Positivity of Dunkl's Intertwining Operator via the Trigonometric Setting

Margit Rösler and Michael Voit

1 Introduction

In [15], it was proven that Dunkl's intertwining operator between the rational Dunkl operators for a fixed finite reflection group and nonnegative multiplicity function is positive. As a consequence, we obtained an abstract Harish-Chandra-type integral representation for the Dunkl kernel, the image of the usual exponential kernel under the intertwiner. The proof was based on methods from the theory of operator semigroups and a rank-one reduction.

In the present paper, we give a new, completely different proof of these results under the only additional assumption that the underlying reflection group has to be crystallographic. In contrast to the proof of [15], where precise information on the supports of the representing measures could only be obtained by going back to estimates of the kernel from [5], this information is now directly obtained. Our new approach relies first on an asymptotic relationship between the Opdam-Cherednik kernel and the Dunkl kernel as recently observed by de Jeu [6], and second on positivity results of Sahi [17] for the Heckman-Opdam polynomials and their nonsymmetric counterparts.

2 Preliminaries

2.1 Basic notation

Let $\mathfrak a$ be a finite-dimensional Euclidean vector space with inner product $\langle \cdot, \cdot \rangle$. We use the same notation for the bilinear extension of $\langle \cdot, \cdot \rangle$ to the complexification $\mathfrak a_{\mathbb C}$ of $\mathfrak a$, and we

identify $\mathfrak a$ with its dual $\mathfrak a^*=\operatorname{Hom}(\mathfrak a,\mathbb R)$ via the given inner product. For $\alpha\in\mathfrak a\setminus\{0\}$, we write $\alpha^\vee=2\alpha/\langle\alpha,\alpha\rangle$ and $\sigma_\alpha(x)=x-\langle x,\alpha^\vee\rangle\alpha$ for the orthogonal reflection in the hyperplane perpendicular to α . We consider a crystallographic root system R in $\mathfrak a$, that is, R is a finite subset of $\mathfrak a\setminus\{0\}$ which spans $\mathfrak a$ and satisfies $\sigma_\alpha(R)=R$ and $\langle\alpha,\beta\rangle\in\mathbb Z$ for all $\alpha,\beta\in R$. We also assume that R is indecomposable and reduced, that is, $R\cap\mathbb R\alpha=\{\pm\alpha\}$ for all $\alpha\in R$. Let W be the finite reflection group generated by the $\sigma_\alpha,\,\alpha\in R$. We will fix a positive subsystem R_+ of R as well as a *nonnegative* multiplicity function $k=(k_\alpha)_{\alpha\in R}$, satisfying $k_\alpha=k_\beta$ if α and β are in the same W-orbit.

2.2 Rational Dunkl operators and Dunkl's intertwiner

References for this section are [7, 8, 12, 15]. Let $\mathcal{P}=\mathbb{C}[\mathfrak{a}]$ denote the vector space of complex polynomial functions on \mathfrak{a} , and $\mathcal{P}_{\mathfrak{n}}\subset P$ the subspace of polynomials which are homogeneous of degree $\mathfrak{n}\in\mathbb{Z}_+$. The rational Dunkl operators on \mathfrak{a} associated with R and fixed multiplicity $k\geq 0$ are given by

$$T_{\xi} = T_{\xi}(k) = \vartheta_{\xi} + \sum_{\alpha \in \mathbb{R}_{+}} k_{\alpha} \langle \alpha, \xi \rangle \frac{1}{\langle \alpha, \cdot \rangle} (1 - \sigma_{\alpha}), \quad \xi \in \mathfrak{a}.$$
 (2.1)

