Positivity of Dunkl's Intertwining Operator via the Trigonometric Setting

Margit Rösler and Michael Voit

1 Introduction

In [15], it was proven that Dunkl's intertwining operator between the rational Dunkl operators for a fixed finite reflection group and nonnegative multiplicity function is positive. As a consequence, we obtained an abstract Harish-Chandra-type integral representation for the Dunkl kernel, the image of the usual exponential kernel under the intertwiner. The proof was based on methods from the theory of operator semigroups and a rank-one reduction.

In the present paper, we give a new, completely different proof of these results under the only additional assumption that the underlying reflection group has to be crystallographic. In contrast to the proof of [15], where precise information on the supports of the representing measures could only be obtained by going back to estimates of the kernel from [5], this information is now directly obtained. Our new approach relies first on an asymptotic relationship between the Opdam-Cherednik kernel and the Dunkl kernel as recently observed by de Jeu [6], and second on positivity results of Sahi [17] for the Heckman-Opdam polynomials and their nonsymmetric counterparts.

2 Preliminaries

2.1 Basic notation

Let \mathfrak{a} be a finite-dimensional Euclidean vector space with inner product $\langle\cdot, \cdot\rangle$. We use the same notation for the bilinear extension of $\langle\cdot, \cdot\rangle$ to the complexification $\mathfrak{a}_{\mathbb{C}}$ of \mathfrak{a}, and we
identify \mathfrak{a} with its dual $\mathfrak{a}^{*}=\operatorname{Hom}(\mathfrak{a}, \mathbb{R})$ via the given inner product. For $\alpha \in \mathfrak{a} \backslash\{0\}$, we write $\alpha^{\vee}=2 \alpha /\langle\alpha, \alpha\rangle$ and $\sigma_{\alpha}(x)=x-\left\langle x, \alpha^{\vee}\right\rangle \alpha$ for the orthogonal reflection in the hyperplane perpendicular to α. We consider a crystallographic root system R in \mathfrak{a}, that is, R is a finite subset of $\mathfrak{a} \backslash\{0\}$ which spans \mathfrak{a} and satisfies $\sigma_{\alpha}(R)=R$ and $\langle\alpha, \beta\rangle \in \mathbb{Z}$ for all $\alpha, \beta \in R$. We also assume that R is indecomposable and reduced, that is, $R \cap \mathbb{R} \alpha=\{ \pm \alpha\}$ for all $\alpha \in R$. Let W be the finite reflection group generated by the $\sigma_{\alpha}, \alpha \in R$. We will fix a positive subsystem R_{+}of R as well as a nonnegative multiplicity function $k=\left(k_{\alpha}\right)_{\alpha \in R}$, satisfying $k_{\alpha}=k_{\beta}$ if α and β are in the same W-orbit.

2.2 Rational Dunkl operators and Dunkl's intertwiner

References for this section are $[7,8,12,15]$. Let $\mathcal{P}=\mathbb{C}[\mathfrak{a}]$ denote the vector space of complex polynomial functions on \mathfrak{a}, and $\mathcal{P}_{\mathfrak{n}} \subset \mathrm{P}$ the subspace of polynomials which are homogeneous of degree $n \in \mathbb{Z}_{+}$. The rational Dunkl operators on \mathfrak{a} associated with R and fixed multiplicity $k \geq 0$ are given by

$$
\begin{equation*}
\mathrm{T}_{\xi}=\mathrm{T}_{\xi}(\mathrm{k})=\partial_{\xi}+\sum_{\alpha \in \mathrm{R}_{+}} \mathrm{k}_{\alpha}\langle\alpha, \xi\rangle \frac{1}{\langle\alpha, \cdot\rangle}\left(1-\sigma_{\alpha}\right), \quad \xi \in \mathfrak{a} . \tag{2.1}
\end{equation*}
$$

