# The Laplace Transform in Dunkl Theory



### **Dominik Brennecken and Margit Rösler**

**Abstract** In this note, we give an overview of the Laplace transform in Dunkl theory associated with root systems of type *A* and some of its applications. The results generalize well-known facts in the spherical analysis on symmetric cones.

Keywords Dunkl theory  $\cdot$  Jack polynomials  $\cdot$  Riesz distributions  $\cdot$  Laplace transform  $\cdot$  Special functions associated with root systems

**2000 Mathematics Subject Classification** Primary 33C67, Secondary 33C52, 43A85, 05E

# 1 Introduction

In his unpublished manuscript [14] from the 1980s, I.G. Macdonald presented a concept generalizing many known properties of the radial analysis on symmetric cones, c.f. [6]. His idea was to replace the spherical polynomials of the cone, which are given by Jack polynomials with a certain half-integer index, by Jack polynomials with an arbitrary index. However, many of the statements in [14] remained conjectural. This was due to the fact that the associated Laplace transform, now involving multivariate Bessel functions instead of the usual exponential function, was not well-understood at that time. Macdonald's ideas were taken up in [1] within the study of quantum integrable models of Calogero-Moser type, where also their connection to Dunkl theory was recognized, and later for example in [18]. A rigorous treatment of the relevant Laplace transform in the framework of Dunkl theory was given only much later in [17] and continued in [2], where a new proof for the fundamental Laplace transform identity of Jack polynomials from [1] is given and also various statements from [10, 14] are improved or made precise. In the

D. Brennecken · M. Rösler (🖂)

Institut für Mathematik, Universität Paderborn, Paderborn, Germany e-mail: bdominik@math.upb.de; roesler@math.upb.de

Research Perspectives Ghent Analysis and PDE Center 5,

https://doi.org/10.1007/978-3-031-57005-6\_9

<sup>©</sup> The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 M. Chatzakou et al. (eds.), *Women in Analysis and PDE*,

present article, we give an overview of results from [2, 17], which constitute natural generalizations of radial analysis on symmetric cones in the framework of Dunkl theory associated with root systems of type *A*. In particular, we describe inversion theorems for the Laplace transform, as well as applications to Riesz distributions and Jack-hypergeometric series.

# 2 Motivation: Analysis on Hermitian Matrices

Consider the space of  $n \times n$ -Hermitian matrices over one of the (skew-) fields  $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H},$ 

$$H_n(\mathbb{F}) = \{ x \in M_n(\mathbb{F}) : x = \overline{x}^t \}.$$

This is a real Euclidean vector space with scalar product  $\langle x, y \rangle = \operatorname{Retr}(xy)$ . The cone of positive definite matrices

$$\Omega_n(\mathbb{F}) = \{x \in H_n(\mathbb{F}) : x \text{ positive definite}\}$$

naturally identifies with the Riemannian symmetric space  $GL_n(\mathbb{F})/U_n(\mathbb{F})$ . Actually,  $H_n(\mathbb{F})$  carries the structure of a Euclidean Jordan algebra and  $\Omega = \Omega_n(\mathbb{F})$  is a symmetric cone, see [6] for some background on these and the subsequent facts. The fundamental objects in the harmonic analysis on  $\Omega$  are its spherical functions

$$\varphi_{\lambda}(x) = \int_{K} \Delta_{\lambda}(kxk^{-1})dk, \quad x \in \Omega, \ \lambda \in \mathbb{C}^{n};$$
(2.1)

here the functions  $\Delta_{\lambda}(x)$  are power functions on  $\Omega$  generalizing the usual powers  $x^{\lambda}$  for  $x \in ]0, \infty[$  and  $\lambda \in \mathbb{C}$ . In particular, if  $x = \text{diag}(\xi_1, \ldots, \xi_n)$ , then  $x^{\lambda} = \xi_1^{\lambda_1} \cdots \xi_n^{\lambda_n}$ . The spherical function  $\varphi_{\lambda}$  is *K*-invariant (*K* acts on  $\Omega$  by conjugation), and hence depends only on the spectrum of its argument. Of particular importance in the analysis on  $\Omega$  is their Laplace transform [6, Chapt. VII]: Let  $\text{Re } \lambda_j > \frac{d}{2}(j-1)$ . Then