These operators commute and map $\mathcal P$ onto itself. Moreover, there exists a unique linear isomorphism $V=V_k$ on $\mathcal P$ with $V(1)=1, V(\mathcal P_n)=P_n$, and $T_\xi V=V\partial_\xi$ for all $\xi\in\mathfrak a$. According to [8], the intertwining operator V can be extended to larger classes of functions as follows: for r>0, let $K_r:=\{x\in\mathfrak a:|x|\leq r\}$ denote the ball of radius r and define

$$A_{r} := \left\{ f : K_{r} \longrightarrow \mathbb{C}, \ f = \sum_{n=0}^{\infty} f_{n} \text{ with } f_{n} \in \mathcal{P}_{n}, \|f\|_{A_{r}} := \sum_{n=0}^{\infty} \|f_{n}\|_{\infty, K_{r}} < \infty \right\}, \quad (2.2)$$

where $\|f_n\|_{\infty,K_r}:=\sup_{x\in K_r}|f_n(x)|$. The space A_r is a Banach space with norm $\|\cdot\|_{A_r}$ (in fact, a commutative Banach algebra). V extends to a continuous linear operator on A_r by $V(\sum_{n=0}^\infty f_n):=\sum_{n=0}^\infty Vf_n$. The Dunkl kernel Exp_W is defined by

$$\operatorname{Exp}_{W}(\cdot, z) := V(e^{\langle \cdot, z \rangle}), \quad z \in \mathfrak{a}_{\mathbb{C}}.$$
 (2.3)

It extends to a holomorphic function on $\mathfrak{a}_\mathbb{C} \times \mathfrak{a}_\mathbb{C}$ which is symmetric in its arguments. For $\lambda \in \mathfrak{a}_\mathbb{C}$, $\text{Exp}_W(\lambda, \cdot)$ is the unique holomorphic solution of the joint eigenvalue problem

$$T_{\xi}f = \langle \lambda, \xi \rangle f \quad \forall \xi \in \mathfrak{a}, f(0) = 1.$$
 (2.4)

For $x \in \mathfrak{a}$, we denote by C(x) the closure of the convex hull of the W-orbit Wx of x in \mathfrak{a} . Moreover, for a locally compact Hausdorff space X, we write $M^1(X)$ for the set of probability measures on the Borel σ -algebra of X. In [15], the following is proven.

Theorem 2.1. For each $x \in \mathfrak{a}$, there exists a unique probability measure $\mu_x \in M^1(\mathfrak{a})$ such that

$$Vf(x) = \int_{\mathfrak{a}} f(\xi) d\mu_{x}(\xi) \quad \forall f \in A_{|x|}. \tag{2.5}$$

The support of μ_x is contained in C(x).

As a consequence,

$$\operatorname{Exp}_{W}(x,z) = \int_{\mathfrak{a}} e^{\langle \xi,z \rangle} d\mu_{x}(\xi) \quad \forall z \in \mathfrak{a}_{\mathbb{C}}. \tag{2.6}$$

In [15], the proof of the inclusion supp $\mu_x \subseteq C(x)$ requires the exponential bounds on Exp_W from [5], which are by far not straightforward. As is well known, the W-invariant parts of the rational and trigonometric Dunkl theories are, for certain discrete sets of multiplicities, realized within the classical Harish-Chandra theory for semisimple symmetric spaces. In particular, for such k, the generalized Bessel functions

$$J_{W}(\cdot, z) = \frac{1}{|W|} \sum_{w \in W} \operatorname{Exp}_{W}(\cdot, w^{-1}z), \quad z \in \mathfrak{a}_{\mathbb{C}},$$
(2.7)

can be identified with the spherical functions of an underlying Cartan motion group; for details see, for example, [6]. In this case, their integral representation according to (2.6) is a special case of a (Euclidean type) Harish-Chandra integral, and the inclusion supp $\mu_x \subseteq C(x)$ follows from Kostant's convexity theorem [11, Proposition IV.4.8 and Theorem IV.10.2].