These operators commute and map \mathcal{P} onto itself. Moreover, there exists a unique linear isomorphism $V=V_{k}$ on \mathcal{P} with $V(1)=1, V\left(\mathcal{P}_{n}\right)=P_{n}$, and $T_{\xi} V=V \partial_{\xi}$ for all $\xi \in \mathfrak{a}$. According to [8], the intertwining operator V can be extended to larger classes of functions as follows: for $r>0$, let $K_{r}:=\{x \in \mathfrak{a}:|x| \leq r\}$ denote the ball of radius r and define

$$
\begin{equation*}
A_{r}:=\left\{f: k_{r} \longrightarrow \mathbb{C}, f=\sum_{n=0}^{\infty} f_{n} \text { with } f_{n} \in \mathcal{P}_{n},\|f\|_{A_{r}}:=\sum_{n=0}^{\infty}\left\|f_{n}\right\|_{\infty, k_{r}}<\infty\right\}, \tag{2.2}
\end{equation*}
$$

where $\left\|f_{n}\right\|_{\infty, K_{r}}:=\sup _{x \in K_{r}}\left|f_{n}(x)\right|$. The space A_{r} is a Banach space with norm $\|\cdot\|_{A_{r}}$ (in fact, a commutative Banach algebra). V extends to a continuous linear operator on A_{r} by $V\left(\sum_{n=0}^{\infty} f_{n}\right):=\sum_{n=0}^{\infty} V f_{n}$. The Dunkl kernel Exp_{W} is defined by

$$
\begin{equation*}
\operatorname{Exp}_{W}(\cdot, z):=\mathrm{V}\left(e^{\langle\cdot, z\rangle}\right), \quad z \in \mathfrak{a}_{\mathbb{C}} . \tag{2.3}
\end{equation*}
$$

It extends to a holomorphic function on $\mathfrak{a}_{\mathbb{C}} \times \mathfrak{a}_{\mathbb{C}}$ which is symmetric in its arguments. For $\lambda \in \mathfrak{a}_{\mathbb{C}}, \operatorname{Exp}_{W}(\lambda, \cdot)$ is the unique holomorphic solution of the joint eigenvalue problem

$$
\begin{equation*}
\mathrm{T}_{\xi} \mathrm{f}=\langle\lambda, \xi\rangle \mathrm{f} \quad \forall \xi \in \mathfrak{a}, f(0)=1 . \tag{2.4}
\end{equation*}
$$

For $x \in \mathfrak{a}$, we denote by $C(x)$ the closure of the convex hull of the W-orbit $W x$ of x in \mathfrak{a}. Moreover, for a locally compact Hausdorff space X, we write $M^{1}(X)$ for the set of probability measures on the Borel σ-algebra of X. In [15], the following is proven.

Theorem 2.1. For each $x \in \mathfrak{a}$, there exists a unique probability measure $\mu_{x} \in M^{1}(\mathfrak{a})$ such that

$$
\begin{equation*}
\mathrm{Vf}(x)=\int_{\mathfrak{a}} f(\xi) \mathrm{d} \mu_{\mathrm{x}}(\xi) \quad \forall f \in A_{|x|} . \tag{2.5}
\end{equation*}
$$

The support of μ_{x} is contained in $C(x)$.
As a consequence,

$$
\begin{equation*}
\operatorname{Exp}_{\mathcal{W}}(x, z)=\int_{\mathfrak{a}} e^{\langle\xi, z\rangle} d \mu_{x}(\xi) \quad \forall z \in \mathfrak{a}_{\mathbb{C}} . \tag{2.6}
\end{equation*}
$$

In [15], the proof of the inclusion supp $\mu_{x} \subseteq C(x)$ requires the exponential bounds on Exp_{W} from [5], which are by far not straightforward. As is well known, the W-invariant parts of the rational and trigonometric Dunkl theories are, for certain discrete sets of multiplicities, realized within the classical Harish-Chandra theory for semisimple symmetric spaces. In particular, for such k, the generalized Bessel functions

$$
\begin{equation*}
\mathrm{J}_{W}(\cdot, z)=\frac{1}{|\mathrm{~W}|} \sum_{w \in W} \operatorname{Exp}_{W}\left(\cdot, w^{-1} z\right), \quad z \in \mathfrak{a}_{\mathbb{C}} \tag{2.7}
\end{equation*}
$$

can be identified with the spherical functions of an underlying Cartan motion group; for details see, for example, [6]. In this case, their integral representation according to (2.6) is a special case of a (Euclidean type) Harish-Chandra integral, and the inclusion supp $\mu_{x} \subseteq C(x)$ follows from Kostant's convexity theorem [11, Proposition IV.4.8 and Theorem IV.10.2].

