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MULTIRESOLUTION ANALYSIS ON SPECTRA OF HERMITIAN

MATRICES

LUKAS LANGEN AND MARGIT RÖSLER

Dedicated to Tom Koornwinder on the occasion of his 80th birthday

Abstract. We establish a multiresolution analysis on the space Herm(n) of n × n complex
Hermitian matrices which is adapted to invariance under conjugation by the unitary group
U(n). The orbits under this action are parametrized by the possible ordered spectra of Her-
mitian matrices, which constitute a closed Weyl chamber of type An−1 in Rn. The space

L2(Herm(n))U(n) of radial, i.e. U(n)-invariant L2-functions on Herm(n) is naturally identi-
fied with a certain weighted L2-space on this chamber.

The scale spaces of our multiresolution analysis are obtained by usual dyadic dilations as
well as generalized translations of a scaling function, where the generalized translation is a
hypergroup translation which respects the radial geometry. We provide a concise criterion to
characterize orthonormal wavelet bases and show that such bases always exist. They provide
natural orthonormal bases of the space L2(Herm(n))U(n). Furthermore, we show how to obtain
radial scaling functions from classical scaling functions on Rn. Finally, generalizations related
to the Cartan decompositions for general compact Lie groups are indicated.

1. Introduction

Suppose we are given a discrete subgroup Γ ⊆ GL(V ) ⋉ V of the affine group of a Euclidean
vector space V generated by translations coming from a lattice subgroup of V and dilations that
arise as integer powers of an expansive automorphism which leaves the lattice invariant.

It is a classical problem in wavelet analysis to determine whether there are functions ψ1, . . . , ψr ∈
L2(V ), often called a wavelet set, such that

{γ.ψi : γ ∈ Γ, 1 ≤ i ≤ r} (1.1)

constitutes an orthonormal Hilbert basis of L2(V ). Here L2(V ) is with respect to the Lebesgue
measure on V and Γ acts on L2(V ) via γ.ψ(x) = ψ(γ−1x). The standard approach to this
problem is to obtain the wavelet basis (1.1) from a multiresolution analysis (see e.g. [BMM99,
Mad93, Woj97]), and in general the size r of the wavelet set depends on the determinant of
the expansive automorphism. In non-Euclidean settings, such as on manifolds, concepts of
multiresolution analysis are often less natural. There is a broad literature on wavelet analysis
and multiresolution on spheres, see e.g. [FNS18] and [FFP16] for a more general background
about wavelet methods on manifolds. Let us also mention [Pap11] among further concepts of
non-Euclidean multiresolution analyses and [OOR06] for a non-Euclidean (continuous) wavelet
transform on rectangular matrix spaces. In [RR03] a radial multiresolution for SO(3)-invariant
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functions on R3 was introduced. It was based on the natural hypergroup translation on the
orbit space (R3)SO(3) ∼= [0,∞[, and the intimate connection of the characters of this hypergroup
(certain Bessel functions) to the Tchebychef polynomials of second kind played a crucial role.
For structural reasons, this concept cannot be generalized to SO(n)-invariant functions on Rn

for n > 3.

In the present paper, we consider the space V = Herm(n) of Hermitian n × n-matrices as
a Euclidean space with the trace form 〈X,Y 〉 = tr(XY ). It is naturally acted upon by the
unitary group U(n) via conjugation. In various analytic contexts, such as random matrix theory,
one is interested in the space L2(Herm(n))U(n) consisting of functions f ∈ L2(Herm(n)) which
are invariant under this action, i.e. depend only on the eigenvalues of their argument. It
seems natural to exploit the additional geometric invariance also in wavelet analysis, in order to
obtain a discrete wavelet decomposition of L2(Herm(n))U(n). Identifying U(n)-orbits in Herm(n)
with their ordered spectrum via the spectral theorem will also reduce the dimension of the
underlying space from n2 to n. In a closely related way, one could consider functions on the
space SHerm(n) = {X ∈ Herm(n) : trX = 0}, which are radial in the sense of conjugation
invariance under SU(n). As we shall describe in the appendix (Section 6), the setting of [RR03]
just corresponds to SU(2)-invariant analysis on SHerm(2).

The goal of the present paper is to generalize the concepts of [RR03] to higher rank, namely to
analysis on Herm(n) which is radial in the sense of U(n)-invariance. We shall introduce a radial
multiresolution on Herm(n) and characterize radial orthonormal wavelet bases. A key ingredient
will be the definition of a generalized translation operator on L2(Herm(n))U(n), as classical
translations of U(n)-invariant function need not to be U(n)-invariant again. We identify the
orbit space of the action of U(n) on Herm(n) with the closed cone

a+ = {x ∈ R
n : x1 ≥ . . . ≥ xn}

of ordered spectra of Hermitian matrices via U(n).X 7→ σ(X) ∈ a+. Here σ(X) denotes the
set of eigenvalues of X, ordered by size. The cone a+ is a closed Weyl chamber of type An−1.
It carries a natural hypergroup structure, where the convolution of point measures δx ∗ δy is a
compactly supported probability measure on a+ which describes the possible spectra of sums
of Hermitian matrices X + Y with given spectra σ(X) = x, σ(Y ) = y. For generic x and y the
measure δx ∗ δy is absolutely continuous with respect to the Lebesgue measure in a certain affine
plane in Rn with an explicit formula for the density. This is a consequence of results in [GS02],
see also the survey [GS16]. The generalized translation of suitable functions on a+ is then given
by Txf(y) := δx ∗ δy(f), and harmonic analysis of L2(Herm(n))U(n) will play out as harmonic
analysis on the L2-space L2(a+, ω) of this hypergroup, where ω(x) =

∏
i<j |xj −xj |2. This is due

to the fact that by the Weyl integration formula, the classical Fourier transform of U(n)-invariant
functions on Herm(n) coincides with a Hankel transform with respect to the spherical functions of
the Cartan motion group U(n)⋉Herm(n), which are multivariate Bessel functions. The concept
of a radial multiresolution in Herm(n) will thus be that of a multiresolution in L2(a+, ω). The
scale spaces (Vj)j∈Z are obtained by (classical) dyadic dilations from V0, which is in turn spanned
by generalized translations along lattice points of a so-called radial scaling function φ ∈ L2(a+, ω).
Similarly to [RR03], and in contrast to classical notions of multiresolution analysis, while still
being characterized by a two-scale relation, the scaling function φ itself is not contained in V0
and the scale spaces are not translation invariant with respect to the generalized translation.
While the authors in [RR03] explicitly construct a set of orthonormal wavelets from a given
multiresolution consisting (due to dimensionality reasons) of only one wavelet, this approach is
not feasible in our higher-rank situation as the number of wavelets needed will grow with n.
Instead, we will give a concise criterion characterizing orthonormal wavelet bases of L2(a+, ω)
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by checking whether a certain matrix-valued function is almost everywhere unitary. This result
is resemblant of a similar criterion in classical wavelet theory ([Woj97]) and will allow us to show
that given a multiresolution analysis, associated orthonormal wavelet bases always exist and
that they in fact consist of 2n − 1 wavelets. As functions on Herm(n), these wavelets reflect the
underlying radial symmetry and require reduced computational effort as classical multiresolution

on the vector space Herm(n) would need 2n
2 − 1 wavelets. We are furthermore able to relate

radial scaling functions to classical permutation-invariant scaling functions on R
n, yielding a

simple example of a radial wavelet basis analogous to the classical Shannon wavelets.

The paper is organized as follows: In Section 2 we recall facts about radial analysis on Herm(n).
We will introduce the generalized translation operators on L2(a+, ω) and study their proper-
ties. This will be crucial for Section 3, where we introduce a radial multiresolution analysis on
Herm(n). In Section 4, orthonormal wavelet bases are discussed and Section 5 then describes
how to obtain radial scaling functions from classical scaling functions in Rn. Finally, Section 6
is dedicated to the discussion of generalizations of the previous results. In fact, many arguments
remain valid upon replacing U(n) with an arbitrary connected compact Lie group, the space
V = Herm(n) by p = iLie(K) ⊆ C ⊗R Lie(K), and by considering the adjoint action of K on
p. In this setting one can see the results of [RR03] as a special case of rank 1, as the situation
corresponds to that of SU(2) acting on SHerm(2). However, in the general higher-rank case, it
would not be clear how to obtain radial scaling functions from classical scaling functions.