$$\int_{\Omega} e^{-\langle x, y \rangle} \varphi_{\lambda}(x) \Delta(x)^{-\frac{d}{2}(n-1)-1} dx = \Gamma_{\Omega}(\lambda) \varphi_{\lambda}(y^{-1}), \qquad (2.2)$$

with  $\Gamma_{\Omega}$  the gamma function associated with  $\Omega$ ,  $\Delta$  the (Jordan) determinant and  $d = \dim_{\mathbb{R}} \mathbb{F} \in \{1, 2, 4\}$ . Let

$$\Lambda_n^+ := \{\lambda \in \mathbb{N}_0^n : \lambda_1 \ge \ldots \ge \lambda_n \ge 0\}$$

denote the set of partitions of length at most *n*. Then the spherical functions  $\varphi_{\lambda}$  with  $\lambda \in \Lambda_n^+$  are polynomials. More precisely, let  $C_{\lambda}^{\alpha} = C_{\lambda}^{(\alpha)}$ ,  $\lambda \in \Lambda_n^+$  denote the Jack polynomials in *n* variables of index  $\alpha \in [0, \infty]$ , normalized such that

$$(z_1 + \dots + z_n)^m = \sum_{|\lambda|=m} C_{\lambda}^{\alpha}(z) \quad (z \in \mathbb{C}^n, \ m \in \mathbb{N}_0).$$

Then, as observed by Macdonald in [13],

$$\varphi_{\lambda}(x) = \frac{C_{\lambda}^{\alpha}(\operatorname{spec}(x))}{C_{\lambda}^{\alpha}(\underline{1})} \quad \text{with } \alpha = \frac{2}{d}, \quad \underline{1} = (1, \dots, 1).$$

The Jack polynomials  $C_{\lambda}^{\alpha}$  are homogeneous of degree  $|\lambda| = \lambda_1 + \cdots + \lambda_n$ and symmetric. They are, among others, important in algebraic combinatorics, multivariate statistics, and random matrix theory; see [19] for their basic properties. For  $\alpha = 1$ , they coincide with the Schur polynomials. If n = 1, then  $C_{\lambda}^{\alpha}(z) = z^{\lambda}$ .

Let us now consider the Laplace transform of a *K*-invariant function  $f : \Omega \to \mathbb{C}$ . Put  $\mathbb{R}_+ := ]0, \infty[$ . Writing  $f(x) = \tilde{f}(\sigma(x))$  with a symmetric function  $\tilde{f} : \mathbb{R}^n_+ \to \mathbb{C}$ , calculation in polar coordinates gives

$$\mathcal{L}f(y) = \int_{\Omega} e^{-\langle x, y \rangle} f(x) dx = \int_{\mathbb{R}^n_+} {}_0 F_0^{2/d}(-\xi, \operatorname{spec}(y)) \, \widetilde{f}(\xi) \prod_{1 \le i < j \le n} |\xi_i - \xi_j|^d \, d\xi$$

with the Jack-hypergeometric series

$${}_{0}F_{0}^{\alpha}(z,w) = \sum_{\lambda \in \Lambda_{n}^{+}} \frac{1}{|\lambda|!} \frac{C_{\lambda}^{\alpha}(z)C_{\lambda}^{\alpha}(w)}{C_{\lambda}^{\alpha}(\underline{1})} \,.$$

In [14], Macdonald presented a formularium involving Jack polynomials of arbitrary index instead of the spherical polynomials on a cone, where he formally replaced the index  $\alpha = 2/d$  in the Laplace transform by an arbitrary index  $\alpha > 0$ . This led to his conjectural formula (C) for the Laplace transform of Jack polynomials substituting (2.2), see Theorem 6.1 below. In [1] a first proof of this formula was sketched, still leaving convergence issues open, and it was also observed that  $_0F_0^{\alpha}$  coincides with a Bessel function of type  $A_{n-1}$  in Dunkl theory.

