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1. INTRODUCTION

Dunkl operators are differential-difference operators associated with a
finite reflection group, acting on some Euclidean space. In recent years
these operators and several generalizations have gained considerable inter-
est in various fields of mathematics and physics. They provide a useful tool

Ž win the study of special functions associated with root systems see, e.g., D2,
x.H, vD , and they are closely related to certain representations of degener-

Ž w x w x.ate affine Hecke algebras see C, O2 and the recent survey Ki .
Moreover, Dunkl operators are naturally involved in the algebraic descrip-
tion of certain exactly solvable quantum many-body systems of the

Ž . w xCalogero]Moser]Sutherland-type CMS ; see B-F1, B-F2, L-V, P . We
start with an example for motivation.

EXAMPLE 1.1. The quantum CMS-model of type A for N particlesNy1
on the line R, with two-body potentials of inverse-square type and with
spin-exchange terms, is described by the Schrodinger operator¨

N 2­ 2k
H s y q ? k y s , 1.1Ž .Ž .Ý Ý i , j2 2­ x x y xŽ .iis1 1Fi-jFN i j

where k is a real coupling parameter and s is the operator interchangingi, j
N Ž w x.the coordinates x , x of a function f : R ª C see P . In the classicali j

setting without spin exchange, one is mainly interested in the symmetric
eigenfunctions of H, i.e., functions invariant under the natural action of
the symmetric group S on R N. The restriction of H to symmetricN
functions is given by

N 2­ 1
H s y q 2k k y 1 . 1.2Ž . Ž .Ý Ýs ym 2 2­ x x y xŽ .iis1 1Fi-jFN i j

While the explicit solvability of the latter system goes back to Calogero
Žw x. Ž w x.Ca , it was only recently observed see P that H can be written as

N 2 ˜H s Ý p with commuting momentum operators p s yiT , where thejs1 j j j
T̃ are the ‘‘differential-difference’’ operators,j

­ si , j
T̃ s y k j s 1, . . . , N , 1.3Ž . Ž .Ýj ­ x x y xj j ii/j

2Ž N .which are densely defined on L R , dx . These operators are singular at 0
`Ž N .and do not properly act on C R or polynomials. This can be overcome

2Ž N Ž . .by switching to the weighted space L R , w x dx withk

< < 2 kw x s x y x .Ž . Łk i j
1Fi-jFN
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˜ 2 NŽ Ž . .This means considering the images of H, p , T on L R , w x dx withi i k
respect to the multiplication operator

R: L2 R N , dx ª L2 R N , w x dx , f ¬ wy1r2 f .Ž . Ž .Ž .k k

A short calculation yields

­ 1 y si , jy1˜T [ RT R s q k . 1.4Ž .Ýi i ­ x x y xi i jj/i

These operators map polynomials to polynomials and are homogeneous
Ž .of degree y1 with respect to the natural grading on polynomials . They

Žw x.were originally by Dunkl D1, D2, D3 in connection with a generaliza-
tion of classical spherical harmonics where the spherical surface measure

Ž .on the N y 1 -dimensional unit sphere is modified by a weight that is
invariant under some reflection group; in the A case it has the form ofny1
w above.k

The origin of this paper is the observation that the ‘‘Dunkl Laplacian’’

N
2 y1D [ T s yRHR 1.5Ž .Ýk i

is1

is the generator of a strongly continuous Markovian semigroup of opera-
Ž N .tors on C R , where the associated kernels admit a structure similar to0

N Ž w x.classical Gaussian densities on R see R2 :

x y2 2tD yŽ < x < q < y < .r4 tke f x s c e K , ? f y w y dyŽ . Ž . Ž .Hk kž /N ' '2 t 2 tR

t ) 0, x g R N , f g C R N ,Ž .Ž .0

Ž .where c is a normalization constant, and the ‘‘Dunkl kernel’’ K x, y ,k
w xwhich was first introduced in D2 , generalizes the exponential function

e² x, y: on R N = R N. Markov processes associated with the semigroup
Ž tD k .e may be regarded as a generalization of the classical Browniant G 0

N Ž .motion on R , even though the reflection parts in D or H require thatk
these processes cannot have continuous paths for k ) 0. The investigation
of generalizations of Brownian motions on R N of this type is the main
purpose of this paper. Before going into details, we discuss some exten-
sions of the example above:

Ž .1 Essential parts of the theory of Dunkl operators work for arbi-
N Ž w x.trary finite reflection groups W on R see D1, D2, D3, dJ, O1 . We shall

establish almost all results of this paper in the general setting. On the
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other hand, Dunkl operators are related to quantum many-body systems
for specific reflection groups only, like the A case above. We mentionNy1

� 4N � 4Nthe B cases belonging to the reflection groups S h "1 , where "1N N
acts on R N by sign changes of the coordinates; these cases can be related
to 2 N q 1-body systems on R.

Ž . 2 < < 22 It is possible to add an external harmonic potential v x s
2Ž 2 2 . Ž .v x q ??? qx to the Hamiltonian H in 1.1 . This case was first1 N

w xstudied in Su and can be handled in the same way as the classical
Ž wharmonic oscillator by using generalized Hermite functions see B-F1,

x .B-F2, vD, R2 , and Section 8 below .
Ž .3 Like the CMS-particle systems on R above, there are completely

� < < 4integrable particle systems on the torus T [ z g C: z s 1 with two-body
potentials of inverse square type. The parameterization z s ei x j, x g Rj j
leads to the symmetric Hamiltonian,

N 2­ 1
y q k k y 1 .Ž .Ý Ý2 2­ x 2 sin x y x r2Ž .Ž .j i jjs1 1Fi-jFN

The solvability of this model was originally shown by Sutherland; a com-
plete solution in operator form, based on Dunkl operators, has recently

w xbeen worked out in L-V .
We turn next to the content and the organization of this paper.
Section 2 mainly serves as an introduction to the Dunkl theory. We

there recapitulate basic facts on reflection groups, root systems, and
multiplicity functions; then the associated Dunkl operators, the Dunkl

Ž .kernel as a generalization of the exponential function , and the Dunkl
Ž .transform as a generalization of the Fourier transform are introduced.