2. Radial Analysis and Generalized Translation

The unitary group U(n), n ≥ 2 acts naturally on Hermitian matrices Herm(n) by conjugation.
By the spectral theorem, the orbit space Herm(n)U(n) of this action can be (actually topologi-
cally) identified with the closed chamber

a+ = {x ∈ R
n : x1 ≥ . . . ≥ xn}

via U(n).X 7→ σ(X), where σ(X) is the ordered spectrum of X . We note that U(n)⋉Herm(n) is
the Cartan motion group of the complex Lie groupG = GLn(C) with maximal compact subgroup
K = U(n), coming from the Cartan decomposition g = k⊕p with p = Herm(n). GLn(C) belongs
to the so-called Harish-Chandra class (cf. e.g. [GV88]), but in contrast to SLn(C) it is not
semisimple. For the maximal abelian subspace a = {diag(x1, . . . , xn) : xi ∈ R} ∼= Rn of p, the
set a+ = {x ∈ R

n : x1 > . . . > xn} is the positive Weyl chamber corresponding to the positive
subsystem Σ+ = {ei− ej : 1 ≤ i < j ≤ n} of the root system An−1 in Rn. We shall often identify
elements from Rn with diagonal matrices in the above way.

Recall the Weyl integration formula ([Far08], Thm. 10.1.4; more generally [GV88], eqn.(2.4.22))
which states that ∫

Herm(n)

F (X) dX = c

∫

a+

∫

U(n)

F (uxu−1)du ω(x)dx

for F ∈ Cc(Herm(n)). Here, c > 0 is a constant independent of F and

ω(x) =
∏

i<j

(xi − xj)
2.

We thus obtain an isometric isomorphism

Φ: L2(Herm(n))U(n) → L2(a+, cω), F 7→ F |a+
= f.

As the action of U(n) on Herm(n) is via orthogonal transformations, the Euclidean Fourier
transform of a radial function F ∈ Cc(Herm(n))U(n) is again radial and becomes a Hankel
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transform of f : for Y ∈ Herm(n) with y = σ(Y ),

F̂ (Y ) :=
1

(2π)n2/2

∫

Herm(n)

F (X)e−i〈X,Y 〉dX

=
c

(2π)n2/2

∫

a+

f(x)J(x,−iy)ω(x)dx =: Hf(y)

with the Bessel functions

J(y, z) =

∫

U(n)

etr(uyu
−1z)du =

∏n−1
k=1 k!

π(y)π(z)

∑

w∈Sn

ε(w)e〈wy,z〉 (y, z ∈ C
n) (2.1)

given by the Harish-Chandra-Itzykson-Zuber formula ([HC57], [IZ80]; see also [McS21] for a
recent overview). Here ε(w) denotes the sign of w, the scalar product 〈 . , . 〉 is extended in a
bilinear way to Cn, and

π(z) =
∏

i<j

(zi − zj)

denotes the fundamental alternating polynomial, also known as the Vandermonde determinant.
Thus we get a Plancherel theorem extending the Hankel transform H to a unitary operator on
L2(a+, ω). Note that the Bessel function J satisfies J(λx, z) = J(x, λz) for λ ∈ C and that it is
Sn-invariant in both arguments. We may therefore extendHf to an Sn-invariant (i.e. symmetric)
function on Rn whenever convenient.

Usual translations F (·−y) of radial functions on Herm(n) need not be radial again. We therefore
define generalized translations for f ∈ Cc(a+) by averaging with respect to the U(n)-action:

Txf(y) :=

∫

U(n)

f(σ(x+ uyu−1)) du =: (δx ∗ δy)(f)

Note that δx ∗ δy defines a compactly supported probability measure on a+ and that δy ∗ δx =
δx ∗ δy. As an immediate consequence of Fubini’s theorem and the left-invariance of the Haar
measure we obtain the product formula

(δx ∗ δy)J(·, z) = J(x, z)J(y, z).

This just says that when considered as functions on Rn, the functions J( . , z), z ∈ Cn are
spherical functions of the Gelfand pair (U(n) ⋉ Herm(n), U(n)). Indeed, all spherical functions
are of this form, which follows e.g. from [Wol06], Theorem 4.4, and the bounded spherical
functions are those with z ∈ iRn. Moreover, for radial F,G on Herm(n),∫

a+

Tyf(x)g(x)ω(x)dx =

∫

Herm(n)

F (X + y)G(X)dX

=

∫

Herm(n)

F (X)G(X − y)dX =

∫

a+

f(x)Tyg(x)ω(x)dx (2.2)

with y = −(yn, . . . , y1), provided the integrals exist. In a similar way, it is checked that
‖Tyf‖2,ω ≤ ‖f‖2,ω . Hence the translation operators Ty extend to norm-decreasing linear oper-
ators on L2(a+, ω).

Together with the above product formula, relation (2.2) implies that for f ∈ L2(a+, ω),

H(Tyf)(x) = J(x, iy)Hf(x). (2.3)

Indeed, the above convolution δx ∗ δy of point measures δx and δy defines a commutative orbit
hypergroup structure on a+ in the sense of [Jew75], Sec. 8 (where hypergroups are called convos).
The neutral element is 0 ∈ a+, the involution is given by x 7→ x as defined above and ω(x)dx is
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a Haar measure. For details on hypergroups related to motion groups as in the present setting,
see also [RV08].

In Section 3 we shall need some more refined information on the measures δx ∗ δy. Indeed,
a combination and adaption of results from Helgason [Hel00], Graczyk, Sawyer [GS02] and
Graczyk, Loeb [GL95] for the semisimple case shows that for x, y ∈ a+ the measure δx ∗ δy is
absolutely continuous with respect to the Lebesgue measure on a certain affine plane in R

n,
and gives an explicit formula for the density. To make this precise, we orthogonally decompose
Rn = Rn

0 ⊕ R 1 with

R
n
0 = {x ∈ R

n : x1 + . . .+ xn = 0}, 1 = (1, . . . , 1)

and denote by x0 and x1 the orthogonal projections of x ∈ Rn onto Rn
0 and R1, respectively. We

further put Cn
0 := {z ∈ Cn : z1 + . . .+ zn = 0} and

a+0 := R
n
0 ∩ a+.

A canonical basis of Rn
0 is given by the simple roots

αi := ei − ei+1, 1 ≤ i ≤ n− 1,

and we denote the remaining elements in Σ+ \ {α1, . . . , αn−1} by αn, . . . , αq. Let q := |Σ+| =
1
2n(n − 1). Following [GL95, GS02], we express αk =

∑n−1
j=1 akjαj for k = n, . . . , q in the basis

above and define a subset ∆(y1, . . . , yn−1) ⊆ Rq−n+1 via

(yn, . . . , yq) ∈ ∆(y1, . . . , yn−1) ⇐⇒ yn, . . . , yq ≥ 0 and
q∑

k=n

ykakj ≤ yj , j = 1, . . . , n− 1.

For n ≥ 3, we further define a function T : Rn
0 → R by

T (y1α1 + . . .+ yn−1αn−1) =

∫

∆(y1,...,yn−1)

dyn . . . dyq.

If n = 2, then we define T to jump from 1 inside a+0 to 0 on R2
0 \ a+0.

In order to describe some further properties of T , we introduce in Rn
0 the dual cone of a+0, which

is given by

+a = {x ∈ R
n
0 : x =

n−1∑

j=1

cjαj , cj > 0} ⊆ R
n
0 .

We first state some general facts which will be useful later on.

Lemma 2.1. (1) If x ∈ a+, then x− wx ∈ +a for all w ∈ Sn.

(2) If x ∈ a+ and h ∈ C(x), then x− h ∈ +a.

(3) ρ ∈ a+0.

Proof. See [Hel00], Ch. IV, Lemma 8.3. and observe that x− wx ∈ Rn
0 for x ∈ Rn. �

We shall need the following facts about T, established by Graczyk and Loeb:

Lemma 2.2 ([GL95], Prop. 2). T is supported in +a and continuous and nonnegative on +a.

If x, y ∈ +a with y − x ∈ +a, then T (x) ≤ T (y).
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For regular arguments x, y ∈ a+, the convolution product δx ∗ δy is now described as follows in
terms of T :

Proposition 2.3. For x, y ∈ a+, the measure δx ∗ δy is absolutely continuous with respect to the
Lebesgue measure on x1 + y1 + a+0 ⊆ x1 + y1 + Rn

0 . The density is given by

k(x, y, h) =
π(ρ)π(h)

π(x)π(y)

∑

v,w∈Sn

ε(v)ε(w)T (vy + wx− h).

Here ρ := 1
2

∑
i<j(ei − ej) =

1
2 (n− 1, n− 3, . . . ,−n+ 1) denotes the Weyl vector.