2.3 Cherednik operators and the Opdam-Cherednik kernel

The basic concepts of this as well as the following section are due to Opdam [13] (see also [14, part I]), Heckman (see [10, part I]), and Cherednik [4]. Let

$$
\begin{equation*}
P:=\left\{\lambda \in \mathfrak{a}:\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z} \forall \alpha \in \mathbb{R}\right\} \tag{2.8}
\end{equation*}
$$

denote the weight lattice associated with the root system R. For $\lambda \in \mathfrak{a}_{\mathbb{C}}$, we define the exponential e^{λ} on $\mathfrak{a}_{\mathbb{C}}$ by $e^{\lambda}(z):=e^{\langle\lambda, z\rangle}$ and denote by \mathcal{T} the \mathbb{C}-span of $\left\{e^{\lambda}, \lambda \in \mathrm{P}\right\}$. This is the algebra of trigonometric polynomials on $\mathfrak{a}_{\mathbb{C}}$ with respect to R. The Cherednik operator in direction $\xi \in \mathfrak{a}$ is defined by

$$
\begin{equation*}
\mathrm{D}_{\xi}=\mathrm{D}_{\xi}(\mathrm{k})=\partial_{\xi}+\sum_{\alpha \in \mathrm{R}_{+}} \mathrm{k}_{\alpha}\langle\alpha, \xi\rangle \frac{1}{1-e^{-\alpha}}\left(1-\sigma_{\alpha}\right)-\langle\rho(\mathrm{k}), \xi\rangle, \tag{2.9}
\end{equation*}
$$

where $\rho(k)=(1 / 2) \sum_{\alpha \in R_{+}} k_{\alpha} \alpha$. Each D_{ξ} maps \mathcal{T} onto itself and (for fixed k) the operators D_{ξ} commute. Notice that in contrast to the rational T_{ξ}, they depend on the particular choice of R_{+}. For each $\lambda \in \mathfrak{a}_{\mathbb{C}}$, there exists a unique holomorphic function $G(\lambda, \cdot)$ in a tubular neighborhood of \mathfrak{a} which satisfies

$$
\begin{equation*}
\mathrm{D}_{\xi} \mathrm{G}(\lambda, \cdot)=\langle\lambda, \xi\rangle \mathrm{G}(\lambda, \cdot) \quad \forall \xi \in \mathfrak{a}, \mathrm{G}(\lambda, 0)=1 \tag{2.10}
\end{equation*}
$$

(see [14, Corollary I.7.6]). G is called the Opdam-Cherednik kernel. It is in fact (as a function of both arguments) holomorphic in a suitable tubular neighborhood of $\mathfrak{a}_{\mathbb{C}} \times \mathfrak{a}[13$, Theorem 3.15]. The rational Dunkl operators can be considered a scaling limit of the Cherednik operators, and this implies limit relations between the kernels Exp_{W} and G. We will need the following variant of [6, Theorem 4.12].

Proposition 2.2. Let $\delta>0$ be a constant, $K, L \subset \mathfrak{a}_{\mathbb{C}}$ compact sets, and $h:(0, \delta) \times L \rightarrow \mathfrak{a}_{\mathbb{C}} a$ continuous mapping such that $\lim _{\epsilon \rightarrow 0} \epsilon h(\epsilon, \lambda)=\lambda$ uniformly on L. Then

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} G(h(\epsilon, \lambda), \epsilon z)=\operatorname{Exp}_{W}(\lambda, z) \tag{2.11}
\end{equation*}
$$

uniformly for $(\lambda, z) \in L \times K$.
The proof is the same as for [6, Theorem 4.12], with λ / ϵ replaced by $h(\epsilon, \lambda)$. We mention that for integral k, such a limit transition has first been carried out in [2] by use of shift operator methods.

2.4 A scaling limit for nonsymmetric Heckman-Opdam polynomials

The definition of these polynomials involves a suitable partial order on P; we refer to the one used in [14]. Let

$$
\begin{equation*}
P_{+}:=\left\{\lambda \in P:\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0 \forall \alpha \in R_{+}\right\} \tag{2.12}
\end{equation*}
$$

denote the set of dominant weights associated with R_{+}, and λ_{+}the unique dominant weight in the orbit $W \lambda$. One defines $\lambda \triangleleft v$ if either $\lambda_{+}<v_{+}$in dominance ordering (i.e., $\nu_{+}-\lambda_{+} \in Q_{+}$, the \mathbb{Z}_{+}-span of R_{+}), or if $\lambda_{+}=v_{+}$and $v<\lambda$ (in dominance ordering). Further, $\lambda \unlhd \nu$ means $\lambda=\nu$ or $\lambda \triangleleft \nu$. The nonsymmetric Heckman-Opdam polynomials $\left\{E_{\lambda}: \lambda \in P\right\} \subset \mathcal{T}$ associated with R_{+}and k are uniquely characterized by the conditions