Ž w x.Most results are known see D1, D2, D3, dJ, R3, O1 and are presented
for the convenience of the reader only. Formally new results are the
injectivity of the Dunkl transform of measures and Levy’s continuity´

w xtheorem. Moreover, based on a result of Xu X , we identify the Dunkl
transform of radially symmetric functions on R N in terms of a classical

w wHankel transform on 0, ` .
Section 3 is devoted to Dunkl’s Laplacian, which generates a one-param-

eter semigroup of Markov kernels on R N. This semigroup may be consid-
ered a generalization of the semigroup of a Brownian motion and will be
called the k-Gaussian semigroup. k-Gaussian semigroups form the leitmo-
tiv of this paper, and so we include details here, even though most parts of

w xSection 3 are already contained in R2 .
In Section 4 we use the algebraic connections between k-Gaussian

semigroups and the Dunkl transform to introduce the concept of k-in-
variant Markov kernels on R N. This generalizes the notion of translation-
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N Ž .invariant Markov kernels on R which can be recovered for k s 0 ; it
allows us to define semigroups of k-invariant Markov kernels as well as the
associated Markov processes, which will be also called k-invariant. In
Section 4 we study in particular the generators of these semigroups and
the associated negative definite functions. Moreover, we show that k-in-
variant Markov processes always admit cadlag versions, i.e, there are` `
versions of these processes having right-continuous paths with limits from
the left almost everywhere. Moreover, k-Gaussian cadlag processes have` `
automatically continuous paths after symmetrization with respect to the

Žunderlying reflection group as the generator is here a second-order
.differential operator .

Further examples of k-invariant Markov kernels are presented in Sec-
tion 5. These examples will be constructed via subordination from the

Ž w x .k-Gaussian kernels see, for instance, Be-Fo for this principle . This
leads, in particular, to a generalization of Cauchy kernels. In the end of
Section 5 we apply the generalized Cauchy kernels to solve the Dirichlet-

Ž . w w Ntype problem u q D u s 0 with initial condition u 0, . s f on 0, ` =R ,t t k
where D denotes the Dunkl Laplacian.k

In Section 6 we turn to a different topic in probability theory. With the
interpretation of the Dunkl kernel K as a generalized exponential function
in mind, we use K to construct ‘‘exponential’’ martingales from k-invariant
Markov processes; we show that these processes are determined uniquely
by such martingale properties. This will lead to a characterization of
k-invariant Markov processes on R N as unique solutions of martingale

w xproblems in the sense of Stroock and Varadhan S-V . This section
Ž wrequires some knowledge from semimartingale integration see K-S, W-W,

x.Wi and may be skipped at a first reading. Our approach is motivated by
w xsimilar results for commutative hypergroups in Re-V and shows how the

martingale results of Sections 7 and 8 for moment functions fit into a
general theory.

n Ž N N .In Section 7 we generalize the monomials y y g R , n g Z andq
Ž N . Nintroduce so-called moment functions m n g Z on R via the Dunkln q

kernel K by

1
nK x , y s m x y ,Ž . Ž .Ý nn !NngZq

where the multi-index notation yn [ yn1 yn 2 ??? ynN and n ![ n !? n ! ???1 2 N 1 2
n ! is used for y g R N and n g Z N. The functions m are homogeneousN q n

< <polynomials of degree n [ n q ??? qn . They make it possible to define1 N
N Ž .the n th modified moment of a probability measure m on R by m m [n

Ž .NH m dm whenever this exists . It will turn out that modified moments ofR n

k-invariant Markov kernels satisfy algebraic relations of binomial type that
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are well known for classical moments of classical convolutions of measures
on R N. These algebraic relations will allow us to construct martingales
from k-invariant Markov processes by using moments. Section 7 is moti-

w xvated by corresponding results for commutative hypergroups in Bl-He, Z
and references there.

In Section 8 we systematically study modified moments of higher order
for k-Gaussian measures. Motivated by related concepts in non-Gaussian

Ž w x.white-noise analysis see ADKS, F-S, B-K1, B-K2 , we introduce two
Ž . Ž . N

N Nsystems, R and S , of functions on R = R byn n g Z n n g Zq q

R t , x [ eytD k m x and S t , x [ eytD k xn .Ž . Ž . Ž .n n n

These functions are called Appell characters and cocharacters, respec-
tively; they can also be characterized via their generating functions involv-
ing the Dunkl kernel K. It will turn out that for all t ) 0, the systems
Ž Ž .. Ž Ž ..N NR t, . and S t, . form a biorthogonal basis ofn n g Z n n g Zq q2Ž N Ž .. Ž .L R , P 0, . , where P 0, . denotes the k-Gaussian measure with mean 0t t
and ‘‘variance’’ parameter t. Based on this observation, we derive a

w xgeneralization of a formula of Macdonald M , which was proved earlier in
w x w xD2 by different methods; see also R-V2 . The functions R and S aren n

closely related to generalizations of heat polynomials and Hermite polyno-
w xmials; the latter ones wee extensively investigated in B-F1, B-F2, vD, L

w xfor special cases and in R2 in full generality. To stress the connection
with generalized Hermite polynomials, we close Section 8 with a list of
properties of nonsymmetric generalized Hermite polynomials and the
Appell systems above.

Section 9 contains some limit theorems for k-invariant Markov pro-
cesses that are well known in the classical case k s 0. This in particular
includes a law of the iterated logarithm for k-Gaussian processes, a strong
law of large numbers for general k-invariant processes in discrete time,
and a transcience criterion. Parts of this section are motivated by similar

w xresults for one-dimensional hypergroups in Bl-He and references cited
there.

The final section, 10, is devoted to a generalization of Ornstein]Uhlen-
beck processes to the Dunkl setting. We introduce the associated semi-
groups of Markov kernels explicitly by using the k-Gaussian kernels of
Section 3. As in the classical case, the generators of generalized
Ornstein]Uhlenbeck semigroups are given by the Schrodinger-type opera-¨
tors cD y aÝN x ­ with parameters c, a ) 0. This observation leads tok ls1 l l

Ž N .the explicit solution of the equation u s cD y aÝ x ­ u ont k ls1 l l
w w N Ž .0, ` =R with initial condition u 0, . s f. We conclude Section 10 with
some properties of generalized Ornstein]Uhlenbeck processes; in particu-
lar, the stationary ones are defined in terms of k-Gaussian processes in a
pathwise way.
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We finally point out that this paper contains only a selection of proba-
bilistic aspects of the Dunkl theory, and that some topics are not covered
completely. Some results could be considerably improved with some addi-
tional effort. On the other hand, it was our aim to make at least most parts
of this paper accessible to a broader mathematical audience.

2. DUNKL OPERATORS AND THE DUNKL TRANSFORM

The purpose of this section is to establish some basic notations and
collect some facts on Dunkl operators and the Dunkl transform that will

w xbe important later on. General references here are D2, D3, dJ ; for basics
w xon reflection groups and root systems, we refer the reader to Hu .

