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Abstract In this note, we give an overview of the Laplace transform in Dunkl 
theory associated with root systems of type A and some of its applications. The 
results generalize well-known facts in the spherical analysis on symmetric cones. 
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1 Introduction 

In his unpublished manuscript [14] from the 1980s, I.G. Macdonald presented a 
concept generalizing many known properties of the radial analysis on symmetric 
cones, c.f. [6]. His idea was to replace the spherical polynomials of the cone, which 
are given by Jack polynomials with a certain half-integer index, by Jack polynomials 
with an arbitrary index. However, many of the statements in [14] remained 
conjectural. This was due to the fact that the associated Laplace transform, now 
involving multivariate Bessel functions instead of the usual exponential function, 
was not well-understood at that time. Macdonald’s ideas were taken up in [1] 
within the study of quantum integrable models of Calogero-Moser type, where also 
their connection to Dunkl theory was recognized, and later for example in [18]. 
A rigorous treatment of the relevant Laplace transform in the framework of Dunkl 
theory was given only much later in [17] and continued in [2], where a new proof for 
the fundamental Laplace transform identity of Jack polynomials from [1] is given  
and also various statements from [10, 14] are improved or made precise. In the 
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present article, we give an overview of results from [2, 17], which constitute natural 
generalizations of radial analysis on symmetric cones in the framework of Dunkl 
theory associated with root systems of type A. In particular, we describe inversion 
theorems for the Laplace transform, as well as applications to Riesz distributions 
and Jack-hypergeometric series. 

2 Motivation: Analysis on Hermitian Matrices 

Consider the space of .n × n-Hermitian matrices over one of the (skew-) fields . F =
R,C,H,

. Hn(F) = {x ∈ Mn(F) : x = xt }.

This is a real Euclidean vector space with scalar product .〈x, y〉 = Re tr(xy). The  
cone of positive definite matrices 

. Ωn(F) = {x ∈ Hn(F) : x positive definite}

naturally identifies with the Riemannian symmetric space .GLn(F)/Un(F). Actu-
ally, .Hn(F) carries the structure of a Euclidean Jordan algebra and .Ω = Ωn(F) is 
a symmetric cone, see [6] for some background on these and the subsequent facts. 
The fundamental objects in the harmonic analysis on . Ω are its spherical functions 

.ϕλ(x) =
⎰

K

Δλ(kxk−1)dk, x ∈ Ω, λ ∈ C
n; (2.1) 

here the functions .Δλ(x) are power functions on . Ω generalizing the usual powers 
. xλ for .x ∈ ]0,∞[ and .λ ∈ C. In particular, if .x = diag(ξ1, . . . , ξn), then . xλ =
ξ

λ1
1 · · · ξλn

n . The spherical function . ϕλ is K-invariant (K acts on . Ω by conjugation), 
and hence depends only on the spectrum of its argument. Of particular importance in 
the analysis on . Ω is their Laplace transform [6, Chapt. VII]: Let . Re λj > d

2 (j − 1).

Then 

.

⎰
Ω

e−〈x,y〉ϕλ(x)Δ(x)
− d

2 (n−1)−1
dx = 𝚪Ω(λ)ϕλ(y

−1), (2.2) 

with .𝚪Ω the gamma function associated with . Ω, . Δ the (Jordan) determinant and 
.d = dimRF ∈ {1, 2, 4}. Let 

.Λ+
n := {λ ∈ N

n
0 : λ1 ≥ . . . ≥ λn ≥ 0}
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denote the set of partitions of length at most n. Then the spherical functions . ϕλ with 
.λ ∈ Λ+

n are polynomials. More precisely, let .Cα
λ = C

(α)
λ , λ ∈ Λ+

n denote the Jack 
polynomials in n variables of index .α ∈ [0,∞], normalized such that 

. (z1 + · · · + zn)
m =

⎲
|λ|=m

Cα
λ (z) (z ∈ C

n, m ∈ N0).

Then, as observed by Macdonald in [13], 

. ϕλ(x) = Cα
λ (spec(x))

Cα
λ (1)

with α = 2
d
, 1 = (1, . . . , 1).

The Jack polynomials .Cα
λ are homogeneous of degree . |λ| = λ1 + · · · + λn

and symmetric. They are, among others, important in algebraic combinatorics, 
multivariate statistics, and random matrix theory; see [19] for their basic properties. 
For .α = 1, they coincide with the Schur polynomials. If .n = 1, then . Cα

λ (z) = zλ.

