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Dunkl operators are parameterized differential-difference operators on R that
are related to finite reflection groups. They can be regarded as a generalization of
partial derivatives and play a major role in the study of Calogero—Moser—Suther-
land-type quantum many-body systems. Dunkl operators lead to generalizations of
various analytic structures, like the Laplace operator, the Fourier transform,
Hermite polynomials, and the heat semigroup. In this paper we investigate some
probabilistic aspects of this theory in a systematic way. For this, we introduce a
concept of homogeneity of Markov processes on R™ that generalizes the classical
notion of processes with independent, stationary increments to the Dunkl setting.
This includes analogues of Brownian motion and Cauchy processes. The general-
izations of Brownian motion have the cadlag property and form, after symmetriza-
tion with respect to the underlying reflection groups, diffusions on the Weyl
chambers. A major part of the paper is devoted to the concept of modified
moments of probability measures on R" in the Dunkl setting. This leads to several
results for homogeneous Markov processes (in our extended setting), including
martingale characterizations and limit theorems. Furthermore, relations to general-
ized Hermite polynomials, Appell systems, and Ornstein—Uhlenbeck processes are
discussed.  © 1998 Academic Press
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1. INTRODUCTION

Dunkl operators are differential-difference operators associated with a
finite reflection group, acting on some Euclidean space. In recent years
these operators and several generalizations have gained considerable inter-
est in various fields of mathematics and physics. They provide a useful tool
in the study of special functions associated with root systems (see, e.g., [D2,
H, vD]), and they are closely related to certain representations of degener-
ate affine Hecke algebras (see [C, O2] and the recent survey [Ki].
Moreover, Dunkl operators are naturally involved in the algebraic descrip-
tion of certain exactly solvable quantum many-body systems of the
Calogero—Moser—Sutherland-type (CMS); see [B-F1, B-F2, L-V, P]. We
start with an example for motivation.

ExampLE 1.1. The quantum CMS-model of type A, _, for N particles
on the line R, with two-body potentials of inverse-square type and with
spin-exchange terms, is described by the Schrddinger operator

A T NER
— + . — . . .

2 2 L)
i—1 9% 1<i<j<n (X; _xj) !
where k is a real coupling parameter and s; ; is the operator interchanging
the coordinates x;, x; of a function f: [F@N — C (see [PD. In the classical
setting without spin exchange one is mainly interested in the symmetric
eigenfunctions of H, i.e., functions invariant under the natural action of
the symmetric group S, on RY. The restriction of H to symmetric
functions is given by

N 92
SR RELUEL )

1<i<j<N (xi _xj)z .

(1.2)

While the explicit solvability of the latter system goes back to Calogero
([ca), it was only recently observed (see [P]) that H can be written as

H = Z p with commuting momentum operators p; = —iT;, where the
T are the “dlfferentlal difference” operators,
~ d S;
T=——-kYy —~ (j=1,...,N), (1.3)
T ax; 2 XX

which are densely defined on L2(RY, dx). These operators are singular at 0
and do not properly act on C*(R") or polynomials. This can be overcome
by switching to the weighted space L*(R", w,(x) dx) with

wi(x) =TT Ix—x™

1<i<j<N
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This means considering the images of H, p,, T, on L?(R™,w,(x) dx) with
respect to the multiplication operator

R: L*(RY, dx) — L*(RY,w,(x) dx), = w'/?f.
A short calculation yields

~ d 1—5;;
T,'=RT R '=— +k), L (1.4)
ox; j=i Xi TX;

These operators map polynomials to polynomials and are homogeneous
of degree —1 (with respect to the natural grading on polynomials). They
were originally by Dunkl ([D1, D2, D3)) in connection with a generaliza-
tion of classical spherical harmonics where the spherical surface measure
on the (N — 1)-dimensional unit sphere is modified by a weight that is
invariant under some reflection group; in the A4, _, case it has the form of
w, above.

The origin of this paper is the observation that the “Dunkl Laplacian”

N
A == Y, T2 = —RHR* (15)
i=1

is the generator of a strongly continuous Markovian semigroup of opera-
tors on C,(R"), where the associated kernels admit a structure similar to
classical Gaussian densities on R” (see [R2]):

e’Akf(x) - Ck/ —(xP+y? )/4fK( \/x_ ‘/_ ) f(y)w(y) dy
(150, x e RY, fe CyRY))

where ¢, is a normalization constant, and the “Dunkl kernel” K(x, y),
which was first introduced in [D2], generalizes the exponential function
e* on RN x RY. Markov processes associated with the semigroup
(e'¥),. , may be regarded as a generalization of the classical Brownian
motion on R”, even though the reflection parts in A, (or H) require that
these processes cannot have continuous paths for £ > 0. The investigation
of generalizations of Brownian motions on R" of this type is the main
purpose of this paper. Before going into details, we discuss some exten-
sions of the example above:

(1) Essential parts of the theory of Dunkl operators work for arbi-
trary finite reflection groups W on R” (see [D1, D2, D3, dJ, O1]). We shall
establish almost all results of this paper in the general setting. On the
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other hand, Dunkl operators are related to quantum many-body systems
for specific reflection groups only, like the A,_, case above. We mention
the B, cases belonging to the reflection groups S, X {+1}", where {+ 1}V
acts on RY by sign changes of the coordinates; these cases can be related
to 2N + 1-body systems on R.

(2) It is possible to add an external harmonic potential w?|x|* =
o’(x? + -+ +x2) to the Hamiltonian H in (1.1). This case was first
studied in [Su] and can be handled in the same way as the classical
harmonic oscillator by using generalized Hermite functions (see [B-F1,
B-F2, vD, R2], and Section 8 below).

(3) Like the CMS-particle systems on R above, there are completely
integrable particle systems on the torus T := {z € C: |z| = 1} with two-body
potentials of inverse square type. The parameterization z; = e, x, €R
leads to the symmetric Hamiltonian,

ﬁ—2+k(k—1) Y !

j=1 9%; 1<i<j<N 25in2((xi _Xj)/z) '

™=

The solvability of this model was originally shown by Sutherland; a com-
plete solution in operator form, based on Dunkl operators, has recently
been worked out in [L-V].

We turn next to the content and the organization of this paper.

Section 2 mainly serves as an introduction to the Dunkl theory. We
there recapitulate basic facts on reflection groups, root systems, and
multiplicity functions; then the associated Dunkl operators, the Dunkl
kernel (as a generalization of the exponential function), and the Dunkl
transform (as a generalization of the Fourier transform) are introduced.
Most results are known (see [D1, D2, D3, dJ, R3, O1]) and are presented
for the convenience of the reader only. Formally new results are the
injectivity of the Dunkl transform of measures and Lé&vy’s continuity
theorem. Moreover, based on a result of Xu [X], we identify the Dunkl
transform of radially symmetric functions on R" in terms of a classical
Hankel transform on [0, oo[.

Section 3 is devoted to Dunkl’s Laplacian, which generates a one-param-
eter semigroup of Markov kernels on R¥. This semigroup may be consid-
ered a generalization of the semigroup of a Brownian motion and will be
called the k-Gaussian semigroup. k-Gaussian semigroups form the leitmo-
tiv of this paper, and so we include details here, even though most parts of
Section 3 are already contained in [R2].

In Section 4 we use the algebraic connections between k-Gaussian
semigroups and the Dunkl transform to introduce the concept of k-in-
variant Markov kernels on R”. This generalizes the notion of translation-
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invariant Markov kernels on R" (which can be recovered for k = 0); it
allows us to define semigroups of k-invariant Markov kernels as well as the
associated Markov processes, which will be also called k-invariant. In
Section 4 we study in particular the generators of these semigroups and
the associated negative definite functions. Moreover, we show that k-in-
variant Markov processes always admit cadlag versions, i.e, there are
versions of these processes having right-continuous paths with limits from
the left almost everywhere. Moreover, k-Gaussian cadlag processes have
automatically continuous paths after symmetrization with respect to the
underlying reflection group (as the generator is here a second-order
differential operator).

Further examples of k-invariant Markov kernels are presented in Sec-
tion 5. These examples will be constructed via subordination from the
k-Gaussian kernels (see, for instance, [Be-Fo] for this principle). This
leads, in particular, to a generalization of Cauchy kernels. In the end of
Section 5 we apply the generalized Cauchy kernels to solve the Dirichlet-
type problem u,, + A, u = 0 with initial condition (0, .) = f on [0, o[ X R",
where A, denotes the Dunkl Laplacian.

In Section 6 we turn to a different topic in probability theory. With the
interpretation of the Dunkl kernel K as a generalized exponential function
in mind, we use K to construct “‘exponential” martingales from k-invariant
Markov processes; we show that these processes are determined uniquely
by such martingale properties. This will lead to a characterization of
k-invariant Markov processes on RY as unique solutions of martingale
problems in the sense of Stroock and Varadhan [S-V]. This section
requires some knowledge from semimartingale integration (see [K-S, W-W,
Wi]) and may be skipped at a first reading. Our approach is motivated by
similar results for commutative hypergroups in [Re-V] and shows how the
martingale results of Sections 7 and 8 for moment functions fit into a
general theory.

In Section 7 we generalize the monomials y” (y € R", v € Z%) and
introduce so-called moment functions m, (v € Z%) on R" via the Dunkl
kernel K by

1
K(x.y) = L —m(x)y",

vez

where the multi-index notation y" := y/ty;2 --- yi¥ and v!l:= p,l- p,!---
vy!is used for y € RY and v € ZV. The functions m, are homogeneous
polynomials of degree |v| :== v, + -+ 4+ v,. They make it possible to define
the vth modified moment of a probability measure w on R by m, () =
[gv m, du (whenever this exists). It will turn out that modified moments of
k-invariant Markov kernels satisfy algebraic relations of binomial type that
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are well known for classical moments of classical convolutions of measures
on RY. These algebraic relations will allow us to construct martingales
from k-invariant Markov processes by using moments. Section 7 is moti-
vated by corresponding results for commutative hypergroups in [Bl-He, Z]
and references there.

In Section 8 we systematically study modified moments of higher order
for k-Gaussian measures. Motivated by related concepts in non-Gaussian
white-noise analysis (see [ADKS, F-S, B-K1, B-K2]), we introduce two
systems, (R,), c zv and (S,),  zv , of functions on R x R" by

R(t,%) = e™Sm,(x)  and  8,(1,x) = e,

These functions are called Appell characters and cocharacters, respec-
tively; they can also be characterized via their generating functions involv-
ing the Dunkl kernel K. It will turn out that for all # > 0, the systems
(R,(t, ), czv and (S,(¢,)),c,y form a biorthogonal basis of
L*(RY, P(0, ), where P(0,.) denotes the k-Gaussian measure with mean 0
and ‘“variance” parameter t. Based on this observation, we derive a
generalization of a formula of Macdonald [M], which was proved earlier in
[D2] by different methods; see also [R-V2]. The functions R, and S, are
closely related to generalizations of heat polynomials and Hermite polyno-
mials; the latter ones wee extensively investigated in [B-F1, B-F2, vD, L]
for special cases and in [R2] in full generality. To stress the connection
with generalized Hermite polynomials, we close Section 8 with a list of
properties of nonsymmetric generalized Hermite polynomials and the
Appell systems above.

Section 9 contains some limit theorems for k-invariant Markov pro-
cesses that are well known in the classical case k = 0. This in particular
includes a law of the iterated logarithm for k-Gaussian processes, a strong
law of large numbers for general k-invariant processes in discrete time,
and a transcience criterion. Parts of this section are motivated by similar
results for one-dimensional hypergroups in [BI-He] and references cited
there.

The final section, 10, is devoted to a generalization of Ornstein—Uhlen-
beck processes to the Dunkl setting. We introduce the associated semi-
groups of Markov kernels explicitly by using the k-Gaussian kernels of
Section 3. As in the classical case, the generators of generalized
Ornstein—Uhlenbeck semigroups are given by the Schrodinger-type opera-
tors cA, — a XV, x,d, with parameters ¢, a > 0. This observation leads to
the explicit solution of the equation u, = (cA, — aXN  x,;d)u on
[0, [ x RY with initial condition u(0,.) = f. We conclude Section 10 with
some properties of generalized Ornstein—Uhlenbeck processes; in particu-
lar, the stationary ones are defined in terms of k-Gaussian processes in a
pathwise way.
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We finally point out that this paper contains only a selection of proba-
bilistic aspects of the Dunkl theory, and that some topics are not covered
completely. Some results could be considerably improved with some addi-
tional effort. On the other hand, it was our aim to make at least most parts
of this paper accessible to a broader mathematical audience.

2. DUNKL OPERATORS AND THE DUNKL TRANSFORM

The purpose of this section is to establish some basic notations and
collect some facts on Dunkl operators and the Dunkl transform that will
be important later on. General references here are [D2, D3, dJ]; for basics
on reflection groups and root systems, we refer the reader to [Hul.

2.1. Reflection Groups, Root Systems, and Multiplicity Functions

For o € RN \ {0}, let g, be the reflection in the hyperplane H, c RV
orthogonal to «, ie., o, (x) =x — (2{a, x)/|la|’)a, where {,.) is the
Euclidean scalar product on RY and |x|:= y(x,x). (On CV,|.]| also
denotes the standard Hermitian norm, while {z,w) = zw, + -+ +z,wy.)

A finite set R ¢ RN \ {0} is called a root system if RN R-a = {+a}
and o,R = R for all « € R. For a given root system R the reflections o,
(a € R) generate a finite group W c O(N), the reflection group associ-
ated with R. All reflections in W correspond to suitable pairs of roots; see
[Hu]. For a given B RY \ U,.r H,, we fix the positive subsystem
R.={a € R:{a, B) > 0}; then for each @ € R either a € R, or —a €
R_.. We assume from now on with no loss of generality that the root
system R is normalized in the sense that |«| = V2 for all « € R.

A function k: R — C on a root system R is called a multiplicity
function if it is invariant under the action of the associated reflection
group W. If one regards k as a function on the corresponding reflections,
this means that k& is constant on the conjugacy classes of reflections
in W. For abbreviation, we introduce the index

y=vy(k) = ¥ k(a). (2.1)

a€R

Moreover, let w, denote the weight function

we(x) = T1 |<a,x>|2k(a), (2.2)

a€R
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which is W-invariant and homogeneous of degree 2y. We finally introduce
the Mehta-type constant

cp = (j%Newak(x)dx)_l, (2.3)

which is known for all Coxeter groups W; see [D1, Me, O1]. We shall use
the following further abbreviations: % = C[R"] denotes the algebra of
polynomial functions on R", and 2, (n € Z_) the subspace of homoge-
neous polynomials of degree n. We use the standard multi-index notations;
i.e., for multi-indices v, p € ZY we write

lv|= v, + - +uy, vi=ypl- vl 1,
EREEEE
P P1]\ P2 py )’
as well as
xV=xyr e xy and AV =A - AW
for x = R" and any family 4 = (A4,,..., A,) of commuting operators on

2. Finally, we shall need the partial ordering < on Z¥, which is defined
byp<viep <y fori=1.., N

2.2. Dunkl Operators

The Dunkl operators 7, (i = 1,..., N) on R" associated with the finite
reflection group W and multiplicity function k are given by

TIG) = af(x) + ¥ k(aya LI

(e  [EC®Y;
a€R !

(2.4)

here g, denotes the ith partial derivative. In the case k£ = 0, the 7, reduce
to the corresponding partial derivatives. In this paper, we shall assume
throughout that k& > 0 (i.e., all values of k are nonnegative). The T, have
the following fundamental properties (see [D1)):

(1) The set {T;} generates a commutative algebra of differential-
difference operators on 2.

(2) Each T; is homogeneous of degree —1 on %; ie., T,p €%,_,
for p e #,.

(3) (Product rule) T(fg) = (T,f)g + f(T,g) for i = 1,..., N and all
f, g € CHR"Y) with g being W-invariant.
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A major tool in this paper is the Dunkl kernel K(x,y) on RY x RY,
which generalizes the usual exponential function e¢*?. It was introduced
in [D2] by means of an intertwining isomorphism V7 of & which is
characterized by the properties

V(#,) =%, Vg, =id, and TV=Vs (i=1,...,N).

Some details about I and the 7; for the symmetric group S, and the B,
case will be discussed in Example 7.1. For n € Z ., set

<.,y>”

n!