$$
\begin{align*}
& E_{\lambda}=\sum_{v \unlhd \lambda} a_{\lambda, v} e^{v} \quad \text { with } a_{\lambda, \lambda}=1, \tag{2.13}\\
& D_{\xi} E_{\lambda}=\langle\widetilde{\lambda}, \xi\rangle E_{\lambda} \quad \forall \xi \in \mathfrak{a}, \tag{2.14}
\end{align*}
$$

with the shifted spectral variable $\tilde{\lambda}=\lambda+(1 / 2) \sum_{\alpha \in R_{+}} k_{\alpha} \epsilon\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right) \alpha$. Here $\epsilon: \mathbb{R} \rightarrow\{ \pm 1\}$ is defined by $\epsilon(x)=1$ for $x>0$ and $\epsilon(x)=-1$ for $x \leq 0$. For details, see [13] and [14, Section I.2.3].

On the other hand, we know (cf. (2.10)) that $\mathrm{G}(\widetilde{\lambda}, \cdot)$ is the up-to-a-constant-factor unique holomorphic solution of (2.14). Hence

$$
\begin{equation*}
E_{\lambda}=c_{\lambda} \cdot G(\widetilde{\lambda}, \cdot), \tag{2.15}
\end{equation*}
$$

with a constant $c_{\lambda}=E_{\lambda}(0)>0$. The precise value of c_{λ} is given in [14, Theorem 4.7].
Corollary 2.3. For $\lambda \in \mathrm{P}$ and $z \in \mathfrak{a}_{\mathbb{C}}$,

$$
\begin{equation*}
\operatorname{Exp}_{W}(\lambda, z)=\lim _{n \rightarrow \infty} \frac{1}{c_{n \lambda}} E_{n \lambda}\left(\frac{z}{n}\right) . \tag{2.16}
\end{equation*}
$$

The convergence is locally uniform with respect to z.
Proof. Fix $\lambda \in \operatorname{P}$ and observe that $\widetilde{n} \lambda=n \lambda+(1 / 2) \sum_{\alpha \in R_{+}} k_{\alpha} \epsilon\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right) \alpha$ for all $n \in \mathbb{N}$. Thus by Proposition 2.2 and identity (2.15), we have, locally uniformly for $z \in \mathfrak{a}_{\mathbb{C}}$,

$$
\begin{equation*}
\operatorname{Exp}_{W}(\lambda, z)=\lim _{n \rightarrow \infty} G\left(\widetilde{n \lambda}, \frac{z}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{c_{n \lambda}} E_{n \lambda}\left(\frac{z}{n}\right) . \tag{2.17}
\end{equation*}
$$

Remark 2.4. Similar results hold for the symmetric Heckman-Opdam polynomials

$$
\begin{equation*}
P_{\lambda}(z)=\frac{|W \lambda|}{|W|} \sum_{w \in W} E_{\lambda}\left(w^{-1} z\right), \quad \lambda \in P_{+} . \tag{2.18}
\end{equation*}
$$

They are W-invariant and related with the multivariable hypergeometric function

$$
\begin{equation*}
\mathrm{F}(\lambda, z)=\frac{1}{|\mathrm{~W}|} \sum_{w \in W} \mathrm{G}\left(\lambda, w^{-1} z\right) \tag{2.19}
\end{equation*}
$$

via

$$
\begin{equation*}
P_{\lambda}=c_{\lambda}^{*} \cdot F(\lambda+\rho, \cdot) \quad \forall \lambda \in P_{+} \tag{2.20}
\end{equation*}
$$

with $c_{\lambda}^{*}=|W \lambda| \cdot c_{\lambda}$ and $\rho=\rho(k)=(1 / 2) \sum_{\alpha \in R_{+}} k_{\alpha} \alpha$, (cf. [10, equation (4.4.10)]). This also follows from (2.15) because F is in fact W-invariant in both arguments and for $\lambda \in P_{+}$, the shifted weight $\tilde{\lambda}$ is contained in the W-orbit of $\lambda+\rho[13$, Proposition 2.10]. Further, Corollary 2.3 implies that for $\lambda \in \mathrm{P}_{+}$and $z \in \mathfrak{a}_{\mathbb{C}}$,

$$
\begin{equation*}
\operatorname{JW}_{W}(\lambda, z)=\lim _{n \rightarrow \infty} F\left(n \lambda+\rho, \frac{z}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{c_{n \lambda}^{*}} P_{n \lambda}\left(\frac{z}{n}\right) . \tag{2.21}
\end{equation*}
$$