Let us now consider the Laplace transform of a K-invariant function .f : Ω → C. 
Put .R+ :=]0,∞[. Writing .f (x) = ~f (σ(x)) with a symmetric function . ~f : Rn+ →
C, calculation in polar coordinates gives 

. Lf (y) =
⎰

Ω

e−〈x,y〉f (x)dx =
⎰
R

n+
0F

2/d

0 (−ξ, spec(y)) ~f (ξ)
∏

1≤i<j≤n

|ξi − ξj |d dξ

with the Jack-hypergeometric series 

. 0F
α
0 (z, w) =

⎲
λ∈Λ+

n

1

|λ|!
Cα

λ (z)Cα
λ (w)

Cα
λ (1)

.

In [14], Macdonald presented a formularium involving Jack polynomials of arbitrary 
index instead of the spherical polynomials on a cone, where he formally replaced the 
index .α = 2/d in the Laplace transform by an arbitrary index .α > 0. This led to his 
conjectural formula (C) for the Laplace transform of Jack polynomials substituting 
(2.2), see Theorem 6.1 below. In [1] a first proof of this formula was sketched, still 
leaving convergence issues open, and it was also observed that .0Fα

0 coincides with 
a Bessel function of type .An−1 in Dunkl theory. 

3 The Dunkl Setting and Laplace Transform in Type A 

Dunkl operators are differential-reflection operators associated with root systems 
which generalize the usual directional derivatives. For a general background, we 
refer to [3, 4, 16]. In this note we consider the root system . R = An−1 = {±(ei−ej ) :
1 ≤ i < j ≤ n} in . Rn (with its standard inner product). The associated reflection
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group is . Sn, the symmetric group on n elements. The rational Dunkl operators 
associated with R and some fixed multiplicity parameter .k ∈ [0,∞[ are given by 

. Tj = ∂j + k ·
⎲
i /=j

1 − sij

xj − xi

(1 ≤ j ≤ n),

where . sij denotes the orthogonal reflection in the hyperplane .(ei − ej )
⊥, which acts 

by exchanging the coordinates . xi and . xj . The operators . Tj commute and have nice 
mapping properties similar to usual directional derivatives. In particular, they act 
continuously on the classical Schwartz space .S(Rn), and thus by duality also on 
the space .S '(Rn) of tempered distributions. For a polynomial .p ∈ C[Rn], we shall 
write .p(T ) for the differential-reflection operator obtained from .p(x) by replacing 
. xj by . Tj . There is a unique holomorphic function .E = Ek ∈ O(Cn × C

n), the 
Dunkl kernel of type .An−1 associated with k, satisfying 

. TjE(z, . ) = zjE(z, . ) for j = 1, . . . , n, E(z, 0) = 1.

The Dunkl kernel E is symmetric in its arguments and satisfies . E(sz,w) =
E(z, sw) and .E(σz, σw) = E(z,w) for all .s ∈ C, σ ∈ Sn. Moreover, . E(x, y) > 0
and .|E(ix, y)| ≤ 1 for all .x, y ∈ R

n. If .k = 0, then .E(z,w) = e〈z,w〉, where . 〈 . , . 〉
is extended to .Cn × C

n in a bilinear way. Note that 

. spanR(R) = {x ∈ R
n : x1 + · · · + xn = 0} =: Rn

0 .

This easily implies that 

.E(z,w + s) = e〈z,s〉 · E(z,w) for s := (s, · · · , s) ∈ C
n with s ∈ C. (3.1) 

The associated (type A) Bessel function is given by 

. J (z,w) := 1

n!
⎲
σ∈Sn

E(σz,w).

It is symmetric in both arguments. As observed in [1], it can be written as a Jack-
hypergeometric series: 

.J (z,w) = 0F
α
0 (z, w) with α = 1/k. (3.2) 

For .x ∈ R
n+, a ∈ R

n and .z ∈ C
n with .Re z ≥ a (which is understood 

componentwise), we have the exponential bound (see [17]) 

.|E(−z, x)| ≤ exp
(−‖x‖1 · min

1≤i≤n
ai

)
. (3.3)
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Following [1], we define the type A Laplace transform of functions . f ∈
L1

loc(R
n+) by 

. Lf (z) =
⎰
R

n+
f (x)E(−z, x)ω(x)dx (z ∈ C

n),

with the Dunkl weight 

. ω(z) =
∏

1≤i<j≤n

|zi − zj |2k on C
n.