# **3** The Dunkl Setting and Laplace Transform in Type A

Dunkl operators are differential-reflection operators associated with root systems which generalize the usual directional derivatives. For a general background, we refer to [3, 4, 16]. In this note we consider the root system  $R = A_{n-1} = \{\pm (e_i - e_j) : 1 \le i < j \le n\}$  in  $\mathbb{R}^n$  (with its standard inner product). The associated reflection

group is  $S_n$ , the symmetric group on *n* elements. The rational Dunkl operators associated with *R* and some fixed multiplicity parameter  $k \in [0, \infty[$  are given by

$$T_j = \partial_j + k \cdot \sum_{i \neq j} \frac{1 - s_{ij}}{x_j - x_i} \quad (1 \le j \le n),$$

where  $s_{ij}$  denotes the orthogonal reflection in the hyperplane  $(e_i - e_j)^{\perp}$ , which acts by exchanging the coordinates  $x_i$  and  $x_j$ . The operators  $T_j$  commute and have nice mapping properties similar to usual directional derivatives. In particular, they act continuously on the classical Schwartz space  $S(\mathbb{R}^n)$ , and thus by duality also on the space  $S'(\mathbb{R}^n)$  of tempered distributions. For a polynomial  $p \in \mathbb{C}[\mathbb{R}^n]$ , we shall write p(T) for the differential-reflection operator obtained from p(x) by replacing  $x_j$  by  $T_j$ . There is a unique holomorphic function  $E = E_k \in \mathcal{O}(\mathbb{C}^n \times \mathbb{C}^n)$ , the Dunkl kernel of type  $A_{n-1}$  associated with k, satisfying

$$T_j E(z, ..) = z_j E(z, ..)$$
 for  $j = 1, ..., n$ ,  $E(z, 0) = 1$ .

The Dunkl kernel *E* is symmetric in its arguments and satisfies E(sz, w) = E(z, sw) and  $E(\sigma z, \sigma w) = E(z, w)$  for all  $s \in \mathbb{C}, \sigma \in S_n$ . Moreover, E(x, y) > 0 and  $|E(ix, y)| \le 1$  for all  $x, y \in \mathbb{R}^n$ . If k = 0, then  $E(z, w) = e^{\langle z, w \rangle}$ , where  $\langle ., . \rangle$  is extended to  $\mathbb{C}^n \times \mathbb{C}^n$  in a bilinear way. Note that

$$span_{\mathbb{R}}(R) = \{x \in \mathbb{R}^n : x_1 + \dots + x_n = 0\} =: \mathbb{R}_0^n.$$

This easily implies that

$$E(z, w + \underline{s}) = e^{\langle z, \underline{s} \rangle} \cdot E(z, w) \text{ for } \underline{s} := (s, \dots, s) \in \mathbb{C}^n \text{ with } s \in \mathbb{C}.$$
(3.1)

The associated (type A) Bessel function is given by

$$J(z,w) := \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} E(\sigma z, w).$$

It is symmetric in both arguments. As observed in [1], it can be written as a Jackhypergeometric series:

$$J(z, w) = {}_{0}F_{0}^{\alpha}(z, w) \text{ with } \alpha = 1/k.$$
 (3.2)

For  $x \in \mathbb{R}^n_+$ ,  $a \in \mathbb{R}^n$  and  $z \in \mathbb{C}^n$  with  $\operatorname{Re} z \ge a$  (which is understood componentwise), we have the exponential bound (see [17])

$$|E(-z,x)| \le \exp(-\|x\|_1 \cdot \min_{1 \le i \le n} a_i).$$
(3.3)

Following [1], we define the type A Laplace transform of functions  $f \in L^1_{loc}(\mathbb{R}^n_+)$  by

$$\mathcal{L}f(z) = \int_{\mathbb{R}^n_+} f(x)E(-z,x)\omega(x)dx \quad (z \in \mathbb{C}^n),$$

with the Dunkl weight

$$\omega(z) = \prod_{1 \le i < j \le n} |z_i - z_j|^{2k} \quad \text{on } \mathbb{C}^n.$$

Identity (3.1) and estimate (3.3), which are very specific for root systems of type *A*, imply nice properties for the Laplace transform  $\mathcal{L}$ . For example, if *f* is exponentially bounded with  $|f(x)| \leq Ce^{\langle x, \underline{s} \rangle}$  for some  $s \in \mathbb{R}$ , then  $\mathcal{L}f(z)$  exists and is holomorphic on  $\{z \in \mathbb{C}^n : \operatorname{Re} z > \underline{s}\}$ .