For illustration, consider the rank-one case (type A_{1}) with $\mathfrak{a}=\mathbb{R}$ and $R_{+}=\{2 \alpha\}$, $\alpha=1$. Fix $k=k_{2 \alpha} \geq 0$. Then according to the example in [13, page $89 f$],

$$
\begin{align*}
\mathrm{F}(\lambda, z)= & { }_{2} \mathrm{~F}_{1}\left(\mathrm{a}, \mathrm{~b}, \mathrm{c} ; \frac{1}{2}(1-\cosh z)\right) \\
\mathrm{G}(\lambda, z)= & { }_{2} \mathrm{~F}_{1}\left(\mathrm{a}, \mathrm{~b}, \mathrm{c} ; \frac{1}{2}(1-\cosh z)\right) \tag{2.22}\\
& +\frac{a}{2 c} \sinh z \cdot{ }_{2} \mathrm{~F}_{1}\left(\mathrm{a}+1, \mathrm{~b}+1, c+1 ; \frac{1}{2}(1-\cosh z)\right),
\end{align*}
$$

with $a=\lambda+k, b=-\lambda+k$, and $c=k+1 / 2$. The weight lattice is $P=\mathbb{Z}$, and the associated Heckman-Opdam polynomials are given by

$$
\begin{align*}
& P_{n}(z)=c_{n}^{*} F(n+k, z)=c_{n}^{*} \cdot Q_{n}^{k}(\cosh z), \quad n=0,1, \ldots, \\
& E_{n}(z)=c_{n} G(\widetilde{n}, z)=c_{n}\left[Q_{|n|}^{k}(\cosh z)+\frac{\widetilde{n}+k}{2 k+1} \cdot \sinh z Q_{|n|-1}^{k+1}(\cosh z)\right], \quad n \in \mathbb{Z}, \tag{2.23}
\end{align*}
$$

with $\widetilde{n}=n+k$ for $n>0, \widetilde{n}=n-k$ for $n \leq 0$, and the renormalized Gegenbauer polynomials

$$
\begin{equation*}
Q_{n}^{k}(x)={ }_{2} F_{1}\left(n+2 k,-n, k+\frac{1}{2} ; \frac{1}{2}(1-x)\right) . \tag{2.24}
\end{equation*}
$$

Relation (2.21) reduces to the classical limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q_{n}^{k}\left(\cos \frac{z}{n}\right)=j_{k-1 / 2}(z) \quad(z \in \mathbb{C}) \tag{2.25}
\end{equation*}
$$

for the modified Bessel functions

$$
\begin{equation*}
j_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) \cdot \frac{J_{\alpha}(z)}{z^{\alpha}}=\Gamma(\alpha+1) \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{z}{2}\right)^{2 n}}{n!\Gamma(n+\alpha+1)}, \tag{2.26}
\end{equation*}
$$

see [1, Theorem 4.11.6]. It is clear from the explicit representation of the Gegenbauer polynomials in terms of Tchebycheff polynomials [1 , equation (6.4.11)] that for $k \geq 0$, the expansion coefficients of P_{n} with respect to the exponentials $z \mapsto e^{m z}, m \in \mathbb{Z}$, are all nonnegative. A closer inspection shows that the same holds for the nonsymmetric E_{n}. This is in fact a special case of a deep result for general Heckman-Opdam polynomials due to Sahi [17]: if the multiplicity function k is nonnegative, then it follows from [17, Corollary 5.2 and Proposition 6.1] that the coefficients $a_{\lambda, \nu}$ of E_{λ} in (2.13) are all real and nonnegative. More precisely, if $\Pi_{k}:=\mathbb{Z}_{+}\left[k_{\alpha}\right]$ denotes the set of polynomials in the parameters k_{α}
with nonnegative integral coefficients, then for suitable $d_{\lambda} \in \Pi_{k}$, all coefficients of $d_{\lambda} E_{\lambda}$ are contained in Π_{k} as well. This positivity result is the key for our subsequent proof of Theorem 2.1.

3 New proof of Theorem 2.1

In contrast to our approach in [15], we first derive a positive integral representation for the Dunkl kernel. As before, R and $k \geq 0$ are fixed.