2.1. Reflection Groups, Root Systems, and Multiplicity Functions
N � 4 NFor a g R R 0 , let s be the reflection in the hyperplane H ; Ra a

Ž . Ž ² : < < 2 . ² :orthogonal to a , i.e., s x s x y 2 a , x r a a , where ., . is thea
N N'< < ² : Ž < <Euclidean scalar product on R and x [ x , x . On C , . also

² : .denotes the standard Hermitian norm, while z, w [ z w q ??? qz w .1 1 N N
N � 4 � 4A finite set R ; R R 0 is called a root system if R l R ? a s "a

and s R s R for all a g R. For a given root system R the reflections sa a

Ž . Ž .a g R generate a finite group W ; O N , the reflection group associ-
ated with R. All reflections in W correspond to suitable pairs of roots; see
w x NHu . For a given b g R R D H , we fix the positive subsystema g R a

� ² : 4R s a g R: a , b ) 0 ; then for each a g R either a g R or ya gq q
R . We assume from now on with no loss of generality that the rootq '< <system R is normalized in the sense that a s 2 for all a g R.

A function k: R ª C on a root system R is called a multiplicity
function if it is invariant under the action of the associated reflection
group W. If one regards k as a function on the corresponding reflections,
this means that k is constant on the conjugacy classes of reflections
in W. For abbreviation, we introduce the index

g [ g k [ k a . 2.1Ž . Ž . Ž .Ý
agRq

Moreover, let w denote the weight functionk

Ž .2 k a² :w x s a , x , 2.2Ž . Ž .Łk
agRq
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which is W-invariant and homogeneous of degree 2g . We finally introduce
the Mehta-type constant

y1
2y< x <c [ e w x dx , 2.3Ž . Ž .Hk kž /NR

w xwhich is known for all Coxeter groups W; see D1, Me, O1 . We shall use
w N xthe following further abbreviations: PP s C R denotes the algebra of

N Ž .polynomial functions on R , and PP n g Z the subspace of homoge-n q
neous polynomials of degree n. We use the standard multi-index notations;
i.e., for multi-indices n , r g Z N we writeq

< <n [ n q ??? qn , n ![ n !? n ! ??? n !,1 N 1 2 N

n n nn 1 2 N[ ??? ,rž / r r rž / ž / ž /1 2 N

as well as

xn [ xn1 ??? xnN and An [ An1 ??? AnN
1 N 1 N

N Ž .for x s R and any family A s A , . . . , A of commuting operators on1 N
PP. Finally, we shall need the partial ordering F on Z N, which is definedq
by r F n :m r F n for i s 1, . . . , N.i i

2.2. Dunkl Operators

Ž . NThe Dunkl operators T i s 1, . . . , N on R associated with the finitei
reflection group W and multiplicity function k are given by

f x y f s xŽ . Ž .a 1 NT f x [ ­ f x q k a a ? , f g C R ;Ž . Ž . Ž . Ž .Ýi i i ² :a , xagRq

2.4Ž .

here ­ denotes the ith partial derivative. In the case k s 0, the T reducei i
to the corresponding partial derivatives. In this paper, we shall assume

Ž .throughout that k G 0 i.e., all values of k are nonnegative . The T havei
Ž w x.the following fundamental properties see D1 :

Ž . � 41 The set T generates a commutative algebra of differential-i
difference operators on PP.

Ž .2 Each T is homogeneous of degree y1 on PP; i.e., T p g PPi i ny1
for p g PP .n

Ž . Ž . Ž . Ž . Ž .3 Product rule T fg s T f g q f T g for i s 1, . . . , N and alli i i
1Ž N .f , g g C R with g being W-invariant.
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Ž . N NA major tool in this paper is the Dunkl kernel K x, y on R = R ,
which generalizes the usual exponential function e² x, y:. It was introduced

w xin D2 by means of an intertwining isomorphism V of PP which is
characterized by the properties

<V PP s PP , V s id, and T V s V­ i s 1, . . . , N .Ž . Ž .PPn n i i0

Some details about V and the T for the symmetric group S and the Bi N N
case will be discussed in Example 7.1. For n g Z , setq

² :n., y
NK x , y [ V x x , y g R .Ž . Ž . Ž .n ž /n!

Ž . Ž . < Ž . < < < n < < nThen K x, y s K y, x and K x, y F x y rn!. The Dunkl kerneln n n
K is now defined as

`
² . , y:K x , y [ K x , y s V e x . 2.5Ž . Ž . Ž . Ž . Ž .Ž .Ý n

ns0

N Ž .For y g R , K x, y may be also characterized as the unique analytic
Ž . Ž . w xsolution of T f s y f i s 1, . . . , N with f 0 s 1; see O1 . Moreover, thei i

Dunkl kernel K has a unique holomorphic extension to C N = C N.

Ž . Ž . ² z, w: NEXAMPLES 2.1. 1 If k s 0, then K z, w s e for z, w g C .
Ž ² : N .Note that ., . was defined to be bilinear on C .

Ž .2 If N s 1 and W s Z , then the multiplicity function is a single2
Ž .parameter k G 0, and the normalization constant is c s G k q 1r2 . Thek

Dunkl kernel is given by

zw
K z , w s j izw q j izw , z , w g C,Ž . Ž . Ž .ky1r2 kq1r22k q 1

where for a G y1r2, j is the normalized spherical Bessel functiona

n 2 n`J z y1 zr2Ž . Ž . Ž .aaj z s 2 G a q 1 s G a q 1 ? .Ž . Ž . Ž . Ýa az n! G n q a q 1Ž .ns0

w xFor details and related material see D3, R1, Ros, Wa and references
cited there. This basic example is connected with the quantum harmonic

w xoscillator of Yang Y .
Ž .3 If N s 2 and W is a dihedral group of odd order, then k is again

a single parameter. For k s 1, the W-invariant part of the Dunkl kernel K
Ž . w xis computed up to some transformation in Be-Mo in terms of Tcheby-

chev polynomials.
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For later references, we next list some further known properties of the
Dunkl kernel K.

THEOREM 2.2. Let z g C N, x, y g R N.

Ž . Ž . Ž . Ž . Ž . Ž .1 K z, w s K w, z , K z, 0 s 1 and K l z, w s K z, lw for
l g C.

Ž . N < n Ž . < < < <n < < x <? <Re z <2 For all n g Z , ­ K x, z F x ? e . In particular,q z
< Ž . < < x < < z < < Ž . <K x, z F e and K ix, y F 1.

