries and let m ∈ N be maximal
such that αm 6= 0. Let (λ(n)′)n∈N be a VK sequence with parameters (0, β′, γ),
where β′ = β −

∑m
i=1 αi. For n > m, put

λ(n) := (nα1, . . . , nαm, λ(n)
′
1, . . . , λ(n)

′
n−m).

For n large enough, say n ≥ n0, the entries of λ(n) are decreasing with respect to

≪ , because limn→∞
λ(n)′i
n = 0. Then (λ(n))n≥n0

is Vershik-Kerov with parameters
(α, β, γ).

(iii) Assume that all entries of α are non-zero. For m ∈ N, put ω(m) := (α(m), β, γ),
where α(m) = (α1, . . . , αm, 0, . . . ). According to part (ii), there exists a VK sequence
(λ(m)(n))n∈N with VK parameters ω(m). By a diagonalization argument we obtain
a sequence λ(nm) := λ(m)(nm) with nm+1 > nm satisfying

lim
m→∞

λ(nm)i = αi for all i ∈ N,

lim
m→∞

nm∑

i=1

λ(nm)i = β,

lim
m→∞

nm∑

i=1

(
λ(nm)i

)2
= δ = γ +

∞∑

i=1

α2
i .

Finally, for n ∈ N with nm ≤ n < nm+1 put λ(n) :=
(

n
nm
λ(nm), 0, . . . , 0

)
∈ Rn.

Then (λ(n))n≥n1
is Vershik-Kerov with VK parameters (α, β, γ). �

Together with Lemma 3.9, this result shows that the possible limits (for n→ ∞)
of the Bessel functions JAn−1

(iλ(n), x) with x ∈ Rr and λ(n) ∈ Rn are exactly all

the infinite products Ψ̂
(
ω; ixk

)
, of Theorem 3.11, which are in bijective correspon-

dence with the parameters ω ∈ Ω.
Let us finally come back to the Olshanski spherical pair (G∞,K∞) as in (3.1).

From our results, we obtain the following corollary. Its first part goes back to
Pickrell [Pi91], as already mentioned.

Corollary 3.17. (1) The set of positive definite spherical functions of the Ol-
shanski spherical pair (G∞,K∞) = (U∞(F) ⋉ Herm∞(F), U∞(F)), consid-
ered as U∞(F)-invariant functions on Herm∞(F), is parametrized by the
set Ω via

ϕω(X) =

∞∏

j=1

eiβxj−
γ
d
x2
j

∞∏

l=1

e−iαlxj

(1− i 2dαlxj)d/2
, ω = (α, β, γ) ∈ Ω,
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where (x1, x2, . . .) ∈ R(∞) are the eigenvalues of X ∈ Herm∞(F), decreas-
ingly ordered by size and counted according to their multiplicity.

(2) Consider a sequence of positive definite spherical functions

ϕn(X) = JAn−1

(d
2
; iλ(n), σ(X)

)
, λ(n) ∈ R

n (3.16)

of the Gelfand pairs (Gn,Kn) = (Un(F) × Hermn(F), Un(F)). Then (ϕn)
converges uniformly on compact subsets of Herm∞(F) if and only if (λ(n))
is, up to permutation of the entries, a Vershik-Kerov sequence. In the case
of convergence, the limit is given by ϕω, with ω the VK parameters of (λ(n)).

Proof. (1) For a topological group H consider the set

P1(H) = {ϕ ∈ C(H) : ϕ positive definite, ϕ(e) = 1}
and denote by ex(P1(H)) the set of its extremal points. In [Ol90, Theorem 22.10]
it is proven that each ϕ ∈ ex(P1(G∞)) can be approximated uniformly on compact
sets by a sequence of functions ϕn ∈ ex(P1(Gn)). An inspection of the proof shows
that this statement remains true for biinvariant functions, i.e. each K∞-biinvariant
ϕ ∈ ex(P1(G∞)) can be approximated uniformly on compact sets by a sequence of
Kn-biinvariant functions ϕn ∈ ex(P1(Gn)). According to [Ol90, Theorems 23.3 and
23.6], the positive definite spherical functions of a spherical pair (G,K) (an Olshan-
ski spherical pair or a Gelfand pair) are exactly those elements of ex(P1(G)) which
are K-biinvariant. Thus, for a positive definite spherical function ϕ of (G∞,K∞),
there exists a sequence (ϕn) of positive definite spherical functions of (Gn,Kn)
which converges uniformly on compact sets to ϕ. (This is also noted in [OV96,
Theorem 3.5]). By Lemma 2.1, ϕn is given by a positive definite Bessel function
JAn−1