#### Theorem 3.1 ([17])

- (1) Suppose that  $\mathcal{L}f(a)$  exists for some  $a \in \mathbb{R}^n$ . Then  $\mathcal{L}f(z)$  exists and is holomorphic on  $\{z \in \mathbb{C}^n : Rez > a\}$ . Moreover, for each polynomial  $p \in \mathbb{C}[\mathbb{R}^n], p(-T)(\mathcal{L}f) = \mathcal{L}(pf)$  on  $\{Rez > a\}$ .
- (2) (Cauchy inversion theorem). Suppose that  $\mathcal{L}f(\underline{s})$  exists for some  $s \in \mathbb{R}$  and that  $y \mapsto \mathcal{L}f(\underline{s} + iy) \in L^1(\mathbb{R}^n, \omega)$ . Then

$$\frac{(-i)^n}{c^2} \int_{\operatorname{Re} z = \underline{s}} \mathcal{L}f(z) E(x, z) \omega(z) dz = \begin{cases} f(x) & a.e. \text{ on } \mathbb{R}^n_+ \\ 0 & on \, \mathbb{R}^n \setminus \mathbb{R}^n_+ \end{cases}$$

with the Mehta-constant  $c = \int_{\mathbb{R}^n} e^{-|x|^2/2} \omega(x) dx$ .

(3) (Injectivity) Suppose that  $\mathcal{L}f = 0$  on some subspace  $\{z \in \mathbb{C}^n : Re z = \underline{s}\}$ . Then f = 0.

The Laplace transform  $\mathcal{L}$  extends naturally to distributions, as follows. Let

$$\mathcal{S}'_+(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) : \operatorname{supp} u \subseteq \overline{\mathbb{R}^n_+} \}.$$

Then the Laplace transform of  $u \in S'_+(\mathbb{R}^n)$  is defined, for  $z \in \mathbb{C}^n$  with  $\operatorname{Re} z > 0$ , by

$$\mathcal{L}u(z) := \langle u, \chi E(., -z) \rangle,$$

where  $\chi \in C^{\infty}(\mathbb{R}^n)$  is an arbitrary cutoff function for  $\mathbb{R}^n_+$ , i.e.  $\operatorname{supp}(\chi) \subseteq ]-\epsilon$ ,  $\infty[^n$  for some  $\epsilon > 0$  and  $\chi = 1$  in a neighborhood of  $\overline{\mathbb{R}^n_+}$ . Indeed,  $\chi E(., -z)$  belongs to  $\mathcal{S}(\mathbb{R}^n)$  and the above definition is independent of the choice of  $\chi$ . The Laplace transform on  $\mathcal{S}'_+(\mathbb{R}^n)$  is also injective.

# 4 Riesz Distributions in the Dunkl Setting

We maintain the previous notations and put

$$\mu_0 := k(n-1), \quad \Delta(x) := x_1 \cdots x_n \quad \text{for } x \in \mathbb{R}^n.$$

Moreover, we introduce the multivariate gamma function

$$\Gamma_n(\lambda) := \prod_{j=1}^n \frac{\Gamma(1+jk)}{\Gamma(1+k)} \cdot \prod_{j=1}^n \Gamma(\lambda_j - k(j-1)) \quad (\lambda \in \mathbb{C}^n).$$

and also write  $\Gamma_n(\lambda) = \Gamma_n(\underline{\lambda})$  for  $\lambda \in \mathbb{C}$ . For indices  $\mu \in \mathbb{C}$  with  $\operatorname{Re} \mu > \mu_0$  we define the Riesz measures

$$\langle R_{\mu}, \varphi \rangle := \frac{1}{\Gamma_n(\mu)} \int_{\mathbb{R}^n_+} \varphi(x) \Delta(x)^{\mu-\mu_0-1} \omega(x) dx, \quad \varphi \in \mathcal{S}(\mathbb{R}^n)$$

which we consider as tempered distributions on  $\mathbb{R}^n$ . The following results of [17] generalize well-known properties of Riesz distributions on a symmetric cone, c.f. [6].

#### Theorem 4.1

- (1)  $\Delta(T)R_{\mu} = R_{\mu-1}$  in  $\mathcal{S}'(\mathbb{R}^n)$ . Via this identity, the mapping  $\mu \mapsto R_{\mu}$  extends to a holomorphic function on  $\mathbb{C}$  with values in  $\mathcal{S}'(\mathbb{R}^n)$ .
- (2) The Riesz distribution  $R_{\mu} \in S'(\mathbb{R}^n)$  is supported in  $\overline{\mathbb{R}^n_+}$ .
- (3) Dunkl-Laplace transform:  $\mathcal{L}R_{\mu}(y) = \Delta(y)^{-\mu}$  for all  $y \in \mathbb{R}^{n}_{+}$ .
- (4)  $R_0 = \delta_0$ .
- (5)  $R_{\mu}$  is a (positive) measure iff  $\mu$  belongs to the generalized Wallach set

$$\{0, k, \dots, k(n-1) = \mu_0\} \cup \{\mu \in \mathbb{R} : \mu > \mu_0\}.$$

In fact, the measures  $R_{kj}$  with  $0 \le j \le n-1$  can be written down recursively. They have shrinking supports in the facets of  $\partial(\mathbb{R}^n_+)$ . See [17] for details.