Proposition 3.1. For each $x \in \mathfrak{a}$, there exists a unique probability measure $\mu_{x} \in M^{1}(\mathfrak{a})$ such that (2.6) holds. The support of μ_{x} is contained in $C(x)$.

Proof. It suffices to prove the existence of the representing measures as stated; their uniqueness is immediate from the injectivity of the (usual) Fourier-Stieltjes transform on $M^{1}(\mathfrak{a})$. Let $\lambda \in P$. Then by Sahi's positivity result mentioned above,

$$
\begin{equation*}
\mathrm{G}(\widetilde{\lambda}, \cdot)=\frac{1}{\mathrm{c}_{\lambda}} \mathrm{E}_{\lambda}=\sum_{\nu \unlhd \lambda} \mathrm{b}_{\lambda, v} \mathrm{e}^{v}, \tag{3.1}
\end{equation*}
$$

with coefficients $b_{\lambda, v}$ satisfying

$$
\begin{equation*}
0 \leq b_{\lambda, v} \leq 1, \quad \sum_{v \unlhd \lambda} b_{\lambda, v}=1 . \tag{3.2}
\end{equation*}
$$

Now fix $\lambda \in \mathrm{P}$ and $z \in \mathfrak{a}_{\mathbb{C}}$. Then by Corollary 2.3,

$$
\begin{equation*}
\operatorname{Exp}_{W}(\lambda, z)=\lim _{n \rightarrow \infty} \frac{1}{c_{n} \lambda} E_{n \lambda}\left(\frac{z}{n}\right)=\lim _{n \rightarrow \infty} \sum_{v \unlhd n \lambda} b_{n \lambda, v} e^{\langle v, z / n\rangle} . \tag{3.3}
\end{equation*}
$$

Introducing the discrete probability measures

$$
\begin{equation*}
\mu_{\lambda}^{n}:=\sum_{v \unlhd \mathfrak{n} \lambda} b_{n \lambda, \nu} \delta_{v / \mathfrak{n}} \in M^{1}(\mathfrak{a}), \tag{3.4}
\end{equation*}
$$

(where δ_{x} denotes the point measure in $x \in \mathfrak{a}$), we may write the above relation in the form

$$
\begin{equation*}
\operatorname{Exp}_{W}(\lambda, z)=\lim _{n \rightarrow \infty} \int_{a} e^{\langle\xi, z\rangle} d \mu_{\lambda}^{n}(\xi) . \tag{3.5}
\end{equation*}
$$

The following lemma shows that the support of μ_{λ}^{n} is contained in $C(\lambda)$.
Lemma 3.2. Let $\lambda, v \in \mathrm{P}$ with $v \unlhd \lambda$. Then $v \in \mathrm{C}(\lambda)$.

Proof. Let $C:=\left\{x \in \mathfrak{a}:\langle\alpha, x\rangle \geq 0 \forall \alpha \in R_{+}\right\}$be the closed Weyl chamber associated with R_{+} and

$$
\begin{equation*}
C^{*}:=\{y \in \mathfrak{a}:\langle y, x\rangle \geq 0 \forall x \in C\} \tag{3.6}
\end{equation*}
$$

its closed dual cone. Notice that $Q_{+} \subset C^{*}$. Therefore, $v \unlhd \lambda$ implies that $\lambda_{+}-v_{+} \in C^{*}$. We employ the following characterization of $C(x)$ for $x \in C$ [11, Lemma IV.8.3]:

$$
\begin{equation*}
C(x)=\bigcup_{w \in W} w\left(C \cap\left(x-C^{*}\right)\right) . \tag{3.7}
\end{equation*}
$$

This shows that $v \in C(\lambda)$ if and only if $v_{+} \in \lambda_{+}-C^{*}$, which yields the statement.
We now continue with the proof of Proposition 3.1. Fix $\lambda \in P$. By the preceding result, we may consider the μ_{λ}^{n} as probability measures on the compact set $C(\lambda)$. According to Prohorov's theorem (see, e.g., [3]), the set $\left\{\mu_{\lambda}^{n}, n \in \mathbb{Z}_{+}\right\}$is relatively compact. Passing to a subsequence if necessary, we may therefore assume that there exists a measure $\mu_{\lambda} \in M^{1}(\mathfrak{a})$ which is supported in $C(\lambda)$ and such that $\mu_{\lambda}^{n} \rightarrow \mu_{\lambda}$ weakly as $n \rightarrow \infty$. Thus in view of (3.5),

$$
\begin{equation*}
\operatorname{Exp}_{\mathbb{W}}(\lambda, z)=\int_{\mathfrak{a}} e^{\langle\xi, z\rangle} d \mu_{\lambda}(\xi) \quad \forall z \in \mathfrak{a}_{\mathbb{C}} \tag{3.8}
\end{equation*}
$$