with multiplicity k = d
2 , d = dimRF, i.e. it is of the form (3.16). Without

loss of generality we may assume that λ(n) is decreasing w.r.t ≪ . From Theorem
3.6 it now follows that (λ(n)) has to be a VK sequence and that ϕ = ϕω , where ω
are the VK parameters of (λ(n)).

Conversely, starting with ω ∈ Ω we may choose an associated VK sequence
(λ(n)) by Proposition 3.16. Then (3.16) defines a sequence (ϕn) of positive definite
spherical functions of (Gn,Kn) which converge to ϕω uniformly on compact sets
according to Theorem 3.6. It is then clear from the definitions that ϕω is a positive
definite Olshanski spherical function of (G∞,K∞). This finishes the proof of Part
(1).

Part (2) is immediate from Theorem 3.6. �

4. The type B case

Recall from Section 2 the Bessel functions JBn
of type Bn. As n→ ∞, we shall

consider them with the multiplicities κn := (k′n, k) with value k > 0 on the roots
±(ei ± ej) and k′n ≥ 0 on the roots ±ei. It will become clear at the end of this
section why the multiplicity parameter kn is allowed to vary with n. With

νn := k′n + k(n− 1) +
1

2

we have

JBn
(κn;λ, z) =

∑

κ∈Λ+
n

1

4|κ|[νn]κ

Cκ(λ
2)Cκ(z

2)

|κ|!Cκ(1n)
, (4.1)



20 DOMINIK BRENNECKEN AND MARGIT RÖSLER

where the Jack polynomials are of index 1/k. Recall the stability property (2.3)
of the Jack polynomials. Adopting the notation from (3.2), we therefore have for
λ ∈ Cn and z ∈ Cr with r ≤ n the representation

JBn
(κn;λ, z) := JBn

(κn;λ, (z, 0n−r) =
∑

κ∈Λ+
r

Cκ(λ
2)[kr]κ

4|κ|[kn]κ[νn]κ|κ|!
Pκ(z

2). (4.2)

Recall our notion (2.7) for the positive Weyl chamber of type B. The following
counterpart of Theorem 3.6 will be the main result of this section.

Theorem 4.1. Consider the Bessel functions JBn
(κn; . , . ) with multiplicity κn =

(k′n, k), where k > 0 and k′n ≥ 0. Further, let (λ(n))n∈N be a sequence of spectral
parameters λ(n) ∈ Cn, i.e. the entries of λ(n) are non-negative and decreasing.
Then the following statements are equivalent.

(1)
(λ(n)2

νn

)
n∈N

is a Vershik-Kerov sequence.

(2) The sequence of Bessel functions
(
JBn

(κn; iλ(n), . )
)
n∈N

converges locally

uniformly on each of the spaces Rr, r ∈ N.

(3) The sequence of Bessel functions
(
JBn

(κn; iλ(n), . )
)
n∈N

converges point-

wise on R against a function which is continuous at 0.

(4) For each fixed multi-index of length r, the corresponding coefficients in the
Taylor of expansion of JBn

(κn; iλ(n), . ) around 0 ∈ R
r converge as n→ ∞.

(5) For all symmetric functions f : R(∞) → C, the limit

lim
n→∞

f(λ(n)2)

(nνn)degf

exists.

In this case, let ω = (α, β, γ) be the VK parameters of the sequence
(λ(n)2

νn

)
. Then

γ = 0, αl ≥ 0 for all l, and

lim
n→∞

JBn
(κn; iλ(n), z) = Ψ̂

(
ω;− z2

4k

)
=

∞∏

j=1

e−
βz2j
4

∞∏

l=1

e
αlz

2
j

4

(
1 +

αlz2
j

4k

)k , (4.3)

where the convergence is uniform on compact subsets of the domain

Sα
k,+ :=

{
z ∈ C

(∞) : ‖Im z‖∞ < 2

√
k

α1

}
.

