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ABSTRACT

In this paper we introduce a family of convolution structures on the real
line which are derived from the Bessel-Kingman hypergroups by a certain
complexification of spherical Bessel functions. Though their convolution is not
positivity-preserving, these “Bessel-type signed hypergroups” provide a natural
extension of the usual group structure on the real line.

Introduction

While on the half-line Ry = {z € R: z > 0} a variety of non-isomorphic hyper-
group structures is known, there do not exist any nontrivial hypergroup structures
on R (Zeuner{13]). As Zeuner’s proof shows, this is mainly due to the hypergroup
axiom on support continuity of the convolution with respect to the Michael topol-
ogy. .So one may ask whether the situation becomes different if the hypergroup
axioms are weakened. One possibility of doing so is provided by the framework
of so-called signed hypergroups as introduced by the author in [8]. The concept
of signed hypergroups generalizes the hypergroup axiomatics in several points,
mainly in ,&umb&obwbmdo&ﬂi@ and $upport-continuity of the convolution. It
is aimed to allow the development of a commutative harmonic analysis in close
analogy to the hypergroup case; see Rosler [8, 9], and for a survey, Ross [10].

In this contribution we construct a class of commutative signed hypergroups

1

Xasa > —5 on R, which are intimately connected with the Bessel-Kingman 2

hypergroups on Ry . The characters of X, are given as complex combinations of
the normalized spherical Bessel functions j, and jey1, namely,

T$(2) = ja(Az) +iCa A jar1(Ae), A zER,
with Co = £(a+1)"%. This is a natural extension of the formula
e = cosAz + isinde = j_ ;5(0z) +irz J172(Az)

for the usual group characters on R.
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1. Preliminaries

If not stated otherwise, our basic notation is the same as in the monograph of
Bloom and Heyer [2], to which we also refer for an introduction to hypergroups.
Here we recapitulate some facts on Bessel-Kingman hypergroups which EE. be of
interest later on, and give a short summary on commutative signed hypergroups.
For a background on Bessel hypergroups we refer to Kingman [7); for details
concerning mwmnmm.gﬁmmmwocwm see Résler [8, 9].

1.1. Bessel-Kingman hypergroups
For a> —1, let

w@ i= 2°T(a + 1) ,wmv = on.rs Wﬁmwwwﬂwmﬁmvwﬁ z€C,

o , . 1
denote the normalized spherical Bessel functions of order «. In case « > —3,

they satisfy the product formula

Ja(2)jaly) = Ma \ n.pf\am + 32 — 2zy cosh) sin®* 6 do (1.1)
0 E

for z,y > 0, with
: . Ma+1)

M, = ———"};

] T T(a+ 3I(3)

see e.g. Watson [12], 11.4. This implies the following product formula for the

functions ©$(x) 1= jo(Azr), With @ > —1 and parameter A € C :

swgsw@vn \ sﬁ&??.?&%&&%,mo;évo.
0 .

where

-

. - Ala,y, 201
ko1, 2) = 22271 M, - Ale,y,2)77

(zyz)?=
Here 14 is the indicator function of A and .

: H:Hlﬁ_.HITSAN.v. AH.MV

A7) = VETIF @ Ty - AE -y + G+ 2 2)

s

denotes the area of the triangle with sides z,y,z > 0:
The ¢f, A € € are exactly the multiplicative functions of the Bessel-Kingman
hypergroup H, on R, , with the convolution on MP*MR,) being defined by
deg % £4)(2) = ka(z,y,2)22* 1 dz. H, is a commutative hypergroup with 0 as
neutral :element and the identity mapping as involution. . Its dual space, that is
the space of bounded multiplicative and symmetric functions on H,, is given
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by Ho = {¢$ : A € Ry}. H, is self-dual with Haar- and Plancherel measure
(2°T(a + 1))~ *z?**1dz. For details, we refer to Bloom and Heyer [2].

1.2. Commutative signed hypergroups

For a locally compact Hausdorff space X let ME(X) denote the subspace of real

measures from M%(X), and 7. the o(M®(X),Co(X))-topology on M®(X).