Identity (3.1) and estimate (3.3), which are very specific for root systems of type A, 
imply nice properties for the Laplace transform . L. For example, if f is exponentially 
bounded with . |f (x)| ≤ Ce〈x,s〉 for some .s ∈ R, then .Lf (z) exists and is 
holomorphic on . {z ∈ C

n : Re z > s}.
Theorem 3.1 ([17]) 

(1) Suppose that .Lf (a) exists for some .a ∈ R
n. Then .Lf (z) exists and is 

holomorphic on .{z ∈ C
n : Re z > a}. Moreover, for each polynomial 

.p ∈ C[Rn], p(−T )(Lf ) = L(pf ) on . {Re z > a}.
(2) (Cauchy inversion theorem). Suppose that .Lf (s) exists for some .s ∈ R and 

that . y |→ Lf (s + iy) ∈ L1(Rn, ω). Then 

. 
(−i)n

c2

⎰
Re z=s

Lf (z)E(x, z)ω(z)dz =
⎧

f (x) a.e. on R
n+

0 on R
n \ Rn+,

with the Mehta-constant . c = ⎰
Rn e−|x|2/2ω(x)dx.

(3) (Injectivity) Suppose that .Lf = 0 on some subspace .{z ∈ C
n : Re z = s }. Then 

. f = 0.

The Laplace transform . L extends naturally to distributions, as follows. Let 

. S '+(Rn) = {u ∈ S '(Rn) : supp u ⊆ R
n+ }.

Then the Laplace transform of .u ∈ S '+(Rn) is defined, for .z ∈ C
n with .Re z > 0, by  

. Lu(z) := 〈u, χE( . ,−z)〉,

where .χ ∈ C∞(Rn) is an arbitrary cutoff function for . Rn+, i.e. . supp(χ) ⊆]−ϵ,∞[n
for some .ϵ > 0 and .χ = 1 in a neighborhood of .Rn+. Indeed, .χE( . ,−z) belongs 
to .S(Rn) and the above definition is independent of the choice of . χ. The Laplace 
transform on .S '+(Rn) is also injective.
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4 Riesz Distributions in the Dunkl Setting 

We maintain the previous notations and put 

. μ0 := k(n − 1), Δ(x) := x1 · · · xn for x ∈ R
n.

Moreover, we introduce the multivariate gamma function 

. 𝚪n(λ) :=
n∏

j=1

𝚪(1 + jk)

𝚪(1 + k)
·

n∏
j=1

𝚪(λj − k(j − 1)) (λ ∈ C
n).

and also write .𝚪n(λ) = 𝚪n(λ) for .λ ∈ C. For indices .μ ∈ C with .Re μ > μ0 we 
define the Riesz measures 

. 〈Rμ, ϕ〉 := 1

𝚪n(μ)

⎰
R

n+
ϕ(x)Δ(x)μ−μ0−1ω(x)dx, ϕ ∈ S(Rn)

which we consider as tempered distributions on .Rn. The following results of [17] 
generalize well-known properties of Riesz distributions on a symmetric cone, c.f. 
[6]. 

Theorem 4.1 

(1) . Δ(T )Rμ = Rμ−1 in S '(Rn).

Via this identity, the mapping .μ |→ Rμ extends to a holomorphic function on . C

with values in . S '(Rn).

(2) The Riesz distribution .Rμ ∈ S '(Rn) is supported in . Rn+ .

(3) Dunkl-Laplace transform: . LRμ(y) = Δ(y)−μ for all y ∈ R
n+ .

(4) .R0 = δ0. 
(5) . Rμ is a (positive) measure iff . μ belongs to the generalized Wallach set 

. 
{
0, k, . . . , k(n − 1) = μ0

} ∪ {μ ∈ R : μ > μ0}.

In fact, the measures .Rkj with .0 ≤ j ≤ n − 1 can be written down recursively. 
They have shrinking supports in the facets of .∂(Rn+). See [17] for details. 

5 The Cherednik Kernel and Non-symmetric Jack 
Polynomials 

Our generalization of the Laplace transform formula (2.2) for the spherical functions 
of the cone .Ω = Ωn(F) shall involve non-symmetric Jack polynomials and the 
Opdam-Cherednik kernel of type .An−1. In this section, we give the necessary
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background from [7, 12, 15], c.f. also [2]. First, we recall the usual dominance order 
on the set of partitions . Λ+

n , which is given by 

. μ ≤D λ iff |λ| = |μ| and
r⎲

j=1

μj ≤
r⎲

j=1

λj for all r = 1, . . . , n.