In order to extend this representation to arbitrary arguments $x \in \mathfrak{a}$ instead of $\lambda \in P$, observe first that for $r \in \mathbb{Q}$,

$$
\begin{equation*}
\operatorname{Exp}_{W}(r \lambda, z)=\operatorname{Exp}_{W}(\lambda, r z)=\int_{\mathfrak{a}} e^{r\langle\xi, z\rangle} d \mu_{\lambda}(\xi) . \tag{3.9}
\end{equation*}
$$

Defining $\mu_{r \lambda} \in M^{1}(\mathfrak{a})$ as the image measure of μ_{λ} under the dilation $\xi \mapsto r \xi$ on \mathfrak{a}, we therefore obtain (2.6) for all $x \in \mathbb{Q} . P=\{r \lambda: r \in \mathbb{Q}, \lambda \in P\}$. The set $\mathbb{Q} . P$ is obviously dense in \mathfrak{a}. For arbitrary $x \in \mathfrak{a}$, choose an approximating sequence $\left\{x_{n}, n \in \mathbb{Z}_{+}\right\} \subset \mathbb{Q} . P$ with $\lim _{n \rightarrow \infty} x_{n}=x$. Using Prohorov's theorem once more, we obtain, after passing to a subsequence, that $\mu_{x_{n}} \rightarrow \mu_{x}$ weakly for some $\mu_{x} \in M^{1}(\mathfrak{a})$. The support of μ_{x} can be confined to an arbitrarily small neighbourhood of $C(x)$, and must therefore coincide with $C(x)$. We thus have

$$
\begin{equation*}
\operatorname{Exp}_{W}(x, z)=\lim _{n \rightarrow \infty} \operatorname{Exp}_{W}\left(x_{n}, z\right)=\int_{\mathfrak{a}} e^{\langle\xi, z\rangle} d \mu_{x}(\xi) \quad \forall z \in \mathfrak{a}_{\mathbb{C}} \tag{3.10}
\end{equation*}
$$

which finishes the proof of the proposition.

Proof of Theorem 2.1. By Proposition 3.1 and the definition of V ,

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{1}{n!} V_{x}\left(\langle x, z\rangle^{n}\right) & =V_{x}\left(e^{\langle x, z\rangle}\right)=\int_{\mathfrak{a}} e^{\langle\xi, z\rangle} d \mu_{x}(\xi) \tag{3.11}\\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathfrak{a}}\langle\xi, z\rangle^{n} d \mu_{x}(\xi) \quad\left(z \in \mathfrak{a}_{\mathbb{C}}\right) ;
\end{align*}
$$

here the subscript x means that V is taken with respect to x. Comparison of the homogeneous parts in z of degree n yields that

$$
\begin{equation*}
V_{x}\left(\langle x, z\rangle^{n}\right)=\int_{a}\langle\xi, z\rangle^{n} d \mu_{x}(\xi) \quad \forall n \in \mathbb{Z}_{+} . \tag{3.12}
\end{equation*}
$$

As the \mathbb{C}-span of $\left\{x \mapsto\langle x, z\rangle^{n}, z \in \mathfrak{a}_{\mathbb{C}}\right\}$ is $\mathcal{P}_{\mathfrak{n}}$, it follows by linearity that

$$
\begin{equation*}
\operatorname{Vp}(x)=\int_{\mathfrak{a}} p(\xi) d \mu_{x}(\xi) \quad \forall p \in \mathcal{P}, x \in \mathfrak{a} \tag{3.13}
\end{equation*}
$$

Finally, as \mathcal{P} is dense in each $\left(A_{r},\|\cdot\|_{A_{r}}\right)$ and $\|\cdot\|_{\infty, K_{r}} \leq\|\cdot\|_{A_{r}}$, an easy approximation argument implies that this integral representation remains valid for all $f \in A_{r}$, with $r \geq$ $|x|$. This finishes the proof.