Ž . x Ž . Ž .3 T K x, y s y K x, y for j s 1, . . . , N; here the superscript xj j
indicates that the operators act with respect to the x-̈ ariable.

Ž . Ž . Ž Ž . Ž .. Ž .4 K yix, y s K ix , y and K g x , g y s K x, y for g g W.Ž .
Ž . N5 For each x g R there exists a unique probability measure m gx

1Ž N .M R with

N < < < <supp m ; j g R : j F x and� 4x

N < < < <supp m l j g R : j s x / B� 4x

such that

K x , z s e² j , z: dm j for all z g C N .Ž . Ž .H x
NR

Ž . NIn particular, K x, y ) 0 for all x, y g R .

Ž . Ž . Ž .Proof. Parts 1 , 3 , and 4 can easily be derived from the construction
w x Ž . w x Ž .of K in Section 2.2; see D2, D3 . Part 5 is shown in R3 , and Part 2 is

Ž . w xa consequence of Part 5 ; see also R3 .

The generalized exponential function K gives rise to an integral trans-
N w xform, called the Dunkl transform on R , which was introduced in D3 and

w xhas been thoroughly studied in dJ . To emphasize the similarity with the
classical Fourier transform, we use the following notion.

2.3. The Dunkl Transform

The Dunkl transform associated with W and k G 0 is given by

. : L1 R N , w x dx ª C R N ;Ž . Ž .ˆ Ž .k b

ˆ Nf y [ f x K yiy , x w x dx y g R .Ž . Ž . Ž . Ž . Ž .H k
NR
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1Ž N Ž . .The Dunkl transform of a function f g L R , w x dx has the followingk
basic properties:

ˆŽ . 5 5 5 5 Ž .1 f F f ; see Theorem 2.2 2 .` 1, w Ž x . d xk

Ž . yŽ . Ž . Ž .Ž . Ž Ž .. N2 If f x [ f yx and f x [ f g x for g g W, x g R ,g
y n n Nˆ ˆŽ . Ž . Ž . Ž . Ž Ž ..then f y s f y and f y s f g y for y g R ; see TheoremŽ . g

Ž .2.2 4 .
ˇ ˆŽ . Ž .The inverse Dunkl transformation is given by f y s f yy and has

corresponding properties.
w xThe results listed in the following theorem are proved in D3, dJ :

Ž . Ž N .THEOREM 2.3. 1 The Schwartz space SS R of rapidly decreasing
functions on R N is in¨ariant under the Dunkl transform.

Ž . Ž . Ž 1Ž N Ž . ..n 5 52 Lemma of Riemann]Lebesgue L R , w x dx is a . -`k
Ž N .dense subspace of C R .0

1 1 N ˆ 1 NŽ . Ž . Ž Ž . . Ž3 L -inversion For all f g L R , w x dx with f g L R ,k
Ž . .w x dx ,k

ygyNr2 2 k̂f s 4 c f a.e.k

Ž . Ž .3 Plancherel’s Theorem The renormalized Dunkl transform f ¬
ygyNr2 ˆc 2 f can be uniquely extended to an isometric isomorphism onk

2Ž N Ž . .L R , w x dx .k

Ž Ž .We next show that Dunkl transforms of radial functions i.e., SO N -
. 1Ž N Ž . .invariant functions in L R , w x dx are again radial, an that Dunklk

transforms can be computed via associated classical Hankel transforms.
This result is not obvious, as the weight w is usually invariant only underk
the reflection group W. Our proof is based on the explicit integration of

w xthe operator V over spheres in X . Before doing this, we recapitulate
some facts about Hankel transforms:

2.4. The Hankel Transform

w wFor a G y1r2, define the measure v on 0, ` bya

y1a 2 aq1dv r s 2 G a q 1 r dr .Ž . Ž .Ž .a

a 1Žw w .The Hankel transform HH of order a on L 0, ` , v is then defined bya

`
aHH f l s f r j lr dv r ;Ž . Ž . Ž . Ž . Ž .H a a

0

Here j is the normalized spherical Bessel function as defined in Examplea

Ž . a2.1 2 . The transform HH can be uniquely extended to an isometric
2Žw w .isomorphism on L 0, ` , v .a
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PROPOSITION 2.4. Let W be a finite reflection group with multiplicity
Ž .function k and index g s Ý k a . Then there is a one-to-one correspon-a g Rq 1Ž N Ž . .dence between the space of all radial functions f in L R , w x dx and thek

1Žw w .space of all functions F g L 0, ` , v ¨iagqNr2y1

< < Nf x s F x for x g R .Ž . Ž .
ˆMoreo¨er, the Dunkl transform f of f is related to the Hankel transform

HH gqNr2y1F of F by

ˆ y1 gqNr2 gqNr2y1 N< <f y s c 2 ? HH F y for y g R .Ž . Ž . Ž .k

Ny1 � N < < 4Proof. Let S s x g R : x s 1 be the unit sphere with normal-
ized surface measure ds . Set

1 2
d [ w x ds x s ? .Ž . Ž .Hk k

Ny1 c G g q Nr2Ž .S k

Let f and F be related as in the proposition. Then the homogeneity of wk
leads to

`
Ny1f x w x dx s w ry ds y F r r drŽ . Ž . Ž . Ž . Ž .H H Hk kž /N Ny1R 0 S

`
2gqNy1s d F r r dr .Ž .Hk

0

w xWe now turn to the second statement. Corollary 2.2 of X states that for
each polynomial p and x g R N,

1 Ž .gq Ny3 r2X 2² : < <Vp x , . y w y ds y s d p t x 1 y t dt ,Ž . Ž . Ž . Ž . Ž . Ž .H Hk k
Ny1S y1

with some constant dX ) 0 depending on k only. The series representationk
Ž . Žw x Ž ..2.5 of K and Mehler’s formula Sz , 1.7.1.6 lead to

1 Ž .gq Ny3 r2X i t < x < 2K ix , y w y ds y s d e 1 y t dtŽ . Ž . Ž . Ž .H Hk k
Ny1S y1

< <s d ? j x . 2.6Ž . Ž .k gqNr2y1

Ž .Moreover, by Theorem 2.2 1 and the homogeneity of w ,k

ˆ < <f y s F x K yix , y w x dxŽ . Ž . Ž . Ž .H k
NR

`
2gqNy1s K yiry , z w z ds z F r r dr .Ž . Ž . Ž . Ž .H H kž /Ny10 S
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Ž .It follows from 2.6 that

`
2gqNy1ˆ < <f y s d j r y F r r drŽ . Ž .Ž .Hk gqNr2y1

0

y1 gqNr2 gqNr2y1 < <s c 2 ? HH F y ,Ž . Ž .k

which completes the proof.