Proof. Throughout the paper, we denote the pushforward of a measure µ under a measurable
mapping ϕ by ϕ∗(µ). As U(n) = H ⋉ SU(n) with H = {dz = diag(z, 1, . . . , 1), z ∈ U(1)},
Weyl’s integration formula gives

(δx ∗ δy)(f) =
∫

U(1)

∫

SU(n)

f(σ(x+ dzkyk
−1d−1

z ))dk dz =

∫

SU(n)

f(x1 + y1 + σ(x0 + ky0k−1))dk

for x, y ∈ a+. This shows that

δx ∗ δy = [ξ 7→ ξ + x1 + y1]∗(δx0 ∗0 δy0),

where

(δx0 ∗0 δy0)(g) :=

∫

SU(n)

g(σ(x0 + ky0k−1))dk

for g ∈ C(a+0). The measure δx0 ∗0 δy0 is a compactly supported probability measure on a+0

which describes the orbit hypergroup convolution on the space SHerm(n)SU(n), where SHerm(n)
are the Hermitian matrices of trace 0, acted upon by SU(n) via conjugation. Observe that for
z ∈ Cn

0 ,

J(x0, z) =

∫

SU(n)

etr(kx
0k−1z)dk

and

(δx0 ∗0 δy0)(J(·, z)) = J(x0, z)J(y0, z).

The functions ψz = J(·, iz)|Rn
0
, z ∈ Cn

0 are just the spherical functions of the Cartan motion
group SU(n) ⋉ SHerm(n). They are related to the spherical functions φz of the Riemannian
symmetric space SL(n,C)/SU(n) of complex type via

ψz(x) =
∆̃(x)

π(x)
φz(e

x)

with
∆̃(x) =

∏

i<j

sinh(xi − xj),

see [Hel00], Ch. IV, Prop. 4.10. and Ch. II, Thm. 3.15, or the nice presentation in [BSO05],
Sect. 9 (where the definition of ρ differs by a factor 2 from ours). Now the claim follows from
[GS02], Thm. 2.1 and Prop. 3.1, which contain an explicit expression for the density in the
product formula of the φz and thus for δx0 ∗0 δy0 . Note that the authors there work with Sn-
invariant measures on a = Rn

0 , while we work with measures supported in a+0. This results
in a factor 1/|Sn| in [GS02], Prop. 3.1. We further note that in [GS02] the authors missed a

factor 2|Σ+| = 2
1
2
n(n−1) in equation (3), which leads to a missing factor 2−|Σ+| in Prop. 3.1.

We fix this in our formulation by denoting ρ as the half-sum of roots not weighted with their
multiplicities. �
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Remark 2.4. Note that with respect to the decomposition Rn = Rn
0 ⊕ R1 we can write

δx ∗ δy = (δx0 ∗0 δy0)⊗ δx1+y1 .

For x ∈ Rn we define C(x) = conv(Sn.x) as the convex hull of the Sn-orbit of x.

Lemma 2.5. Suppose x, y ∈ a+ such that y + C(x) ⊆ a+. Then

supp (δx ∗ δy) ⊆ y + C(x).

Proof. This follows from [GS02], Cor. 2.2. combined with the fact that δx ∗ δy = (δx0 ∗0 δy0)⊗
δx1+y1 . Note again that the authors there work with an Sn-invariant formulation. As we assumed
y + C(x) ⊆ a+, the pushforward measures w∗(δy ∗ δx) have disjoint supports, resulting in the
expression above. �

Besides the norm-decreasing translation operators Ty on L2(a+, ω), we will need dilation opera-
tors in order to establish a radial multiresolution. These can be defined in the usual way: Note
that ω is homogeneous of degree 2|Σ+| and put

m := dimR Herm(n) + 2|Σ+| = 2n2 − n.

Then one easily calculates that for a > 0,

Daf(x) := a−
m
2 f( 1ax) (2.4)

defines a unitary operator Da on L2(a+, ω) which satisfies

H(Daf)(x) = D1/a(Hf)(x). (2.5)

Finally, we will need an orthonormal basis of L2(a+, ω) which behaves nicely with respect to the
Hankel transform. To this end, we consider the Schur polynomials (sλ)λ∈P+

in n variables which
are indexed by the partitions of length at most n,

P+ = {λ ∈ N
n
0 : λ1 ≥ . . . ≥ λn} = Z

n ∩ a+

and given by

sλ(x) =
1

∆(x)

∑

w∈Sn

ε(w)ei〈λ+ρ,wx〉 =
Aλ+δ(e

ix)

Aδ(eix)
, x ∈ R

n

with

∆(x) =
∏

i<j

(ei(xi−xj)/2 − e−i(xi−xj)/2) =
∑

w∈Sn

ε(w)ei〈ρ,wx〉,

Aλ(e
ix) := det

(
eiλjxk

)
1≤j,k≤n

and δ = (n− 1, n− 2, . . . , 0).

Note that

∆(x) = e−in−1

2
〈x,1〉Aδ(e

ix),

so that in particular |∆| is Sn-invariant and I-periodic for

I = 2πZn.

It is well-known that the sλ , λ ∈ P+ are the Weyl characters of U(n), considered as functions
on its maximal torus T ∼= T

n with T = R/2πZ . By the Schur orthogonality relations and the
Peter-Weyl theorem, they form an orthogonal basis of the Hilbert space

S := L2(Tn, |∆|2)Sn
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consisting of those functions f ∈ L2(Tn, |∆|2) which are Sn-invariant. More precisely, the Schur
polynomials satisfy

1

n!

∫

Tn

sλ(x)sµ(x) |∆(x)|2dx = δλ,µ.

For details, see [Bum13], Thm. 22.2 ff. together with Thm. 36.2, or [Far08], Section 11. We
consider the following renormalization of Schur polynomials:

Sλ(x) :=
1

i|Σ+|
√
n!
sλ(x), λ ∈ P+ .

The (Sλ)λ∈P+
form an orthonormal basis of S. Moreover, in view of formula (2.1), they are

connected with the Bessel function J via

Sλ(x) =Mλ
π(x)

∆(x)
J(x, i(λ + ρ)) with Mλ =

π(λ+ ρ)√
n!

∏n−1
k=1 k!

. (2.6)

This connection and the periodicity of the Sλ will be of crucial importance for our constructions,
together with the observation that π2 = ω on Rn, where ω occurs as the density of the Haar
measure of the hypergroup (a+, ∗) discussed before. Sometimes it will be convenient to work on
the fundamental domain

D = [0, 2π[n

of the torus Tn = Rn/I and use the identification

S ∼= {α : Rn → C : α|D ∈ L2(D, |∆|2)Sn , α(x+ q) = α(x) a.e. (∀q ∈ I)}. (2.7)

For abbreviation we further introduce the notation

T (λ) := Tλ+ρ (λ ∈ P+).

As a consequence of identity (2.3) for the Hankel transform, we have

H(MλT
(λ)f)(ξ) =

∆(ξ)Sλ(ξ)

π(ξ)
Hf(ξ) (2.8)

for f ∈ L2(a+, ω).

3. Radial Multiresolution Analysis in Herm(n)

We start with the definition of a radial multiresolution analysis (MRA) on Herm(n). It is a
higher-rank anlogue of the concept of a radial MRA in R

3 introduced in [RR03].

Definition 3.1. We call a sequence (Vj)j∈Z of closed linear subspaces of L2(a+, ω) a (dyadic)
radial MRA in Herm(n), if it satisfies the following properties:

(1) Vj ⊆ Vj+1 for all j ∈ Z,

(2)
⋂∞

j=−∞ Vj = {0},

(3)
⋃∞

j=−∞ Vj is dense in L2(a+, ω),

(4) f ∈ Vj if and only if f(2 ·) ∈ Vj+1,

(5) there exists a function φ ∈ L2(a+, ω) such that

Bφ :=
{
MλT

(λ)φ : λ ∈ P+

}
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is a Riesz basis of V0, i.e. spanBφ is dense in V0 and there exist constants A,B > 0 such
that

A‖α‖22 ≤
∥∥∥∥∥

∑

λ∈P+

αλMλT
(λ)φ

∥∥∥∥∥

2

2

≤ B‖α‖22

for all α = (αλ)λ∈P+
∈ ℓ2(P+).

The function φ is called scaling function for the MRA (Vj)j∈Z.

For φ ∈ L2(a+, ω) consider the function

Pφ(ξ) :=
1

n!