# 5 The Cherednik Kernel and Non-symmetric Jack Polynomials

Our generalization of the Laplace transform formula (2.2) for the spherical functions of the cone  $\Omega = \Omega_n(\mathbb{F})$  shall involve non-symmetric Jack polynomials and the Opdam-Cherednik kernel of type  $A_{n-1}$ . In this section, we give the necessary background from [7, 12, 15], c.f. also [2]. First, we recall the usual dominance order on the set of partitions  $\Lambda_n^+$ , which is given by

$$\mu \leq_D \lambda$$
 iff  $|\lambda| = |\mu|$  and  $\sum_{j=1}^r \mu_j \leq \sum_{j=1}^r \lambda_j$  for all  $r = 1, ..., n$ .

This partial order extends from  $\Lambda_n^+$  to  $\mathbb{N}_0^n$  as follows: For each composition  $\eta \in \mathbb{N}_0^n$  denote by  $\eta_+ \in \Lambda_n^+$  the unique partition in the  $S_n$ -orbit of  $\eta$ . The dominance order on  $\mathbb{N}_0^n$  is then defined by

$$\kappa \leq \eta \quad \text{iff} \quad \begin{cases} \kappa_+ \leq_D \eta_+ \,, & \kappa_+ \neq \eta_+ \\ w_\eta \leq w_\kappa \,, & \kappa_+ = \eta_+ \end{cases}$$

where  $w_{\eta} \in S_n$  is the shortest element with  $w_{\eta}\eta_+ = \eta$  and  $\leq$  is the Bruhat order on  $S_n$ . Now consider the (rational) Cherednik operators associated with the positive subsystem  $R_+ = \{e_j - e_i : 1 \leq i < j \leq n\}$  of  $R = A_{n-1}$  and multiplicity  $k \geq 0$ ,

$$\mathcal{D}_j := x_j T_j + k(1-n) + k \sum_{i>i} s_{ij} \quad (j = 1, ..., n),$$

where the  $T_j$  are the type A Dunkl operators with multiplicity k as above. The operators  $\mathcal{D}_j$  are related by a change of variables to the Cherednik operators  $D_{e_j}$  of trigonometric Dunkl theory as introduced in [15]; we refer to [2] for the precise connection. Note that  $\mathcal{D}_j$  leaves the space  $\mathbb{C}[\mathbb{R}^n]$  invariant and preserves the degree of homogeneity. Indeed, it acts on  $\mathbb{C}[\mathbb{R}^n]$  in an upper triangular way:

$$\mathcal{D}_j x^\eta = \overline{\eta}_j x^\eta + \sum_{\kappa \prec \eta} d_{\kappa\eta} x^\kappa$$

with coefficients  $d_{\kappa\eta} \in \mathbb{R}$  and

$$\overline{\eta}_{i} = \eta_{j} - k \# \{ i < j \mid \eta_{i} \ge \eta_{j} \} - k \# \{ i > j \mid \eta_{i} > \eta_{j} \}.$$

The non-symmetric Jack polynomials of index  $\alpha = 1/k$  are defined as the unique basis  $(E_{\eta})_{\eta \in \mathbb{N}_{0}^{n}}$  of  $\mathbb{C}[\mathbb{R}^{n}]$  satisfying

(1)  $E_{\eta}(x) = x^{\eta} + \sum_{\kappa \prec \eta} c_{\eta\kappa} x^{\kappa}$  with  $c_{\kappa\eta} \in \mathbb{C}$ , (2)  $\mathcal{D}_j E_{\eta} = \overline{\eta}_j E_{\eta}$  for all  $j = 1, \dots, n$ .

By definition,  $E_{\eta}$  is homogeneous of degree  $|\eta| = \eta_1 + \ldots + \eta_n$ , and for k = 0 we have  $E_{\eta}(x) = x^{\eta}$ .