Proposition 2.4 leads to the following result, which will be needed in
Section 9:

N qŽ N .LEMMA 2.5. For each compact set L ; R there is a function f g C Rc
ˆ q N 1 N ˆŽ . Ž Ž . .with f g C R l L R , w x dx such that f G 1 on L.0 k

a Ž .Proof. The Hankel transform HH a G y1r2 can be regared as a
w wFourier transform for a suitable hypergroup structure on 0, ` , which is

Ž w x.called a Bessel]Kingman hypergroup see Bl-He . In particular, there is a
1Žw w .positivity-preserving convolution ) on L 0, ` , v such thata a

a Ž . a Ž . a Ž . 1Žw w .HH f ) g s HH f ? HH g for f , g g L 0, ` , v . Now fix g ga a
qŽw w. ` Ž . Ž . qŽw w.C 0, ` with H g x dv x ) 0. Then g ) g g C 0, ` withc 0 a a c
a Ž . < a Ž . < 2 qŽw w. 1Žw w . < a Ž . < 2HH g ) g s HH g g C 0, ` l L 0, ` , v , and HH g ) 0 ona 0 a

w x0, e for a suitable e ) 0. Suitable rescaling of g yields that for each
w w < a Ž . < 2compactum R ; 0, ` there is some g such that even HH g G 1 on R.

The lemma now follows from Proposition 2.4 with F [ g ) g.a

To use the Dunkl transform as a probabilistic tool, we next establish
some further standard results like the uniqueness theorem and Levy’s´
continuity theorem. We denote the Banach space of all C-valued, regular

N Ž N . qŽ N .bounded Borel measures on R by M R . Moreover, M R andb b
1Ž N .M R are the subspaces consisting of all positive measures and probabil-

ity measures, respectively. Moreover, we denote the s-algebra of all Borel
N Ž N .sets on R by BB R . Weak convergence of measures means convergence

Ž Ž N . Ž N ..with respect to the s M R , C R -topology.b b
Ž N . Ž .The Dunkl transform of m g M R is given by m y [ˆb

Ž . Ž . Ž N .NH K yiy, x dm x y g R .R

Ž . Ž N . Ž N . 5 5THEOREM 2.6. 1 If m g M R , then m g C R with m Fˆ ˆ `b b
5 5m .

Ž . Ž N . 1Ž N Ž . .2 If m g M R and f g L R , w x dx , thenb k

ˆm x f x w x dx s f dm.Ž . Ž . Ž .ˆH Hk
N NR R

Ž . Ž N .3 If m g M R satisfies m s 0, then m s 0.ˆb
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Ž . Ž .Proof. Part 1 follows readily from Theorem 2.2 2 and the dominated
Ž . Ž .convergence theorem. Part 2 follows from Fubini’s theorem, and Part 3

Ž . Ž 1Ž N Ž . ..n 5 5follows from Part 2 and the fact that L R , w x dx is . -dense in`k
NŽ .C R .0

Ž . qŽ N .THEOREM 2.7. Let m ; M R .n ng N b

Ž . Ž . qŽ N . Ž .1 If m con¨erges weakly to m g M R , then m̂n ng N b n ng N

con¨erges to m uniformly on e¨ery compact subset of R N.ˆ
Ž . Ž .2 If m con¨erges pointwise to a complex-̈ alued function w onˆn ng N

N qŽ N .R that is continuous at 0, then there exists a unique m g M R withb
Ž .m s w, and m tends weakly to m.ˆ n ng N

Ž . Ž . N NProof. As x, y ¬ K ix, y is analytic on R = R , the mean value
theorem ensures that for all x g R N, e ) 0 and all compacta L ; R N,

< Ž . Ž . <there exists an open neighborhood U of x with K ix, y y K iz, y F e
Ž .for all z g U, y g L. The proof of part 1 can now be carried out exactly

w xas in the classical group case; see, for instance, Theorem 23.8 in Ba .
Ž .Moreover, Theorem 2.6 ensures that the proof of part 2 also carried

w xover from the classical seting in Ba without changes. We omit the details.

Ž N .Remark 2.8. If a measure m g M R is invariant under the action ofb
the finite reflection group W, then its Dunkl transform is also W-invariant.
On the other hand, it is not true that Dunkl transforms of radial measures
are again radial; this is clear from Proposition 2.4 and the fact that the
weight function w usually fails to be radial.k

3. GENERALIZED LAPLACIANS AND HEAT KERNELS

3.1. The Generalized Laplacian

The generalized Laplacian D associated with some finite reflectionk
group W on R N and a multiplicity function k G 0 is defined by

N
2 2 ND f [ T f s D f q 2 k a d f f g C R ,Ž . Ž .Ž .Ý Ýk l a

ls1 agRq

with

² :=f x , a f x y f s xŽ . Ž . Ž .a
d f x s y .Ž .a 2² :a , x ² :a , x
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w x Ž N .It is shown in R2 that the operator D on C R admits a closurek 0
Ž .again denoted by D . This closure generates a positive, strongly continu-k

Ž tD k . Ž N .ous contraction semigroup e on C R , which is given explicitly int G 0 0
terms of the following generalized heat kernels.

3.2. Generalized Heat Kernels

The generalized heat kernel G is defined byk

c x y2 2k yŽ < x < q < y < .r4 tG x , y , t [ e K ,Ž .k gqNr2 ž /' '2 t 2 t4 tŽ .
x , y g R n , t ) 0 ,Ž .

Ž .where c is given in 2.3 . The heat kernel G has the following propertiesk k
Ž w x. Nsee Lemma 4.5 in R2 : Let x, y, z g R and t ) 0. Then

1 G x , y , t sG y , x , tŽ . Ž . Ž .k k

c2
2k yt < j <s e K ix , j K yiy , j w j dj ,Ž . Ž . Ž .H kgqNr2 N4 R

Ž .and, by the inversion formula, Theorem 2.3 3 ,

G x , ., t n z s eyt < z < 2 ? K yix , z .Ž . Ž . Ž .k

Ž . N Ž . Ž .2 For fixed y g R , the function u x, t [ G x, y, t solves thek
N Ž .generalized heat equation D u s u on R = 0, ` .k t

3 G x , y , t w x dx s 1 andŽ . Ž . Ž .H k k
NR

M 2k yŽ < x <y < y <. r4 tG x , y , t F e .Ž .k gqNr2t

Moreover, the integral operators

H t f x [ G x , y , t f y w y dy for t ) 0, and H 0 f [ f ,Ž . Ž . Ž . Ž . Ž . Ž .H k k
NR

have the following properties:

Ž . Ž N . tD kTHEOREM 3.1. 1 If f g C R , or if f is a polynomial, then e f s0
Ž .H t f for t G 0.