∑

q∈I

|Hφ(ξ + q)|2 (ξ ∈ R
n),

which is Sn-invariant and I-periodic.

Proposition 3.2. Let φ ∈ L2(a+, ω) and A,B > 0. Then

A‖α‖22 ≤
∥∥∥∥∥

∑

λ∈P+

αλMλT
(λ)φ

∥∥∥∥∥

2

2

≤ B‖α‖22 for all α ∈ ℓ2(P+)

if and only if

A ≤ Pφ(ξ) ≤ B for almost all ξ ∈ a+.

Proof. Let α ∈ ℓ2(P+) be a finite sequence. Define

α̃ :=
∑

λ∈P+

αλSλ ∈ S.

Using the Plancherel theorem for the Hankel transform and Eq. (2.8) we obtain
∥∥∥∥∥

∑

λ∈P+

αλMλT
(λ)φ

∥∥∥∥∥

2

2

=

∥∥∥∥∥
∑

λ∈P+

αλ
∆Sλ

π
Hφ

∥∥∥∥∥

2

2

=

∫

a+

∣∣∣∣∣
∑

λ∈P+

αλSλ(ξ)

∣∣∣∣∣

2

|Hφ(ξ)|2 ω(ξ)

|π(ξ)|2 |∆(ξ)|2dξ

=
1

n!

∫

Rn

|α̃(ξ)|2 |Hφ(ξ)|2|∆(ξ)|2dξ

=
1

n!

∑

q∈I

∫

Tn

|α̃(ξ + q)|2|Hφ(ξ + q)|2|∆(ξ)|2dξ

=

∫

Tn

|α̃(ξ)|2Pφ(ξ) |∆(ξ)|2dξ.

The {Sλ : λ ∈ P+} forming an orthonormal basis of S, we have

‖α‖2 = ‖α̃‖S .
Now the assertion is immediate, since finite sequences are dense in ℓ2(P+). �

With A = B = 1 we obtain

Corollary 3.3. For φ ∈ L2(a+, ω) the following are equivalent:
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(1) The set Bφ := {MλT
(λ)φ : λ ∈ P+} is orthonormal in L2(a+, ω).

(2) Pφ = 1 a.e.

For φ ∈ L2(a+, ω), put

Vφ := spanBφ ⊆ L2(a+, ω).

The set Bφ is a Riesz basis of Vφ if and only if the two equivalent conditions in the previous
proposition are satisfied for some constants A,B > 0. In this case we say that φ satisfies condition
(RB).

Lemma 3.4. Let φ ∈ L2(a+, ω) satisfy (RB). Then for f ∈ L2(a+, ω) we have the equivalence

f ∈ Vφ ⇐⇒ Hf(ξ) = ∆(ξ)β(ξ)

π(ξ)
Hφ(ξ) with β ∈ S.

The function f ∈ Vφ corresponding to β =
∑

λ∈P+
αλSλ ∈ S with α ∈ ℓ2(P+) is given by

f =
∑

λ∈P+
αλMλT

(λ)φ.

Proof. As the MλT
(λ)φ form a Riesz basis for Vφ, the functions

∆Sλ

π
Hφ = H(MλT

(λ)φ)

form a Riesz basis of H(Vφ), where we again used Eq. (2.8). This yields the assertion, since for
α ∈ ℓ2(P+),

H
( ∑

λ∈P+

αλMλT
(λ)φ

)
=

∆

π

( ∑

λ∈P+

αλSλ

)
Hφ.

�

When φ is the scaling function of an MRA {Vj}, then Vφ = V0. The following corollary shows
that in contrast to the classical notion of an MRA, V0 is not shift-invariant (and similarly the
other scale spaces):

Corollary 3.5. Let (Vj)j∈Z be a radial MRA. Then f ∈ V0 implies T (λ)f /∈ V0 for all λ ∈ P+.

Proof. Recall that H(T (λ)f) = J( . , i(λ + ρ))Hf. But if β ∈ S, then J(·, i(λ + ρ))β /∈ S as the
functions J(·, i(λ+ ρ)) are not periodic. Now the previous lemma implies the assertion. �

Theorem 3.6 (Orthonormalization). Suppose that φ ∈ L2(a+, ω) satisfies condition (RB), i.e.
there are constants A,B > 0 such that A ≤ Pφ(ξ) ≤ B a.e. Define φ∗ ∈ L2(a+, ω) by its Hankel
transform

Hφ∗ :=
Hφ√
Pφ

. (3.1)

Then Bφ∗ = {MλT
(λ)φ∗ : λ ∈ P+} forms an orthonormal basis of Vφ = Vφ∗ .

Proof. Note first that as a consequence of condition (RB), the right side in (3.1) belongs to
L2(a+, ω). By definition Pφ∗ = 1 a.e., so by Corollary 3.3 it only remains to prove Vφ = Vφ∗ . For
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this, it suffices to verify that MλT
(λ)φ∗ ∈ Vφ and MλT

(λ)φ ∈ Vφ∗ for all λ ∈ P+. We employ
Lemma 3.4 and see

MλT
(λ)φ∗ ∈ Vφ ⇐⇒ H(MλT

(λ)φ∗) =
∆β

π
Hφ for some β ∈ S.

But

H(MλT
(λ)φ∗) =

∆Sλ

π

Hφ√
Pφ

.

Analogously we get

MλT
(λ)φ ∈ Vφ∗ ⇐⇒ H(MλT

(λ)φ) =
∆β̃

π
Hφ∗ =

∆β̃

π

Hφ√
Pφ

for some β̃ ∈ S

and

H(MλT
(λ)φ) =

∆Sλ

π
Hφ.

This gives, for all λ ∈ P+, the conditions

Sλ√
Pφ

∈ S and Sλ

√
Pφ ∈ S.

But these conditions are guaranteed by our assumption on Pφ. �

Given a function φ ∈ L2(a+, ω) satisfying (RB) plus some additional conditions (see Proposition 3.7
and Theorem 3.8 below), we will now construct a radial MRA having φ as scaling function. Recall
the unitary dilations 2.4 and define scale spaces {Vj}j∈Z by

V0 := Vφ, Vj := D2−jV0.

Then property (4) of Definition 3.1 is satisfied by construction. Putting

φj,λ(ξ) := D2−j (MλT
(λ)φ)(ξ) = 2

jm

2 Mλ(T
(λ)φ)(2jξ) (j ∈ Z, λ ∈ P+), (3.2)

we have

〈φj,λ, φj,µ〉 = 〈φ0,λ, φ0,µ〉
since dilations are unitary. Thus {φj,λ : λ ∈ P+} is a Riesz basis of Vj with the same Riesz
constants A,B > 0 as for φ. In particular,

Vj = span {φj,λ : λ ∈ P+}.
Moreover, if Bφ = {φ0,λ : λ ∈ P+} is an orthonormal basis of V0, then {φj,λ : λ ∈ P+} constitutes
an orthonormal basis of Vj . We shall now analyze the further required properties of Definition 3.1
in this case. We start with the condition that the scale spaces should be nested.

Proposition 3.7. For φ ∈ L2(a+, ω) satisfying (RB) and the spaces Vj defined above, the
following statements are equivalent:

(1) Vj ⊆ Vj+1 for all j ∈ Z.

(2) V−1 ⊆ V0.

(3) There exists a function γ ∈ S such that φ satisfies the two-scale relation

∆(2ξ)Hφ(2ξ) = γ(ξ)∆(ξ)Hφ(ξ).
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In this case, if we expand φ−1,0 in V0 as φ−1,0 =
∑

λ∈P+
αλφ0,λ with α = (αλ)λ∈P+

∈ ℓ2(P+),

then γ = c ·∑λ∈P+
αλSλ with c = 2−

n2

2 i|Σ+|√n! .

Proof. The equivalence of (1) and (2) is immediate by rescaling. Suppose now V−1 ⊆ V0. Then
by Lemma 3.4 shows that

Hφ−1,0 =
∆β

π
Hφ

with some β ∈ S. On the other hand, using equations (2.8) and (2.5) we calculate

Hφ−1,0(ξ) = H(D2M0T
(0)φ)(ξ) = D1/2

(
∆S0

π
Hφ

)
(ξ)

= 2m/2 ∆(2ξ)S0(2ξ)

π(2ξ)
Hφ(2ξ) =

2n
2/2

i|Σ+|
√
n!

∆(2ξ)

π(ξ)
Hφ(2ξ).