2.3 Cherednik operators and the Opdam-Cherednik kernel

The basic concepts of this as well as the following section are due to Opdam [13] (see also [14, part I]), Heckman (see [10, part I]), and Cherednik [4]. Let

$$P := \left\{ \lambda \in \mathfrak{a} : \left\langle \lambda, \alpha^{\vee} \right\rangle \in \mathbb{Z} \, \forall \alpha \in R \right\} \tag{2.8}$$

denote the weight lattice associated with the root system R. For $\lambda \in \mathfrak{a}_{\mathbb{C}}$, we define the exponential e^{λ} on $\mathfrak{a}_{\mathbb{C}}$ by $e^{\lambda}(z) := e^{\langle \lambda, z \rangle}$ and denote by \mathfrak{T} the \mathbb{C} -span of $\{e^{\lambda}, \ \lambda \in P\}$. This is the algebra of trigonometric polynomials on $\mathfrak{a}_{\mathbb{C}}$ with respect to R. The Cherednik operator in direction $\xi \in \mathfrak{a}$ is defined by

$$D_{\xi} = D_{\xi}(k) = \partial_{\xi} + \sum_{\alpha \in R_{+}} k_{\alpha} \langle \alpha, \xi \rangle \frac{1}{1 - e^{-\alpha}} (1 - \sigma_{\alpha}) - \langle \rho(k), \xi \rangle, \tag{2.9}$$

where $\rho(k)=(1/2)\sum_{\alpha\in R_+}k_{\alpha}\alpha$. Each D_{ξ} maps $\mathfrak T$ onto itself and (for fixed k) the operators D_{ξ} commute. Notice that in contrast to the rational T_{ξ} , they depend on the particular choice of R_+ . For each $\lambda\in\mathfrak a_{\mathbb C}$, there exists a unique holomorphic function $G(\lambda,\cdot)$ in a tubular neighborhood of $\mathfrak a$ which satisfies

$$D_{\xi}G(\lambda,\cdot) = \langle \lambda, \xi \rangle G(\lambda,\cdot) \quad \forall \xi \in \mathfrak{a}, \ G(\lambda,0) = 1$$
 (2.10)

(see [14, Corollary I.7.6]). G is called the Opdam-Cherednik kernel. It is in fact (as a function of both arguments) holomorphic in a suitable tubular neighborhood of $\mathfrak{a}_\mathbb{C} \times \mathfrak{a}$ [13, Theorem 3.15]. The rational Dunkl operators can be considered a scaling limit of the Cherednik operators, and this implies limit relations between the kernels Exp_W and G. We will need the following variant of [6, Theorem 4.12].

Proposition 2.2. Let $\delta > 0$ be a constant, $K, L \subset \mathfrak{a}_{\mathbb{C}}$ compact sets, and $h : (0, \delta) \times L \to \mathfrak{a}_{\mathbb{C}}$ a continuous mapping such that $\lim_{\varepsilon \to 0} \varepsilon h(\varepsilon, \lambda) = \lambda$ uniformly on L. Then

$$\lim_{\epsilon \to 0} G(h(\epsilon, \lambda), \epsilon z) = \operatorname{Exp}_{W}(\lambda, z) \tag{2.11}$$

uniformly for
$$(\lambda, z) \in L \times K$$
.

The proof is the same as for [6, Theorem 4.12], with λ/ϵ replaced by $h(\epsilon,\lambda)$. We mention that for integral k, such a limit transition has first been carried out in [2] by use of shift operator methods.

2.4 A scaling limit for nonsymmetric Heckman-Opdam polynomials

The definition of these polynomials involves a suitable partial order on P; we refer to the one used in [14]. Let

$$P_{+} := \left\{ \lambda \in P : \left\langle \lambda, \alpha^{\vee} \right\rangle \ge 0 \,\forall \alpha \in R_{+} \right\} \tag{2.12}$$

denote the set of dominant weights associated with R_+ , and λ_+ the unique dominant weight in the orbit $W\lambda$. One defines $\lambda \lhd \nu$ if either $\lambda_+ < \nu_+$ in dominance ordering (i.e., $\nu_+ - \lambda_+ \in Q_+$, the \mathbb{Z}_+ -span of R_+), or if $\lambda_+ = \nu_+$ and $\nu < \lambda$ (in dominance ordering). Further, $\lambda \unlhd \nu$ means $\lambda = \nu$ or $\lambda \vartriangleleft \nu$. The nonsymmetric Heckman-Opdam polynomials $\{E_\lambda : \lambda \in P\} \subset \mathfrak{T}$ associated with R_+ and k are uniquely characterized by the conditions