A commutative signed hypergroup is a triple (X,m,w) consisting of a locally

compact, ¢-compact Hausdorff space X, a distinguished positive Radon measure

m € My(X) with suppm = X and a commutative 7, -continuous mapping

w:X x X — ME(X), (z,y) — &z * &y , satisfying the following axioms:

(Al) For each z € X and f € Cy(X), the translate T®f : y v e, * £,(f) again
belongs to Cp(X). Furthermore, for f € C.(X) and any compact subset
K C X, the set |J,cx supp (T*f) is relatively compact in X.

(A2) |leg *ey|| £ C for all z,y € X, where C > 0 is a constant.
(A3) The canonical continuation * of w to M?®(X), which is given by

pru(f) = \x e relf) duev)(@y) for f € Co(X),

is associative.
(A4) There exists a neutral element e € X with e, e, = ¢, for all z € X.
(A5) There exists an involutive homeomorphism ~ on X such that

(ex*ey)” = egxez forall z,y € X,

where p~(A):= p{A™) for Borel measures u on X and Borel sets A C X.
(A6) For all f,g € C.(X) and z € X the following adjoint relation holds:

\xﬁﬂabn%@ = \xiﬂmags.

The algebra (M®(X),*) becomes a commutative Banach-*-algebra with unit e,
the involution g~ p—, and with the norm [|uf)’ := __btz , where L,(v) = p+*v
for p, v € M*(X). LYX,m) with the same multiplication and norm is a closed
*.ideal in (M®(X),*,].]l'). Equipped with the topology of uniform convergence
o1t compact subsets of X, the character spaces

Xp(X):={p€C(X): p#0, e, xey(p) = GAHVGAS forall z,y € X} and
X = {p € X(X): o) = p(z) forallz € X} ,

are canonically boBmoBoHﬁ.Eo to the spectrum A(L}(X,m)) and its symmetric
part Ag(L*(X,m)) respectively. Fourier transforms are defined in the usual way,

i
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and there hold generalized Bochner and Plancherel theorems. In particular, there
exists a unique measure 7 € §+C\m ), the Plancherel measure of (X,m,w), with

\ |f12dm = \> |Fl2dr  for all f € Co(X).
X X

2. Modified Bessel functions on R and their product formula

For @ > —1 and X € € we define the modified Bessel functions ¥§ on C by

1

U (2) = 0$(2) + 10y Az ST (2), with Co = TEFSTR

The ¥$ are holomorphic on €; for Az € € \ {z € R:z < 0} they can also be

written as
o(z) = m:%%mb (Ta(02) + iJasr(A2))-

. . —-1/2 ;
Note that in the special case a = —3 we just have ¥} Y (2) = ei**.

2.1. Lemma. (Laplace-representation of ¥$ ). Let o > —%. Then

. 1
¢(z) = Ep\ (1 — 1) 3 (1 + 9)°+5dt  forall ), z€ C..
-1 .

Proof. Mehler’s formula for Bessel functions with index a > —% (cf. Szegd [11],
(1.71.6)) can be written as

! 1
oS(z) = EQ\ cos(Azt)(1 — t2)*" 2 dt.
~1
With this representation for Swﬁ, partial integration yields
! 1
Azt () = 20+ 1) Mo \ sin(Azt)(1 — ¢2)*7 2 tdt,
-1

and from these two the assertion follows.

2.2. Corollary. For a > —3 and A € R the estimate |¥(z)] < el Im!

holds. In particular,

[U¢(z)] < 1 = U$0) forall), z€R.
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In case a = —1 this is obvious; for a > —1, we have

H .
[T(2)] < M, \ eI (1o d (1 4)0 gt < PO g (0) = MmN,
-1 B

We will now derive a product formula with a quasi-positive kernel mo,H the modified -
Bessel functions ¥§ on R. We shall use the following abbreviations:

2.3. Notation. For z,y,z € R put

A (P +y? =22 ifmy#0,
Oz,y,2 -= v
0 otherwise,

1
as well as QA.&.‘. Y, Nv = .Mnc T Ozy,z + Ozzy + Q.NE,HV.