We conclude that

∆(2ξ)Hφ(2ξ) = c · β(ξ)∆(ξ)Hφ(ξ) (3.3)

with c as astated and obtain the desired result with γ = cβ ∈ S. If φ−1,0 =
∑

λ∈P+
αλφ0,λ, we

employ Lemma 3.4 and see that β = c−1γ =
∑

λ∈P+
αλSλ.

Conversely, assume that (3) is satisfied. Performing the same calculation as above for φ−1,λ leads
to

Hφ−1,λ = const.
Sλ(2ξ)

π(ξ)
∆(2ξ)Hφ(2ξ)

and an application of Lemma 3.4 shows that φ−1,λ ∈ V0 if and only if

Sλ(2ξ)∆(2ξ)Hφ(2ξ) = γλ(ξ)∆(ξ)Hφ(ξ) (3.4)

for some γλ ∈ S. Recall that φ satisfies the two-scale relation (3). Choosing

γλ(ξ) := const. γ(ξ)Sλ(2ξ) ∈ S

we thus conclude φ−1,λ ∈ V0 and therefore V−1 ⊆ V0. �

Theorem 3.8. Let φ ∈ L2(a+, ω) satisfy condition (RB) and assume that the scale spaces are
nested, i.e. Vj ⊆ Vj+1 for all j ∈ Z. Suppose further that |Hφ| is continuous in 0. Then (Vj)j∈Z

is a radial MRA if and only if Hφ(0) 6= 0. Moreover, if φ is an orthonormal scaling function
then |Hφ(0)| = 1.

Proof. The idea is the same as in the proof of [RR03], Thm. 4.9, but now the proof is much more
involved, as sufficient knowledge of the generalized translation will be needed, which was simple
and explicit in [RR03]. To start with, we use Theorem 3.6 and obtain an orthonormal scaling
function φ∗ ∈ L2(a+, ω) with the same scale spaces. In order to prove that

⋂∞
j=−∞ Vj = {0} we

have to show limj→−∞ ‖Pjf‖2 = 0 for all f ∈ L2(a+, ω), where

Pj : L
2(a+, ω) → Vj , f 7→

∑

λ∈P+

〈f, φ∗j,λ〉φ∗j,λ
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denotes the orthogonal projection and φ∗j,λ is defined as in (3.2). As continuous functions with

compact support are dense in L2(a+, ω) we may assume that f ∈ Cc(a+). Denoting K := suppf
and using Parseval’s identity we obtain

‖Pjf‖22 =
∑

λ∈P+

|〈f, φ∗j,λ〉|2

≤ ‖f‖22 ·
∫

K

∑

λ∈P+

|φ∗j,λ(ξ)|2 ω(ξ)dξ

= const.

∫

2jK

∑

λ∈P+

M2
λ |T (λ)φ∗(ξ)|2 ω(ξ)dξ

= const.

∫

2jK∩a+

∑

λ∈P+

M2
λ |(δλ+ρ ∗ δξ)(φ∗)|2 ω(ξ)dξ,

where above and in the sequel, const. denotes a varying positive constant depending on f and n
only. Observe that λ + ρ ∈ a+ for all λ ∈ P+ and therefore Proposition 2.3 applies to δλ+ρ ∗ δξ
in the integral above. We may further assume that j ∈ Z is negative and already so small that
λ+ ρ+ C(ξ) ⊆ a+ for all λ ∈ P+. Hence, by Lemma 2.5, supp(δλ+ρ ∗ δξ) ∈ λ + ρ+ C(ξ) for all
λ. In view of Proposition 2.3 we obtain

(δλ+ρ ∗ δξ)(φ∗) =
∫

λ+ρ+C(ξ)

φ∗(x)
π(ρ)π(x)

π(λ + ρ)π(ξ)

∑

v,w∈Sn

ε(v)ε(w)T (vξ + w(λ + ρ)− x) dx. (3.5)

Here dx denotes the Lebesgue volume in the affine hyperplane λ1 + ξ1 + Rn
0 ⊆ Rn which

contains λ+ρ+C(ξ), where still ξ ∈ 2jK∩a+ with j < 0. Recall at this point the decomposition
Rn = Rn

0 ⊕ R1, with orthogonal projections x0 of x ∈ Rn onto Rn
0 and x1 onto R1. Using

Lemmata 2.2 and 2.1 we further see that for all x ∈ λ+ ρ+ C(ξ) and v, w ∈ Sn,

T (vξ + w(λ+ ρ)− x) ≤ T (λ+ ρ+ ξ − x).

Moreover, as x − (λ + ρ) ∈ C(ξ), we may estimate the argument of T as ‖x− (λ + ρ) − ξ‖2 ≤
2‖ξ‖2 ≤ supx∈K‖x‖2 . By its properties noted in Lemma 2.2, T is therefore uniformly bounded
on the domain of integration in (3.5), i.e. with a bound independent of λ and ξ. By the Cauchy-
Schwarz inequality and recalling that π2 = ω, we may therefore estimate

|(δλ+ρ ∗ δξ)(φ∗)|2 ≤ const.

π(λ+ ρ)2ω(ξ)

∫

λ+ρ+C(ξ)

|φ∗(x)|2 ω(x) dx,

where the constant is again independent of λ and ξ. Now fix R > 0 such that K ⊆ A+ B with

A = {x = x0 ∈ R
n
0 ∩ a+ : ‖x‖2 ≤ R}, B = {x = x1 ∈ R1 ∩ a+ : ‖x‖2 ≤ R}

and recall that Mλ = π(λ+ρ)√
n!

∏n−1

k=1
k!
. Then we may continue our previous estimate as follows:

‖Pjf‖22 ≤ const.

∫

2j(A+B)

∑

λ∈P+

(∫

λ+ρ+C(ξ)

|φ∗(x)|2ω(x)dx
)
dξ.

Noting that C(ξ) = ξ1 + C(ξ0) with C(ξ0) ⊆ 2jA, ξ1 ∈ 2jB, we conclude that

‖Pjf‖22 ≤ const.

∫

2jA

∑

λ∈P+

(∫

2jB

∫

λ+ρ+ξ1+C(ξ0)

|φ∗(x)|2ω(x)dx dξ1
)
dξ0

≤ const.

∫

2jA

∑

λ∈P+

(∫

λ+ρ+2j(A+B)

|φ∗(t)|2ω(t)dt
)
dξ0.
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Choosing j ∈ Z sufficiently small, we can achieve that the sets λ + ρ+ 2j(A + B) with λ ∈ P+

are pairwise disjoint. This finally leads to the estimate

‖Pjf‖22 ≤ const.

∫

2jA

(∫

a+

|φ∗(t)|2ω(t)dt
)
dξ0.

The inner integral being finite, it follows that ‖Pjf‖2 → 0 for j → −∞ as claimed. This
finishes the proof of condition (2) in the definition of a radial MRA, which is satisfied without
requirements on Hφ.

It remains to analyze condition (3) concerning the density of
⋃∞

j=−∞ Vj in L2(a+, ω). Here we

closely follow [RR03]. Suppose first that Hφ(0) 6= 0 and let h ∈
(⋃∞

j=−∞ Vj
)⊥

, i.e. Pjh = 0
for all j ∈ Z. Let ε > 0. By the Plancherel theorem for the Hankel transform, we can find
f ∈ L2(a+, ω) such that Hf has compact support and ‖f − h‖2 ≤ ε. This implies

‖Pjf‖2 = ‖Pj(f − h)‖2 ≤ ε

for all j ∈ Z. By the Riesz basis assumption on φ, we further have

A
∑

λ∈P+

|〈f, φj,λ〉|2 ≤ ‖Pjf‖22 ≤ B
∑

λ∈P+

|〈f, φj,λ〉|2.

Suppose now that suppHf ⊆ K with some compact K ⊆ a+. Then in view of (2.8),

〈f, φj,λ〉 = 〈Hf, Hφj,λ〉

=

∫

K

Hf(ξ) ρjλ Hφ(2−jξ) ω(ξ) dξ

with the dilates ρjλ := D2j (
∆Sλ

π ), λ ∈ P+. The weight ω being homogeneous, they form an

orthonormal basis of the space Xj := L2(2jD,ω)Sn , where D = [0, 2π[n. Assume j is sufficiently
large, so that 2jD ⊇ K. Then

〈f, φj,λ〉 = 〈Hf Hφ(2−j ·), ρjλ 〉Xj
.