Property (2) generalizes: For each spectral parameter  $\lambda \in \mathbb{C}^n$ , there is a unique analytic function  $f = \mathcal{G}(\lambda, .)$  in an open neighborhood of  $\mathbb{R}^n$ , called the Opdam-Cherednik kernel, satisfying

$$\mathcal{D}_j f = \left(\lambda_j - \frac{k}{2}(n-1)\right) f$$
 for  $j = 1, \dots, n; f(0) = 1.$  (5.1)

Actually, it follows from results of [11] that the kernel  $\mathcal{G}$  is holomorphic on  $\mathbb{C}^n \times \{z \in \mathbb{C}^n : \text{Re } z > 0\}$ . Symmetrization of  $\mathcal{G}$  gives the Heckman-Opdam hypergeometric function

$$\mathcal{F}(\lambda, z) = \frac{1}{n!} \sum_{\sigma \in S_n} \mathcal{G}(\lambda, \sigma z).$$

Both  $\mathcal{F}$  and  $\mathcal{G}$  differ by a change of variables from the notions used in [9, 15]. The uniqueness of  $\mathcal{G}$  shows that for  $\eta \in \mathbb{N}_0^n$ ,

$$\frac{E_{\eta}(x)}{E_{\eta}(\underline{1})} = \mathcal{G}\left(\overline{\eta} + \frac{k}{2}(n-1)\underline{1}, x\right), \quad \overline{\eta} = (\overline{\eta}_1, \dots, \overline{\eta}_n).$$
(5.2)

Moreover, the symmetric Jack polynomials can be obtained via symmetrization from the non-symmetric ones: For partitions  $\lambda \in \Lambda_n^+$ ,

$$\frac{C_{\lambda}(x)}{C_{\lambda}(\underline{1})} = \frac{1}{n!} \sum_{\sigma \in S_n} \frac{E_{\lambda}(\sigma x)}{E_{\lambda}(\underline{1})} = \mathcal{F}(\lambda - \rho, x)$$

with the Weyl vector  $\rho = -\frac{k}{2}(n-1, n-3, ..., -n+1)$ . Recall the matrix cone  $\Omega = \Omega_n(\mathbb{F})$  with  $d = \dim_{\mathbb{R}}(\mathbb{F})$ . For  $k = \frac{d}{2}$ , the functions  $\mathcal{F}(\lambda, ...)$  can be identified with the spherical functions of  $\Omega$ .

# 6 Laplace Transform Identities

In this section, we present the main results from [2], which generalize the Laplace transform formula (2.2) for the spherical functions of a matrix cone.

**Theorem 6.1 (Master Theorem for the Type** A Laplace Transform) Let  $\mu \in \mathbb{C}$ with  $Re \ \mu > \mu_0$  and  $z \in \mathbb{C}^n$  with  $Re \ z > 0$ . Then for all  $\eta \in \mathbb{N}_0^n$  and  $\lambda \in \Lambda_n^+$ ,

(1) 
$$\int_{\mathbb{R}^{n}_{+}} E(-x, z) E_{\eta}(x) \Delta(x)^{\mu-\mu_{0}-1} \omega(x) dx = \Gamma_{n}(\eta_{+} + \underline{\mu}) E_{\eta}(\frac{1}{z}) \Delta(z)^{-\mu}$$
(2) 
$$\int_{\mathbb{R}^{n}_{+}} E(-x, z) E_{\eta}(x) \Delta(x)^{\mu-\mu_{0}-1} \omega(x) dx = \Gamma_{n}(\eta_{+} + \underline{\mu}) E_{\eta}(\frac{1}{z}) \Delta(z)^{-\mu}$$

(2) 
$$\int_{\mathbb{R}^n_+} J(-x,z) C_{\lambda}(x) \Delta(x)^{\mu-\mu_0-1} \omega(x) dx = \Gamma_n(\lambda+\underline{\mu}) C_{\lambda}(\frac{1}{z}) \Delta(z)^{-\mu}.$$

In view of identity (3.2), formula (2) is just Macdonald's [14] Conjecture (C). It follows immediately from part (1) by symmetrization. Part (1) was first stated (at a formal level) by Baker and Forrester in [1], and justified via Laguerre expansions.

In [2] we give a completely different, rigorous proof by induction on  $\eta$ , using the raising operator of Knop and Sahi [12] for the non-symmetric Jack polynomials. By analytic continuation, Theorem 6.1 extends to the Cherednik kernel and the Heckman-Opdam hypergeometric function, as follows.