Ž . Ž N . Ž . Ž . Ž .2 For each f g C R , the function u x, t [ H t f x is boundedb
N w wand continuous on R = 0, ` and sol̈ es the Cauchy problem u s D u ont k

N w w Ž .R = 0, ` with u ., 0 s f.
Ž . Ž . tD k Ž . Ž . Ž .3 For each f g PP, the function u x, t [ e f x s H t f x is a

N w wpolynomial solution of the Cauchy problem u s D u on R = 0, ` witht k
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Ž . Ž . ytD k Ž . Nu ., 0 s f ; moreo¨er, u x, t [ e f x sol̈ es u q D u s 0 on R =˜ ˜ ˜t k
w w Ž .0, ` with u ., 0 s f.˜

Ž . Ž N . Ž .Proof. Part 1 for f g C R and Part 2 are shown in Section 4 of0
w x cD k Ž .R2 . Notice further that e c g R is well defined on PP. Proposition 2.1

w xof D3 yields in our notation that

p x s G x , y , 1r2 eyD k r2 p y w y dy for p g PP. 3.1Ž . Ž . Ž . Ž . Ž .Ž .H k k
NR

Ž . yD k r2From this, Part 1 for t s 1r2 follows with f s e p. The general case
Ž w x.t ) 0 follows by renormalization see Lemma 2.1 of R2 , and the case

Ž . Ž .t s 0 is trivial. This completes the proof of Part 1 . Part 3 is also clear.

The solutions for the polynomial initial value problems in Theorem
Ž .3.1 3 will be studied in Section 8. In Section 5 we will show that suitably

Ž .generalized Cauchy kernels instead of generalized heat kernels lead to
N w wsolutions of the Dirichlet problem u q D u s 0 on R = 0, ` witht t k

given initial data for t s 0. We turn next to a probabilistic interpretation
of the generalized heat kernels.

3.3. k-Gaussian Semigroups
N Ž N .For x g R and A g BB R put

P G x , A [ G x , y , t w y dy t ) 0Ž . Ž . Ž . Ž .Ht k k
A

GŽ . Ž . Nand P x, A [ e A ; here e denotes the point measure in x g R . We0 x x
Ž G . Nshow that P is a semigroup of Markov kernels on R in thet t G 0

following sense:

Ž . G N1 Each P is a Markov kernel, and for all s, t G 0, x g R , andt
Ž N .A g BB R ,

P G( P G x , A [ P G z , A P G x , dz s P G x , A .Ž . Ž . Ž . Ž .Hs t t s sqt
NR

Ž . w w 1Ž N . GŽ .2 The mapping 0, ` ª M R , t ¬ P 0, . , is weakly continu-t
ous.

Moreover, the semigroup has the following particular property:
Ž . GŽ . Ž3 The Dunkl transforms of the probability measures P x, . t G 0,t

N .x g R satisfy

P G 0, . n y s eyt < y < 2 and P G x , . n y s K yix , y ? P G 0, . n yŽ . Ž . Ž . Ž . Ž . Ž . Ž .t t t

for y g R N .
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Ž G .For each constant c ) 0, P is also a semigroup of Markov kernelsct t G 0
Ž . Ž . Ž GŽ .nwith the properties 1 ] 3 the explicit formula for P 0, . being modi-t

.fied in the obviuos way ; these semigroups will be called k-Gaussian
semigroups from now on.

Ž . Ž . Ž .Proof. Part 3 is clear from Section 3.2 1 , and Part 2 follows from
Ž .Part 3 and Theorem 2.7. Finally, Section 3.2 ensures that for s, t G 0 and

x, z g R N, each P G is a Markov kernel witht

P G( P G x , . n z s K yiy , z P G w , dy P G x , dwŽ . Ž . Ž . Ž . Ž .Ž . H Hs t t s
N NR R

s eyt < z < 2K yiw , z P G x , dwŽ . Ž .H s
NR

2 2 nyt < z < ys < z < Gs e ? e ? K yix , z s P x , .Ž . Ž .sq t

Ž . G G GTheorem 2.6 3 implies that P ( P s P , which completes the proof ofs t sqt
Ž .Part 1 .

4. k-INVARIANT MARKOV KERNELS AND PROCESSES

In this section we first introduce general semigroups of Markov kernels
that are consistent with respect to a given Dunkl transform. This consis-
tency generalizes the classical notion of translation invariance of Markov
kernels that can be recovered for k s 0. Examples of such semigroups are
the k-Gaussian semigroups. Further examples will be studied in Section 5.
For an elementary introduction to Markov kernels see, for instance,

w xSection 36 of Ba . In the following, we fix a finite reflection group W with
root system R and multiplicity function k G 0.

N Ž N . w xDEFINITION 4.1. A Markov kernel P: R = BB R ª 0, 1 is called
k-invariant if

P x , . n y s P 0, . n y ? K yix , y for all x , y g R NŽ . Ž . Ž . Ž . Ž .

Ž Ž . N .note that we here regard P x, . as a probability measure on R .
1Ž N . Ž . Ž . Ž NIf k s 0 and m g M R , then P x, A [ e )m A x g R , A gx

Ž N ..BB R defines a translation invariant Markov kernel. If k / 0, then there
Ž .usually exists no associated k-invariant Markov kernel P with P 0, . s m.

For N s 1 and k ) 0, there is a convolution of measures on R correspond-
wing to the Dunkl transform that fails to be probability preserving; see R1,

xRos . In general it is even unknown whether a convolution of bounded
measures exists.
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We next collect some basic properties of k-invariant Markov kernels.

LEMMA 4.2. Let P and Q be k-in¨ariant Markö kernels on R N. Then

Ž . Ž . Ž . Ž .N1 Pf x [ H f y P x, dy defines a continuous linear operator onR

Ž N .C R .0

Ž .2 The composition P (Q defined by

P (Q x , A s H N Q z , A P x , dzŽ . Ž . Ž .R

is a k-in¨ariant Markö kernel on R N with

P (Q x , . n y s Q 0, . n y ? P 0, . n y ? K yix , yŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
for x , y g R N . 4.1Ž .