$$\mathsf{E}_{\lambda} = \sum_{\nu \leq \lambda} \mathfrak{a}_{\lambda,\nu} e^{\nu} \quad \text{with } \mathfrak{a}_{\lambda,\lambda} = 1, \tag{2.13}$$

$$D_{\xi}E_{\lambda} = \langle \widetilde{\lambda}, \xi \rangle E_{\lambda} \quad \forall \xi \in \mathfrak{a}, \tag{2.14}$$

with the shifted spectral variable $\widetilde{\lambda} = \lambda + (1/2) \sum_{\alpha \in R_+} k_\alpha \varepsilon(\langle \lambda, \alpha^\vee \rangle) \alpha$. Here $\varepsilon : \mathbb{R} \to \{\pm 1\}$ is defined by $\varepsilon(x) = 1$ for x > 0 and $\varepsilon(x) = -1$ for $x \le 0$. For details, see [13] and [14, Section I.2.3].

On the other hand, we know (cf. (2.10)) that $G(\widetilde{\lambda}, \cdot)$ is the up-to-a-constant-factor unique holomorphic solution of (2.14). Hence

$$\mathsf{E}_{\lambda} = \mathsf{c}_{\lambda} \cdot \mathsf{G}(\widetilde{\lambda}, \cdot), \tag{2.15}$$

with a constant $c_{\lambda} = E_{\lambda}(0) > 0$. The precise value of c_{λ} is given in [14, Theorem 4.7].

Corollary 2.3. For $\lambda \in P$ and $z \in \mathfrak{a}_{\mathbb{C}}$,

$$\operatorname{Exp}_{W}(\lambda, z) = \lim_{n \to \infty} \frac{1}{c_{n\lambda}} \operatorname{E}_{n\lambda} \left(\frac{z}{n} \right). \tag{2.16}$$

The convergence is locally uniform with respect to z.

Proof. Fix $\lambda \in P$ and observe that $\widetilde{n\lambda} = n\lambda + (1/2) \sum_{\alpha \in R_+} k_\alpha \varepsilon(\langle \lambda, \alpha^\vee \rangle) \alpha$ for all $n \in \mathbb{N}$. Thus by Proposition 2.2 and identity (2.15), we have, locally uniformly for $z \in \mathfrak{a}_{\mathbb{C}}$,

$$\operatorname{Exp}_{W}(\lambda, z) = \lim_{n \to \infty} G\left(\widetilde{n\lambda}, \frac{z}{n}\right) = \lim_{n \to \infty} \frac{1}{c_{n\lambda}} \operatorname{E}_{n\lambda}\left(\frac{z}{n}\right). \tag{2.17}$$

Remark 2.4. Similar results hold for the symmetric Heckman-Opdam polynomials

$$P_{\lambda}(z) = \frac{|W\lambda|}{|W|} \sum_{w \in W} E_{\lambda}(w^{-1}z), \quad \lambda \in P_{+}.$$
(2.18)

They are W-invariant and related with the multivariable hypergeometric function

$$F(\lambda, z) = \frac{1}{|W|} \sum_{w \in W} G(\lambda, w^{-1}z)$$
(2.19)

via

$$P_{\lambda} = c_{\lambda}^* \cdot F(\lambda + \rho, \cdot) \quad \forall \lambda \in P_{+}$$
 (2.20)

with $c_{\lambda}^* = |W\lambda| \cdot c_{\lambda}$ and $\rho = \rho(k) = (1/2) \sum_{\alpha \in R_+} k_{\alpha} \alpha$, (cf. [10, equation (4.4.10)]). This also follows from (2.15) because F is in fact W-invariant in both arguments and for $\lambda \in P_+$, the shifted weight $\widetilde{\lambda}$ is contained in the W-orbit of $\lambda + \rho$ [13, Proposition 2.10]. Further, Corollary 2.3 implies that for $\lambda \in P_+$ and $z \in \mathfrak{a}_{\mathbb{C}}$,

$$J_{W}(\lambda, z) = \lim_{n \to \infty} F\left(n\lambda + \rho, \frac{z}{n}\right) = \lim_{n \to \infty} \frac{1}{c_{n\lambda}^{*}} P_{n\lambda}\left(\frac{z}{n}\right). \tag{2.21}$$