We conclude this paper with a remark concerning positive product formulas. It is conjectured that (again in case $k \geq 0$) the multivariable hypergeometric function F has a positive product formula. More precisely, we conjecture that for all $x, y \in \mathfrak{a}$, there exists a probability measure $\sigma_{x, y} \in M^{1}(\mathfrak{a})$ whose support is contained in the ball $K_{|x|+|y|}(0)$ and which satisfies

$$
\begin{equation*}
F(\lambda, x) F(\lambda, y)=\int_{\mathfrak{a}} F(\lambda, \xi) d \sigma_{x, y}(\xi) \quad \forall \lambda \in \mathfrak{a}_{\mathbb{C}} . \tag{3.14}
\end{equation*}
$$

In the rank-one case, that is, for Jacobi functions, this is well known and goes back to [9]. Equation (3.14) would immediately imply a positive product formula for the generalized Bessel function J_{W} (associated with the same multiplicity k). In fact, suppose there exist measures $\sigma_{x, y}$ as conjectured above, and denote for $r>0$ the image measure of $\sigma_{x, y}$ under the dilation $\xi \mapsto r \xi$ on \mathfrak{a} by $\sigma_{x, y}^{r}$. Then by relation (2.21),

$$
\begin{align*}
\operatorname{JW}_{W}(\lambda, x) \operatorname{JW}_{W}(\lambda, y) & =\lim _{n \rightarrow \infty} F\left(n \lambda+\rho, \frac{x}{n}\right) F\left(n \lambda+\rho, \frac{y}{n}\right) \\
& =\lim _{n \rightarrow \infty} \int_{a} F\left(n \lambda+\rho, \frac{\xi}{n}\right) d \sigma_{x / n, y / n}^{n}(\xi) \tag{3.15}
\end{align*}
$$

for all $\lambda \in \mathfrak{a}_{\mathbb{C}}$. As supp $\sigma_{x / n, y / n}^{n} \subseteq K_{|x|+|y|}(0)$ for all $n \in \mathbb{N}$, we may assume that there exists a probability measure $\tau_{x, y} \in M^{1}(\mathfrak{a})$ with supp $\tau_{x, y} \subseteq K_{|x|+|y|}(0)$ such that $\sigma_{x / n, y / n}^{n} \rightarrow \tau_{x, y}$ weakly as $n \rightarrow \infty$. As further $\lim _{n \rightarrow \infty} F(n \lambda+\rho, \xi / n)=J_{W}(\lambda, \xi)$ locally uniformly with respect to ξ, (3.15) implies the product formula

$$
\begin{equation*}
\mathrm{J}_{\mathrm{W}}(\lambda, x) \mathrm{J}_{\mathrm{W}}(\lambda, y)=\int_{\mathfrak{a}} \mathrm{J}_{\mathrm{W}}(\lambda, \xi) d \tau_{x, y}(\xi) \quad \forall \lambda \in \mathfrak{a}_{\mathbb{C}} \tag{3.16}
\end{equation*}
$$

The uniqueness of $\tau_{x, y}$ is immediate from the injectivity of the Dunkl transform on $M^{1}(\mathfrak{a})$ (cf. [16, Theorem 2.6]).

Acknowledgment

The first author was supported by NWO, project number B 61-544.

References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.
[2] S. Ben Said and B. Ørsted, Generalized Bessel functions II, preprint, 2004.
[3] P. Billingsley, Convergence of Probability Measures, John Wiley \& Sons, New York, 1968.
[4] I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411-431.
[5] M. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162.
[6] —, Paley-Wiener theorems for the Dunkl transform, preprint, 2004, http://arXiv.org/ abs/math.CA/0404439.
[7] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183.
[8] -, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227.
[9] M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245-262.
[10] G. Heckman and H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Mathematics, vol. 16, Academic Press, California, 1994.
[11] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure and Applied Mathematics, vol. 113, Academic Press, Florida, 1984.
[12] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333-373.
[13] -, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75-121.

Positivity of Dunkl's Intertwining Operator

[14] ——, Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups, MSJ Memoirs, vol. 8, Mathematical Society of Japan, Tokyo, 2000.
[15] M. Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463.
[16] M. Rösler and M. Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), no. 4, 575-643.
[17] S. Sahi, A new formula for weight multiplicities and characters, Duke Math. J. 101 (2000), no. 1, 77-84.

Margit Rösler: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

E-mail address: mroesler@science.uva.nl
Michael Voit: Fachbereich Mathematik, Universität Dortmund, Vogelpothsweg 87, 44221 Dortmund, Germany
E-mail address: michael.voit@mathematik.uni-dortmund.de