2.4. Theorem. (1) For a > —1 the modified Bessel functions A e,
satisfy the following product formula:
T3 (2)U5(y) = \5 W (2)dus (z) forz,y € R. (2.1)

The ug, € M ®(R) are given by

Ka(z,y,2)|2**tdz  if z,y #0,
de.(2) ify=0,
dey(z) ifz =0,

dug ,(2) =

with kernel .

Ka(z,y,2) = ka(lzl, lyl, |2 e(z,, 2)
where ko, is the Bessel kernel (1.2).

(2) The measures pg, have the following properties:

(1) swpigy = [=lel = lul, ~|l=l = lyl]] U [Jle] = lyl], l=| + |y] for z,y#0.
(ii) ug,y € M*(R) with p2 (R)=1 and lug Ml <4 for all z,y € R. :

Note that in general the measures Kg, are not positive: if x,y # 0, z # y, then
o(z,y,y —x) = —1, and hence there exists a neighbourhood of y—x in supp Hz oy
where z — Ko(z,y,2) is strictly negative.

Proof of Theorem 2.4. (1) We need two modified product formulas for spher-

ical Bessel functions. First note that jat1(z) = —Z- 2 ja(z) (Szegs [11],

e
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(1.71:5)). Therefore derivation of the usual product formula (1.1) yields

2Ja+1(Z) july) = M, \ Far1(v/2? + y2 — 2zy cosf)(x — ycosb) sin®* 9 dé.
0

Substitute z := /22 — y% — 2zycosf and note that z —ycosd = 2+ 0;q,y. Thus

[ o] .
Fiast(@)alt) = [ soni(@)orayhale ) N (22)
0
for =,y > 0. Further we claim that for z,y > 0,
o0
QM H@.Q.Q.*.wﬁﬁv .Q.Q.*.HAQV = \ .Q.QANV Oz,y,z \QQAH. Y, Nv NMQ.*.H&N. Awwv
0 }

For the proof of (2.3) recall the following expansions of Gegenbauer (see e.g.
Askey [1], (4.36), (4.37)): For =,y >0 and € R,

Jou(\/22+y wa@o%,qw = 2°T(a) M?+&|&Hﬂ@;&.ﬁ€@:?ﬁ$
\/z2 + y2 — 2zycos b n=0 ¥ Y
1

.meVImuQ%o“

Jo(v/x? + 92 — 2xycosB) = Jo(x)Jo(y) + 2 MU Jo ()5 (y) cosnd,

n=0
where the C% are the Gegenbauer polynomials
(2a)a (a—1/2,0—~1/2) :
Ce(z) = ——F— P* ’ x).
Both series converge uniformly in 6 € R. Multiply by C7(cosf) and cos no
respectively. By orthogonality of the CZ, integration then gives

s
C2 2 joi1(®) Yiat1(y) = Mo \ ja(\/Z% + y2 — 2zy cos B) cos§ sin®* 0 d6
0 :

for &> —1. Now the same substitution as before yields (2.3).
By the homogeneity of ko(z,y,2)22t! and 0.y, it is also clear that for

A, z,y > 0 the following identities hold:

AT jari (M) ju(Ay) = \ Aejas1(A2) kal(@,y, 7) 02 0y 221z,
0 ’ .

\/wa@ .Q.Q+HA>HV .w.ol.wh\/@v H \ .Q.QAVNV »&%&. MF Nv Qaé.u NNQ.E&N.
1]

Now suppose that A >0 and z,y € R\ {0}. Then of course,

200)ia0w) = 5 [ da0) Ealla o) D) 12
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Further, z+» 0.y, is even and z Ozzy 3 wellas 2+ 0, , , are odd. Thus

A® Jat1 (A7) Ja(Ay) = sgn(z) \ A2 Jact1(N2) k([ [y], 2) 0 a1 22+ d2
0

]

1 . N
2 \u.wv&.wo;;v&v ko(|2l, yl, |2]) Oz,2,y _N_m +H&N,
as well as

C2 X 2y for1(A2) far1(My)

H

sgn(zy) \ooo Ga(A2) ka(l2), Y], 2) Olap 1.2 222+ 2

2 \w 3a(02) ka((2h ] |2]) Gop,x |2 dz.