K,(x,y) = V( )(x) (x,y € RY).
Then K, (x,y) = K,(y, x) and |K,(x, y)I < |x|"|y|" /nl. The Dunkl kernel
K is now defined as

K(x,y) = §0Kn(x,y) (= V(e ) (x)). (25)

For y € RY, K(x,y) may be also characterized as the unique analytic
solution of 7;f =y, f (i = 1,..., N) with f(0) = 1; see [O1]. Moreover, the
Dunkl kernel K has a unique holomorphic extension to CV x C¥.

ExampLEs 2.1. (1) If k=0, then K(z,w) = ¢e*" for z,w € CV.
(Note that {.,.> was defined to be bilinear on C".)

(2 If N=1and W= Z,, then the multiplicity function is a single
parameter k > 0, and the normalization constant is ¢, = I'(k + 1/2). The
Dunkl kernel is given by

K(z,w) = ji_15(izw) + Jes1/2(izw), z,w e C,

w
2k +1
where for a > —1/2, j, is the normalized spherical Bessel function

] ) V)2
«(2) =T(a+1)- Y n(!F(lz izciwzl)'

n=0

ju(2) = 2°T(a+ )=

For details and related material see [D3, R1, Ros, Wa] and references
cited there. This basic example is connected with the quantum harmonic
oscillator of Yang [Y].

(3) If N=2and W is a dihedral group of odd order, then k is again
a single parameter. For k = 1, the W-invariant part of the Dunkl kernel K
is computed (up to some transformation) in [Be-Mo] in terms of Tcheby-
chev polynomials.
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For later references, we next list some further known properties of the
Dunkl kernel K.

THEOREM 2.2. Letz € CV, x,y € RY.

(1) K(z,w)=K(w,z), K(z,00=1 and K(Az,w) = K(z, Aw) for
A e C.

(2) For all veZ¥, 10/K(x, 2)| < |x|"- Rzl In  particular,
|K(x, 2)| < e and |K(ix, y)| < 1.

©) Tj"K(x, y) =yjK(x,y) for j=1,...,N; here the superscript x
indicates that the operators act with respect to the x-variable.

(4) K(—ix,y) = K(ix,y) and K(g(x), g(y)) = K(x,y) forg € W.
(5) For each x € RN there exists a unique probability measure ., €
MYRN) with
supp u, € {é€ RY: €] < |x]} and
supp u, N {E€ RN €l =Ix} # T

such that
K(x,z)=[ e¢2du (&) forallzeC",
RN

In particular, K(x,y) > 0 forall x,y € R",

Proof. Parts (1), (3), and (4) can easily be derived from the construction
of K in Section 2.2; see [D2, D3]. Part (5) is shown in [R3], and Part (2) is
a consequence of Part (5); see also [R3].

The generalized exponential function K gives rise to an integral trans-
form, called the Dunkl transform on R”, which was introduced in [D3] and
has been thoroughly studied in [dJ]. To emphasize the similarity with the
classical Fourier transform, we use the following notion.

2.3. The Dunkl Transform

The Dunkl transform associated with W and k > 0 is given by
T Ll([RiN,wk(x) dx) - C,(RY);

f3) = [ JOK(=p xywi(x) dv - (v € RY).
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The Dunkl transform of a function f € L*R", w,(x) dx) has the following
basic properties:

@ 11flke < 1wy ax; €€ Theorem 2.2(2).

@ If f(x) —f( —x) and (f)(x) = f(g(x)) for g€ W, x € R,
then (f)"(») = f(y) and (f,)"(y) = flg(y)) for y € R"; see Theorem
2.2(4).

The inverse Dunkl transformation is given by f(y) = f(—y) and has
corresponding properties.
The results listed in the following theorem are proved in [D3, dJI:

THEOREM 2.3. (1) The Schwartz space F(RY) of rapidly decreasing
functions on RY is invariant under the Dunkl transform.
(2) (Lemma of Riemann—Lebesgue) (LR, w, (x) dx)”" is a ||l
dense subspace of Co(R™).
(3) (Linversion) For all fe LNRY,w (x)dx) with fe LARY,
w,(x) dx),

f=a"7N22FY g

(3) (Plancherel’s Theorem) The renormalized Dunkl transform f —

¢,277"N/2f can be uniquely extended to an isometric isomorphism on
LZ(RN w,(x) dx).

We next show that Dunkl transforms of radial functions (i.e., SO(N)-
invariant functions) in L*(R",w,(x) dx) are again radial, an that Dunkl
transforms can be computed via associated classical Hankel transforms.
This result is not obvious, as the weight w, is usually invariant only under
the reflection group W. Our proof is based on the explicit integration of
the operator I over spheres in [ X]. Before doing this, we recapitulate
some facts about Hankel transforms:

2.4. The Hankel Transform
For a > —1/2, define the measure w, on [0, by
doy(r) = (2°T(a + 1)) 'r2e+1qr.
The Hankel transform .#* of order « on L!([0, [, w,) is then defined by
F )N = [ F(r)u(Ar) doy(r);
Here j, is the normalized spherical Bessel function as defined in Example

2.1(2). The transform #* can be uniquely extended to an isometric
isomorphism on L*([0, «[, w,).
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PrRopPOSITION 2.4. Let W be a finite reflection group with multiplicity
function k and index y = ¥, c g k(). Then there is a one-to-one correspon-
dence between the space of all radial functions f in L"(R™, w,(x) dx) and the
space of all functions F € L'[0,, w, y ,,_,) via

f(x)=F(lx)  forx € R".

Moreover, the Dunkl transform f of f is related to the Hankel transform
ZYN/271F of F by

F(y) = ct2vN/2 (7 N/21R) (lyl) - fory € RV,

Proof. Let S¥~! = {x € R": |x| = 1} be the unit sphere with normal-
ized surface measure do. Set

1
dk = fSNilwk(x) do-(x) = C_k : W

Let f and F be related as in the proposition. Then the homogeneity of w,
leads to

[ a= [( [ mm do )| IFO-a
= dkfom|F(”)|i’27+N_ldr.

We now turn to the second statement. Corollary 2.2 of [ X ] states that for
each polynomial p and x € R,

y+(N-3)/2

[ VP D Gmy) do(y) = di [ plalal)(1 - %) d,

with some constant d, > 0 depending on k only. The series representation
(2.5) of K and Mehler’s formula ([Sz], (1.7.1.6)) lead to

y+(N-3)/2

[ Kl yyw(y) de(y) =di [ (1= 12) di

:dk'jy+N/271(|x|)- (2.6)

Moreover, by Theorem 2.2(1) and the homogeneity of w,,
vy = [ FUDK (=i, y)wy(x) d

=/:(/;N1K(_l"’y12)wk(2) do(z) F(r)rZHN_ldr,
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It follows from (2.6) that

) = dif e jaa( T F(ryr®y = ar
— ck—12y+N/2 . (/77+N/2_1F)(|y|),

which completes the proof. |

Proposition 2.4 leads to the following result, which will be needed in
Section 9:

LEMMA 25, Foreach compactset L < R" thereis a functionf € CH(R")
with f € CH(RN) N LMRN, w,(x) dx) such that f > 1 on L.

Proof. The Hankel transform #* (a« > —1/2) can be regared as a
Fourier transform for a suitable hypergroup structure on [0, «[, which is
called a Bessel-Kingman hypergroup (see [BI-He)). In particular, there is a
positivity-preserving convolution *, on L0, «[, w,) such that
Z(fx, g) =2(f) -#*(g) for f, g X0, w,). Now fix ge
Cr([0,%) with [; g(x)dw,(x) > 0. Then g=*, g CI(0, oc[) with
#(g+, g) = |7l € C¢ (10, =D N L0, <[, w,), and | #*(g)> > 0 on
[0, €] for a suitable e > 0. Suitable rescaling of g vyields that for each
compactum R cC [0, o[ there is some g such that even |7%(g)I* > 1 on R.
The lemma now follows from Proposition 2.4 with F =g *_ g. |

To use the Dunkl transform as a probabilistic tool, we next establish
some further standard results like the uniqueness theorem and Lévy’s
continuity theorem. We denote the Banach space of all C-valued, regular
bounded Borel measures on RY by M,(R"). Moreover, M; (R") and
M*(R") are the subspaces consisting of all positive measures and probabil-
ity measures, respectively. Moreover, we denote the o-algebra of all Borel
sets on RY by #(R"). Weak convergence of measures means convergence
with respect to the o (M, (R"), C,(R"))-topology.

The Dunkl transform of u € M,(RY) is given by a(y) =
Jay K(=iy, x) du(x) (y € RV).

THEOREM 2.6. (1) If p € M,(RY), then n < C,(RY) with |1l <
Il el
2 If p € M,(RY) and f € LNRY, w,(x) dx), then

[ B fow(x) de = [ fdp.

3 If u € M,(R") satisfies i1 = 0, then u = 0.
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Proof. Part (1) follows readily from Theorem 2.2(2) and the dominated
convergence theorem. Part (2) follows from Fubini’s theorem, and Part (3)
follows from Part (2) and the fact that (L*(R", w,(x) dx))" is |||l.-dense in
CoRY). 1

THEOREM 2.7. Let (), cn € M, (RY).

D If (w,),cn converges weakly to u € My (RN), then (7)), <y
converges to i uniformly on every compact subset of R,

) If (w,), cn converges pointwise to a complex-valued function ¢ on
RY that is continuous at 0, then there exists a unique w € M;"(R™) with
=, and (w,), cy tends weakly to p.

Proof.  As (x,y) — K(ix, y) is analytic on R x R", the mean value
theorem ensures that for all x € R", € > 0 and all compacta L c R",
there exists an open neighborhood U of x with |K(ix,y) — K(iz, y)| < €
for all z € U, y € L. The proof of part (1) can now be carried out exactly
as in the classical group case; see, for instance, Theorem 23.8 in [Bal.

Moreover, Theorem 2.6 ensures that the proof of part (2) also carried
over from the classical seting in [Ba] without changes. We omit the details.

Remark 2.8. If a measure u € M,(R") is invariant under the action of
the finite reflection group W, then its Dunkl transform is also W-invariant.
On the other hand, it is not true that Dunkl transforms of radial measures
are again radial; this is clear from Proposition 2.4 and the fact that the
weight function w, usually fails to be radial.

3. GENERALIZED LAPLACIANS AND HEAT KERNELS

3.1. The Generalized Laplacian

The generalized Laplacian A, associated with some finite reflection
group W on RY and a multiplicity function k > 0 is defined by

N
Af= LT =Af+2 ) k(a)s,f (f€CHRY)),
-1

a€ER
with

(V(x), @) f(x) = f(0)
(a,x) (a,x>2 .

O f(x) =
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It is shown in [R2] that the operator A, on C,(R") admits a closure
(again denoted by A,). This closure generates a positive, strongly continu-
ous contraction semigroup (e'*+), . , on Co(R™), which is given explicitly in
terms of the following generalized heat kernels.

3.2. Generalized Heat Kernels

The generalized heat kernel T, is defined by

2 2 X y
o~ (2 +1y] )/‘”K(—, _)
var "2t

(x,y € R*, t>0),

where ¢, is given in (2.3). The heat kernel T, has the following properties
(see Lemma 4.5 in [R2]): Let x,y,z € RY and ¢ > 0. Then

(1) Tu(x,y, 1) =Li(y, x,1)

ck

= e [ e K i €K £)wi(6) dg,

C
Le(x,y,1) = (@

and, by the inversion formula, Theorem 2.3(3),
To(x,.6)"(z) =e """ K(—ix, z).

(2) For fixed y € R", the function u(x,t) == I (x, y,t) solves the
generalized heat equation A, u = u, on RY X (0, «).

(3) /RNFk(x,y,t)wk(x)dx=1 and

M = (x| |yD? /41
|Fk(x,y,t)|sty+N/ze .

Moreover, the integral operators

H(f(x) = [ Tu(x, 3. 0f(7)we(y) dy fore>0, and H(O)f =,

have the following properties:
THEOREM 3.1. (1) Iff € C,(RY), or if f is a polynomial, then e+ f =
H()f fort = 0.

(2) For each f € C,(R"), the function u(x,t) == H(t)f(x) is bounded
and continuous on R™ X [0, %[ and solves the Cauchy problem u, = A, u on
RY X [0, o[ with u(.,0) = f.

(3) For each f € P, the function u(x, t) == e f(x) = Ht)f(x) is a
polynomial solution of the Cauchy problem u, = Aju on RY X [0, [ with
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u(.,0) = f; moreover, (x,t) = e "*<f(x) solves @i, + A, i =0 on RN X
[0, o[ with u(.,0) = f.

Proof. Part (1) for f € C,(R") and Part (2) are shown in Section 4 of

[R2]. Notice further that e*+ (¢ € R) is well defined on .. Proposition 2.1
of [D3] yields in our notation that

p(x) = [ T(x.9,1/2) (e Zp)(nwi(y) dy - for p €7 (3.1)

From this, Part (1) for ¢ = 1/2 follows with f = e~ 2+/2p. The general case
t > 0 follows by renormalization (see Lemma 2.1 of [R2]), and the case
t = 0 is trivial. This completes the proof of Part (1). Part (3) is also clear. ||

The solutions for the polynomial initial value problems in Theorem
3.1 (3) will be studied in Section 8. In Section 5 we will show that suitably
generalized Cauchy kernels (instead of generalized heat kernels) lead to
solutions of the Dirichlet problem u, + A,u =0 on R" X [0, with
given initial data for + = 0. We turn next to a probabilistic interpretation
of the generalized heat kernels.

3.3. k-Gaussian Semigroups

For x € RY and 4 € Z(R") put

P (x, A) = er(x.y,r)wm)dy (1>0)

and P; (x, A) == €,(A); here €, denotes the point measure in x € RY. We
show that (P!),., is a semigroup of Markov kernels on R" in the
following sense:

(1) Each P! is a Markov kernel, and for all s,¢ > 0, x € R", and
A € B[RV),

Ple Pl (x,A) = [ PF(z A)PI(x,dz) = PL(x, 4).

(2) The mapping [0, <[> MX(R"Y), t —» P(0,.), is weakly continu-
ous.
Moreover, the semigroup has the following particular property:

(3) The Dunkl transforms of the probability measures P (x,.) (¢ > 0,
x € RY) satisfy

PI(0,)"(y) =e™™" and P(x,)"(y) = K(~ix,y) P (0,)"(y)
for y € RV,
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For each constant ¢ > 0, (P)),. , is also a semigroup of Markov kernels
with the properties (1)—(3) (the explicit formula for P"(0,.)" being modi-
fied in the obviuos way); these semigroups will be called k-Gaussian
semigroups from now on.

Proof. Part (3) is clear from Section 3.2(1), and Part (2) follows from
Part (3) and Theorem 2.7. Finally, Section 3.2 ensures that for s, > 0 and
x,z € R", each P' is a Markov kernel with

(PFe P (x0)"(2) = [ [ K(=iy,2) P\ (w,dy) P (x, dw)

= Ne”'z‘zK(—iw,z)PSF(x,dw)
R

= e e K (—ix, z) = P (%))

Theorem 2.6(3) implies that Pl o P = PL.,, which completes the proof of
Part (1). 1

4. k-INVARIANT MARKOV KERNELS AND PROCESSES

In this section we first introduce general semigroups of Markov kernels
that are consistent with respect to a given Dunkl transform. This consis-
tency generalizes the classical notion of translation invariance of Markov
kernels that can be recovered for k = 0. Examples of such semigroups are
the k-Gaussian semigroups. Further examples will be studied in Section 5.
For an elementary introduction to Markov kernels see, for instance,
Section 36 of [Ba]. In the following, we fix a finite reflection group W with
root system R and multiplicity function £ > 0.

DeriNiTION 4.1, A Markov kernel P: RY x 2(RY) — [0,1] is called
k-invariant if

P(x,)"(y) =P(0,)"(y) - K(—ix,y) forall x,y € RY

(note that we here regard P(x,.) as a probability measure on RV).

If k=0and ue MRY), then P(x, A) =€ +u(A) (x € R", 4 €
Z(RN)) defines a translation invariant Markov kernel. If k # 0, then there
usually exists no associated k-invariant Markov kernel P with P(0,.) = .
For N = 1 and k > 0, there is a convolution of measures on R correspond-
ing to the Dunkl transform that fails to be probability preserving; see [R1,
Ros]. In general it is even unknown whether a convolution of bounded
measures exists.
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We next collect some basic properties of k-invariant Markov kernels.
LEMMA 4.2. Let P and Q be k-invariant Markov kernels on RN. Then

(1) Pf(x) = [~ f(y)P(x,dy) defines a continuous linear operator on
Co(RM).