Ž . < Ž .nŽ . < N3 P 0, . y F 1 for all y g R .

Ž . Ž N . Ž N .Proof. 1 It suffices to check that Pf g C R for all f g C R .0 0
Ž N . 5 5 Ž N .Moreover, as SS R is . -dense in C R , it suffices to do this for` 0

Ž N .Schwartz functions f g SS R only. In this case, f s g for some g gˆ
Ž N . Ž .SS R by Theorem 2.3 1 . Hence, by Theorem 2.6,

Pf x s g y P x , dy s g y ? P x , . n y ? w y dyŽ . Ž . Ž . Ž . Ž . Ž . Ž .ˆH H k
N NR R

s g y ? K x , yiy ? P 0, . n y ? w y dyŽ . Ž . Ž . Ž . Ž .H k
NR

s g ? P 0, . n n x .Ž . Ž .Ž .
Ž .n 1Ž N .As g ? P 0, . g L R , w , it follows from the Riemann]Lebesguek
Ž Ž .. Ž N .Lemma Theorem 2.3 2 that Pf g C R , which completes the proof.0

Ž . Ž .2 Clearly, Eq. 4.1 implies that P (Q is k-invariant. To prove this
equation, take x, y g R N and observe that the k-invariance of P and Q
implies that

P (Q x , . n y s K yiw , y P (Q x , dwŽ . Ž . Ž . Ž .H
NR

s K yiw , y Q z , dw P x , dzŽ . Ž . Ž .H H
N NR R

s Q 0, . n y ? K yiz , y P x , dzŽ . Ž . Ž . Ž .H
NR

s Q 0, . n y ? P 0, . n y ? K yix , y .Ž . Ž . Ž . Ž . Ž .

Ž . Ž .3 This follows from Theorem 2.2 2 .
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We now turn to semigroups of k-invariant Markov kernels on R N.

Ž . NDEIFNITION 4.3. A family P of k-invariant Markov kernels on Rt t G 0
is called a semigroup of k-invariant Markov kernels, if the following
statements hold:

Ž . Ž .1 The kernels P form a semigoup, i.e., P ( P s P fort t G 0 s t sqt
s, t G 0.

Ž . w w 1Ž N . Ž .2 The mapping 0, ` ª M R , t ¬ P 0, . , is weakly continuous.t

We next collect some basic properties of semigroups of k-invariant
Markov kernels that extend the case of translation-invariant Markov
kernels on R N.

Ž .PROPOSITION 4.4. Let P be a semigroup of k-in¨ariant Marköt t G 0
kernels. Then

Ž . Ž .nŽ . N1 P 0, . y / 0 for all y g R and t G 0.t

Ž . Ž Ž . .2 P is the trï ial kernel i.e., P x, . is the point measure e .0 0 x

Ž . Ž N . Ž .nŽ . yt w Ž y .3 There is a unique function w g C R with P 0, . y s et
for t G 0 and y g R N. The function w satisfies Re w G 0 and

1 n Nw y s lim 1 y P 0, . y y g R .Ž . Ž . Ž . Ž .Ž .tttx0

Ž .The function w is called the negatï e definite function associated with P .t t G 0

Ž .Proof. We first check part 2 . As P ( P s P , the continuous func-0 0 0
Ž .n Ž .nŽ .tion P 0, . only takes the values 0 and 1. As P 0, . 0 s 1, it follows0 0
Ž .nthat P 0, . ' 1. The injectivity of the Dunkl transform and the k-invari-0

ance of P now ensure that P is the trivial kernel.0 0
Ž . Ž .nŽ . NTo prove 1 , assume that P 0, . y s 0 for some y g R and t ) 0.t

Ž . Ž .nŽ .By 4.1 , this would imply P 0, . y s 0 for all t ) 0, in contradiction tot
Ž . Ž .nLevy’s continuity theorem Theorem 2.7 and P 0, . ' 1.´ 0

Ž .nŽ . N Ž .As t ¬ P 0, . y is continuous for all y g R , there exists w y g Ct
yt w Ž y . Ž .nŽ . Ž .with e s P 0, . y , where Re w y G 0 is a consequence of Lem-t
Ž . Ž .ma 4.2 3 . The limit relation for w y is also clear. Finally, the continuity

of w follows from

n
` ` y1yt yt ytw Ž y .e m dt y s e e dt s 1 q w y ,Ž . Ž .Ž .H Htž /0 0

` yt n NŽ . Ž . Ž .and the fact that H e m dt g C R holds by Theorem 2.6 1 .0 t b
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Ž .PROPOSITION 4.5. Each semigroup P of k-in¨ariant Markö kernelst t G 0
on R N has the following properties:

Ž . Ž N . Ž N .1 For f g C R and t G 0, P f g C R .0 t 0

Ž . Ž N .2 If t G 0 and f g C R with 0 F f F 1, then 0 F P f F 1.b t

Ž .3 P ( P s P for s, t G 0, and P is the identity kernel.s t sqt 0

Ž . 5 5 Ž N .4 lim P f y f s 0 for all f g C R .`t ª 0 t 0

Ž . Ž . Ž . Ž . ŽProof. Part 1 follows from Lemma 4.2 1 ; 2 and 3 are clear cf.
Ž .. Ž . Ž N . NProposition 4.4 2 . To prove 4 , take f g C R and x g R . The0

Ž .k-invariance of P and Levy’s continuity theorem Theorem 2.7 ensure´t
Ž .that the mapping t ¬ P x, . is weakly continuous at t s 0, and hencet

Ž . Ž . Nlim P f x s f x for all x g R . A standard argument based on thet ª 0 t
Ž . Ž . Žresolvents of the semigroup P now yields that 4 holds see, fort t G 0

w x.example, p. 115 of Wi .