i

2

Combining these gives
o 1 o
M@ = 5 \5 U3 () kallzl; Iyl [2)(1 = Oa g,z + 0oy + 02 9,) 22> T2

As ¥5(0) =1 for all A, formula (2.1) is thus proved in case A > 0. For arbitrary
A € C, it is obtained by analytic continuation: The mapping (), z) = ¥§(2) is
continuous on € x R and bounded on U x supp kg for each bounded U C €
and z,y € R. For fixed z € R, the function ) — U%(z) is holomorphic on C,
and so both sides in (2.1) are holomorphic on € as functions of A.

(2) The statement on the support of Uy 15 clear, because z — g(z,y,z) does
not vanish on any open subset of R. Furthermore, if z,y # 0 then z € supp By
holds if and only if [z],]yl,|2| are the sides of a (perhaps degenerated) triangle.
So if z € supp pg,, then |o44,.] <1, 0,05 <1 and |02 y2] < 1. This yields
the assertion about ||ug,||.

3. Bessel-type signed hypergroups on R

The product. formula of the modified Bessel functions gives rise to signed hyper-
group structures on R .in a canonical way; this is stated in the following theorem.
Furthermore, we shall derive some duality results. Throughout this section we
assume that o > —1. :

3.1. Theorem. Define wy:RXR — ME(R) by wa(z,y) = pg, and put

dmy(z) = [z]?**idz, zeR.

1
20t (@ + 1)
Then Xo = (R, mq,ws) is a commutative signed hypergroup with neutral element
0 and involution x i+ —z.
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For the proof we need two preparatory lemmata:

3.2. Lemma. For f € Co(R) write f = f.+ fo with fo € Co(R) even,
fo € Co(R) odd. Then )

\ %. dug, = .iz\ Fo(v/7% + y% — 2[zy| cos8) h°(x, y, 6) sin®* 0 dO
R 0

(3.1)

T+ EQ\ folx/22 + 42 — w_aS cos8) k°(x,y, 6) sin®* § O
0

for all z,y € R, where

h*(z,y,0) = 1 — sgn(xy)cosd,
(z +y)(1 = sgn(zy)cosh) . 0.0
Ro(2,y,0) = § /2% +y? - 2|zy|cosf if (z,y) # (0,0)

0 otherwise.

Proof. In case zy = 0 formula (3.1) is obvious. (Note that f.(lz]) = fe(z),
Follz])sgn(z) = fo(z), fo(0)=0, and that [ sin®*0df = M;'.)
Now suppose zy # 0. First note that

\ faps, = \8 Fo(2) kallzl, ol 2)(1 — 04y 2) 222 d2
R 0

*® 2a+1
4 [ 1o(a) hallal Iy 2)(0emy + ) 2
0. . - -

2, .2 .2
TAY "2 Lith 0 efo,q]. A

For z € suppyu;, we may substitute cos := 3[zy]

short calculation then yields that
1=0sye = h%(2,9,0), Ozoy+0sye = h(2,9,6),

from which the assertion follows. .

3.3. Lemma. Suppose p € M*(R) with [p ¥§(z)dpu(z) = 0 for all A € R.
Then p=0.

Proof. As the subspace M := {u € Mb(R) : u({0}) = 0} is o(M*(R), Cs(R))-
dense in M®(R) we may suppose that u € M. Further, we have the identities

$(@) + ¥%,(0) = 203(2), T5(o) = T (0) = 2iCadap§ (o).
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By assumption of the lemma, they lead to the following two relations:

| @+ i@ = [ #3@)du(e) = 0 for all A€ R,
¢} R

| et @ e = | #5 @) edua) = 0 tor sl 2 e R {0}

and a continuity argument shows that the second relation also holds for A = 0. So
by injectivity of the Fourier transform on Bessel-Kingman hypergroups it follows
that g+ u~ =0 and z{u— p~) =0, which implies = 0.