(2) The composition P - Q defined by
PoQ(x,A) = [rnO(z, A)P(x,dz)
is a k-invariant Markov kernel on RN with
((P=Q)(x,.))"(y) = Q(0..)"(¥) - P(0,.)"(y) - K(—ix,y)
forx,y € RN, (4.1)
3 PO, )" <1 forally € R".

Proof. (1) It suffices to check that Pf € Cy,(R") for all f € C,(RV).
Moreover, as A(RY) is |l.|l.-dense in C,(RY), it suffices to do this for
Schwartz functions f < ARY) only. In this case, f=g for some g €
ARYN) by Theorem 2.3(1). Hence, by Theorem 2.6,

Pf(x) = [ BOIP(xdy) = [ g(3) - P(x.)" () - wily) dy

= [ 80 K(x, =ip) -P(0,)" () - wily) b

= (g-P(0,.)")"(x).

As g-P0,)"e L"R",w,), it follows from the Riemann—Lebesgue
Lemma (Theorem 2.3(2)) that Pf € C,(R"), which completes the proof.

(2) Clearly, Eq. (4.1) implies that P o Q is k-invariant. To prove this
equation, take x,y € R" and observe that the k-invariance of P and Q
implies that

PoQ(x,)"(y) = [ K(=iw,y)PeQ(x,dw)
= /ERN'[RNK(—iw,y)Q(z,dw)P(x,dz)
— [,000.)" () -K(=iz, ) P(x. d2)

=0(0,)"(y) - P(0,)"(y) - K(—ix,y).
(3) This follows from Theorem 2.2(2). 1
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We now turn to semigroups of k-invariant Markov kernels on R”".

DeirNITION 4.3, A family (P,),. , of k-invariant Markov kernels on RY
is called a semigroup of k-invariant Markov kernels, if the following
statements hold:

(1) The kernels (P),., form a semigoup, i.e., P,o P, =P, for
s,t>0.

(2) The mapping [0, <[> M*(RY), t - P(0,.), is weakly continuous.

We next collect some basic properties of semigroups of k-invariant
Markov kernels that extend the case of translation-invariant Markov
kernels on RY.

PROPOSITION 4.4. Let (P),., be a semigroup of k-invariant Markov
kernels. Then

(1) PO,)"y)#0 forally € RN andt > 0.
(2) P, is the trivial kernel (i.e., Py(x,.) is the point measure €,).

(3) There is a unique function ¢ € C(RN) with P(0,.)"(y) = e '¢W)
fort = 0 andy € R, The function ¢ satisfies Re ¢ > 0 and

1
e(y) =M T (L= £(0.)'(»)  (y =®Y).

The function ¢ is called the negative definite function associated with (P,), .

Proof.  We first check part (2). As P, P, = P,, the continuous func-
tion P,(0,.)" only takes the values 0 and 1. As Py(0,.)"(0) = 1, it follows
that Py(0,.)" = 1. The injectivity of the Dunkl transform and the k-invari-
ance of P, now ensure that P, is the trivial kernel.

To prove (1), assume that P,0,.)"(y) = 0 for some y € R" and ¢ > 0.
By (4.1), this would imply P,(0,.)*(y) = 0 for all # > 0, in contradiction to
Lévy’s continuity theorem (Theorem 2.7) and P,(0,.)" = 1.

As t — P(0,.)"(y) is continuous for all y € R", there exists ¢(y) € C
with e ¢ = P(0,.)"(y), where Re ¢(y) > 0 is a consequence of Lem-
ma 4.2(3). The limit relation for ¢(y) is also clear. Finally, the continuity
of ¢ follows from

(ff% df)A (y) = Lwe"ff’"‘“”dr = (1+¢(y)

and the fact that ([ye u, dt) "€ C,(R") holds by Theorem 2.6(1). |
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PROPOSITION 4.5.  Each semigroup (P,), . o of k-invariant Markov kernels
on RY has the following properties:
(1) Forfe CyRY)andt >0, Pfe Cy(RY).
2 Ift=0andfe C,(RY)with 0 <f<1,then0<Pf<1l
(3) P,oP,=P,_, fors,t >0, and P, is the identity kernel.
@ lim,  IP.f = fll. = O for all f € Co(R™).

Proof. Part (1) follows from Lemma 4.2(1); (2) and (3) are clear (cf.
Proposition 4.4(2)). To prove (4), take fe Cy,(RY) and x € R". The
k-invariance of P, and Lévy’s continuity theorem (Theorem 2.7) ensure
that the mapping ¢ — P(x,.) is weakly continuous at ¢ = 0, and hence
lim,_ , P,f(x) = f(x) for all x € R". A standard argument based on the

resolvents of the semigroup (P,),., now yields that (4) holds (see, for
example, p. 115 of [Wi]). 1

4.1. The Generator

As a consequence of the above proposition, each semigroup (P,),. ,
of k-invariant Markov kernels acts on C,(R") as a strongly continuous
positive contraction semigroup. Therefore, by a standard fact from Hille—
Yosida theory, the generator

1
Lf = lim =(P.f = f)

has a [||l.-dense domain in C,(R"). For later reference, we define the
following extended domains of L:

1
D(L) = {fe C(RV): ?(P,f—f) converges uniformly on R” for t—>0},

and
D,(L) == D(L) N C,(RY),  Dy(L) = D(L) N Co(R").
Note that D,(L) is the domain of L on Cy(R"), and that Lf € C,(R")

for f € Dy(L).
We also remark that for ¢t > 0 and x,y € RY,

PR(.i9)(x) = P(x,)"(~y) = P(0,.)" (~y) K(x.iy)
= PK(..iy)(0)K(x,iy),
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and hence

1
lim = (PK()(x) ~ K i) (1))
= lim (R (. )(0) ~ DK(x,) = —p(3)K(x,)

uniformly. This yields that {K(.,iy): y € RN} c D,(L) and L(K(., iy))x)
= —o(y)K(x, iy).

We next introduce Markov processes on RY associated with semigroups
of k-invariant kernels.

DerFINITION 4.6. A Markov process (X,),., on RY (with filtration
(%), o) is called k-invariant, if its transition probabilities satisfy

P(X,. €AIX, =x)=P(x,A) (5120 xeR" 4caR"))

for some semigroup (P,),. , of k-invariant Markov kernels. This process is
called k-Gaussian, if (P,),., is a k-Gaussian semigroup in the sense of
Section 3.3.

Proposition 4.5 says that k-invariant Markov processes (X,),., on RY
have the so-called Feller—Dynkin property. The following theorem is
therefore a consequence of a general theorem of Dynkin, Kinney, and
Blumenthal (see, for instance, Theorem 111.14.4 of [Wi)).

THEOREM 4.7.  Each k-invariant Markov process on R™ admits an equiv-
alent cadlag version, i.e., an equivalent Markov process with almost surely
right-continuous paths and limits from the left.

This result can be improved for k-Gaussian processes by using the fact
that the associated generator cA, (¢ > 0) is a differential-difference
operator. We need some preparation. Let R be a root system of the finite
reflection group W acting on R". For each « € R let H, be the hyper-
plane orthogonal to «. Fix a Weyl chamber C of W, i.e, any connected
component of RY \ U, .z H,. The closure C of C in R" is called
a fundamental domain of W and can be identified with the space of
all W-orbits on RY in the obvious way (where the latter space carries
the gquotient topology); see Section 1.12 of [Hu]. Using the canonical
projection

p:RY > RY/W=C, (4.2)
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we first make the following observation:

LEmMMA 4.8. (1) Let P be a k-invariant Markov kernel on RN with
P(0, A) = P(0,g(A)) for all g€ W, A € BR"). Then P is W-invariant,
i.e.,

P(g(x),8(A)) =P(x, A) forallge W, x € RN, A € Z(R").

(2) Let (X)), be a k-invariant Markov process on RY such that its
associated semigroup (P,), . , of k-invariant Markov kernels is W-invariant.

Then the projection (p(X,)),., is a Markov process on RN /W = C; the
associated semigroup of Markov kernels is given by

P(p(x),B) =P(x,p"Y(B)) forxeR" and B < RY/W a Borelset.

Proof. (1) The W-invariance of P(0,.), together with the fact that
K(g(u), g(v)) = K(u,v) for all u,v € R and g € W (Th. 2.2(4)), yields
that P(0,.)"(g(y)) = P(0,.)"(y) for all g€ W, y € R". Fix g € W and
x € R". Using P(g(x), g()) = g 1(P(g(x),.), we conclude that

P(8(x),8(:)" (») = (871 (P(8(x).,)))"(»)
= [ K(=ig 7 (2). ) P(8(x). d2)

- [ K(=iz () P(g(2). d2)

= K(—ig(x),g(y)) - P(0,.)"(g(»))
= K(—ix,y)-P(0,)"(y) =P(x,.)"(y).

The injectivity of the Dunkl transform now completes the proof.

(2) The W-invariance of (P),., ensures that P, is in fact well
defined. Moreover, it is clear that P(p(x),.) defines a probablllty measure
on RY/W = C for each x € R", and that for each Borel set B ¢ R" /W,
the mapping RY /W = C - [0,1], z — P(z, B) is Borel measurable. Now
consider the canonical filtration (%),., associated with the process
(X,),.,, and take s,¢ > 0 and a Borel set B ¢ R /W. Then

B(p(X,).B) = P(X,. p"(B)) = P(X,,, €p ' (B)|%)
= P(p(X,:,) €BIF)
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almost surely; see, for instance, 42.3 in [Ba]. In particular, the conditional
probability P(p(X,,,) € B|.%) is p(X,)-measurable. As the filtration
(%), . o associated with the process (p(X,)),. o satisfies 7 c % for t > 0,
it follows that

P(p(X,,,) € B|%) =P(p(X,.,) €Blp(X,))=P(p(X,),B)

almost surely, which completes the proof. |

Remark 4.9. The k-Gaussian kernels of Section 3 are obviously W-in-
variant. Moreover, all semigroups (Q,),. , of k-invariant Markov kernels
on R" constructed via subordination (see Section 5 below) from a semi-
group (P,),. o, of k- and W-invariant kernels are also W-invariant.

THEOREM 4.10. Each k-Gaussian process on RY admits an equivalent
k-Gaussian process (X,),., with the cadlag property. The projection
(p(X),~ of this process on RN /W = C has almost surely continuous
paths.

Proof. In view of Theorem 4.7, it suffices to check that (p(X,)),., is
a.e. continuous. Our proof follows the exposition in Section 111.28 of [Wi].
Remember that (p(X,)), . , is a Markov process on R" /W = C by Lemma
4.8. The generator of the associated semigroup (P )= o acting on Cy(C) is
given, up to a constant, by

Lf=Af+2 ¥ k(a )M (43)

a€ER,

with domain

C3w(C) ={fe cq(C):(Vf(x),q) =0forxe H,NnC, « €R,}
(4.4)

(notice that L, coincides with the restriction of the Dunkl Laplacian to
W-invariant functions in CZ(R™)). The local form of L, yields readily that

1
lim— P C\U 4.5
lim - sup 7, P,(x, (X)) = (4.5)

for all compacta K c C and all e-balls U.(x) around x with e > 0; see, for
instance, Theorem 3.9’ of [Dy]. This implies that for all compacta K c C
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and all €,u > 0,

> e and

n— o

n—1
limP| U <|p(Xku/n) _p(X(k+1)u/n)
k=0

XSerorse[O,u]} = 0.

Together with the cadlag property of (p(X,)),. ,. this implies the almost
sure continuity. 1

In the end of this section we consider the projection (| X,)),. , on [0, o[
for a k-Gaussian cadlag process (X,),., on RY with generator A, /2
(without loss of generality). The process (| X,|),. , has continuous paths by
Theorem 4.10. Moreover, we shall see that this process is a Bessel process
of index a =y + N/2 — 1> —1/2. For this, we first recapitulate that a
Bessel process (B*),., on [0,%[ of index « > —1 is a Markov process
with continuous paths and with the transition probabilities

P(BX, € A|BX=x) = P*(x, A)
2

= Tt D) fA Joliy/t)e” TR 2y 2at1 gy (4.6)

fort > 0,s,x > 0,and A c [0, a Borel set. We also notice here that the
generator of the semigroup of Markov kernels (P,%),_ , on [0, [ in (4.6) is
given by the Bessel differential operator,

20+ 1

Lof %(f - f’) (F e C2([0,=]), £/(0) = 0). (4.7)

X

For details on Bessel processes we refer to Section XI.1 of [Rev-Y]. In
particular, the following result is well known for k = 0:

THEOREM 4.11. If (X,),., is a k-Gaussian cadlag process on R™ with
generator A, /2, then (|X,)),. o is a Bessel process of index y + N/2 — 1 >
~1/2.
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Proof. Let x€RY,0<a <b,and A :={z € R": a <|z| < b}. Then,
by use of Eq. (2.6), the transition probabilities P, ,(x, 4) of (X)), , satisfy

Ph,(x, A) = /Ark(x,y,r/z)wk(y)dy

ck _ X
= W/j D2 (x/t, y)wi(y) dy
Ck

(Zt)y+N/2

/:) (/;NIK(x/t, rz)w(z)do(z)

e~ (XP+r)/20,2y+N=1 .
2
(20)""Y?T(y + N/2)

b . _
X./ jy+N/271(i|x|’”/t)67(‘)('2“2)/2[”2#1\[ tdr.
a

This in particular ensures that Pf/z(x, A) depends on |x| only, and the
assertion follows readily. i

5. SUBORDINATION AND CAUCHY KERNELS

In this section we construct some examples of k-invariant Markov
kernels from the k-Gaussian semigroup of Section 3.3 by subordination.
This principle is based on convolution semigroups of probability measures
on the group (R, +) that are supported by [0, «[; it leads from a given
semigroup of kernels with certain algebraic properties to a new one with
the same algebraic properties. In the related setting of translation invari-
ant kernels on locally compact abelian groups, this principle is worked out
very clearly in Section 9 of [Be-Fo]. The most prominent example of an
underlying subordinating semigroup is given by the Poisson semigroup
o [k
D= Z e’ F € . (5'1)

k=0 : t>0

To describe the construction, fix a convolution semigroup (u,),. , of
probability measures on the group (R, +) (in the sense of [Be-Fo]), which
is supported by [0,%[. The Laplace transforms Zu,(x) = [ge ™ du,(s)
(Re x > 0) of u, can be written as

G (x) =e 7 (t>0,Rex>0),
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with a unique function f < C([0,%[) N C*(J0, ). It is well known (see
Section 9 of [Be-Fo]) that a function f: [0,o[ — R is a Bernstein function,
i.e.,, f>0and (-1)"D"f <0 for all n > 1, if and only if f is connected
with some convolution semigroup (u,),. , of probability measures on the
group (R, +), supported by [0, [, as described above. This leads to the
following result:

ProposITION 5.1.  Let (w,),. o and the Bernstein function f be related as
above. If (P,),. o is a semigroup of k-invariant Markov kernels on R with
negative definite function ¢, then

0,(x.4) = [ P (x, A) dp,(s5)

defines a semigroup (Q,),., of k-invariant Markov kernels on RY with
negative definite function f o ¢. We say that (Q,),. , is obtained from (P,), . ,
by subordination with respect to (), - o

Proof. For each t > 0, the kernel Q, is a Markov kernel on R" with
(%) (7) = [ P(x.)" () dm(s)

= K(—ix, ) -[Pxo,-)%y) dp,(s)

= K(—ix,y) - 0,(0,.)"(y)

and
0,0.) () = [ A(0.)" () du(s) = [ du(s)

= (Zu)(p(y)) = M,

Together with Theorem 2.7 and the injectivity of the Dunkl transform, this
immediately leads to the assertion. |

ExampLEs 5.2. (1) The Poisson semigroup (p,),., of Eq. (5.1) is
associated with the Bernstein function f(x) =1 —e™™. If P is any k-in-
variant Markov kernel on R”, then

—tek

0(x,A) = ¥ PO(x, ) S
k=0 :

Wlth P(k) = PoP(kil)l P(O)(xy) = exa

defines a semigroup of k-invariant Markov kernels with negative definite
function ¢(x) =1 — P(0,.)"(x).
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(2) The function f(x) =x* is a Bernstein function for « < [0, 1].
Using the negative definite function x — |x|* on R" associated with the
k-Gaussian kernels (P1),. ,, we obtain from Proposition 5.1 and a time
rescaling that for all « € [0,1] and ¢ > 0,

00 o(x) = e 1xl

is the negative definite function of a semigroup of k-invariant Markov
kernels.