**Theorem 6.2** Let  $\mu \in \mathbb{C}$  with  $\operatorname{Re} \mu > \mu_0$ . Then for  $\lambda \in \mathbb{C}^n$  with  $\operatorname{Re} \lambda \ge 0$  and  $z \in \mathbb{C}^n$  with  $\operatorname{Re} z > 0$ , we have

(1) 
$$\int_{\mathbb{R}^{n}_{+}} E(-z, x) \mathcal{G}(\lambda, x) \Delta(x)^{\mu-\mu_{0}-1} \omega(x) dx = \Gamma_{n}(\lambda+\rho+\underline{\mu}) \mathcal{G}(\lambda, \frac{1}{z}) \Delta(z)^{-\mu}.$$
  
(2) 
$$\int_{\mathbb{R}^{n}_{+}} J(-z, x) \mathcal{F}(\lambda, x) \Delta(x)^{\mu-\mu_{0}-1} \omega(x) dx = \Gamma_{n}(\lambda+\rho+\underline{\mu}) \mathcal{F}(\lambda, \frac{1}{z}) \Delta(z)^{-\mu}.$$

Formula (2) generalizes the Laplace transform identity (2.2) for the spherical functions of a cone  $\Omega_n(\mathbb{F})$ .

## 7 Some Applications of the Master Theorem

We conclude this overview with two results from [2] which are based on Master Theorem 6.1. The first one is a Post-Widder inversion theorem for the type A Laplace transform  $\mathcal{L}$ , which is the counterpart of an inversion formula of Faraut and Gindikin [5] on symmetric cones.

**Theorem 7.1 (Post-Widder Inversion Formula for**  $\mathcal{L}$ ) *Let*  $f : \mathbb{R}^n_+ \to \mathbb{C}$  *be measurable and bounded, and suppose that* f *is continuous at*  $\xi \in \mathbb{R}^n_+$ *. Then* 

$$f(\xi) = \lim_{\nu \to \infty} \frac{(-1)^{n\nu}}{\Gamma_n(\nu + \mu_0 + 1)} \Delta\left(\frac{\nu}{\xi}\right)^{\nu + \mu_0 + 1} \left(\Delta(T)^{\nu}(\mathcal{L}f)\right) \left(\frac{\nu}{\xi}\right),$$

As a second application, we present some Laplace transform identities for Jackhypergeometric series. First, one observes that the non-symmetric Jack polynomials  $E_{\eta}$  have a renormalization  $L_{\eta} = c_{\eta}E_{\eta}$  such that

$$\sum_{|\eta|=m} L_{\eta}(z) = (z_1 + \ldots + z_n)^m = \sum_{|\lambda|=m} C_{\lambda}(z) \quad (m \in \mathbb{N}_0).$$

For parameters  $\mu \in \mathbb{C}^p$  and  $\nu \in \mathbb{C}^q$  with  $p, q \in \mathbb{N}_0$  we define the symmetric and non-symmetric Jack hypergeometric series

$${}_{p}F_{q}(\mu,\nu;z,w) := \sum_{\lambda \in \Lambda_{n}^{+}} \frac{[\mu_{1}]_{\lambda} \cdots [\mu_{p}]_{\lambda}}{[\nu_{1}]_{\lambda} \cdots [\nu_{q}]_{\lambda}} \frac{C_{\lambda}(z)C_{\lambda}(w)}{|\lambda|! C_{\lambda}(\underline{1})}$$
$${}_{p}K_{q}(\mu,\nu;z,w) := \sum_{\eta \in \mathbb{N}_{0}^{n}} \frac{[\mu_{1}]_{\eta_{+}} \cdots [\mu_{p}]_{\eta_{+}}}{[\nu_{1}]_{\eta_{+}} \cdots [\nu_{q}]_{\eta_{+}}} \frac{L_{\lambda}(z)L_{\lambda}(w)}{|\lambda|! L_{\lambda}(\underline{1})},$$

with the generalized Pochhammer symbol

$$[a]_{\lambda} = \frac{\Gamma_n(\underline{a} + \lambda)}{\Gamma_n(\underline{a})} \quad (a \in \mathbb{C}, \ \lambda \in \Lambda_n^+).$$