Proof of Theorem 3.1. It is clear that the Mgy are real with uZ, = uy.
So the first thing to show is that for f € Co(R) the mapping (z,y) — 2, (f)
is continuous on R2. This yields 7, -continuity of (z,y) — Mg, and also that
T°f e Cy(R) for f e Cy(R), by norm-boundedness of the pg,. The basis of our
proof is (3.1), and we may restrict to even and odd test ?woﬁ_obm

- {a) If f € Cy(R) is even, then (3.1) becomes

\Hw\&tm.@, = .SQ\ F(v/22 + y2 — 2|zy| cos B) sin®* 0 df
0

— sgn(zy) - g@\ f(\/z2 + y? — 2|zy| cosB) cos § sin* g df.
0

Both integrals are continuous functions in (z,y) € R?, and for zy = 0, where
sgn(zy) is discontinuous, the latter takes the value 0. But as sgn(xy) is bounded,
it follows that (z,y) — .:NEA f) is continuous on R2.

(b) For odd f the statement is clear other than along the lines |z| = |y| and

= 0. If |z] = |y|, then the weight h° defined in Lemma 3.2 is continuous
in (z,y,6) unless /z2?+y?—2Jzy[cosd = 0. But as f(0).= 0, and as |h°|
is bounded by 2 according to the boundedness properties of ¢, the product
f(V/z% +y? — 2|zy[cosh) - h°(z,y;0) becomes continuous in each (z,y,6) with
|z] = ly|. Hence (z,y)+~ pZ,(f) is also continuous on the diagonals. To handle
the remaining case zy =0, |z| # |y|, consider the function

F(/2 ¥ y* = Z[zy[ cosb)
V2 +y? — 2[zy[cosf

It is continuous in every (z,y,0) with [z| # |y|. So ,U% the same argument as

(z,9,0) = (z+y)

used in (a), it is now easily seen that (z,y) — e, (f) is continuous in all (z, S
with zy =0, |z] # |y|.

Summing up, we have shown that (z,y) — #2 ,(f) is continuous on R? for each
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f € Cy(R). Concerning axiom (A1), it remains to note that for f € C.(R) with
supp f C [~M, M} the support of T*f is contained in [—|z| — M, M + |z].
prove associativity of the canonical continuation * of w, it suffices to consider
point measures. But by definition of w,,

(0 * (ey % £2))(TF) = TX(x)VS(y)TS(2) = (0 % &) * e.)(T%)

for all z,y,2€ R and X € R. Lemma 3.3 now yields the assertion. (A4) is obvi-
ous; finally, (A5) and (A6) are immediate consequences of the symmetry relations
Koz, ~y, —2) = Ko(z,9,2) and Kq(x,v,2) = Ko(—2, 2,y) respectively.

3.4. Remark. The mapping (x,y) — supp pg, is not continuous with respect
to the Michael topology on the space C(R) of compact subsets of R. This is
because supp g, N{{€R: £ <0} #0 for all z,y >0, while supp gy = {z}.

The characterization of multiplicative functions on our Bessel-type signed hyper-
groups can be accomplished by a reduction to the well-known corresponding re-
sults for Bessel-Kingman hypergroups. It leads to results which extend the group
case in a natural way. .

Tn addition to the character spaces X,(X,) and X, let X(X,) and X7 denote
the spaces of continuous multiplicative functions and semi-characters respectively:

X(Xa):={p € C(X):9#£0, p,(») = v(z)p(y) forall z,y € R},
Xri={p € X(X.): p(—z) = p(z) for all z € R}.

3.5. Theorem.
(a) X(X.) = THE : y €C}l.
(b) X% =2(Xs) = Xo = {3 : 2R},

and the mapping R — ‘Nos A= U§, is a homeomorphism.