(3) If one takes a = 1/2 above, then the one-sided convolution
semigroup (u,),., on (R, +) associated with the Bernstein function
f(x) = x'/2 is given by

a5~/ 2%e7 /M ds (s> 0)

1
du(s) = Vo

(see Section 9 of [Be-Fo]). By Proposition 5.1, the kernels Q, associated
with the negative definite function ¢(x) = |x| are given by

mm@=L&m%mmw@

with
&m%o=[nm»wwm)

th ®© 2 2 2
- —f =17 /45— (r+ (N+3)/2), = (kP +1y?)/ 45
4YEN/2\Ag Sy

X
XK|—,y]ds, 5.2
“sy)s (52)
where the weight function w, and the constants vy, c, are given as in
Section 2.1. In particular, for x = 0, c“(x,y, ) can be computed explicitly
by using the substitution r = (12 + |y|*) /4s and the Gamma-integral:

cit o ) )
k . —(y+(N+3)/2) | ,—t°/4s | ,—|y|°/4s
c (O,y,t) 7+N/2‘/_ /0 s e e ds

et w 4 y+(N+1)/2
- +/ e rpyt(N-n2l dr
4y+N/2 /477_ 0 t2 + |y|2
¢,T(y+ (N+1)/2 t
Cal(y+ (N+1)/2) 59

+(N+1)/2 "
\/; (tz +|y|2)y
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Having the classical case k£ = 0 in mind, we call the probability measures

dCf(y) = c*(0,y,0)w,(y) dy (5.4)

k-Cauchy distributions on R”, and c* the k-Cauchy kernel. Moreover, a
Markov process on R is called a k-Cauchy process, if its transition
probabilities are associated with the semigroup (Q,),., of k-invariant
Markov kernels above.

Proposition 5.1 has an interpretation on the level of k-invariant Markov
processes. In fact, the following result is a special case of Section X.7
in [Fel:

Remark 5.3. Let (pu,),., be a convolution semigroup on (R, +) sup-
ported by [0, «<[. Consider the associated cadlag process (7)), . , defined on
some probability space (Q,.¥, P) with state space [0, [ and with indepen-
dent, stationary, and nonnegative increments. Assume also that 7, = 0.
Moreover, let (X,),. , be a k-invariant Markov process on the same space
(Q, &, P), which is independent of (7}),. , and also has the cadlag prop-
erty. Denote the semigroup of k-invariant kernels associated with (X)), ,
by (P,),. ,. Then the stochastic process (Y)),. , on (£, %, P) with

Y(w) = XT,(w)( w) (120, 0w Q)

is a k-invariant Markov process on RY with the cadlag property and with
the same initial distribution as (X,),. ,. Moreover, this process is associ-
ated with the semigroup of k-invariant Markov kernels on R” that is

obtained from (P,), . , by subordination with respect to (u,), . ,.

ExampLE 5.4. Let (¥),., be a filtration on some probability space
(Q, %, P). Let (B)),. , be a (%), . ,-Brownian motion on R (in the classical
sense and with continuous paths). It is well known (see, for instance,
Section 50 of [Ba]) that the stopping times

T,(w) = inf{r > 0: B, > t} (t=0)

form a process (7,),. , on [0, [ with T, = 0 and independent, stationary,
and nonnegative increments; the associated convolution semigroup
(1), = o € M0, ) is given by u, = €, and

e "/ ds (5,6 0).

t
W) = a7

Now let (X)), . , be a k-Gaussian Markov process on R” with filtration
(%), o- Assume that (X,),. , has the cadlag property and is independent
of (B,),. ,. Remark 5.3 and Example 5.2(3) show that

Y(w) =Xp,(0) (120, 0€Q)
defines a k-Cauchy process (Y)), . , on (Q, .7, P) with values in R".
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We next turn to the connection between k-Cauchy kernels ¢* and the
Laplace-type equation (A, + d2)u = 0 on the upper half space R" X [0, «[,
We start with the following observation:

LEMMA 5.5. The k-Cauchy kernel c* satisfies (A} + 92)c*(x,y,t) =0
forx,y € RM t > 0.

Proof. The negative definite function of the k-Cauchy semigroup is
given by ¢(x) = |x| for x € R". Therefore, Proposition 5.1 and the inver-
sion formula (Theorem 2.3(3)) imply that

2
Ck . . 2
c*(x,y,t) = WfRNK(—Lx,z)K(ly,z)e "2y, (z) dz. (5.5)

The lemma now follows from A} K(iy,z) = —|z|* - K(iy, z) and inter-
changing (A} + 92) with the integration in (5.5). The latter is justified by
the decay properties of the integrand and its derivatives, which allow
application of the dominated convergence theorem. (Note that by Theo-
rem 2.2(2), [9/K(iy, z)| < |z|"! for all multi-indices ».) 1l

THEOREM 5.6.  For each function f € C,(RN), the function u given by
u(x,t) = (Q,f)(x)

[ oy f(wy)dy  fort>0,x € RY

f(x) fort =0, x € RY

(5.6)

is a C, (RN x[0,)) N CHRY X 10, <])-solution of the Cauchy problem
u, + Ayu=0onRY x10,.

Proof. To check u € C*(RY x ]0,«[) with u, + A,u =0, we have
only to make sure that the necessary differentiations of u may be carried
out under the integral in (5.6). For this we again employ Theorem 2.2(2)
together with the representation (5.5) of the Cauchy densities c*. This
ensures that the derivatives of ¢ are sufficiently fast decaying, the
dominated converge theorem now allows the necessary differentiations of
u under the integral. Moreover, the positivity and normalization of c* (see
Example 5.2(3)) imply that « is bounded with [[ull g0, < I fll, & .

Finally, we have to show that Q,f(x) — f(¢) for x - ¢ and ¢ — 0.
Using representation (5.2) for c*, we express Q, by means of the heat
operators H(t) of Section 3.2 as Q,f(x) = [fH(s)f(x)du(s), where
(m,), - o is the convolution semigroup of Example 5.2(3). Hence,

|QJu)—ﬂsnsAﬂHuvuo—ﬂfnmmn-
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Now fix € > 0. The continuity of (x,s) — H(s)f(x) on RY X [0, [ from

Theorem 3.1(2) leads to some &> 0 with [H(s)f(x) — f(£) < e for
0 <s<é&and|x— £] <. Hence, for |x — &| < 8§,

|0.f(x) = £(£)]

IA

e+ f:IH(s)f(x) — f(&)|du(s)

€+ 2/l fll- m([8, ).

IA

As lim, o u,([8,%[) = 0, this completes the proof. |

6. MARTINGALE CHARACTERIZATIONS OF
k-INVARIANT MARKOV PROCESSES

In this section we construct some martingales related with k-invariant
Markov processes and show that k-invariant Markov processes appear as
unique solutions of certain martingale problems in the sense of Stroock
and Varadhan [S-V]. Parts of this section may be skipped by readers not
familiar with stochastic integration.

Our first result is well known for processes with independent, stationary
increments:

ProPosITION 6.1. Let (P,),., be a semigroup of k-invariant Markov
kernels on R™. Then an arbitrary stochastic process (X,),., on R" is a
Markov process related with (P,), . , if and only if

(X,,i)) (6.1)

t>0

£0,)" (=)

is a martingale for each A € RY,

Moreover, if (X)), , is a k-Gaussian process on RY with negative definite
function ©(X) = |A? and X, = 0 almost surely, then (K(X,, A) - e‘“'zt)[20
is a martingale for each A € RY,

Proof. Notice first that the semigroup (P,), . , satisfies P(x,.)"(y) # 0
for all t > 0 and x,y € R"; see Proposition 4.4(1). This ensures that the
processes above are well defined. Let (), «/, P) be the probability space on
which the process (X)), . , is defined.
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To check the only-if past, take s,z > 0 and A € R". Then for almost all
w € (),

E(K(X,, . i)|F)(w) = E(K(X,, . i) | X)(w

=fRNK(x,i)\)Pt(XS(w):d’C)

= Sy, (— 1) “P0,.)" (=)
= K(X,(w),ir)-P(0,.)"(—A).

Hence, as P,, ,(0,.)"= P(0,)" P(0,.)", the process (6.1) is a martingale.
To check the if past, take again s, >0 and A € R™. Then, by our
assumption,

E(K(X,,,,i))|F) =P(0,)"(=A) -K(X,,iA)  as.

Now take F €.# with P(F) > 0. Define the probability measure P. on
(Q,%) by P.(A):=P(F) ' -P(ANF). The distributions u’, uf,,6 €
MY(RY) of X and X, ,,, respectively, under P satlsfy

()" (=) = [ KN dilo(y) = gy [ KXo i0) aP

P(F)
= P(F)f s+t’lA)|Z)dP

=P(F)fp(o ) (=) -K(X,,i)) dP

=P(0,)" (=1 - ()" (=1) = (P o ul) (= A).

As this holds for all A € R”, the injectivity (Theorem 2.6(3)) of the Dunki
tranform vyields that u’,, = P,o uf. Hence, for each Borel set B c RY
and each F €

s

[ Ax.em dP = P({X.,, € B) N F) = P(F) - pul\.(B)

= P(F) - (P ul)(B) = [ P(X.(@), B) dP(@).

As w » P(X,(w), B) is o(X,)-measurable, and as &, > o(X,), we obtain
that P(X,,, € Bl|%) = P(X,,, € Bl X,) = P(X,, B) a.e. for all Borel
sets B c RY. Hence, X is a k-invariant Markov process associated with
(P),. o, as claimed.
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Finally, if (X,),., is k-Gaussian with X, = 0 a.s., then the random
variables K(X,, A) are integrable for all # > 0 and A € R"; see Theorem
2.2(2). The computation at the beginning of this proof (with iA instead
of A) yields the last statement of the proposition. [

We next employ the negative definite function ¢ of a semigroup (P,),. ,
of k-invariant kernels to rewrite Proposition 6.1. The proof will be based
on Ito’s stochastic integration by parts; for stochastic integration with
respect to semimartingales, see [K-S, W-W, Wil.

LEMMA 6.2.  Let (P,),. o be a semigroup of k-invariant Markov kernels on
RY with negative definite function ¢ € C(RY), and let (X)), , be a cadlag
process on RN. Then, for each A € RN, the C-valued process
(PO, )M=Y K(X,,i)),. , is a martingale if and only if the process

X} =K(X,,i)) + o(—)) -ftK(Xs,i/\) ds)
0 t

>0
is a martingale.

Proof. As |K(x,i)M)] <1 for x, A € RN by Theorem 2.2(2), both pro-
cesses of the lemma are uniformly and L2-bounded on compact time
intervals. Hence each of them is a martingale if and only if it is a local
L2-martingale (see, for instance, Proposition 4.2.3 of [W-W]).

Assume now that ((P,(0, )" (—A)~! - K(X,,i)\),., is a martingale and
hence a local L*martingale. Then (K(X,,i)\)),., is a semimartingale.
Integration by parts for K(X,,i\)e'#~", together with [z, K(X,,iA)] =0
for the mutual variation (see Section 7.3 of [W-W]), implies that

d(K(X,,id)e' V) = eV AK(X,,iA) + K(X,_,i)) de'*".

As de'*"N = o(— VeV dr and [(K(X,_,iNds = [(K(X,,i\)ds as.,
it follows that

d(K(X,,id)e'* M) = eV (dK(X,,id) + o( —A)K(X,,i)) dt).
(6.2)
Therefore,
dK(X,,i)) + ¢(—A)K(X,,id) dt = e "¢V -d(K(X,,id)e V)

is the differential of a local L2-martingale, as claimed.

Conversely, if (X),., is a martingale, then (K(X,,i))),., is a semi-
martingale, and Eg. (6.2) holds also. Hence, ((P(0, )"(—A)"*-
K(X,,i)),., is a local L?-martingale, as claimed. |
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We next present several equivalent characterizations of homogeneous
Markov processes X on R" associated with a specific semigroup (P,),. ,
of k-invariant Markov kernels. In particular, such processes are unique
solutions of martingale problems in the spirit of Stroock and Varadhan
[S-V].

We introduce the following abbreviation: If X is a cadlag process on
RY, and if L is the generator of (P,),. ,, then for f € D(L) we define the
C-valued process

I = (114),. = £X) = 56) = [ LX) ] (63

t>0

THEOREM 6.3.  Let (P),. o be a semigroup of k-invariant Markov kernels
on RY with negative definite function ¢ and generator L. Then the following
statements are equivalent for each cadlag process X = (X,),. , on R":

(1) X is a k-invariant Markov process associated with the semigroup
(Pl)t >0

(2) Foreach A € RY the process (P(0,)"(—A)"' - K(X,,i\),. , is
a martingale.

) (K(X,,id) + ¢(=A) - [(K(X,,i\)ds),. o is a martingale for each
A e RN

(4) T1LXC™ s a martingale for each A € RV,

(5) %7 is a martingale for each f € D,(L).

Proof. (1) < (2) < (3) follows from Proposition 6.1 and Lemma 6.2;
(3) © (4)=(5) is obvious, and (1) = (5) is the well-known Dynkin formula;
see Proposition 4.1.7 of [E-K]. 1

The generator cA, (¢ > 0) of a k-Gaussian semigroup of Markov
kernels is a second-order differential-difference operator; it is more conve-
nient here to consider the spaces CZ(R"), CZ(R") and C3(R") instead of
the abstract domains Dy(A,), D,(A,), and D(A,), respectively. Moreover,
condition (5) can be improved by using test functions f which also depend
on the time ¢ (this generalization is in fact also possible in the setting of
Theorem 6.3). To be precise, we take f € C>Y(R" x [0,[) and a cadlag
process X on R, and we define

e = (1125 )

FO0) = 5X00) = [ 4 e (X, o

t>0
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Then, besides equivalences stated already in Theorem 6.3, we have the
following:

THEOREM 6.4.  Let (P)), . o be a semigroup of k-Gaussian Markouv kernels
on RN with generator cA,, ¢ > 0. Then the following statements are equiva-
lent for any cadlag process (X,), ., on RN whose radial component process
(1X,D,- o on [0, is continuous:

(1) X is a k-Gaussian process associated with the semigroup (P,), . ,.
(B) M« ' is a martingale for each f € C2(R™N).

(5") 57 is a martingale for each f € C>*(RY X [0, =)

(6) M54/ is a local martingale for each f € C*(R™).

(6") TI$*«/ is a local martingale for each f € C**(RY X [0, %[).

Proof. (6) = (1) = (5) follows from Theorem 6.3. Moreover, (1) = (5')
is known for arbitrary Feller—Dynkin processes (apply Proposition 4.1.7 of
[E-K] to the Markov process ((X,, 1)),. , on RY x [0, «]).

It remains to check (5) = (6) and (5’) = (6'). Here we check only
(5") = (6"), as both proofs are almost identical. For this take f € C**(R"Y
X [0, %[). For each m € N the exit times

T, = inf{t > 0:1X,1 + 12 > m?}

of ((X,,1)),., from closed balls in R¥** of radius m are stopping times.
Now choose f,, € C2XR" x [0, «[), which are identically 1 on such balls.
Then f, -f€ CZMRN x [0,%]), and (I1{*/%)),., is a uniformly inte-
grable martingale by (5’). Moreover, as (|.X,)),. , is continuous,

ey =1l ., forall t.

As T, — = for m — =, it follows that T1$*+/ is a local martingale. This
proves (6"). 1

The assertions (6) and (6”) in Theorem 6.4 are of particular interest for
functions satisfying (d/ds + A,)f = 0. Examples of such functions will be
provided by Appell characters in Theorem 8.2; see also the discussion in
Remark 8.3(1).

We next present a probabilistic interpretation for Dirichlet problems in
the Dunkl setting. For this, we say that a function f € C2(U) is k-harmonic
on some open W-invariant set U c RY if A, f=0 on U. The following
theorem needs stronger assumptions than in the classical setting k& = 0.
This is due to the fact that k-Gaussian processes usually do not have a.s.
continuous paths.