Thus using Parseval’s equation for Xj
∼= L2(2jD ∩ a+, ω) we obtain

∑

λ∈P+

|〈f, φj,λ〉|2 = ‖Hf Hφ(2−j ·)‖2Xj
=

∫

K

|Hf(ξ)|2|Hφ(2−jξ)|2 ω(ξ) dξ. (3.6)

As we assumed that |Hφ| is continuous in 0, the functions |Hφ(2−j ·)| converge to the constant
|Hφ(0)| > 0 uniformly on K as j → +∞. Hence

ε ≥ lim sup
j→∞

‖Pjf‖2 ≥
√
A |Hφ(0)| ‖Hf‖2 ≥

√
A |Hφ(0)|(‖h‖2 − ε).

But ε > 0 was arbitrary, so that h = 0. This proves that
⋃∞

j=−∞ Vj is dense in L2(a+, ω).

Conversely, suppose that
⋃∞

j=−∞ Vj is dense in L2(a+, ω). Then

lim
j→∞

Pjf = f

for all f ∈ L2(a+, ω). If Hf is compactly supported, the same calculation as before gives

lim
j→∞

‖Pjf‖2 ≤
√
B |Hφ(0)| ‖Hf‖2,

which enforces Hφ(0) 6= 0.
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Finally, if the φj,λ, λ ∈ P+ are orthonormal, we may choose A = B = 1 and calculate

‖f‖2 = lim
j→∞

‖Pjf‖2 = |Hφ(0)| ‖Hf‖2 = |Hφ(0)| ‖f‖2,

so that |Hφ(0)| = 1. �

Suppose that φ ∈ L2(a+, ω) is an orthonormal scaling function of a radial MRA. Then according
to Proposition 3.7, it satisfies the two-scale relation

∆(2ξ)Hφ(2ξ) = γ(ξ)∆(ξ)Hφ(ξ)
with some γ ∈ S. Introducing the filter function

G(ξ) :=
γ(ξ)∆(ξ)

∆(2ξ)
, (3.7)

the above two-scale relation becomes

Hφ(2ξ) = G(ξ)Hφ(ξ).
Note that G is Sn-invariant and that |G| is I-periodic. Let us now also consider the finer lattice

L :=
1

2
I = πZn ⊇ I = 2πZn.

Lemma 3.9. Suppose that φ ∈ L2(a+, ω) is an orthonormal scaling function of a radial MRA.
Then the associated filter function G satisfies

∑

p∈L/I

|G(ξ + p)|2 = 1

almost everywhere. As a consequence, G is essentially bounded and contained in L2(D).

Proof. Using Corollary 3.3 with 2ξ instead of ξ and the two-scale relation, we get

1 =
1

n!

∑

q∈I

|Hφ(2ξ + q)|2 =
1

n!

∑

p∈L

|Hφ(ξ + p)|2|G(ξ + p)|2

=
1

n!

∑

p∈L/I

|G(ξ + p)|2
∑

q∈I

|Hφ((ξ + p) + q)|2 =
∑

p∈L/I

|G(ξ + p)|2.

�

4. Orthonormal Wavelets

Suppose we are given a radial MRA (Vj)j∈Z in Herm(n) with orthonormal scaling function φ.
The wavelet space Wj is then defined as the orthogonal complement of Vj in Vj+1, i.e.

Vj+1 = Vj ⊕Wj .

In this section, we will characterize orthonormal wavelets for the given radial MRA. That
is, we will give necessary and sufficient conditions for translations and dilations of functions
ψ1, . . . , ψr ∈ L2(a+, ω) in order to constitute an orthonormal basis of the wavelet space W0. As
Wj = D2−jW0 , we obtain orthonormal bases of all spaces Wj by dilation, and thus finally an
orthonormal wavelet basis of

L2(a+, ω) =
⊕̂

j∈Z

Wj .

Proposition 4.1. For functions ψ1, . . . , ψr−1 ∈ L2(a+, ω) the following are equivalent:
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(1) {MλT
(λ)ψi : 1 ≤ i ≤ r − 1, λ ∈ P+} is an orthonormal system.

(2) The sum

Pi,j(ξ) :=
1

n!

∑

q∈I

Hψi(ξ + q)Hψj(ξ + q)

is absolutely convergent with Pi,j(ξ) = δi,j for almost all ξ.

Proof. For i = j this is Corollary 3.3. Now suppose i 6= j. Then the Plancherel theorem for the
Hankel transform implies that

〈
MλT

(λ)ψi, MµT
(µ)ψj

〉
=

〈∆Sλ

π
Hψi,

∆Sµ

π
Hψj

〉

=

∫

a+

Sλ(ξ)Sµ(ξ)Hψi(ξ)Hψj(ξ) |∆(ξ)|2dξ

=
1

n!

∫

Rn

Sλ(ξ)Sµ(ξ)Hψi(ξ)Hψj(ξ) |∆(ξ)|2dξ

=

∫

Tn

Sλ(ξ)Sµ(ξ)Pi,j(ξ) |∆(ξ)|2dξ.

This immediately gives (2) ⇒ (1), since (Sλ)λ∈P+
is an orthonormal basis of S = L2(Tn, |∆|2)Sn .

For the converse implication, note first that the series defining Pi,j is absolutely convergent
with |Pi,j | ≤ 1 a.e., as a consequence of Corollary 3.3 and the Cauchy-Schwarz inequality in
ℓ2(I). Moreover, Pi,j is I-periodic and Sn-invariant (recall that the Hankel transform Hψ is

Sn-invariant). Note that Pi,j = Pj,i. By our assumption and the above calculation,
〈
SλPj,i , Sµ〉S = 0

for all λ, µ ∈ P+. Thus SλPj,i = 0 a.e. for every λ and hence 〈Sλ, Pi,j〉S = 0 for every λ. This
implies that Pi,j = 0 a.e. �

Maintaining the above setting, we shall now characterize the space W−1 ⊆ V0.

Proposition 4.2. For f ∈ L2(a+, ω) the following statements are equivalent:

(1) f ∈ W−1.

(2) There is an element β ∈ S such that Hf(ξ) = ∆(ξ)β(ξ)

π(ξ)
Hφ(ξ) and

(β(ξ + p)δ(ξ + p))p∈L/I ⊥ (γ(ξ + p)δ(ξ + p))p∈L/I

almost everywhere as vectors in C
r, where

r = |L/I| = 2n, δ(x) :=
∆(x)

∆(2x)

and γ ∈ S is the function from the two-scale relation for φ in Proposition 3.7.

Proof. By definition V0 =W−1 ⊕ V−1 and V−1 = D2V0, thus h ∈ V−1 if and only if D1/2h ∈ V0.
In view of Lemma 3.4 this is equivalent to

H(D1/2h)(ξ) =
∆(ξ)η(ξ)

π(ξ)
Hφ(ξ)
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with some η ∈ S. From Eq. (2.5) we obtain

2−
m
2 Hh( ξ2 ) = (D2Hh)(ξ) = H(D1/2h)(ξ)

and thus

h ∈ V−1 ⇐⇒ Hh(ξ) = 2
m
2 ∆(2ξ)η(2ξ)

π(2ξ)
Hφ(2ξ) = β(2ξ)

π(ξ)
γ(ξ)∆(ξ)Hφ(ξ)

for some β ∈ S. Furthermore, f ∈ V0 if and only if

Hf(ξ) = ∆(ξ)β̃(ξ)

π(ξ)
Hφ(ξ)

for some β̃ ∈ S. We denote D′ := 1
2D = [0, π[n, which is a fundamental domain of the smaller

torus Rn/L. As W−1 ⊥ V−1 and H is unitary, we have f ∈ W−1 if and only if 〈Hf,Hh〉 = 0 for
all h ∈ V−1, i.e. if and only if for all β ∈ S we have

0 =

∫

a+

β̃(ξ)

π(ξ)

β(2ξ)

π(ξ)
γ(ξ)|Hφ(ξ)|2 |∆(ξ)|2ω(ξ)dξ

=
1

n!

∫

Rn

β̃(ξ)β(2ξ)γ(ξ)|Hφ(ξ)|2 |∆(ξ)|2dξ

=
1

n!

∑

p∈L/I

∑

q∈I

∫

D′

β(2ξ) β̃(ξ + p)γ(ξ + p) |Hφ((ξ + p) + q)|2 |∆(ξ + p)|2dξ

=

∫

D′

β(2ξ)
∑

p∈L/I

β̃(ξ + p)∆(ξ + p)γ(ξ + p)∆(ξ + p)Pφ(ξ + p)dξ

=

∫

D′

β(2ξ)
∑

p∈L/I

β̃(ξ + p)δ(ξ + p)γ(ξ + p)δ(ξ + p) |∆(2ξ)|2dξ.