The convergence properties of these series are made precise in [2], improving results for  ${}_{p}F_{q}$  from [10]. In particular, for  $p \leq q$  both series are entire functions. For  $w = \underline{1}$  and multiplicity  $k = \frac{d}{2}$  related to a matrix cone  $\Omega_{n}(\mathbb{F})$ , the  ${}_{p}F_{q}$ -series coincide with classical hypergeometric series on  $\Omega$ , c.f. [6, 8]. They are for instance useful in multivariate statistics. There are interesting special cases leading to special functions from Dunkl theory, such as the type A Dunkl kernel and Bessel function:

$$_{0}K_{0}(z, w) = E(z, w), \quad _{0}F_{0}(z, w) = J(z, w).$$

#### Theorem 7.2

(1) Let p < q and consider  $\mu' \in \mathbb{C}$  with  $\operatorname{Re} \mu' > \mu_0$ . Then for all  $z, w \in \mathbb{C}^n$  with  $\operatorname{Re} z > 0$ ,

$$\int_{\mathbb{R}^{n}_{+}} E(-z, x) {}_{p}K_{q}(\mu; \nu; w, x)\Delta(x)^{\mu'-\mu_{0}-1}\omega(x)dx$$
$$= \Gamma_{n}(\mu')\Delta(z)^{-\mu'} {}_{p+1}K_{q}((\mu', \mu); \nu; w, \frac{1}{z}).$$

(2) If p = q, then part (1) is valid under the condition  $||w||_{\infty} \cdot ||\frac{1}{Rez}||_{\infty} < \frac{1}{n}$ . The same formulas hold for  ${}_{p}F_{q}$ .

Acknowledgments Part of the research has been financially supported by DFG grant RO 1264/4-1.

# References

- 1. T.H. Baker, P.J. Forrester, Non-symmetric Jack polynomials and integral kernels. Duke Math. J. 95, 1–50 (1998)
- 2. D. Brennecken, M. Rösler, The Dunkl Laplace transform and Macdonald's hypergeoemetric series. Trans. Am. Math. Soc. **376**, 2419–2447 (2023)
- 3. M. de Jeu, The Dunkl transform. Invent. Math. 113, 147–162 (1993)
- C.F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables, 2nd edn. (Cambridge University Press, Cambridge, 2014)
- J. Faraut, S. Gindikin, Deux formules d'inversion pour la transformation de Laplace sur un cône symétrique. C. R. Acad. Sci. Paris Sér. I Math. 310, 5–8 (1990)
- 6. J. Faraut, A. Korányi, Analysis on Symmetric Cones (Oxford Science, Clarendon Press, 1994)
- P.J. Forrester, Log-Gases and Random Matrices. London Mathematical Society Monographs Series, vol. 34 (Princeton University Press, Princeton, 2010)

- 8. K. Gross, D. Richards, Special functions of matrix argument. I: algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Am. Math. Soc. **301**, 781–811 (1987)
- 9. G. Heckman, E. Opdam, Jacobi polynomials and hypergeometric functions associated with root systems, in *Encyclopedia of Special Functions, Part II: Multivariable Special Functions* (Cambridge University Press, Cambridge, 2021)
- J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math. Anal. 24, 1086–1100 (1993)
- 11. B. Krötz, E. Opdam, Analysis on the crown domain. Geom. Funct. Anal. 18, 1326–1421 (2008)
- F. Knop, S. Sahi, A recursion and a combinatorial formula for Jack polynomials. Invent. Math. 128, 9–22 (1997)
- I.G. Macdonald, Commuting differential operators and zonal spherical functions, in *Algebraic Groups (Utrecht 1986)*, ed. by A.M. Cohen et al. Lecture Notes in Mathematics, vol. 1271 (Springer, Berlin, 1987)
- 14. I.G. Macdonald, Hypergeometric functions I (2013). arXiv:1309.4568v1 (math.CA)
- E.M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–112 (1995)
- M. Rösler, Dunkl operators: theory and applications, in ed. by E. Koelink, W. van Assche. Lecture Notes in Mathematics, vol. 1817 (Springer, Berlin, 2003), pp. 93–136
- M. Rösler, Riesz distributions and the Laplace transform in the Dunkl setting of type A. J. Funct. Anal. 278(12), 108506, 29pp. (2020)
- S. Sahi, G. Zhang, Biorthogonal expansion of non-symmetric Jack functions. SIGMA Symmetry Integrability Geom. Methods Appl. 3, 106, 9pp. (2007)
- R.P. Stanley, Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76– 115 (1989)