THEOREM 6.5._Let UcRN be open, bounded, and W-invariant. Let
h € C*U) N C(U) be a solution of the k-Dirichlet problem A, h = 0 with
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h= ¢ C(dU) on dU. Assume also that

(1) h is W-invariant, or that

(2) there is an open set V > U such that h can be extended to a
k-harmonic function on V.

Then for all x € U,
h(x) = E(h(Br)),

where (B),., is a k-Gaussian process on R" starting in x, and T =
inf {t > 0: B, € dU} is the entrance time of B} at JU.

Proof.  Assume first that condition (1) holds. Consider the open, W-
invariant sets

U, = {y e U:dist(y,sU) < 1/n} (n>1)

and the entrance times S, := inf {t > 0: B, € U,}. Then the W-invariance
of U, U,, and h; the continuity of # on U, and Theorem 4.10 yield that
S 1T and h(BX) — ¢(B7) almost surely. Now choose a function 4, €

2([RN) with , = h on U,. Then, by Theorem 6.4(5), (h(B}, 5 ), ., is a
martingale. Thus

h(x) = E(h(Bg)) = E(h(B;5,))  fornx>1.

As E(h(B;)) — E(h(B7)) by the dominated convergence theorem, the
claim follows.

Assume now that condition (2) holds. Consider the open, W-invariant
sets

V,={yeRN:dist(y,U) <1/n}>U (n=1).

Then, for large n, Uc V., C V C V, and the stopping times S = inf
{t > 0: B, & V,} satisfy S T and h(Bg ) — ¢(B7) almost surely by the
W-lnvarlance of U and V and by Theorem 4.10. The proof is now
completed as above. |

7. MOMENT FUNCTIONS
The classical moments of probability measures on R, or more generally

on R, have many applications to sums of independent random variables.
The definition of classical moments is based on the monomials, or “mo-
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ment functions,”
m, RV >R, x=(x,....xy) =»x" (vezl). (7.1)

We introduce modified moment functions for the Dunkl setting, which
have applications to k-invariant Markov kernels and processes. Our ap-
proach is motivated by corresponding results for hypergroups in [Bl-He, Z].
Again, we fix a reflection group W with multiplicity function £ > 0.

7.1. Modified Moment Functions

The Dunkl kernel (x, y) — K(x, y) is analytic on C¥*¥; see Section 2.2.
Therefore, there exist unique analytic functions m, (v € Z%) on C" with

K(x,y)= X mvv(!x)y” (x,y e C). (72)

vez?¥

The restriction of m, to RY is called the »th moment function on R"
(associated with W, k). The number |v| == v, + v, + --- + v, is called the
degree of m,,.
We denote the jth unit vector by ¢; € Z". Hence, the moment functions
of order 1 and 2 are given by m, and My o respectively (j,k =1,..., N).
Moment functions have several useful descrlptlons Clearly, m, can also
be written as

m,(x) =(8'K(x,y))|,_o = "(8K(x, =i¥))],_o- (7.3)

From the definition of K, which involves the intertwining isomorphism 1/
on & (Section 2.2), we see that

m,(x)=V(x") forvez¥. (7.4)
In particular, for each n € Z, the moment functions m, with |v|=n
form a basis of the space 2, of all homogeneous polynomials of degree 7.
ExampLes 7.1. (1) If k =0, then K(x,y) = e and m,(x) = x".
2 If N=1 W=12,, and k > 0, then the explicit form of K in
terms of Bessel functions (see Example 2.1(2)) implies that for n > 0,
I'(k+1/2)(2n)!
T(n+k+1/2)22nl"
T'(k+1/2)(2n + 1)!
[(n+k+3/2)22"*pl

2n and

my,(x) =

2n+1

My, q(X) =
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(3) The S, case. For the symmetric group W = S, (acting on R" by
permuting the coordinates), the multiplicity function is a single parameter
k > 0. The associated Dunkl operators are given by

1—sij

T,=0,+k),
jEi i T

where s;; denotes the operator transposing the coordinates x; and x;. We
now compute the moment functions of degree < 2 by using the properties
of the operator }” in Section 2.2. To obtain the first moment function m,,
for

l€{1,..., N}, we write Vx, = (a, x) with a € R". Now let b := TV q,
and use V1 = 1. Then, T;{a,x) = T,;Vx, = Vd,x;, = §,, (= Kronecker 8);
on the other hand,

a;X; + a;x; — a;x; — a;x;

L =a,(1+kN) — kb.

T{a,x)=a,+k),

i Xi =X

Hence, a, = (1 + kb) /(1 + kN) and a; = kb /(1 + kN) for i # . Summa-
tion yields » = 1 and

N
m,(x) = Vx, = T | + ki;lxi). (7.5)
A similar computation using (7.5) leads to
1 N \? N
m,,(x) = Vx? = (VT D)(NET2) x, + ki;lxi +x? + kizlx,?)

Nk +1 2 N
= + 2+ kY x|
N w2 el9) (Nk + 1)(Nk +2) | ™ Elx, )
(7.6)
In particular, the Cauchy—Schwarz inequality ensures that
My (x) =m,(x)* =0  forall x € R". (7.7)

In Proposition 7.2 we shall see that inequalities like (7.7) hold for general
reflection groups W. We mention that all moment functions can be
obtained as coefficients of some sophisticated power series, which makes
their computation much easier; for details see [D4].

(4) The B, case. Suppose that W is the Weyl group of type By,
generated by sign changes and permutations. Here the multiplicity func-
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tion is characterized by two parameters k,, k; > 0, and the associated
Dunkl operators are given by

1- - . 1—-o00s. ;
T—o"-i—k— kZ by A (i=1,...,N),

X; jri\ Xi X X+ x;

where the operator ¢; transfers the component x; into (—x,), and s, ; is
given as in the S, case. From [D5] (or by explicit computation) one obtains
that for /,j € {1,..., N},
X
1+ 2k, +2ko(N—-1)'
XX
1+ 2k, + 2ko(N — 1)’

mel(x) =Tx, =

M. =V(xx;) = forl #j, (7.8)

and

x4+ koL x?
. (79
(1 + Nkg)(1+ 2(N — 1)k, + 2ky)

My (x) =V} =

(5) It is no accident that in the By case m,(x) = Vx; = cx; holds
with a constant ¢ = ¢(W, k). In fact, the natural actlon of any reflection
group W on R" is a group representation, and the intertwining operators
V' = V(k) restricted to 7, = R" are intertwining operators for this group
representation; see Theorem 2.3 of Dunkl [D2]. Therefore, if W acts in an
irreducible way on R”, then, by Schur’s lemma, V%, is a multiple of the
identity.

We next collect some properties of moment functions. We mention that
similar results are also available for hypergroups on [0,[; see [Bl-He,
Re-V, Z].

PROPOSITION 7.2. Forallx € RN, ve 7V, andl €{1,..., N},
o Tm,., =@+ -m,
@ |Im, (0| <IxI" and 0 < m,(x)* < m,,(x).
(3) Taylor formula: If f € C"(RY) for n € N, then

fy) = )y #TV}C(O) +o(lyl"y  fory—o.

veZ¥, lvl<n
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Moreover, if f: C¥ — C is analytic in a neighborhood of 0, then

=Y ¥ (y)Tf(O)

n= 0|V‘ n

where the series ¥, _, converges absolutely and uniformly in a neighborhood
of 0.

Proof. (1) The intertwining property of 7 in Section 2.2 and Eq. (7.4)
yield

Tim,,, =TVx"" " =Vox" = (y+1) - Vx"=(y,+1)-m

(2) Theorem 2.2(5) and Eq. (7.3) imply that for each x € R there
exists a probability measure u, € MYRY) with supp u, c {z € RY:
|z| < |x[} such that

m,(x) = fRNy”dp,x(y) forall ve ZY¥ and xeRY;

see also [R3]. The first inequality of the lemma is now clear from the
support properties of w., while the second one follows from Jensen’s
inequality.

(3) Assume first that fe2 is a polynomial. As V&, =<2 and
V1 =1, we have ¢”f(0) = V'3"f(0) = T"Vf(0). Thus,

fo) = L) and (i) = £ Tr0),

which gives

(y)

fyy=Xx T"f(0).

The assertions in (3) now follow from the corresponding results for the
classical case. |

7.2. Modified Moments of Probability Measures

We say that the vth moment of a probability measure w € MY(R")
exists if m, € LR, w) holds; in this case, the vth moment of wu is
defined as

m,(w) = fRNmV dp  (vezV). (7.10)
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For N > 2 it is not correct, even if k = 0, that the existence of the vth
moment of w implies the existence of the pth moment for p < v (which
means that p; < v, for all i). This and additional difficulties in the Dunkl
setting for k # 0 oblige us to restrict our further attention to the spaces

MYRY) = {,u,eMl([RN): fRle"l du<forall p e ZY with |p|£n}
(n>=0).

The following criterion is slightly weaker than its classical counterpart; cf.
25.2 of [Bal:

LEMMA 7.3. Forn € N and u € M*(RN), the following statements hold:
1) p e MXRY) if and only if the vth modified moment of w exists for
all v e 7% with |v] < n.
(2) If one of the conditions in (1) holds, then i € C"(R"), with

0" 0) = (=) m,(p)  forlvl <n.

Proof. (1) follows from the properties of V. To prove (2), we use
Theorem 2.2(2), which says that

|0/ K (x,iy)| < 1"l < NIPV2(Joeg 71 4 e Ly [)

forall ve 7%, x,y € RV,

This guarantees that x — J,K(x, iy) is u-integrable for each y R and
lv| < n whenever one of the conditions in (1) holds. It is now standard to
check inductively with the dominated convergence theorem that o €
C"(R"), and the last identity follows from Eq. (7.3). 1

LEMMA 7.4. Let P, Q be k-invariant Markov kernels on RY such that for
all x € RY, the measures P(x,.), Q(x,.), Q o P(x,.) are contained in MX(R").
Then, for all x € RN and v € 7% with |v| < n,

@ mPD) = T [ pmPo)-m, ),

p=v
and

@ m(Qe P )= T ( pm PG m, (00,0

p=v



MARKOV PROCESSES AND DUNKL OPERATORS 615

Proof. (1) follows immediately from Lemma 7.3(2), the Leibniz rule for
partial derivatives of products, and Eq. (7.3); in fact,

i3y (P(0,)" (v) K (=ix, ),

¥ ()i (P ()

pP=v

m,(P(x,.))

xilvi=lel. ayv—pK( —ix, y)|y:0

L ( p)m(P (@) -m, (o).

pP=v

Part (2) can be checked in the same way by using Lemma 4.2(2). 1

The algebraic properties of moment functions in Lemma 7.4 can be used
to construct martingales for k-invariant Markov processes on R”. For
simplicity, we restrict our attention first to moments of degree at most 2.
The following proposition is motivated by corresponding results for hyper-
groups in [Z, Bl-He]. We say from now on that an R"-valued random
variable is L7-integrable, whenever all of its components have this
property.

PROPOSITION 7.5. Let (X,),., be a RN-valued, k-invariant Markov
process on some probability space (Q,., P) with filtration (%,),.,. Let
(P),., be the associated semigroup of k-invariant Markov kernels with
negative definite function ¢. Then foralll,j = 1,..., N, the following conclu-
sions hold:

(1)  Assume that X, € LNQ, %, P) and P(x,.) € M} (R") holds for
all t > 0 and x € RY. Then (m (X,) — E(m (X)), ., is a (%), . -martin-
gale with

E(m,(X,)) = E(m,(X,)) =it d,¢(0)  forallt>0.

(2) Assume that X, € L*(Q,.%, P) and P(x,.) € M}(R") holds for
allt > 0 and x € R". Then the second-order moment function M, . has the
property that

(mese(X) = m(X)E(m (X)) = m (X)E(m (X))

+E(m,(X,))E(m,(X,)) = E(m,..(X)))

t>0
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is a (%), . o-martingale. Moreover, the “modified variances”
2
Vkl(Xt) = E(mZe,(Xt)) - E(me,(Xt))
satisfy
VX, =ViX,) +1t-3/0(0)  forallt >0.

Proof. (1) By Proposition 4.4(3) we have ¢(0) = 0 and P,(0,.)"= ¢~ ¢
for ¢t > 0. Therefore, by Lemma 7.3,

m,(P,(0,.)) =i a,(P,(o,.)A)(O) = —it 9,¢(0).

Now take s,¢ > 0. Lemma 7.4(1) ensures that for almost all w € Q,

E(mo(X1)IZ)(0) = [ m., dP(X,(0)..)
= m,(P(0,)) +m,(X,())

—it- 9,0(0) + me/(Xs(w)). (7.11)

If we take the usual expectation of both sides of (7.11) with s = 0, then we
obtain the formula for E(m,(X,)) in the proposition. Moreover, this
formula, together with (7.11), readily yields that (m,(X,) — E(m (X)), .
is a martingale.

(2) Again, Proposition 4.4(3) and Lemma 7.3 yield that for ¢ > 0,
M o(P(0,.)) =t 3,,¢(0) — 1+ 9,¢(0) 3¢(0)
=t (?lﬂng(O) + meI(Pt(O’ '))mej(Pt(O’ ))

Now take s,z > 0. Lemma 7.4(2) and Part (1) imply that for almost all
w e Q,

E(m,,. o(X,.)|7)(w)
= fRN’”wf dP(X,( w),.)
=mg,.(P(0,)) +m, . (X(@)) +m/(P(0,.))m (X (w))
+m,(P(0,.))m,(X,(w))
= t&lé)j(p(o) - t2 ’ ‘91()0(0) aj()o(o) + me,+e,(Xv( w))

— it [90(0)m,(X,(@)) + Ge(0)m, (X,(@))].
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If we combine this with Eq. (7.11) and take the usual expectations of these
equations, we obtain the martingale property claimed above. Finally, the
formula for modified variances follows from that equation with j =/ and
(7.11) again by taking the usual expectations. 1

Remarks 7.6. (1) Let (X,),.,= (X} ..., X"),., be a k-invariant
Markov process as studied in Proposition 7.5(1). As the moment functions
m, (I=1,...,N) form a basis of the space &, of all homogeneous
polynomials of degree 1 by Section 7.1, all component processes (X, —
E(X))),. , form martingales (under the corresponding integrability condi-
tion). This strict separation of the components is not usually possible for
higher moments.

(2) There exists an obvious analogue of Proposition 7.5 for (not
necessarily time-homogeneous) k-invariant Markov processes (X,),. o in
discrete time that are related to a sequence (P,), . , of k-invariant Markov
kernels by

P(X,€AlX, ,=x)=P,(x,A) forn>1,xeRY, A ez(R").
(7.12)

In particular, the methods of the proof of Proposition 7.5 yield that under
suitable moment conditions, the processes

(m20(X,) = 2m (X,) -E(m,(X,)) +2-E(m,(X,))
—E(my(X,))) _, (1.13)
are martingales for / = 1,..., N. Moreover, the modified variances satisfy
VI(X,) = VI(X, 1) + may(P(0.)) = m(P,(0,))".  (7.14)

(3) Let n>1, and let P,Q be k-invariant Markov kernels with
P(0,.), 000,.) € MXR") (i.e., all moments up to degree n exist). It is our
conjecture that then automatically also Q< P(0,.) € MXR") and P(x,.)
e MXRM) holds for all x € R". This conjecture is obviously true in the
classical setting k£ = 0; it can also be checked for the one-dimensional
examples discussed in Examples 2.1(2) and 7.1(2). The proof there is based
on the knowledge of a convolution of measures in M,(R) with sufficiently
nice properties; see [R1]. Clearly, this can also be extended to direct
products of the one-dimensional case.

ExampLE 7.7 (k-Gaussian processes). Let (X,),., be a k-Gaussian
process on RY associated with the k-Gaussian semigroup (P'),., and
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starting in O at time 0; see Sections 3 and 4. In this case, all moments of
P'(x,.) and X, exist for all x € R" and ¢ > 0. Therefore, all assumptions
of the preceding results in Section 7 are satisfied. We can write

(_t)IV\

v!

Pr0, )\ (y)=e ™= Y y?*  fort >0,y € RV,

vez
Lemma 7.3(2) yields that

|
E(mo, (X)) = moy(PF0.)) = SR (ve 7y i=0), (1.5
as well as E(m,(X,)) = 0, whenever at least one component of » is odd.
In fact, this exactly extends the result known for classical N-dimensional
normal distributions.