Here it was used that Pφ = 1 a.e. and that β(2 ·) is L-periodic while β̃, γ and |∆| are I-periodic.
Note that also |δ|2 is I-periodic and Sn-invariant, and therefore the finite sum

∑

p∈L/I

β̃(ξ + p)δ(ξ + p)γ(ξ + p)δ(ξ + p)

is Sn-invariant and L-periodic. Since the β(2 ·), β ∈ S exhaust the space L2(D′, |∆(2 ·)|2)Sn , we
conclude that

∑

p∈L/I

β̃(ξ + p)δ(ξ + p)γ(ξ + p)δ(ξ + p) = 0 a.e.

�

Theorem 4.3. For elements ψ1, . . . , ψr−1 ∈ L2(a+, ω) the following are equivalent:

(1) The set

{MλT
(λ)ψi : 1 ≤ i ≤ r − 1, λ ∈ P+}

is an orthonormal basis of W0.

(2) The number r is given by r = |L/I| = 2n, and

Hψi(2ξ) = βi(ξ)δ(ξ)Hφ(ξ)
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for certain βi ∈ S such that the matrix

(βi(ξ + p)δ(ξ + p))0≤i≤r−1, p∈L/I ∈ C
r×r

is unitary almost everywhere. Here β0 := γ ∈ S denotes the function from the two-scale
relation of φ in Proposition 3.7.

Proof. Statement (1) is equivalent to the statement that the MλD2T
(λ)ψi are an orthonormal

basis of D2W0 =W−1. Using Proposition 4.2 we see M0D2T
(0)ψi ∈ W−1 if and only if

H(M0D2T
(0)ψi)(ξ) =

∆(ξ)β̃i(ξ)

π(ξ)
Hφ(ξ)

with certain β̃i ∈ S such that (β̃i(ξ+p)δ(ξ+p))p∈L/I ⊥ (γ(ξ+p)δ(ξ+p))p∈L/I almost everywhere.
Recalling formula (2.8), we calculate the left hand side of the previous equation as

H(M0D2T
(0)ψi)(ξ) = D2−1

(
∆S0

π
Hψi

)
(ξ)

= const.
∆(2ξ)

π(ξ)
Hψi(2ξ).

We conclude that M0D2T
(0)ψi ∈W−1 if and only if

Hψi(2ξ) = βi(ξ)δ(ξ)Hφ(ξ) (4.1)

for some βi ∈ S such that (βi(ξ+ p)δ(ξ+ p))p∈L/I ⊥ (γ(ξ+ p)δ(ξ+ p))p∈L/I almost everywhere.

By Proposition 4.1 we see that {MλT
(λ)ψi : 1 ≤ i ≤ r− 1, λ ∈ P+} is an orthonormal system if

and only if

δij =
1

n!

∑

q∈I

Hψi(2ξ + q)Hψj(2ξ + q)

=
1

n!

∑

p∈L

Hψi(2(ξ + p))Hψj(2(ξ + p))

=
1

n!

∑

p∈L/I

∑

q∈I

βi(ξ + p+ q)βj(ξ + p+ q)|δ(ξ + q + p)|2 |Hφ(ξ + p+ q)|2

=
∑

p∈L/I

βi(ξ + p)βj(ξ + p)|δ(ξ + p)|2 1

n!

∑

q∈I

|Hφ((ξ + p) + q)|2

=
∑

p∈L/I

βi(ξ + p)βj(ξ + p)|δ(ξ + p)|2

almost everywhere. This is equivalent to the condition that the set

M := {(βi(ξ + p)δ(ξ + p))p∈L/I : 1 ≤ i ≤ r − 1}

is an orthonormal system in C|L/I| a.e. Furthermore, the vector (β0(ξ+p)δ(ξ+p))p∈L/I is almost

everywhere normalized in C|L/I| according to Lemma 3.9, and is orthogonal to M according
to Proposition 4.2. We conclude that r ≤ |L/I| is a necessary condition by dimensionality.
Moreover, if the ψi satisfy (4.1), then a short calculation gives

H(MλD2T
(λ)ψi)(ξ) = const. · ∆(ξ)Sλ(2ξ)β

i(ξ)

π(ξ)
Hφ(ξ).
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So indeed, MλD2T
(λ)ψi ∈ V0 for all λ ∈ P+ by Lemma 3.4. As Sλ(2 ·) is L-periodic, we have

(
Sλ(2(ξ + p))βi(ξ + p)δ(ξ + p)

)
p∈L/I

∈ C
(
βi(ξ + p)δ(ξ + p)

)
p∈L/I

and thus MλD2T
(λ)ψi ∈ W−1 ⊆ V0 by Proposition 4.2. We conclude that r = |L/I| is also a

necessary condition. �

Corollary 4.4. Every radial MRA (Vj)j∈Z with orthonormal scaling function φ admits an or-
thonormal wavelet basis consisting of r − 1 wavelets, where r = |L/I| = 2n, i.e. there are
functions ψ1, . . . , ψr−1 ∈ L2(a+, ω) such that

{MλD2−jT (λ)ψi : 1 ≤ i ≤ r − 1, λ ∈ P+}
is an orthonormal basis of the complementary space Wj .

Proof. Recall that ∆(x) = α(x)Aδ(e
ix) with the phase factor α(ξ) = e−in−1

2
〈ξ,1〉. Hence α∆ is

I-periodic. We now put η0(ξ) = α(−ξ)G(ξ) with the filter function G associated to φ according
to formula (3.7). We next choose functions ηi ∈ L2(D ∩ a+), 1 ≤ i ≤ r − 1, in such a way that
the matrix

(ηi(ξ + p))0≤i≤r−1, p∈L/I ∈ C
r×r

is unitary for almost all ξ ∈ D ∩ a+ ; here again D = [0, 2π[n. This amounts to constructing a
unitary matrix with a given first row in a measurable way. We then extend the ηi to all of D via
ηi(wx) := ηi(x) for w ∈ Sn and then to Rn in an I-periodic fashion. We thus obtain functions
βi := αδ−1ηi ∈ S such that the matrix A = (Aip)0≤i≤r−1, p∈L/I with entries

Aip = βi(ξ + p)δ(ξ + p) = α(ξ)ηi(ξ + p)

is almost everywhere unitary. In particular, β0δ = G. We then define ψi ∈ L2(a+, ω) via its
Hankel transform by

Hψi(2ξ) := βi(ξ)δ(ξ)Hφ(ξ).
�

5. Construction of radial scaling functions

It remains to discuss how a radial MRA can be actually obtained, i.e. how candidates for
radial scaling functions can be found. As our lattice is I = 2πZn, we can tile Rn with copies of
D = [0, 2π[n along periods of ei〈ξ,·〉, which allows us to interlock Proposition 3.2 with its classical

analogue for the Euclidean Fourier transform f̂(ξ) = (2π)−n/2
∫
Rn e

−i〈ξ,x〉dx on L2(Rn).

Theorem 5.1. Suppose φa ∈ L2(Rn) is a classical scaling function for a dyadic MRA in L2(Rn)

which is Sn-invariant and such that its classical Fourier transform φ̂a is continuous in 0 and

satisfies φ̂a ∈ L2(a+, ω). Then

Hφ(ξ) := (2π)
n
2 e−in−1

2
〈ξ,1〉φ̂a(ξ) (5.1)

defines a radial scaling function φ ∈ L2(a+, ω), i.e. a scaling function for a radial MRA in
Herm(n).

Conversely, if φ ∈ L2(a+, ω) is a radial scaling function such that Hφ ∈ L2(Rn) and Hφ is
continuous at 0, then the function φa defined by Eq. (5.1) is a classical scaling function on Rn

which is Sn-invariant.
Moreover, φ is an orthonormal scaling function if and only if φa is an orthonormal classical

scaling function.
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Proof. Suppose φa is a classical scaling function which is Sn-invariant and such that φ̂a is contin-

uous in 0. Note that the Sn-invariance implies that φ̂a is Sn-invariant as well, and thus definition
(5.1) is meaningful. According to Propos. 5.7. in [Woj97] there are constants 0 < A ≤ B < ∞
such that

A

(2π)n
≤

∑

l∈Zn

|φ̂a(ξ + 2πl)|2 ≤ B

(2π)n
a.e.. (5.2)

Moreover, φa is an orthonormal (classical) scaling function if and only if A = B = 1. Since
I = 2πZn, formula (5.2) can be written as

A ≤
∑

q∈I

|Hφ(ξ + q)|2 ≤ B a.e..