For illustration, consider the rank-one case (type A_1) with $\mathfrak{a}=\mathbb{R}$ and $R_+=\{2\alpha\}$, $\alpha=1$. Fix $k=k_{2\alpha}\geq 0$. Then according to the example in [13, page 89f],

$$\begin{split} F(\lambda,z) &= {}_{2}F_{1}\left(\alpha,b,c;\frac{1}{2}(1-\cosh z)\right), \\ G(\lambda,z) &= {}_{2}F_{1}\left(\alpha,b,c;\frac{1}{2}(1-\cosh z)\right) \\ &+ \frac{\alpha}{2c}\sinh z \cdot {}_{2}F_{1}\left(\alpha+1,b+1,c+1;\frac{1}{2}(1-\cosh z)\right), \end{split} \tag{2.22}$$

with $a = \lambda + k$, $b = -\lambda + k$, and c = k + 1/2. The weight lattice is $P = \mathbb{Z}$, and the associated Heckman-Opdam polynomials are given by

$$\begin{split} P_n(z) &= c_n^* F(n+k,z) = c_n^* \cdot Q_n^k(\cosh z), \quad n=0,1,\ldots, \\ E_n(z) &= c_n G\big(\widetilde{n},z\big) = c_n \left[Q_{|n|}^k(\cosh z) + \frac{\widetilde{n}+k}{2k+1} \cdot \sinh z Q_{|n|-1}^{k+1}(\cosh z) \right], \quad n \in \mathbb{Z}, \end{split}$$

with $\widetilde{n}=n+k$ for n>0, $\widetilde{n}=n-k$ for $n\leq 0$, and the renormalized Gegenbauer polynomials

$$Q_n^k(x) = {}_2F_1\bigg(n+2k,-n,k+\frac{1}{2};\frac{1}{2}(1-x)\bigg). \tag{2.24}$$

Relation (2.21) reduces to the classical limit

$$\lim_{n\to\infty} Q_n^k \left(\cos\frac{z}{n}\right) = j_{k-1/2}(z) \quad (z\in\mathbb{C}) \tag{2.25}$$

for the modified Bessel functions

$$j_{\alpha}(z) = 2^{\alpha} \Gamma(\alpha + 1) \cdot \frac{J_{\alpha}(z)}{z^{\alpha}} = \Gamma(\alpha + 1) \cdot \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{z}{2}\right)^{2n}}{n! \Gamma(n + \alpha + 1)},$$
(2.26)

see [1, Theorem 4.11.6]. It is clear from the explicit representation of the Gegenbauer polynomials in terms of Tchebycheff polynomials [1, equation (6.4.11)] that for $k \geq 0$, the expansion coefficients of P_n with respect to the exponentials $z \mapsto e^{mz}$, $m \in \mathbb{Z}$, are all nonnegative. A closer inspection shows that the same holds for the nonsymmetric E_n . This is in fact a special case of a deep result for general Heckman-Opdam polynomials due to Sahi [17]: if the multiplicity function k is nonnegative, then it follows from [17, Corollary 5.2 and Proposition 6.1] that the coefficients $a_{\lambda,\nu}$ of E_{λ} in (2.13) are all real and nonnegative. More precisely, if $\Pi_k := \mathbb{Z}_+[k_{\alpha}]$ denotes the set of polynomials in the parameters k_{α}

with nonnegative integral coefficients, then for suitable $d_{\lambda} \in \Pi_k$, all coefficients of $d_{\lambda} E_{\lambda}$ are contained in Π_k as well. This positivity result is the key for our subsequent proof of Theorem 2.1.

New proof of Theorem 2.1

In contrast to our approach in [15], we first derive a positive integral representation for the Dunkl kernel. As before, R and $k \ge 0$ are fixed.