If we apply Proposition 7.5(1) and Remark 7.6(1), we conclude that the
processes (m,(X,)),., as well as the coordinate processes (X/),., are
martingales for / € {1,..., N}. Moreover, Proposition 7.5(2), together with
E(m,(X,)) = 0, yields that

(melJrej(X,)_ ( e,+e( ’)))tzo

is a martingale for all /,j € {1,..., N}. As the moment functions M, ..,
form a basis of .#,, it follows that forall [,j €{1,..., N}, the processes
(X[’-Xf E(X’ Xf))t>0

are martingales. For higher moments, results of this type will be more
complicated; we deal with this problem in the next section.

Remark 7.8. As mentioned above, it is an interesting problem whether
there exists a convolution = on the Banach space M,(R") associated with
the Dunkl transform, i.e, with (w = »)"= @ -7 for all u, v € M,(RY). If =
existed, then all k-invariant Markov kernels would satisfy P(x,.) =
€. * P(0,.) for x € R". Moreover, by Lemma 7.4, the moment functions
m,, would satisfy

e +e(m,) = 2 (;)mp(x)m,,_p(y) (x.y e RV, ve zZV). (7.16)

p=v

Linear extension of (7.16) would lead to e, * e, for arbitrary polynomials
in . On the other hand, it is possible to go the converse way and
to define a weak form of a generalized translation via (7.16). This

can be performed as in [Be] for the one-dimensional setting by using the
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estimation
fRNmﬁ dPr(0,) < (4)"- vt (t>0,vezV). (7.17)

In fact, (7.17) is a consequence of Proposition 7.2(2), Eq. (7.15), and the
relation (2v)! < 41 (p1)2,

8. APPELL CHARACTERS AND
HERMITE POLYNOMIALS

Based on the moment funtions of the previous section and certain
generating functions, we construct two systems (R,), < ;v and (S )DEZA of
functions on R x R" associated with the k-Gaussian semigroup (P" ),>0
These systems, called Appell characters and cocharacters, satisfy several
useful algebraic relations. Among other results, we present a new proof for
a generalized version of a formula of Macdonald [M], which is due to
Dunkl [D3]. Our approach is motivated by related concepts in algebraic
probability theory and white-noise analysis; see [ADKS, F-S, B-K1, B-K2],
and references there. The notation of Appell (co-)characters has its origin
in the umbral calculus; see [Rom]. Parts of this section are also published
in [R-V2].

As several of these results can be obtained for more general k-invariant
semigroups than just the Gaussian ones without additional effort, we start
with some concepts in a general setting. Later on we shall restrict our
attention to the k-Gaussian case only.

8.1. Appell Characters

For n > 1, let (P,),. , be a semigroup of k-invariant Markov kernels on
RY such that P,(x,.) € MXR") holds for all t > 0 and x € R". Let ¢ be
the associated negative definite function. We know from Lemma 7.3 and
Proposition 4.4 that P,(0,.)"(y) = e "¢ is n times continuously partially
differentiable with respect to y for all ¢+ > 0. Therefore,

. K(x, —iy)
P0,)" (y)

is n times continuously partially differentiable for all + > 0 and x € RY.
By Taylor’s formula,

= K(x’ _iy) .et‘P(y)

K(x, —iy) o) = Z (_l)l’)

veZ¥ lvl<n

R,(t,x) +o(lyl") fory—0,

(8.1)
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where the functions R, are determined uniquely and satisfy
R,(t,x) =i" 9)(K(x, —iy) -e“"(y))|y:o

=" Y (Z)&Y”(K(X, _i)’))|y:0'aywp(etwy)ﬂy:o

peZl, p<v

= Y (;)mp(x) af (). (8.2)

peZY, p<v
For the last equation Eg. (7.3) was used, and
af(t) =iMN-gMe*M)|,_o (A€ ZV, N <n) (8.3)

is a real-valued polynomial in ¢t € R of degree at most |Al. Note that by
Lemma 7.3(2), af(—t) = m,(P(0,.) € R for ¢ > 0. Clearly, formulas (8.2)
and (8.3) also make sense for all € R. In summary, the functions R,
(v € 7V) are real polynomials in (N + 1) variables of degree |v|, and for
each fixed r € R, R,(¢,.) is a real polynomial of degree |v|. We call the
polynomials R, the Appell characters associated with the semigroup (P,), . ,
(where the reflection group W with multiplicity function & is assumed to
be fixed).

LEMMA 8.1. In the setting of Section 8.1, the following holds for all
v e ZY with |v| < n:

(1) Inversion formula: For all x € RN and t € R,

m) = T ()R a0,

peZl p<v

(2) Forallt € R and 0 <1 <n, the family (R,(t,)),czy |, /<, 5 a
basis of the space ED o %, of all polynomials of degree at most 1.

() Forxe IRN andt >0,
[ R y) dB () () = m,(x).

(4 For all xeRY, teR, and j<({1,..., N}, TR, (t x) =
(v; + 1) - R,(t, x); here the Dunkl operator T; acts wzth respect to the varia-
blex
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Proof. (1) Using (8.1) and (8.3), we obtain for y small enough that
K(x, —iy) = e o). (et"’(”K(x, —iy))

( 5 af(—1)

I
[Al<n Al

X( (_if)p

(=ip)" + 0(|y|”))

)»

Ipl<n

R,(t,x) + o(lyl"))

(_

z( 4 o(lyl).

lvl<n

£ (o om0 S
pP=v
A comparison of this expansion with Eq. (7.2) leads to Part (1).

(2) This follows from Part (1) of this lemma and the fact that
(m,),,—, is a basis of &,

(3 Recall that m,(P(0,.) = af(—¢t). Thus Eq. (8.2) and Lemma
7.4(1) yield that

[ Rot:9) dP(x ) ()

Y (p)ar (0 [ m, () drx ()

- £ (e[ £ (2)mtr)mein)
= I (p)ero (Ep(ﬁ)aﬂ—r) -m,)_xx))-

The assertion now follows from Part (1).
(4) By Eqg. (8.2) and Proposition 7.2(1),

v+ej

p+ej

V+e
p

Tm av+efp= Z

pP=v

p

’I}RV‘FE- Z

psvte;

(v, +1)- % (Z)mp~af_(p = (v, +1)-R,.

p=v

(pj +1)m,-af
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THEOREM 8.2. Let n > 1 and suppose that (P),. , is a semigroup of
k-invariant Markov kernels on RY such that P(x,.) € M}XR") forall t > 0
and x € R, Let (X,),. o be a k-invariant Markov process on R associated
with (P,), . . Then for each v € Z¥ with |v| < n, the process (R,(t, X,)), . ¢
is a martingale.

Proof. We prove more generally that for all y € R" and » € Z¥ with
|v| < n, the process

(W2 = a7 (K(X,, —iy) - e'*2)) (&4

t=0

is a martingale. The theorem then follows for y = 0; see Eqg. (8.2).
The statement above will be proved by induction on |v|. In fact, the case

v = 0 is shown in Proposition 6.1. Now take j € {1,..., N} and let ¢; €

7Y c RY be the jth unit vector. Assume that (W"?),. , is a martingale

forall y € RY and some » € Z% with |v| < n. To prove that (W, ¢"7), _

is a martingale, we observe that for ¢ > 0,

1
lim Z(W’w — Wy = Wrtery  pointwise.
h—0

Moreover, by the mean value theorem, we find r = r(v, X,, y, h) € [0, h]
such that

lv|+1
=|VVtV+ej’y+r'ef|S Z ds|Xt|S (85)
s=1

1
‘E(I/Vlv,y _ I/Vtv,y-%—hej)

with bounded constants d, for 2 €]0,1]. In fact, the last inequality above
follows from Eg. (8.4) and the estimations of Theorem 2.2(2). The integra-
bility conditions on (X,),. , and (8.5) ensure that the dominated conver-
gence theorem may be applied to the limit above; hence,

1

lim ;(WZV'Y - wprthay —wrrav| =0 forall > 0.

h—0

1

It follows for the filtration (%), . , associated with the process (X,), . , that
for s, t > 0,

s

E(—(Wm - Wmm)lgf;) ~ E(W50 %) almost surely

for any sequence (4,), . o with A, | 0. Hence, (W>*¢"”),_ , is a martingale.



MARKOV PROCESSES AND DUNKL OPERATORS 623

Remarks 8.3. (1) For |v| = 1,2, the martingales R (¢, X,) of Theorem
8.2 agree with the martingales of Proposition 7.5, i.e, Theorem 8.2 general-
izes Proposition 7.5. Moreover, Proposition 8.7 below and Theorem 3.1(3)
yield that the Appell characters R! for the k-Gaussian semigroup satisfy
(9, + AR =0, reflecting the close connection between Theorems 8.2
and 6.4.

(2) There is a close connection between the Appell characters R,
and Dunkl’s intertwining operator V: Let n > 0, and let (P}),., be a
semigroup of k-invariant Markov kernels on R™ such that P*(x,.) €
MYRYN) for all t>0 and x € R". Let R* be the associated Appell
characters for |v| < n. By Theorem 2.2(5), there exist probability measures
w, € MYRN) such that the negative definite function ¢ associated with
(P"),. , satisfies

e~1e0) = PX(0,.)(y) = fRNfRNe“"i” dp.(z) dP/(0,.)(x)

for t > 0, y € R". Hence, the functions e ‘¢ are positive definite in the
classical sense. Thus, by Bochner’s theorem, there is a semigroup (P?), . ,
of (R", +)-translation invariant (or, 0-invariant) Markov kernels on R”. If
the associated Appell characters are denoted by R°, we obtain from (8.2)
and (7.4) that

Ritx) = X ()m(nas (0 = T (5)050)az () = VRt 0).

pP=v p=v

(8.6)
We restrict our attention to k-Gaussian semigroups from now on.

8.2. Appell Characters of k-Gaussian Semigroups

Let (P"),. , be the k-Gaussian semigroup of Section 3, i.e.,

dP"(x,)(y) = .e—<x|2+|y2>/4zK(

y
E:E)'Wk(y)d%

Here all moments exist, and the Taylor expansion (8.1) becomes a power
series. The coefficients a'(¢) of the associated Appell characters R!
satisfy al(—t) = m,(P'(0,.) for ¢ > 0. Equation (7.15) and analytic con-
tinuation show that for all ¢ € R,

(2v)!

ay, (1) = — (=) and al(r) =0  otherwise,

Cr
(4t)y+N/2
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i.e., if at least one component of A € Z% is odd. Therefore,

v!

= 2p)ipt¢ ~0)/"'m,_, (x) forvezY.

Ry(t,x)= X

peZN, 2p<v
(8.7)

In particular, the homogeneity of the moment functions m, yields that

RU(t,x) = Vi -RU(1,x/Vf)  (x€RMt>0).  (88)

ExampLES 8.4. (1) In the classical case k = 0 with m,(x) == x", EqQ.
(8.7) leads to

A o~ X
RE(t,x)=\/?|-HV( (xeRY, vezl teR) (89)

2

where the I-7V are the classical, N-dimensional Hermite polynomials de-
fined by

~ N ith /2l (~1)’n! n—2j,
H,(x) = izl_lle,-(xi) wit H,(y) = EO W(ZY) ;

cf. Section 5.5 of [Sz] for the one-dimensional case.

(2) IfN=1W=17,, and k > 0, then the results of Example 7.1(2)
lead to

Rgn(t' X) = (_1)n22”n! l‘nL(nkfl/z)(xz/zlt)
and
Ry, . o(t,x) = (=1)"22 " tn (xS 1/2(x2 /4t

for n € 7, where the L{*) are the Laguerre polynomials (see Section 5.1
of [Sz]) with

1 d" S (n+a (_x)j
(a) — T a,X nta,-xy —
L{(x) X e dx”(x e™) g‘o(n_j) T
J
The polynomials (RY),. , are called generalized Hermite polynomials (see,
e.g., [Ros]). For each ¢ > 0 the polynomials (R} (z,.),., are orthogonal

with respect to the k-Gaussian measure
I'(k+1/2)

—— T |x[Pe" /M dx.
(41) 172

dP/(0,.)(x) =
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An uninformed reader might suggest from these examples that k-Gaus-
sian Appell characters are always orthogonal with respect to the k-Gaus-
sian measure P(0,.) for t > 0. We shall see, however, in Remark 8.6 that
this is not correct in many cases. We therefore now introduce so-called
Appell cocharacters, which turn out to form biorthogonal systems for
the Appell characters.

8.3. Appell Cocharacters of k-Gaussian Semigroups

Denote the P[(0,.)-density of the k-Gaussian measure P[(x,.) by
6,(x,.) for t > 0. Then

P’ (x, ,
0,(x,y) = % e /MK (x,y/2t)

Z - S (1), (8.10)

n= O\V\ n

where, by Proposition 7.2(3), the coefficients S, are given by

Sh(t,y) = (e WIE/4K (x, y/2t))|

Like the RU(¢,.), the S''(z,.) are polynomials of degree |v|. The conver-
gence of the series X7_, in (8.10) is normal on C" x C" by Proposition
3.8 of [R2]. The functions S' are called the Appell cocharacters of the
k-Gaussian semigroup (P), . ,.

Using the homogeneity of m,, we obtain the following analogue of (8.8):

1 lv|
K = (] sy Gerviso. @

A comparison of the homogeneous parts of degree n in the expansions
(8.1) and (8.10) shows that the linear spaces generated by (SI(z, D=, and
(R,(t,)),-, are equal for each t > 0. Hence, by Lemma 8.1(2),
(Sr(t Mjyj<q 18 a basis of &, 7.

Appell characters and cocharacters are related by the following biortho-
gonality relation:

THEOREM 8.5. Lett >0, v, p € Z¥, and let p € P be a polynomial of
degree less than |v|. Then

[ R8P0, X = 113,

@ [ P8Iy dPI©,)y) = [ p(y)- R, y)dP (©,)y)
RN RN
= 0.
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Proof.  We use the definition of §, and Lemma 8.1(3) and conclude that
for x € RV,

m(x) = [ RI(19)0.(x.y) dPI(0,)(¥)
( )

L. YT RS () apr0,)()

n=0|pl=n

y x = . f JRU(1,9)S)(2,y) dPF(0,)(y), (8.12)

n=0|pl=n

where we still have to justify that summation and integration commute.
For this, we restrict our attention to the case ¢ = 1/4, as the general case
then follows by renormalization. We follow the proof of Proposition 3.8 of
[R2] and decompose 6, ,,(x, y) into its x-homogeneous parts:

01,4(x,y) = iLn(y,X) with L,(y,x) = X #55(1/4&)-

n=0 lv|=n

The estimations of Theorem 2.2(2) imply that

2n

IXI
|Lou(y,0)| < (1 +2ly 2 ) fornez,,

and a similar estimation holds for odd indices. (For details see the proof of
3.8 in [R2].) Therefore,

Z/ |L,(y, %) [RE(1/4, ) dPL,4(0, )(y) <.

The dominated convergence theorem now justifies the last step in EQ.
(8.12) for + = 1/4, which yields Part (1) of the theorem. Part (2) follows
from Part (1), together with Lemma 8.1(2) and the present section. ||

Remark 8.6. The most important case of the biorthogonality in
Theorem 8.5(1) occurs for ¢ =1/2. It shows that (Rr(1/2 D, ezy I8
orthogonal with respect to the k-Gaussian measure dP1 ,(0,.) if and only if
RY(1/2,x) = c,S'(1/2, x) with suitable constants ¢, € R. A comparison
of the expansions (8.1) and (8.10) shows that this is equivalent to m (x) =
¢, x”. This is in fact obviously true for Examples 8.4. On the other hand,
this is not correct for the S, and the B, cases of Examples 7.1 for N > 3.
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The following result reflects the dual nature of k-Gaussian characters
and cocharacters.

PROPOSITION 8.7. Lett € R, x € RY, and v € Z¥. Then

v
RI(t,x) =e ™m,(x) and  SI'(t,x) = (Z) e Mix”,
Proof. Lemma 8.1(3) and Theorem 3.1(1) yield that e+R!(z, x) =
m,(x) for ¢t > 0. This yields the first statement for ¢z > 0. As both sides
there are polynomials in ¢, this holds generally.
Let A) be the k-Laplacian acting on the variable y, and let 1, be the
intertwining operator acting on the variable x. Then

etAii(e*\x|z/4tK(x,y/2t)) — eimz/‘”'elx‘z/‘”K(x,y/zt)
=K(x,y/2t) = V,(e*r/2),

Now consider on both sides the homogeneous part W, of degree n in the
variable x. Using the left-hand side, we obtain from (8.10) that

w, =em%( y —m"f!x)sf(r,y)) -

lvl=n

m,(X)

v!