Proof. By %mi.&ou of the convolution on X, it is clear that each ¥¢, A€ C
belongs to X(X,). Now take ¢ € X(X,) and define F(z) := (¢(z) + ¢(—x)).
A short computation shows that for z,y >0,

FEFG) = 5 [ o) bl Dl = [ Pkl 2) 2o

Thus F is a multiplicative function on the Bessel-Kingman hypergroup H,. Ac-
cording to Zeuner [13], it follows that F = ¢$ for some A € €.
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Now set G(z) := 3(¢(x) — ¢(—z)). Then for z,y >0,

1
=3 | P kel ) alalP
R

I

G(z)G(y) 5

= l\ 0%(2) kol2, Y, 2)02 4, 22T d2.
)

But at the same time, this last expression is equal to ®§(z)®$(y) where
$(z) == 3(¥§(x) — ¥¢(~=)). Hence we have
G(z)G(y) = 2%(z)@3(y) forallz,y >0,
from which it follows that G = ®% or G = ~9¢ = $=,. We have shown that
p=U¥5 or ¢ =V¥%, ,and thus the proof of (a) is complete.

For the proof of (b), note that by Corollary 2.2 it is clear that {¥$ : A € R} C
X,. On the other hand, if ¥¢ € X* then

05(2) — iCa Az 3T (2) = p}(z) — iCaz A5 (z)

for all z € R, and by comparison of even and odd parts in £ we obtain that
both ¢$(z) and Ap$t!(z) must be real for all z € R. But this is only possible
if A is real. The final statement is standard; we omit its proof.

3.6. Proposition. With the identification of u\m/m and R as above the Plancherel
measure of the signed hypergroup X, is given by
1

dra(A) = dma(X) = 2 T (a+1)

~\/_NQ+H&>.

Proof. Again we reduce our discussion to the associated Bessel-Kingman hyper-
group H,. For this, denote the Fourier transform on H, by F, and let

BFa(N) = difia()) = w.mmﬂnv

denote the Plancherel- and Haar meaure on H,. .Hrmb, for all even functions
FEC(R) and X € R,

AZetlgy (A >0)

oy = \5 $(@) f(z)dma(z) = M\SGWAHEHKSQE = F(HUA). B2

0

Thus the Plancherel formula for H, yields that for even f € C.(R),

[ Feame = [T FgpaE, = [ iPama = [ i1Pam.

0
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Hence, by the Planchere] formula for the Bessel-type signed hypergroup X, , we
find that

,\ 7 Pdmy = \ |7 |2dms  for all even f € C.(R). (3.3)
R R

To complete the proof we have to show that (3.3) implies 7, = m,. For this
first notice that just as for usual hypergroups, the Plancherel measure of X,
must be symmetric, i.e. dra(—)) = dra()). Therefore it is sufficient to prove
frgdma = [ggdms for all g € C;T(R) := {h € Co(R) : b > 0 and even}.
In view of (3.3) this follows if we have shown that {|f|? : f € C.(R) even} is
[l lloo -dense in C5F(R). So take g € CoF(R) and & > 0. Then there exists
f e C(R) with ||F — VIlleo < €. Now write f = fo+ f, with f. even and f,
odd. Then by (3.2), ,w;m is even, and a similar calculation shows that ww is odd.
It follows that

N = Vil < NFe =B + Folleo = IF ~ Villeo <,

which immediately takes care of the claim.

3.7. Remarks.

1. Let (X,m,w) be a commutative signed hypergroup with dual X and Plan-
cherel measure 7. Assume that for all o, 4 € X, there exists a measure Qg €
ML (X) such that

al(z)B(z) = \wmiav doaply) forallze X.

-~

Then we say that X carries a dual signed hypergroup structure if C\m ,m, ), with
Ua, B) := Qa,p, is a commutative signed hypergroup. In our case,

T$(z) =T2(A) forall A,z € R.

Together with Proposition 3.6 this shows that X, carries a commutative signed
hypergroup structure which is isomorphic to X, in the obvious way.

2. The Fourier transform on the Bessel-type signed hypergroup X, is exactly
the Dunkl transform with parameter o + W, associated with the reflection group
#Z, on R. This is a special case of a generalized Hankel transform introduced by
Dunkl [3, 4] in connection with finite reflection groups on RY, N > 1. The Dunkl
transform involves an integral kernel, which in the special case of Zy and R is
just given by

Ka(o, =) = Dot 3) (B "2 (5, Gmpl)—i sgntan) .,y (o) = 975 2 ),
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with parameter « > 0 (see Dunkl [4], Section 4). For a further study of the
Dunkl transform we also refer to de Jeu [5].
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