Proposition 3.1. For each $x \in \mathfrak{a}$, there exists a unique probability measure $\mu_x \in M^1(\mathfrak{a})$ such that (2.6) holds. The support of μ_x is contained in C(x).

Proof. It suffices to prove the existence of the representing measures as stated; their uniqueness is immediate from the injectivity of the (usual) Fourier-Stieltjes transform on $M^1(\mathfrak{a})$. Let $\lambda \in P$. Then by Sahi's positivity result mentioned above,

$$G(\widetilde{\lambda}, \cdot) = \frac{1}{c_{\lambda}} E_{\lambda} = \sum_{\gamma \leq \lambda} b_{\lambda, \gamma} e^{\gamma}, \tag{3.1}$$

with coefficients $b_{\lambda,\nu}$ satisfying

$$0 \le b_{\lambda,\nu} \le 1, \quad \sum_{\gamma \le \lambda} b_{\lambda,\nu} = 1.$$
 (3.2)

Now fix $\lambda \in P$ and $z \in \mathfrak{a}_{\mathbb{C}}$. Then by Corollary 2.3,

$$\operatorname{Exp}_{W}(\lambda,z) = \lim_{n \to \infty} \frac{1}{c_{n\lambda}} \operatorname{E}_{n\lambda} \left(\frac{z}{n} \right) = \lim_{n \to \infty} \sum_{\gamma \leq n\lambda} b_{n\lambda,\gamma} e^{\langle \gamma,z/n \rangle}. \tag{3.3}$$

Introducing the discrete probability measures

$$\mu_{\lambda}^{n} := \sum_{\gamma \leq n\lambda} b_{n\lambda,\gamma} \delta_{\gamma/n} \in M^{1}(\mathfrak{a}), \tag{3.4}$$

(where δ_x denotes the point measure in $x \in \mathfrak{a}$), we may write the above relation in the form

$$\operatorname{Exp}_{W}(\lambda, z) = \lim_{n \to \infty} \int_{\mathfrak{a}} e^{\langle \xi, z \rangle} d\mu_{\lambda}^{n}(\xi). \tag{3.5}$$

The following lemma shows that the support of μ_{λ}^{n} is contained in $C(\lambda)$.

Lemma 3.2. Let
$$\lambda, \nu \in P$$
 with $\nu \leq \lambda$. Then $\nu \in C(\lambda)$.

Proof. Let $C := \{x \in \mathfrak{a} : \langle \alpha, x \rangle \geq 0 \ \forall \alpha \in R_+ \}$ be the closed Weyl chamber associated with R_+ and

$$C^* := \{ y \in \mathfrak{a} : \langle y, x \rangle \ge 0 \, \forall x \in C \} \tag{3.6}$$

its closed dual cone. Notice that $Q_+ \subset C^*$. Therefore, $\nu \leq \lambda$ implies that $\lambda_+ - \nu_+ \in C^*$. We employ the following characterization of C(x) for $x \in C$ [11, Lemma IV.8.3]:

$$C(x) = \bigcup_{w \in W} w(C \cap (x - C^*)). \tag{3.7}$$

This shows that $v \in C(\lambda)$ if and only if $v_+ \in \lambda_+ - C^*$, which yields the statement.

We now continue with the proof of Proposition 3.1. Fix $\lambda \in P$. By the preceding result, we may consider the μ_{λ}^n as probability measures on the compact set $C(\lambda)$. According to Prohorov's theorem (see, e.g., [3]), the set $\{\mu_{\lambda}^n, \ n \in \mathbb{Z}_+\}$ is relatively compact. Passing to a subsequence if necessary, we may therefore assume that there exists a measure $\mu_{\lambda} \in M^1(\mathfrak{a})$ which is supported in $C(\lambda)$ and such that $\mu_{\lambda}^n \to \mu_{\lambda}$ weakly as $n \to \infty$. Thus in view of (3.5),

$$\operatorname{Exp}_{W}(\lambda, z) = \int_{\mathfrak{a}} e^{\langle \xi, z \rangle} d\mu_{\lambda}(\xi) \quad \forall z \in \mathfrak{a}_{\mathbb{C}}. \tag{3.8}$$