IS8T (1, y).

lvl=n

Moreover, using the right-hand side, we conclude from Section 2.2 and
V(x") = m,(x) that

m,(x)

v!

W, =7V,

n X

(y/21)".

> %(y/m)”) - X

lvl=n lvl=n

A comparison of the corresponding coefficients leads to the second state-
ment. |

We now combine Theorem 8.5 and Proposition 8.7 to rediscover a
generalization of a formula of Macdonald [M] due to Dunkl [D2]; our
proof is completely different from that in [D2]. We need the following
notation: For a multiplicty function k > 0, the bilinear form [.,.], on % is
given by

[p.qli=(p(T)q)(0) forp,qe.
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COROLLARY 88. Forallp,q € andt > 0,
1 —tA —tA T
[p.qli = e f (e7%p) - (e""Pq) dP/(0,.).
In particular, [., ], is positive-definite and symmetric on P.

Proof. Lett> 0and v, p € ZY. Then, by Theorem 8.5(1) and Proposi-
tion 8.7,

1
On the other hand, as V" acts on £ in a homogeneous way:
[x" m,], = (T"m,)(0) = (T"Vx")(0) = (V(3"x"))(0) = »!- 5, ,.

This yields the first statement. The second statement is clear. i

-fN(e_tAkx”) -(e"m,)dP(0,)) = v!-3, ,
R

We give a further application of Theorem 8.5 for t = 1/2. For this, we
employ the adjoint operator Tj* of the Dunkl operator T; (G=1,....N)
on L*(RY, dP;,,(0, ), which is given by

TFf(x) =x,f(x) = Tf(x) = =2 T(e W 2f(x))  (fe2);
(8.13)
see Lemma 3.7 of [D2]. (The second equation is a consequence of the
product rule (Section 2.2(3)).)
COROLLARY 89. Forallve ZY,j=1,...,N, x € R, and t > 0,
@) Sm(l/z x) =T*S(1/2, x).
2 Rodnguezformula ST(t, x) = (= 1)Vl /4y (g=1xl* /41y,

Proof. For simplicity, we suppress the time parameter ¢ = 1/2 in Part
(1). Theorem 8.5(1) and Lemma 8.1(4) yield that for all p € Z7,

f R, - TSI dP" = f T,RD,, - S§ dPF=(pj+l)fRNR£-SVF dpP*

= pv (p+e)|_/ Rp+L SIF—%—edeF'

As 2 is dense in LA(R", dP],,(0,.)), Part (1) is clear. Part (2) for t = 1,2
follows now from (8.13), and the general case is a consequence of
Eq. (8.11). 1
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Theorem 8.5 and orthogonalization within the spaces
I/n = eiAk/A';@n C‘@

lead to systems of orthogonal polynomials on R" with respect to P} /4(0, B)
Such polynomials are called generalized Hermite polynomials; they are
discussed in [B-F1, B-F2, vD, L, R2], and references cited therein. Here
we discuss only some main features of these polynomials:

8.4. Generalized Hermite Polynomials

Let {¢,, v € Z%'} be an orthonormal basis of (%, [.,.],) with real coeffi-
cients and with ¢, €2,. As # = &, _, %, and &, L%, for n # m, the
¢, with |v| = n can be constructed, for example, by Gram-Schmidt or-
thogonalization within £, from an arbitrary ordered real-coefficient basis
of 2. The generalized Hermite polynomials {H,, v € Z%'} associated with
the basis {¢,} on R" are defined by

H,(x) =2"e %/ (x) €V, (8.14)

By a standard argument, & is dense in L*(R",dP],,0,.) (see, for in-
stance, [R3]). It thus follows from Corollary 8.8 that the {27"I/2H,,
v € ZY} form an orthonormal basis of L*(R", dP; (0, .)).

We conclude this section with a list of known properties of generalized
Hermite polynomials and of k-Gaussian Appell characters and cocharac-
ters.

PROPOSITION 8.10. Forallt € R, x,y € RN, n €N, and v € 77

1\l
(1) RU(t,x)=e "m,(x) and SF(t,x) = (z) e ey,

(2) Rodriguez formulas for R. and H,: Let m,(T) and ¢,(T) denote
the operators that are obtained from m,(x), ¢,(x) by replacing the variables x;
by the Dunkl operators T,. Then

RU(t,x) = (—2t)|V‘eIX\2/4th(T)e—\x|2/4t
and

H,(x) = (—1)"le g, (T)e ",

(3) Eigenfunctions of a CMS-type Schrodinger operator: The functions
RY(¢,.) and S'(¢,.) satisfy

N
=1

Moreover, H, is a solution of this equation for t = 1/4.
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(4)  The functions f(x) == e /BRI (¢, x) and f(x) == e 1¥°/3'S (¢, x)
satisfy

(4A, = 1xI)f = —(2lvl + 2y + N) f.

Moreover, the Hermite function h,(x) = e " /2H (x) solves this equation
fort=1/4.

(5) Eigenfunctions of the Dunkl transform: If p € V, and h(x) =
e 1 /2p(x), then h= 2vIN/2e (—i)h.

(6) Mehler formula: For all r € C with |r| < 1,

H(O)H) |,
pild

)»

VEZ]X

R,(1/4,%)8,(1/4.y)
r

= Z '
VGZ{Y v
1 r2(|x|2 + |y|2) 2rx
A T Kl

Proof. Part (1) is Proposition 8.7, and Part (2) follows from Corollary
8.9; for the Hermite polynomials, it is shown in [R2]. Part (3) follows for
t = 1/4 from Part (1) and Theorem 3.4(1) of [R2]; renormalization then
leads to the case ¢ > 0, and the general case follows by analytic continua-
tion. Part (4) follows in the same way from Theorem 3.4(2) of [R2]. Finally,
Part (5) and Part (6) for the Hermite case are also shown in [R2]. The
extension in (6) to Appell characters is a consequence of the identity

K(x.y) = Temey = £ 202

which follows from Lemma 3.1 in [R2] and Eq. (7.2). The proof can now be
completed in the same way as in [R2], by an obvious extension of Lemma
3.11 there; we omit the details. [

9. STRONG LAWS AND TRANSIENCE

In this section we present some limit theorems for k-invariant Markov
processes on RY in continuous and discrete time. Our first result is the
iterated logarithm for k-Gaussian processes.
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THEOREM 9.1.  Let (X,),. o be a k-Gaussian, right-continuous process on
RY with X, = 0 a.e. and with generator A, /2. Then, almost surely,

_ |X,] , | X, ]
limsup ——= =1 and limsup — =1

t— o \/Ztln(ln [) -0 y2t|n(|n l_l)

Proof.  As (1X,)),. , is a Bessel process of index y + N/2 — 1> —1/2
Theorem 4.11, the assertion follows from a corresponding result for Bessel
processes. This is known to specialists, but for the sake of completeness we
include a proof: By the classical law of the iterated logarithm for Brownian
motions on R (see Section 47 of [Bal), Bessel processes (B2), . , of index
a=d/2 - 1> —1/2 satisfy
B? B?

Iimsup—t =1 and Ilimsup———==1 a.e.

t—» \/Ztln(ln t) t—0 \/Ztln(ln t_l)

To extend this to all « > —1/2, one has to notice that Bessel processes
exist for all a« > —1, and that for independent Bessel processes (B),. ,
and (B#),., on a common probability space, ((B*)? + (BF)*)/?),. , is
again a Bessel process of index « + B8 + 1; see Section XI.1 of [Rev-Y].
Hence, for all « > —1/2 we can realize Bessel processes on a common
probability space such that

BI}ZCV]/Z < Bta < B(t[2aj+l)/2.

This completes the proof. |

We turn next to strong laws of large numbers for general k-invariant
Markov processes. For simplicity, we restrict our attention to processes in
discrete time with rather strong moment conditions. To describe the
setting, we recapitulate that M}(R") denotes the space of all probability
measures on R having all moments up to order 2. Let (P,),., be a
sequence of k-invariant Markov kernels on R such that P(x,) €
M}RY) holds for all » > 1 and x € R". Then a k-invariant (usually
time-inhomogeneous) Markov process (X,),., on RY associated with
(P,), . satisfies

P(X,€AlX, =x)=P(x,A) forn>1xeR", 4zR").

In this case, the following version of Kolmogorov’s law of large numbers
holds:

THEOREM 9.2. Let (X)), . , be a k-invariant Markov process on RY with
X, =0 a.e. and associated with (P,),., as described above. Let j €
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{1,...,N}and (r,),., €10, be a sequence with lim, _, ., r, = % and

© 1 ,
gl r_(mZe/(Pn(O’ )) - (mej(Pn(O! ))) ) < oo, (91)

Then, almost surely,
lim L(mej()(n) — E(m.(X,))) =0

Proof. Proposition 7.5 in the discrete-time setting (cf. Remark 7.6(2))
implies that

(mZEj(Xn) - Zmej(Xn) E(me](Xn))
+2-E(m (X)) = E(my,(X,)))

is a martingale, and that for n > 1,

[E(mZe/(Xn)) - E(mej(Xn))z] - [E(mZe/-(Xn—l)) - E(me/-(Xn—l))z]
= mZej(Pn(O' )) - (me,(Pn(O' )))2

As my, > (m, )2 by Proposition 7.2(2), it follows from Jensen’s inequality
that both sides above and all summands of (9.1) are nonnegative. In
particular, we conclude that

(Yn = mZej(Xn) o zmej(Xn) ‘E(mej(X”)) + E(mg.r(X”))z)nzo

is a nonnegative submartingale with

> * 1 2
Z r_E(Yn - Yn—l) = Z r_(mZBI(Pn(O’)) - (me,(Pn(O'))) ) <®

n=1"n n=1"n

Chow’s law of large numbers (see Corollary 3.3.4 of [St]) now yields that
lim, ... Y,/r, = 0ae. As m,, > (m,)* ensures that

(m.(x,) - E(mej(Xn)))Z <Y,

the proof is complete. |
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If assumption (9.1) in Theorem 9.2 holds for all j = 1,..., N, then the
conclusion of the theorem holds for all j, and as {m,(x),...,m, (x)) =
{Xq,..., x5, it follows that

lim —(X - E(X))) = a.e., (9.2)

n— o -‘)

where the abbreviation E(X,) = (E(XD),..., E(XY)) € RY is used. In
the time-homogeneous case (i.e., the P, are independent of n and equal to
some kernel P), we obtain, in particular, the following:

CoroLLARY 9.3. Let (X,),., be a k-invariant, time-homogeneous
Markov process with X, = 0 and associated with some k-invariant Markov
kernel P satisfying P0,.) € M}(R™). Then

Ilm —(X —E(X,))=0 ae. forall A €]1/2,1].

In the end of this section, we turn to a transience criterion for semi-
groups of k-invariant Markov kernels on R”. We start with some prepara-
tory notation:

DerFINITION 9.4. Let (P),., be a semigroup of k-invariant Markov
kernels on R".

(1) The semigroup (P,),. , is said to be transient if
kf(x) = [ Pf(x)dt <= forall feC(RY), xeR".
0

The positive kernel k defined by this equation is called the potential
(kernel) for (P,), . ,.

(2) If (P),., is not transient, then it is called recurrent.
(3) The resolvent measures p, € M; (R") of (P,),. , are given by

P, = f:e—“P,(o, )di  for A > 0.

It is easily seen via monotone convergence that in each case the resolvents
p, are related to the potential « by xf(0) = lim, _ , p,(f) for f € C(R").

Similar to the setting of locally compact abelian groups or commutative
hypergroups (see [Be-Fo] and [BI-He]), there exist transience criteria in
terms of negative definite functions. We say from now on that a (measura-
ble) function g: RN — C is locally w,-integrable, if [, |g(x)lw,(x) dx < o
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for all compacta L c RY. With this notation, we have the following
theorem:

THEOREM 9.5.  Let (P,),. , be a semigroup of k-invariant Markov kernels
on RY with negative definite function ¢ € C(R").

(1) If (P),., is transient, then Re(1/ ) is locally w-integrable.

(2) If U/¢) is locally w-integrable, then (P,),.  is transient with
lkfll. < o forall f € CHRN).

Proof. (1) Combining Lemma 4.2(3) and Proposition 4.4(3), we first
observe that Re ¢ > 0, and hence Re(l/g,q) > 0. For a fixed compactum
L c RY, we choose fe C/(RY) with fe Cqi®RY) N LARY, w(x) dx)
and fz 1 on L according to Lemma 2.5. Therefore, Fatou’s lemma,
Theorem 2.6(2), as well as

A = [R(0.) (e = [[e 0 Nt = S s (93)
lead to
] 1
fLRe(1/¢(x))wk(x)dx=[L|A|?g Re m)wk(x)dx
o 1 ~
< j[;QN ||Tl|cl."|f Re A_‘_—@(x))f(x)wk(x) dx
- . <~ 1
< IITLIOnf fRNf(x)Re m)wk(x)dx
1
< !\I[T(]) EfRNfMd(pH—p;) < o,

Part (1) is now clear.

(2) Now assume that 1/¢ is locally w,-integrable. For f € C/(R")
we find g € CH(RY) with f<g on RY by Lemma 2.5. Hence, Theorem
2.6(2), the dominated convergence theorem, and Theorem 2.2(2) imply that
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for all x € RV,

o

<&(x) < fim sup [ B dP(x, ) (e dr

Kf(x)

IA

"Tﬁ?p[ [ 8O P(x ) ()il y) dye ™ dr

|imsup ﬂ
Ao RN A+ @(y)

K(—ix,y)wi(y) dy

-[.50 ((i)) K(~ix,y)wi(y) dy

g(y)
fR~| o) D <=

which gives the transience as claimed. |

COROLLARY 9.6. A semigroup of k-Gaussian kernels on R™ is transient if
and only if 2y + N > 2.

Proof. The negative definite function is here given by ¢(x) = |x|*.
Hence, for 2y + N > 2,

flx\q <P(x) Wilx) de = f

lx|<1

272 TT [, xd [ ar
a€R,

<C |x|?77% dx < oo

lx|<1

with a suitable constant C. On the other hand, if 2y + N < 2, then either
N =2withy=0o0r N=1with y<1/2, ie., a classical two-dimensional
recurrent Gaussian semigroup emerges, or, in the second case, one has
JLix 7w (x) dx = [1x?""2 dx = %, which also yields recurrence. |

The negative definite function of a k-Cauchy process is ¢(x) = c|x]| for
some ¢ > 0; hence:

COROLLARY 9.7. A k-Cauchy semigroup on R" is recurrent if and only if
N=1and k = 0.

Remark 9.8. It is well known that a convolution semigroup on a locally
compact abelian group is transient if and only if the associated negative
definite function ¢ has the property that Re(1/¢) is locally integrable. We
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do not know whether this stronger result holds also in the Dunkl setting.
On the other hand, Theorem 9.5 is completely sufficient in the context
of this paper, as we here consider only examples of semigroups with real-
valued negative definite functions.

10. GENERALIZED ORNSTEIN-UHLENBECK PROCESSES

In this section we show how the k-Gaussian processes and semigroups
of Sections 3 and 4 lead to k-analogues of classical multidimensional
Ornstein—Uhlenbeck processes and semigroups in a natural way. There
are different approaches to classical Ornstein—Uhlenbeck processes:

(a) Ornstein—Uhlenbeck semigroups can be defined in terms of heat
semigroups.

(b) The generators of the associated positive, strongly continuous
contraction semigroups on C,(R") are the *oscillator-operators” cA —
aX N x;d, with parameters ¢, a > 0.

(c) The pathwise definition of stationary Ornstein—Uhlenbeck is in
terms of a Brownian motion on RY.

(d) Ornstein—Uhlenbeck processes are solutions of certain stochas-
tic differential equations.

Because of technical difficulties in approach (d), we deal here only with
aspects (a)—(c). We start with (a). As usual, let a reflection group W and
multiplicity function k£ > 0 be fixed.

10.1. k-Ornstein—Uhlenbeck Semigroups of Markov Kernels

Let (P"),., be the k-Gaussian semigroup of Section 3.3. The k-Orn-
stein—Uhlenbeck Markov kernels (P?),. , with parameters ¢, « > 0 are
defined by

PO(x,A) =P _,2ar p,(e"%x, A)  (x €R"Y, 4 €ez(RY)).