So we can invoke Proposition 3.2 and Corollary 3.3 to see that Bφ := {MλT
(λ)φ : λ ∈ P+}

forms a Riesz basis of V0 := spanBφ, and that this basis is orthonormal if and only if φa is
orthonormal. Further, by Lemma 5.8 in [Woj97] there exists a 2πZn-periodic function m on Rn

with m|D ∈ L2(D) and such that φ̂a(2ξ) = m(ξ)φ̂a(ξ). Since φ̂a was assumed to be Sn-invariant,

m has to be Sn-invariant as well. We again introduce the phase factor α(ξ) = e−in−1

2
〈ξ,1〉 and

define γ := αδ−1m ∈ S. We obtain

∆(2ξ)Hφ(2ξ) = ∆(2ξ)α(2ξ)(2π)
n
2 m(ξ)φ̂a(ξ)

=
∆(2ξ)α(2ξ)α(ξ)−1m(ξ)

∆(ξ)
∆(ξ)Hφ(ξ)

= γ(ξ)∆(ξ)Hφ(ξ),

which is just the two-scale relation from Proposition 3.7. As φ̂a is continuous in 0, we get

φ̂a(0) 6= 0 and thus Hφ(0) 6= 0, see [Dau92], Remark 3 on p. 144. Indeed, we have seen this
reasoning already in the proof of Theorem 3.8. Hence, the conditions of Theorem 3.8 are satisfied
and we obtain that φ is indeed a radial scaling function.

Conversely, suppose that Hφ ∈ L2(Rn). We proceed as before and note that

m(ξ) = γ(ξ)δ(ξ)α(ξ)−1 = α(−ξ)G(ξ).

By Lemma 3.9, this shows that m ∈ L2(D). �

As an example, we consider the radial analogue of the Shannon wavelets. Again, we work with

the phase factor α(ξ) := e−in−1

2
〈ξ,1〉. Consider φa defined via its classical Fourier transform

φ̂a = (2n)−n/2χ[−π,π]n. Then by [Woj97], Thm. 2.13, Prop. 5.7 and Lem. 5.8, φa is a classi-
cal orthonormal scaling function which satisfies the conditions of our Theorem 5.1. Therefore
Hφ(ξ) := α(ξ)χ[−π,π]n(ξ) defines an orthonormal radial scaling function φ. Note that

Hφ(2ξ) = α(ξ)χQ(ξ)Hφ(ξ) = α(2ξ)χQ∩ [−π,π]n(ξ) (5.3)

with the union of cubes

Q := Q0 :=
⋃

l∈Zn

(2πl + [−π/2, π/2]n).

Now define functions βi = (αδ)−1χQi ∈ S with

Qi = qi +Q,
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where qi runs through the non-trivial representatives of L/I, i.e. through the set {0, π}n \
{(0, . . . , 0)}. Then in view of Theorem 4.3, one obtains an orthonormal radial wavelet basis (ψi)
for Herm(n) by defining

Hψi(2ξ) := βi(ξ)δ(ξ)Hφ(ξ) = χQi∩[−π,π]n(ξ). (5.4)

Q0 ∩ [−π, π]2 = [−π/2, π/2]2 Q1 ∩ [−π, π]2 with q1 = (0, π) Q2 ∩ [−π, π]2 with q2 = (π, 0) Q3 ∩ [−π, π]2 with q3 = (π, π)

Figure 1. The radial Shannon wavelets in the rank n = 2 case. The sets
Qi∩ [−π, π]2 correspond to the scaling function φ (i = 0) and the three wavelets
ψi(i = 1, . . . , 3) via Eq. (5.3) and Eq. (5.4).

6. Appendix: Generalizations

Many of the previous results can be generalized in terms of Lie theory. Instead of the action of
U(n) on Herm(n) by conjugation we may consider an arbitrary compact connected Lie group K
which acts on p = iLie(K) ⊆ Lie(K)C via the adjoint representation as a group of orthogonal
transformations with respect to some K-invariant inner product on p. First, we replace Rn by a
maximal abelian subspace a = iLie(T ) ⊆ p coming from a maximal torus T ⊆ K and Rn

0 by a0,
the span of the roots of K. The Weyl integration formula holds in this generality (cf. [GV88],
Eq. (2.4.22)). Further, a+ is now the positive Weyl chamber associated with a set of simple
positive roots α1, . . . , αdim a0

. As usual, we identify a with a∗ using a K-invariant inner product
on p. The associated Weyl group W replaces the symmetric group Sn and π becomes the usual
alternating polynomial π =

∏q
i=1 αi with respect to the positive roots α1, . . . , αq. Again, we

define a generalized translation by averaging the translation along adjoint orbits of K in p.

The Weyl character formula yields a natural choice for the trigonometric polynomials Sλ, which
are indexed by the set of dominant weights P+ of K with respect to T . On the other hand
the Harish-Chandra-Integral ([HC57]) allows us to express the spherical functions J( . , iy) of
K ⋉ p/K in a similar fashion. Thus interlocking these two allows for nice properties of the Sλ

with respect to the generalized translation. More precisely, we obtain

Sλ(x) =
1

iq
√
|W |∆(x)

∑

w∈W

ε(w)ei(λ+ρ)(wx) =Mλ
π(x)

∆(x)
J(x, i(λ+ ρ)) (6.1)

as a generalization of Eq. (2.6). Here, sλ := iq
√
|W |Sλ is the trigonometric polynomial associated

to the highest weight λ in the Weyl character formula ([Kna96], Thm. 5.113), ∆ denotes the
Weyl denominator andMλ = const. ·π(λ+ρ) is a suitable normalization constant determined by
the Harish-Chandra-Integral (see for example [McS21], Eq. 3.3). Again, the Peter-Weyl theorem
and the Schur orthogonality relations ensure that we obtain an orthonormal basis.

Using a structure theorem for compact connected Lie groups ([Pro07], Ch. 10, §7.2, Thm. 4),
we can decompose K = (L ×H)/C with L compact, connected and semisimple, a torus H and
a finite subgroup C of the center of L×H intersecting H trivially. This allows us to reduce to
the semisimple case as in the proof of Proposition 2.3 and apply the results of [GS02] to find the
density of the translation. Note that a0 is the orthogonal complement of iLie(H) in a as L,L×H
and K all have the same roots. We now take I = i ker(exp: Lie(T ) → T ) as the integral lattice
of T and replace D by a fundamental domain of the torus a/I. After adjusting these notations,
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the arguments up until Theorem 4.3 will still work. A small caveat is to see that the Weyl group
acts on the integral lattice in order to see for example the Sn-invariance of Pφ in Proposition 3.2.
However, employing the analytic Weyl group W ∼= NK(T )/T , we immediatly verify

exp(Ad(k)x) = k exp(x)k−1 = e

for w = Ad(k) ∈ W and x ∈ ker(expLie(T ) → T ). After Section 4, however, the geometry will
not be as compatible as in the case K = U(n). For example, it is not clear how to obtain radial
scaling functions as the lattice I will generally not behave well with the periodicy of ei〈ξ,·〉, which
was crucial in the proof of Theorem 5.1.

In the case where K = SU(2) acts on SHerm(2) by conjugation, this generalization reduces to
the situation of [RR03], which can be seen as follows: We identify a = SHerm(2) ∼= R2

0
∼= R,

so that W = {±1}, π(t) = 2t,∆(t) = eit − e−it and a+ = [0,∞[. Using these identifications
and the fact that K is of rank 1, the function T is simply the indicator function χ[0,∞[. Thus
Proposition 2.3 reduces to

(δr ∗ δs)(f) =
1

2rs

∫ ∞

0

f(t)t
∑

i,j∈{0,1}
(−1)i(−1)jT ((−1)ir + (−1)js− t) dt

=
1

2rs

∫ r+s

|r−s|
f(t)t dt,

which agrees with formula (4.1) of [RR03]. A direct calculation shows that P+ = 1
2N0, so that

Sλ(t) =
√
2∆(t)−1 sin((k + 1)t) for λ = 1

2k ∈ P+. This agrees, up to the factor ∆(t)−1, with
the definition in [RR03], §4. In fact all our statements in this paper, such as for example the
definition of the set S, are modified by this factor. This is a technical modification to accomodate
for the fact that for non-semisimple Lie groups the Weyl vector ρ is not necessarily contained
in the weight lattice P . By re-introducing the factor ∆−1 we compensate a possible loss of
I-periodicity of the functions ∆Sλ.

It is a specialty of this rank 1 situation that the weight lattice and the integral lattice align
nicely, which made the explicit construction of orthonormal wavelets in [RR03] work.
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