This partial order extends from .Λ+
n to . Nn

0 as follows: For each composition . η ∈ N
n
0

denote by .η+ ∈ Λ+
n the unique partition in the .Sn-orbit of . η. The dominance order 

on . Nn
0 is then defined by 

. κ ⪯ η iff

⎧
κ+ ≤D η+ , κ+ /= η+
wη ≤ wκ , κ+ = η+

,

where .wη ∈ Sn is the shortest element with .wηη+ = η and . ≤ is the Bruhat order 
on . Sn. Now consider the (rational) Cherednik operators associated with the positive 
subsystem .R+ = {ej − ei : 1 ≤ i < j ≤ n} of .R = An−1 and multiplicity .k ≥ 0, 

. Dj := xjTj + k(1 − n) + k
⎲
i>i

sij (j = 1, . . . , n),

where the . Tj are the type A Dunkl operators with multiplicity k as above. The 
operators .Dj are related by a change of variables to the Cherednik operators . Dej

of trigonometric Dunkl theory as introduced in [15]; we refer to [2] for the precise 
connection. Note that . Dj leaves the space .C[Rn] invariant and preserves the degree 
of homogeneity. Indeed, it acts on .C[Rn] in an upper triangular way: 

. Dj x
η = ηjx

η +
⎲
κ≺η

dκηx
κ

with coefficients .dκη ∈ R and 

. ηj = ηj − k#{i < j | ηi ≥ ηj } − k#{i > j | ηi > ηj }.

The non-symmetric Jack polynomials of index .α = 1/k are defined as the unique 
basis .

(
Eη)η∈Nn

0
of .C[Rn] satisfying 

(1) .Eη(x) = xη + ∑
κ≺η cηκxκ with . cκη ∈ C, 

(2) .DjEη = ηjEη for all .j = 1, . . . , n. 

By definition, . Eη is homogeneous of degree .|η| = η1 + . . . + ηn, and for .k = 0 we 
have .Eη(x) = xη.
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Property (2) generalizes: For each spectral parameter .λ ∈ C
n, there is a unique 

analytic function .f = G(λ, . ) in an open neighborhood of . Rn, called the Opdam-
Cherednik kernel, satisfying 

.Dj f = (
λj − k

2
(n − 1)

)
f for j = 1, . . . , n; f (0) = 1. (5.1) 

Actually, it follows from results of [11] that the kernel . G is holomorphic on . Cn×{z ∈
C

n : Re z > 0}. Symmetrization of . G gives the Heckman-Opdam hypergeometric 
function 

. F(λ, z) = 1

n!
⎲
σ∈Sn

G(λ, σz).

Both . F and . G differ by a change of variables from the notions used in [9, 15]. The 
uniqueness of . G shows that for .η ∈ N

n
0, 

.
Eη(x)

Eη(1)
= G

(
η + k

2
(n − 1)1 , x

)
, η = (η1, . . . , ηn). (5.2) 

Moreover, the symmetric Jack polynomials can be obtained via symmetrization 
from the non-symmetric ones: For partitions . λ ∈ Λ+

n ,

. 
Cλ(x)

Cλ(1)
= 1

n!
⎲
σ∈Sn

Eλ(σx)

Eλ(1)
= F(λ − ρ, x)

with the Weyl vector . ρ = − k
2 (n − 1, n − 3, . . . ,−n + 1). Recall the matrix cone 

.Ω = Ωn(F) with .d = dimR(F). For .k = d
2 , the functions .F(λ, . ) can be identified 

with the spherical functions of . Ω.

6 Laplace Transform Identities 

In this section, we present the main results from [2], which generalize the Laplace 
transform formula (2.2) for the spherical functions of a matrix cone. 

Theorem 6.1 (Master Theorem for the Type A Laplace Transform) Let . μ ∈ C

with .Reμ > μ0 and .z ∈ C
n with .Re z > 0. Then for all .η ∈ N

n
0 and .λ ∈ Λ+

n , 

(1) . 

⎰
R

n+
E(−x, z)Eη(x)Δ(x)μ−μ0−1ω(x)dx = 𝚪n(η+ + μ)Eη

( 1
z

)
Δ(z)−μ.

(2) . 

⎰
R

n+
J (−x, z) Cλ(x)Δ(x)μ−μ0−1ω(x)dx = 𝚪n(λ + μ)Cλ

( 1
z

)
Δ(z)−μ.