In order to extend this representation to arbitrary arguments $x \in \mathfrak{a}$ instead of $\lambda \in P$, observe first that for $r \in \mathbb{Q}$,

$$\text{Exp}_{\mathcal{W}}(\text{r}\lambda,z) = \text{Exp}_{\mathcal{W}}(\lambda,\text{r}z) = \int_{\mathfrak{a}} e^{\text{r}\langle \xi,z\rangle} d\mu_{\lambda}(\xi). \tag{3.9}$$

Defining $\mu_{r\lambda} \in M^1(\mathfrak{a})$ as the image measure of μ_{λ} under the dilation $\xi \mapsto r\xi$ on \mathfrak{a} , we therefore obtain (2.6) for all $x \in \mathbb{Q}.P = \{r\lambda : r \in \mathbb{Q}, \ \lambda \in P\}$. The set $\mathbb{Q}.P$ is obviously dense in \mathfrak{a} . For arbitrary $x \in \mathfrak{a}$, choose an approximating sequence $\{x_n, \ n \in \mathbb{Z}_+\} \subset \mathbb{Q}.P$ with $\lim_{n \to \infty} x_n = x$. Using Prohorov's theorem once more, we obtain, after passing to a subsequence, that $\mu_{x_n} \to \mu_x$ weakly for some $\mu_x \in M^1(\mathfrak{a})$. The support of μ_x can be confined to an arbitrarily small neighbourhood of C(x), and must therefore coincide with C(x). We thus have

$$\operatorname{Exp}_{W}(x,z) = \lim_{n \to \infty} \operatorname{Exp}_{W}(x_{n},z) = \int_{\mathfrak{g}} e^{\langle \xi,z \rangle} d\mu_{x}(\xi) \quad \forall z \in \mathfrak{a}_{\mathbb{C}}, \tag{3.10}$$

which finishes the proof of the proposition.

Proof of Theorem 2.1. By Proposition 3.1 and the definition of V,

$$\begin{split} \sum_{n=0}^{\infty} \frac{1}{n!} V_{x} \big(\langle x, z \rangle^{n} \big) &= V_{x} \Big(e^{\langle x, z \rangle} \Big) = \int_{\mathfrak{a}} e^{\langle \xi, z \rangle} d\mu_{x}(\xi) \\ &= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\mathfrak{a}} \langle \xi, z \rangle^{n} d\mu_{x}(\xi) \quad \big(z \in \mathfrak{a}_{\mathbb{C}} \big); \end{split} \tag{3.11}$$

here the subscript x means that V is taken with respect to x. Comparison of the homogeneous parts in z of degree n yields that

$$V_{x}(\langle x,z\rangle^{n}) = \int_{\mathfrak{a}} \langle \xi,z\rangle^{n} d\mu_{x}(\xi) \quad \forall n \in \mathbb{Z}_{+}. \tag{3.12}$$

As the \mathbb{C} -span of $\{x \mapsto \langle x, z \rangle^n, z \in \mathfrak{a}_{\mathbb{C}}\}$ is \mathcal{P}_n , it follows by linearity that

$$Vp(x) = \int_{\mathfrak{a}} p(\xi) d\mu_x(\xi) \quad \forall p \in \mathfrak{P}, \ x \in \mathfrak{a}. \tag{3.13}$$

Finally, as \mathcal{P} is dense in each $(A_r, \|\cdot\|_{A_r})$ and $\|\cdot\|_{\infty, K_r} \leq \|\cdot\|_{A_r}$, an easy approximation argument implies that this integral representation remains valid for all $f \in A_r$, with $r \geq |x|$. This finishes the proof.