LEMMA 10.1.  For all parameters a,c > 0, (P?),., is a semigroup of
Markouv kernels on R”.

Proof. Obviously, each P? is a Markov kernel. We know from Section
3.3 that the k-Gaussian Markov kernels (P"),., form a semigroup of
Markov kernels with the homogeneity property

Po(rx,rA) = P(x,A)  forx e RY, 4 €8(RY),r,t > 0. (10.1)
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This implies that for all s, > 0, x € RY, and 4 € Z([R"),
P2 PP(x,A)

= [ PP(z, A)P°(x,dz)
RN
= /RNP(E_EM)_C/ZQ(e_‘”z, AVPY_2asye p0(€”x, dz)

= r T _ +
= fRNP(lfefzm),C/za(y, A)Pe*ZIH(lie*Zns)‘C/za(e a(s l)x, dy)

= P(l:[_e—zaz+e—Zat_efzu(Ht))‘C/za(e_a(j+t)x, A) = PXOH(X, A)

ProposITION 10.2.  For all ¢, a > 0, the integral operators

HOOf(x) = [ FO)PO(xidy)  (120)

form a positive, strongly continuous contraction semigroup on Co(R™) with
generator

Gf(x) = (CAk - g:xiai)f(x) for f € CZ(R").
i=1

Proof. By construction and by Lemma 10.1, (H (1)), , is a semigroup
consisting of positive contraction operators on C,(R"). To see the strong
continuity, we note that the operators H9(¢) are related to the heat
operators H(t) of Section 3.2 by

—2at

P e

(x€RY, 120, fe C(RY)), (10.2)

HO(1)f(x) = H(

and recall that the semigroup (H(?)),. , is strongly continuous. Now fix
fe CyRY). Then

sup |f(e *'x) — f(x)| =0  forr]o0,

xeR
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and hence

sup [HO(1)f(x) = f(x)| = sup

xeRN xeRN

(1 _ 6720”

1 __e—Zat .
H(T-c)ﬂe X) — £(x)

<|H

+ sup |f(e *'x) — f(x)| -0

o xeRN

2a

-C)f -f
for ¢ | 0 as claimed. The proof of the generator formula is similar; we have

HO()f(x) —f(x) _ H(r)f(e %) —f(e""'x) 7

t T t

N f(e™*'x) = f(x) |

t

(10.3)

with 7:=c(1 — e ?%") /Q2a). For t | 0,
T/t > ¢ and (H(t)f—f)/7— Af uniformly;
it follows that the first summand in (10.3) tends to cA,f uniformly for

t | 0. Moreover, the mean value theorem ensures that there exists A, €
[e ! 1] with

e *'x) — f(x e ' =1
it z 1) =<Vf(/\tx)'x>'f’

which uniformly tends to — a{Vf(x), x) for ¢ | 0. This finishes the proof. lI

PrROPOSITION 10.3.  For each f € C,(R"), the function

u(x,0) = HOWOf(x) = [ F(9)PO(x, dy)
is a C,(RY X [0, «[)-solution of the Cauchy problem
u, = (cAy — aX),x,0,)u

on RN X 10, [ with initial data u(x,0) = f(x) for x € R".

Proof. We write u(x,t) = H(c-(1 —e 2*")/2a)f(e"*'x) and recall
from Section 3.2 that w(z, x) == H(¢)f(x) belongs to C,(R" x [0,%[) and
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satisfies d,w = A, w. Therefore,

1 — e—Zat
u(x,1) = W( Ty )

N 1 _e—Zat
+ Y w i(e‘”x, _— -c) (—ax;) e

=c-Au(x,t) —a) xu(x,1). (10.4)

i=1

Remark 10.4. The Mehler formula (Proposition 8.10(6)) for generalized
Hermite polynomials says that

1— 6’74[

2 =cke_'y‘zM(x,y,e_2‘) (t>0,x,yeRY),

I {e?x,y,

with the Mehler kernel

H,(x)H,(y)

o i (Irl<1,x,ye [R{N).

As the generalized Hermite polynomials satisfy (A, — 2XN  x;0)H, =
—2lv|-H, for ve ZY (see Proposition 8.10(3)), it follows that for
each ye[RN the _function M(x t) == M(x,y, e ?") satisfies (A,
2yN x é’)M = aM This Ieads to an alternative proof of Eqg. (10 4)
above

10.2. k-Ornstein—Uhlenbeck Processes

A Markov process (X,),., on R" is called a k-Ornstein-Uhlenbeck
process (with parameters «, ¢ > 0) if its transition probabilities are given
by the semigroup (P°),., of Section 10.1. Such a process is called a
stationary k-Ornstein—Uhlenbeck process (with parameters ¢, a > 0) if its
initial distribution is given by

dPL,,(0,)(x) = (0, x,¢/2a) - wy(x) d.

This notion is justified by the fact that each stationary k-Ornstein—
Uhlenbeck process (X)), . , is stationary, i.e., P, ,,(0,.) is the distribution
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of all X,, t > 0. In fact, Eq. (10.1) shows that

P(X, €4) = [ PO(x, A) P2, (0, dv)
= fRNP(l;fe’z‘“)f/Za(eiatx’ A)PCI‘/Za(O’ dx)

= /RNP(I;—e’Z‘”)-c/Za(x’ A)Per’z“’-c/Za(O’ dx)
= P(E—e’z“’-%—e’z”’)-c/Za(O’ A)
= PcF/Za(O’ A)

The following result shows that stationary k-Ornstein—Uhlenbeck pro-
cesses can be constructed directly from k-Gaussian processes:

LEMMA 105. Let (B,),. o be a k-Gaussian process on some probability
space (Q, 7, P) with values in RN, Assume that this process starts in 0 € RY
at time 0, and that it is associated with the k-Gaussian semigroup (P!),. o of
Section 3.3. Then for any a, B > 0,

Xt(w) =e 'Bﬁ-exp(Zat)(w) (w €O, t> O)

defines a stationary k-Ornstein—Uhlenbeck process with parameters « and
c=2ap.

Proof.  Obviously, (X,),. , is a Markov process with initial distribution
P;(0,) € MY(R"N). Take 5, >0, x € RY, and 4 € Z(R"). The homo-
geneity P, (rx, r4) = P''(x, A) yields that

— — +1¢ —
P(Xx+t €4 | Xs —X) - P(BB expRa(s+1)) (= ea(s )A | BB exp2as) — easx)
_ pl
- Pﬁ(exp(z a(s+1))—exp2as))
_ pl —at
= Pg—exp(—2ary(€”“'x, A).

A comparison with the kernels P of Section 10.1 completes the proof. [

(easx’ ea(s+t)[4)

If the process (B,),., in Lemma 10.5 has the continuity properties of
Theorem 4.10, then the associated stationary k-Ornstein—Uhlenbeck pro-
cess (X,),., also has these properties. Combining this with Proposition
10.2 and the methods in the proofs of Theorems 4.7 and 4.10, we obtain:

THEOREM 10.6.  Each k-Omstein—Uhlenbeck process on RN admits an
equivalent k-Ornstein—Uhlenbeck process (X,), . o such that (X)), o has the
cadlag property and that its projection p(X,)),. , on RY /W = C has almost
surely continuous paths.



MARKOV PROCESSES AND DUNKL OPERATORS 641

ACKNOWLEDGMENTS

It is a great pleasure to thank Charles F. Dunkl for several valuable comments, discussions,
and his support. We also thank the Department of Mathematics at the University of Virginia
at Charlottesville for its hospitality.

[ADKS]
[B-F1]
[B-F2]

[Ba]
[Be-Mo]

[Bel

[B-K1]

[B-K2]
[Be-Fo]
[BI-He]
[Ca]
[cl

[vD]

[D1]
(D2]

(D3]

(D4]
(D5]

[Dyl

REFERENCES

S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev, and L. Streit, Non-Gaussian
infinite-dimensional analysis, J. Funct. Anal. 138 (1996), 311-350.

T. H. Baker and P. J. Forrester, The Calogero—Sutherland model and polynomials
with prescribed symmetry, Nuclear Phys. B 492 (1997), 682-716.

T. H. Baker and P. J. Forrester, Non-symmetric Jack polynomials and integral
kernels, Duke Math. J. to appear.

H. Bauer, “Probability Theory,” de Gruyter, Berlin, 1996.

Y. Berest, Y. Molchanov, Fundamental solutions for partial differential equations
with reflection group invariance, J. Math. Phys. 36 (1995), 4324-4339.

Yu. M. Berezansky, Construction of the operators of generalized translation by
Appell characters, in “Proceedings Devoted to S. G. Krein,” World Scientific,
Singapore, to appear.

Yu. M. Berezansky and Yu. G. Kondratiev, Biorthogonal systems in hypergroups:
An extension of non-Gaussian analysis, Methods Funct. Anal. Topology 2 (1996),
1-50.

Yu. M. Berezansky and Yu. G. Kondratiev, Non-Gaussian analysis and hyper-
groups, Funct. Anal. Appl. 29 (1996), 188-191.

C. Berg and G. Forst, “Potential Theory on Locally Compact Abelian Groups,”
Springer-Verlag, Berlin /Heidelberg, 1975.

W. R. Bloom and H. Heyer, “Harmonic Analysis of Probability Measures on
Hypergroups,” de Gruyter, Berlin, 1995.

F. Calogero, Solution of the one-dimensional N-body problems with quadratic
and /or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436.

I. Cherednik, A unification of the Knizhnik—Zamolodchikov equations and Dunkl
operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432.

J. F. van Diejen, Confluent hypergeometric orthogonal polynomials related to the
rational quantum Calogero system with harmonic confinement, Comm. Math. Phys.
188 (1997), 467-497.

C. F. Dunkl, Differential-difference operators associated to reflection groups,
Trans. Amer. Math. Soc. 311 (1989), 167-183.

C. F. Dunkl, Integral kernels with reflection group invariance, Can. J. Math. 43
(1991), 1213-1227.

C. F. Dunkl, Hankel transforms associated to finite reflection groups, in “Proceed-
ings of the Special Session on Hypergeometric Functions on Domains of Positivity,
Jack Polynomials and Applications,” Proceedings, Tampa 1991, Contemp. Math. 138
(1992), 123-138.

C. F. Dunkl, Intertwining operators and polynomials associated with the symmetric
group, Math. Nachr. to appear.

C. F. Dunkl, Intertwining operators of type B,, Technical report CRM-2380,
Centre de recherches mathématiques, 1996.

E. B. Dynkin, “Markov Processes |,” Springer-Verlag, Berlin /Heidelberg, 1965.



642

[E-K]
[F-s]
[Fe]
[H]
[Hu]

[dJ]
[K-O]

[K-S]

[Me]

[Re-V]
[Rev-Y]
[Rom]
[R1]
[R2]

[R3]
[R-V1]

[R-V2]

[Ros]

[st]

ROSLER AND VOIT

S. N. Ethier and T. G. Kurtz, “Markov Processes: Characterization and Conver-
gence,” Wiley, New York, 1986.

Ph. Feinsilver and R. Schott, “Algebraic Structures and Operator Calculus,” Vol.
111, “Representations of Lie groups,” Kluwer, Dordrecht, The Netherlands, 1996.
W. Feller, “An Introduction to Probability Theory and Its Applications,” Wiley,
New York, 1965.

G. J. Heckman, An elementary approach to the hypergeometric shift operators of
Opdam, Invent. Math. 103 (1991), 341-350.

J. E. Humphreys, “Reflection Groups and Coxeter Groups,” Cambridge Univ.
Press, Cambridge, England, 1990.

M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147-162.

S. Kamefuchi and Y. Ohnuki, “Quantum Field Theory and Parastatistics,” Univ. of
Tokyo Press, Tokyo, and Springer-Verlag, Berlin/New York, 1982.

I. Karatzas and S. E. Shreve, “Brownian Motion and Stochastic Calculus,”
Springer-Verlag, Berlin/New York, 1985.

A. A Kirillov, Lectures on affine Hecke algebras and Macdonald conjectures, Bull.
Amer. Math. Soc. 34 (1997), 251-292.

L. Lapointe and L. Vinet, Exact operator solution of the Calogero—Sutherland
model, Comm. Math. Phys. 178 (1996), 425-452.

M. Lassalle, Polynomes de Hermite généralisés, C. R. Acad. Sci. Paris 313 (1991),
579-582.

I. G. Macdonald, The volume of a compact Lie group, Invent. Math. 56 (1980),
93-95.

M. L. Mehta, “Random Matrices and Statistical Theory of Energy Levels,” Aca-
demic Press, New York, 1967.

E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite
Coxeter group, Compositio Math. 85 (1993), 333-373.

E. M. Opdam, Harmonic analysis for certain representations of graded Hecke
algebras, Acta Math. 175 (1995), 75-121.

A. P. Polychronakos, Exchange operator formalism for integrable systems of parti-
cles, Phys. Rev. Lett. 69 (1992), 703-705.

C. Rentzsch and M. Voit, Homogeneous Markov processes and Gaussian processes
on hypergroups, preprint, 1997.

D. Revuz and M. Yor, “Continuous Martingales and Brownian Motion,” Springer-
Verlag, Berlin/New York, 1991.

S. Roman, “The Umbral Calculus,” Academic Press, San Diego, 1984.

M. ROsler, Bessel-type signed hypergroups on R, in “Probability Measures on
Groups and Related Structures XI, Proceedings, Oberwolfach, 1994 (H. Heyer and
A. Mukherjea, Eds.), World Scientific, Singapore, 1995.

M. ROsler, Generalized Hermite polynomials and the heat equation for Dunkl
operators, Comm. Math. Phys. 192 (1998), 519-542.

M. RGsler, Positivity of Dunkl’s intertwining operator, Duke Math. J., to appear.
M. RGsler and M. Voit, An uncertainty principle for Hankel transforms, Proc.
Amer. Math. Soc. to appear.

M. RGsler and M. Voit, Biorthogonal polynomials associated with reflection groups
and a formula of Macdonald, J. Comput. Appl. Math., to appear.

M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator
calculus, in “Operator Theory: Advances and Applications,” Vol. 73, pp. 369-396,
Birkhduser Verlag, Basel, 1994.

W. F. Stout, “Almost Sure Convergence,” Academic Press, San Diego, 1989.



[s-V]
[Sul

[sz]
\Y

[Wal
(W-w]
(Wil
[X]
(Y]

(2]

MARKOV PROCESSES AND DUNKL OPERATORS 643

D. Stroock and S. R. S. Varadhan, “Multidimensional Diffusion Processes,”
Springer-Verlag, New York, 1979.

B. Sutherland, Quantum many-body problem in one dimension, I, Il, J. Math. Phys.
12 (1971), 246-250.

G. Szego, “Orthogonal Polynomials,” Am. Math. Soc., New York, 1959.

M. Voit, A Lévy-characterization of one-dimensional diffusions, Arch. Math. 70
(1998), 235-238.

S. Watanabe, Sobolev type theorems for an operator with singularity, Proc. Amer.
Math. Soc. 125 (1997), 129-136.

H. von Weizsdcker and G. Winkler, “Stochastic Integrals,” Vieweg, Wiesbaden,
1990.

D. Williams, “Diffusions, Markov Processes, and Martingales,” Vol. I, Wiley,
Chichester /New York, 1979.

Y. Xu, Integration of the intertwining operator for #-harmonic polynomials associ-
ated to reflection groups, Proc. Amer. Math. Soc. 125 (1997), 2963-2973.

L. M. Yang, A note on the quantum rule of the harmonic oscillator, Phys. Rev. 84
(1951), 788-790.

Hm. Zeuner, Moment functions and laws of large numbers on hypergroups, Math.
Z. 211 (1992), 369-407.



	1. INTRODUCTION
	2. DUNKL OPERATORS AND THE DUNKL TRANSFORM
	3. GENERALIZED LAPLACIANS AND HEAT KERNELS
	4. k-INVARIANT MARKOV KERNELS AND PROCESSES
	5. SUBORDINATION AND CAUCHY KERNELS
	6. MARTINGALE CHARACTERIZATIONS OF k-INVARIANT MARKOV PROCESSES
	7. MOMENT FUNCTIONS
	8. APPELL CHARACTERS AND HERMITE POLYNOMIALS
	9. STRONG LAWS AND TRANSIENCE
	10. GENERALIZED ORNSTEIN]UHLENBECK PROCESSES
	ACKNOWLEDGMENTS
	REFERENCES