Remarks 4.2. 1. It is a consequence of Lemma 3.3 that the VK parameter γ is 0
in the present situation.

2. We do not have any restrictions on the asymptotic behavior of νn apart from
the condition k′n ≥ 0, by which νn grows at least linearly. Only the set of spectral
parameters for which the Bessel functions converge depends on νn via condition
(1) of the Theorem. The possible set of limits in (4.3) depends only on the VK
parameters ω.

3. Assume that

lim
n→∞

k′n
n

= C

with some constant C ≥ 0. Then νn ∼ (C+k)n for n→ ∞. In particular,
(λ(n)2

νn

)
is

Vershik-Kerov with VK parameters (α, β, 0) if and only if
(λ(n)2

n

)
is Vershik-Kerov

with VK parameters
(
(C + k)α, (C + k)β, 0

)
.
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For the proof of Theorem 4.1, we start with the following

Lemma 4.3. Let (λ(n))n∈N with λ(n) ∈ Cn be such that the sequence
(λ(n)2

νn

)
is

Vershik-Kerov with VK parameters ω = (α, β, 0). Then for z ∈ Sα
k,+ we have

lim
n→∞

JBn
(κn; iλ(n), z) = Ψ̂

(
ω;− z2

4k

)
.

The convergence is uniform on compact subsets of Sα
k,+.

Proof. Fix r ∈ N. For z ∈ Sα
k,+ ∩ Cr and n ≥ r consider the functions

ϕn(z) := JBn
(κn; iλ(n), z) =

∑

κ∈Λ+
r

[kr]κ
|κ|! · Cκ(λ(n)

2)

[kn]κ[νn]κ
Pκ

(−z2
4

)
. (4.4)

By (2.2), the non-negativity of the monomial coefficients of the Jack polynomials
and the non-negativity of λ(n), we estimate as in Remark 3.14:

|ϕn(z)| ≤ ϕn(−Im z)

≤
∑

κ∈Λ+
r

[kr]κ
|κ|! Cκ

( λ(n)2

(n− r + 1)(νn − k(r − 1))

)
Pκ

((Im z)2

4k

)

=

r∏

j=1

Φ
( λ̃(n)

n
;
(Im z)2

4k

)
(4.5)

with

λ̃(n) :=
nνn

(n− r + 1)(νn − k(r − 1))
· λ(n)

2

νn
.

By our assumption on λ(n), the sequence (λ̃(n)) is Vershik-Kerov with parameters
ω = (α, β, 0). Hence by Proposition 3.10, the product on the right side of (4.5)

converges for n → ∞ to Ψ̂
(
ω; (Im z)2

4k

)
, uniformly on compact subsets of ∈ Sα

k,+.

In particular, the sequence (ϕn) is uniformly bounded on compact subsets of Sα
k,+.

Now consider the coefficients in the expansion of ϕn. Theorem 3.8 and the asymp-
totics [kn]κ[νn]κ ∼ (knνn)

κ yield

lim
n→∞

Cκ(λ(n)
2)

[kn]κ[νn]κ
=

C̃κ(ω)

k|κ|
.

By a Montel argument as in the proof of Theorem 3.11 and with Remark 3.13 in
mind, we thus obtain that

lim
n→∞

ϕn(z) = Ψ̂
(
ω;− z2

4k

)

locally uniformly on Sα
k,+ ∩ Cr. �

Lemma 4.4. Consider a sequence (λ(n))n∈N with λ(n) ∈ Cn . Assume that the
sequence of Bessel functions JBn

(iλ(n), . ) converges pointwise on R to a function

which is continuous at 0. Then the sequence
(λ(n)2

νn

)
is Vershik-Kerov.