We conclude this paper with a remark concerning positive product formulas. It is conjectured that (again in case $k \geq 0$) the multivariable hypergeometric function F has a positive product formula. More precisely, we conjecture that for all $x,y \in \mathfrak{a}$, there exists a probability measure $\sigma_{x,y} \in M^1(\mathfrak{a})$ whose support is contained in the ball $K_{|x|+|y|}(0)$ and which satisfies

$$F(\lambda, x)F(\lambda, y) = \int_{\mathfrak{a}} F(\lambda, \xi) d\sigma_{x, y}(\xi) \quad \forall \lambda \in \mathfrak{a}_{\mathbb{C}}. \tag{3.14}$$

In the rank-one case, that is, for Jacobi functions, this is well known and goes back to [9]. Equation (3.14) would immediately imply a positive product formula for the generalized Bessel function J_W (associated with the same multiplicity k). In fact, suppose there exist measures $\sigma_{x,y}$ as conjectured above, and denote for r>0 the image measure of $\sigma_{x,y}$ under the dilation $\xi \mapsto r\xi$ on a by $\sigma^r_{x,y}$. Then by relation (2.21),

$$\begin{split} J_{W}(\lambda,x)J_{W}(\lambda,y) &= \lim_{n \to \infty} F\bigg(n\lambda + \rho, \frac{x}{n}\bigg) F\bigg(n\lambda + \rho, \frac{y}{n}\bigg) \\ &= \lim_{n \to \infty} \int_{\mathfrak{a}} F\bigg(n\lambda + \rho, \frac{\xi}{n}\bigg) d\sigma^{n}_{x/n,y/n}(\xi) \end{split} \tag{3.15}$$

for all $\lambda \in \mathfrak{a}_{\mathbb{C}}$. As supp $\sigma^n_{x/n,y/n} \subseteq K_{|x|+|y|}(0)$ for all $n \in \mathbb{N}$, we may assume that there exists a probability measure $\tau_{x,y} \in M^1(\mathfrak{a})$ with supp $\tau_{x,y} \subseteq K_{|x|+|y|}(0)$ such that $\sigma^n_{x/n,y/n} \to \tau_{x,y}$ weakly as $n \to \infty$. As further $\lim_{n \to \infty} F(n\lambda + \rho, \xi/n) = J_W(\lambda, \xi)$ locally uniformly with respect to ξ , (3.15) implies the product formula

$$J_{W}(\lambda, x)J_{W}(\lambda, y) = \int_{\mathfrak{a}} J_{W}(\lambda, \xi)d\tau_{x, y}(\xi) \quad \forall \lambda \in \mathfrak{a}_{\mathbb{C}}. \tag{3.16}$$

The uniqueness of $\tau_{x,y}$ is immediate from the injectivity of the Dunkl transform on $M^1(\mathfrak{a})$ (cf. [16, Theorem 2.6]).

Acknowledgment

The first author was supported by NWO, project number B 61-544.

References

- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.
- [2] S. Ben Said and B. Ørsted, Generalized Bessel functions II, preprint, 2004.
- [3] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968.
- [4] I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411–431.
- [5] M. de Jeu, *The Dunkl transform*, Invent. Math. **113** (1993), no. 1, 147–162.
- [6] ——, *Paley-Wiener theorems for the Dunkl transform*, preprint, 2004, http://arXiv.org/abs/math.CA/0404439.
- [7] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183.
- [8] ——, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227.
- [9] M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245–262.
- [10] G. Heckman and H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, Perspectives in Mathematics, vol. 16, Academic Press, California, 1994.
- [11] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure and Applied Mathematics, vol. 113, Academic Press, Florida, 1984.
- [12] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333–373.
- [13] ———, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121.

Downloaded from http://imrn.oxfordjournals.org/ at UB Paderborn on May 13, 2014

- —, Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups, MSJ Memoirs, vol. 8, Mathematical Society of Japan, Tokyo, 2000.
- M. Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463.
- [16] M. Rösler and M. Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), no. 4, 575-643.
- [17] S. Sahi, A new formula for weight multiplicities and characters, Duke Math. J. 101 (2000), no. 1,

Margit Rösler: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

E-mail address: mroesler@science.uva.nl

Michael Voit: Fachbereich Mathematik, Universität Dortmund, Vogelpothsweg 87, 44221 Dortmund,

 $E\text{-}mail\ address: michael.voit@mathematik.uni-dortmund.de\\$