In view of identity (3.2), formula (2) is just Macdonald’s [14] Conjecture (C). It 
follows immediately from part (1) by symmetrization. Part (1) was first stated (at a 
formal level) by Baker and Forrester in [1], and justified via Laguerre expansions.
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In [2] we give a completely different, rigorous proof by induction on . η, using the  
raising operator of Knop and Sahi [12] for the non-symmetric Jack polynomials. 
By analytic continuation, Theorem 6.1 extends to the Cherednik kernel and the 
Heckman-Opdam hypergeometric function, as follows. 

Theorem 6.2 Let .μ ∈ C with .Reμ > μ0. Then for .λ ∈ C
n with .Re λ ≥ 0 and 

.z ∈ C
n with .Re z > 0, we have 

(1) . 

⎰
R

n+
E(−z, x)G(λ, x)Δ(x)μ−μ0−1ω(x)dx = 𝚪n(λ+ρ +μ)G(λ, 1

z
)Δ(z)−μ.

(2) . 

⎰
R

n+
J (−z, x)F(λ, x)Δ(x)μ−μ0−1ω(x)dx = 𝚪n(λ+ρ+μ)F(λ, 1

z
)Δ(z)−μ.

Formula (2) generalizes the Laplace transform identity (2.2) for the spherical 
functions of a cone . Ωn(F).

7 Some Applications of the Master Theorem 

We conclude this overview with two results from [2] which are based on Master 
Theorem 6.1. The first one is a Post-Widder inversion theorem for the type A 
Laplace transform . L, which is the counterpart of an inversion formula of Faraut 
and Gindikin [5] on symmetric cones. 

Theorem 7.1 (Post-Widder Inversion Formula for . L) Let .f : R
n+ → C be 

measurable and bounded, and suppose that f is continuous at .ξ ∈ R
n+ . Then 

. f (ξ) = lim
ν→∞

(−1)nν

𝚪n(ν + μ0 + 1)
Δ

⎛ν

ξ

⎞ν+μ0+1(
Δ(T )ν(Lf )

)⎛ν

ξ

⎞
,

As a second application, we present some Laplace transform identities for Jack-
hypergeometric series. First, one observes that the non-symmetric Jack polynomials 
. Eη have a renormalization .Lη = cηEη such that 

. 
⎲

|η|=m

Lη(z) = (z1 + . . . + zn)
m =

⎲
|λ|=m

Cλ(z) (m ∈ N0).

For parameters .μ ∈ C
p and .ν ∈ C

q with .p, q ∈ N0 we define the symmetric and 
non-symmetric Jack hypergeometric series 

. pFq(μ, ν; z,w) :=
⎲

λ∈Λ+
n

[μ1]λ · · · [μp]λ
[ν1]λ · · · [νq ]λ

Cλ(z)Cλ(w)

|λ|!Cλ(1)

. pKq(μ, ν; z,w) :=
⎲
η∈Nn

0

[μ1]η+ · · · [μp]η+
[ν1]η+ · · · [νq ]η+

Lλ(z)Lλ(w)

|λ|!Lλ(1)
,
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with the generalized Pochhammer symbol 

. [a]λ = 𝚪n(a + λ)

𝚪n(a)
(a ∈ C, λ ∈ Λ+

n ).

The convergence properties of these series are made precise in [2], improving results 
for .pFq from [10]. In particular, for .p ≤ q both series are entire functions. For 
.w = 1 and multiplicity .k = d

2 related to a matrix cone . Ωn(F), the . pFq -series 
coincide with classical hypergeometric series on . Ω, c.f. [6, 8]. They are for instance 
useful in multivariate statistics. There are interesting special cases leading to special 
functions from Dunkl theory, such as the type A Dunkl kernel and Bessel function: 

. 0K0(z, w) = E(z,w), 0F0(z, w) = J (z,w).

Theorem 7.2 

(1) Let .p < q and consider .μ' ∈ C with .Reμ' > μ0. Then for all .z,w ∈ C
n with 

. Re z > 0,

. 

⎰
R

n+
E(−z, x) pKq(μ; ν;w, x)Δ(x)μ

'−μ0−1ω(x)dx

= 𝚪n(μ
')Δ(z)−μ'

p+1Kq((μ', μ); ν;w, 1
z
).

(2) If .p = q, then part (1) is valid under the condition . ‖w‖∞ · ‖ 1
Re z

‖∞ < 1
n
. 

The same formulas hold for . pFq . 

Acknowledgments Part of the research has been financially supported by DFG grant RO 1264/4-
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