Proof. The proof is similar to that of Lemma 3.15. For x ∈ R, put

ϕn(x) := JBn
(κn; iλ(n), x) =

∫

R

eixξdµn(ξ)
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with certain compactly supported probability measures µn on R. By the symmetry
properties of JBn

, the measure µn is even, hence its odd moments vanish. Let
further ϕ(x) := limn→∞ ϕn(x). Again by Lévy’s continuity theorem, there exists a
probability measure µ on R such that µn → µ weakly and

ϕ(x) =

∫

R

eixξdµ(ξ) for all x ∈ R.

Further, the family {µn : n ∈ N} is tight. From (4.2) and formula (3.8) we deduce
that

ϕn(x) =

∞∑

j=0

gj
(
λ(n)2

)

4j(νn)j(kn)j
(−x)2j .

This shows that the even moments of µn are given by
∫

R

ξ2jdµn(ξ) = (2j)!
gj(λ(n)

2)

4j(kn)j(νn)j
.

As in the proof of Lemma 3.15, we deduce that the quotient∫
R
ξ8dµn(ξ)(∫

R
ξ4dµn(ξ)

)2

is bounded in n ∈ N. Now we conclude from [OO98, Lemma 5.2] (employing the
Lemma for the image measure of µn under ξ 7→ ξ2) that the sequence

(∫
R
ξ4dµn(ξ)

)

is bounded. As (νn)2 ∼ ν2n and (kn)2 ∼ (kn)2 for n → ∞, it follows that the
sequence (

g2

(λ(n)2
nνn

))
n∈N

is bounded as well. Continuing as in the proof of Lemma 3.15 we obtain that(λ(n)2

νn

)
is a Vershik-Kerov sequence. �

Proof of Theorem 4.1. From Theorem 3.6 it is clear that the statements (1) and
(5) are equivalent. The equivalence of (4) and (5) follows from expansion (4.4) and
the fact that the Jack polynomials span the algebra of symmetric functions. By
Lemma 4.4, statement (3) implies (1). Finally, Lemma 4.3 shows that statement
(1) implies statement (2), which in turn implies (3). �

We finally want to determine the set of all parameters ω = (α, β, 0) which occur
as VK parameters of a non-negative Vershik-Kerov sequence as in Theorem 4.1.
Recall that in the non-negative case, the parameter γ is automatically zero due to
Lemma 3.3.

Proposition 4.5. The set Ω+ of all pairs (α, β) for which there exists a non-
negative VK sequence with parameters (α, β, 0) is given by

Ω+ = {(α, β) : β ≥ 0, α = (αi)i∈N with αi ∈ R, α1 ≥ α2 ≥ . . . ≥ 0,

∞∑

i=1

αi ≤ β }.

Proof. 1. If (α, β, 0) are the VK parameters of a VK sequence (λ(n)) with λ(n)i ≥ 0
for all i, then obviously β ≥ 0 and α1 ≥ α2 ≥ . . . ≥ 0. Moreover, for fixed N ∈ N

and n ≥ N we have

N∑

i=1

αi ≤
N∑

i=1

(
αi −

λ(n)i
n

)
+

n∑

i=1

λ(n)i
n

.
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As n → ∞, the first sum tends to 0 and the second sum tends to β. This proves
that

∑∞
i=1 αi ≤ β.

2. Conversely, let (α, β) ∈ Ω+. In order to construct an associated non-negative
VK sequence, we proceed in two steps.

(i) Assume that α has at most finitely many non-zero entries. If α 6= 0, let m ∈ N

be maximal such that αi 6= 0 for i ≤ m. If α = 0, let m := 0. Put

β′ := β −
m∑

i=1

αi ≥ 0.

For n > m, define λ(n) ∈ Rn by

λ(n)i :=

{
nαi if i ≤ m
nβ′

n−m if m < i ≤ n.

Note that the entries of λ(n) are non-negative and decreasing for n large enough,
say n ≥ n0. It is now straightforward to verify that (λ(n))n≥n0

is a VK sequence
with parameters (α, β, 0).

(ii) Assume that all entries of α are strictly positive. Then a diagonalization ar-
gument as in the proof of Proposition 3.16 shows that there exists a VK sequence
with parameters (α, β, 0). �

Let us finally turn to consequences in the geometric cases, related to the Cartan
motion groups of non-compact Grassmann manifolds.

For strictly increasing sequences of dimensions (pn)n∈N, (qn)n∈N with pn ≥ qn
consider the sequence of Gelfand pairs (Gn,Kn) with

Gn = (Upn
(F)× Uqn(F))⋉Mpn,qn(F), Kn = Upn

(F)× Uqn(F) (4.6)

over F = R,C,H. It is easily checked that the associated Olshanski spherical pair
(G∞,K∞) is independent of the specific choice of the sequences (pn), (qn), and
so the same holds for its spherical functions. Indeed, K = U∞(F) × U∞(F) and
G∞ = K ⋉ M∞(F), where M∞(F) is the space of (in both directions) infinite
matrices over F with at most finitely many non-zero entries. The restriction to
qn = n in Corollary 4.7 below is therefore not substantial.

Recall from Section 2 that the positive definite spherical functions of (Gn,Kn),
considered as functions on the chamber Cqn ⊂ Rqn , are given by the Bessel functions

JBqn
(κn, iλ, . ), λ ∈ R

qn

with the multiplicity

κn = (k′n, k) =
(
d
2 (pn − qn + 1)− 1

2 ,
d
2

)
.

So in the geometric cases, the multiplicity parameter k′n (on the roots±ei) naturally
varies with n.

We may consider the Olshanski spherical functions of (G∞,K∞) as U∞(F) ×
U∞(F)-invariant functions on M∞(F) which depend only on the singular values of
their argument, or equally as functions on

C∞ := {x ∈ R
(∞) : x1 ≥ x2 ≥ . . . ≥ 0}.

The following Corollary goes already back to Pickrell, Theorem 5.14 of [Pi91],
where it was proven by using a slightly different parametrization, and by different
methods.
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Corollary 4.6. The set of positive definite spherical functions of the Olshanski
spherical pair (G∞,K∞), considered as functions on C∞, is given by

ϕ(α,β)(x) =
∞∏

j=1

e−
βx2

j
4

∞∏

l=1

e
αlx

2
j

4

(
1 +

αlx2
j

2d

)d/2 , (α, β) ∈ Ω+ .

Proof. Choose (Gn,Kn) with qn = n. The proof is then the same as that of Corol-
lary 3.17 (1) in the type A case. �

Let us finally describe the approximation of the spherical functions of (G∞,K∞)
by spherical functions of an increasing sequence of the Gelfand pairs (Gn,Kn). For
simplicity (c.f. the remark above) we now restrict to the case qn = n, pn ≥ n. So
in this case, k′n = d

2 (pn − n+ 1)− 1
2 and νn = d

2pn .

Corollary 4.7. Consider a sequence of Gelfand pairs (Gn,Kn) as in (4.6) with
strictly increasing dimensions (pn, qn), where qn = n and pn ≥ n. Assume that
ϕn = JBn

(κn; iλ(n), . ) with λ(n) ∈ Cn is a sequence of positive definite spherical
functions of (Gn,Kn), considered as functions on C∞ ⊃ Cn . Then (ϕn) converges

uniformly on compact subsets of C∞ if and only if the sequence
(λ(n)2

pn

)
is Vershik-

Kerov. If (d2α,
d
2β, 0) are its VK parameters, then for x ∈ C∞,

lim
n→∞

ϕn(x) = ϕ(α,β)(x).

The convergence is uniform on compact subsets of C∞.

Proof. By use of Theorem 4.1, the proof is the same as that of Corollary 3.17 (2)
for the A-case. �

Remarks 4.8. 1. Consider the special case where qn = n and limn→∞
pn

n = 1. Then

the statement of Corollary 4.6 remains valid when replacing the sequence
(λ(n)2

pn

)

by
(λ(n)2

n

)
.

2. In the group case over F = C, an approximation of the Olshanski spherical
functions of (G∞,K∞) by spherical functions of (Gn,Kn) with pn = qn = n was
already established in [Ra08].

3. For F = C, Corollary 4.6 is in accordance with results of [Bo19], where for
the semigroup Herm+

∞(C) of infinite dimensional positive definite matrices over C,
the positive definite Olshanski spherical functions of (U∞(C)⋉Herm+

∞(C), U∞(C))
were determined by semigroup methods and a reduction to the type A case.
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