4.1. The Generator

Ž .As a consequence of the above proposition, each semigroup Pt t G 0
Ž N .of k-invariant Markov kernels acts on C R as a strongly continuous0

positive contraction semigroup. Therefore, by a standard fact from Hille]
Yosida theory, the generator

1
Lf [ lim P f y fŽ .tttª0

5 5 Ž N .has a . -dense domain in C R . For later reference, we define the` 0
following extended domains of L:

1
N ND L [ fgC R : P fyf converges uniformly on R for tª0 ,Ž . Ž . Ž .t½ 5t

and

D L [ D L l C R N , D L [ D L l C R N .Ž . Ž . Ž . Ž . Ž . Ž .b b 0 0

Ž . Ž N . Ž N .Note that D L is the domain of L on C R , and that Lf g C R0 0 0
Ž .for f g D L .0

We also remark that for t ) 0 and x, y g R N,

P K ., iy x s P x , . n yy s P 0, . n yy K x , iyŽ . Ž . Ž . Ž . Ž . Ž . Ž .t t t

s P K ., iy 0 K x , iy ,Ž . Ž . Ž .t
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and hence

1
lim P K ., iy x y K ., iy xŽ . Ž . Ž . Ž .Ž .tttª0

1
s lim P K ., iy 0 y 1 K x , iy s yw y K x , iyŽ . Ž . Ž . Ž . Ž .Ž .tttª0

� Ž . N 4 Ž . Ž Ž ..Ž .uniformly. This yields that K ., iy : y g R ; D L and L K ., iy xb
Ž . Ž .s yw y K x, iy .

We next introduce Markov processes on R N associated with semigroups
of k-invariant kernels.

Ž . N ŽDEFINITION 4.6. A Markov process X on R with filtrationt t G 0
Ž . .FF is called k-invariant, if its transition probabilities satisfyt t G 0

< N NP X g A X s x s P x , A s, t G 0, x g R , A g BB RŽ . Ž .Ž . Ž .sq t s t

Ž .for some semigroup P of k-invariant Markov kernels. This process ist t G 0
Ž .called k-Gaussian, if P is a k-Gaussian semigroup in the sense oft t G 0

Section 3.3.
Ž . NProposition 4.5 says that k-invariant Markov processes X on Rt t G 0

have the so-called Feller]Dynkin property. The following theorem is
therefore a consequence of a general theorem of Dynkin, Kinney, and

Ž w x.Blumenthal see, for instance, Theorem III.14.4 of Wi .

THEOREM 4.7. Each k-in¨ariant Markö process on R N admits an equï -
alent cadlag ¨ersion, i.e., an equï alent Markö process with almost surely` `
right-continuous paths and limits from the left.

This result can be improved for k-Gaussian processes by using the fact
Ž .that the associated generator cD c ) 0 is a differential-differencek

operator. We need some preparation. Let R be a root system of the finite
reflection group W acting on R N. For each a g R let H be the hyper-a

plane orthogonal to a . Fix a Weyl chamber C of W, i.e, any connected
N Ncomponent of R R D H . The closure C of C in R is calleda g R a

a fundamental domain of W and can be identified with the space of
N Žall W-orbits on R in the obvious way where the latter space carries

. w xthe quotient topology ; see Section 1.12 of Hu . Using the canonical
projection

N Np: R ª R rW ( C , 4.2Ž .



ROSLER AND VOIT¨596

we first make the following observation:

Ž . NLEMMA 4.8. 1 Let P be a k-in¨ariant Markö kernel on R with
Ž . Ž Ž .. Ž N .P 0, A s P 0, g A for all g g W, A g BB R . Then P is W-in¨ariant,

i.e.,

P g x , g A s P x , A for all g g W , x g R N , A g BB R N .Ž . Ž . Ž . Ž .Ž .

Ž . Ž . N2 Let X be a k-in¨ariant Markö process on R such that itst t G 0
Ž .associated semigroup P of k-in¨ariant Markö kernels is W-in¨ariant.t t G 0

NŽ Ž ..Then the projection p X is a Markö process on R rW ( C; thet t G 0
associated semigroup of Markö kernels is gï en by

˜ y1 N NP p x , B [ P x , p B for x g R and B ; R rW a Borel set .Ž . Ž .Ž . Ž .t t

Ž . Ž .Proof. 1 The W-invariance of P 0, . , together with the fact that
Ž Ž . Ž .. Ž . N Ž Ž ..K g u , g ¨ s K u, ¨ for all u, ¨ g R and g g W Th. 2.2 4 , yields

Ž .nŽ Ž .. Ž .nŽ . Nthat P 0, . g y s P 0, . y for all g g W, y g R . Fix g g W and
N Ž Ž . Ž .. y1Ž Ž Ž . ..x g R . Using P g x , g . s g P g x , . , we conclude that

P g x , g . n y s gy1 P g x , . n yŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ž .

s K yigy1 z , y P g x , dzŽ . Ž .Ž .Ž .H
NR

s K yiz , g y P g x , dzŽ . Ž .Ž . Ž .H
NR

s K yig x , g y ? P 0, . n g yŽ . Ž . Ž . Ž .Ž . Ž .

s K yix , y ? P 0, . n y s P x , . n y .Ž . Ž . Ž . Ž . Ž .

The injectivity of the Dunkl transform now completes the proof.
˜Ž . Ž .2 The W-invariance of P ensures that P is in fact wellt t G 0 t

˜Ž Ž . .defined. Moreover, it is clear that P p x , . defines a probability measuret
N N Non R rW ( C for each x g R , and that for each Borel set B ; R rW,

N ˜w x Ž .the mapping R rW ( C ª 0, 1 , z ¬ P z, B is Borel measurable. Nowt
Ž .consider the canonical filtration FF associated with the processt t G 0

Ž . NX , and take s, t G 0 and a Borel set B ; R rW. Thent t G 0

˜ y1 y1 <P p X , B s P X , p B s P X g p B FFŽ . Ž . Ž .Ž . Ž . Ž .t s t s sqt s

<s P p X g B FFŽ .Ž .sq t s
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w xalmost surely; see, for instance, 42.3 in Ba . In particular, the conditional
Ž Ž . < . Ž .probability P p X g B FF is p X -measurable. As the filtrationsq t s s

˜ ˜Ž . Ž Ž ..FF associated with the process p X satisfies FF ; FF for t G 0,t t G 0 t t G 0 t t
it follows that

˜ ˜< <P p X g B FF s P p X g B p X s P p X , BŽ . Ž . Ž . Ž .Ž . Ž .Ž .sq t s sqt s t s

almost surely, which completes the proof.

Remark 4.9. The k-Gaussian kernels of Section 3 are obviously W-in-
Ž .variant. Moreover, all semigroups Q of k-invariant Markov kernelst t G 0

N Ž .on R constructed via subordination see Section 5 below from a semi-
Ž .group P of k- and W-invariant kernels are also W-invariant.t t G 0

THEOREM 4.10. Each k-Gaussian process on R N admits an equï alent
Ž .k-Gaussian process X with the cadlag property. The projection` `t t G 0

NŽ Ž ..p X of this process on R rW ( C has almost surely continuoust t G 0
paths.

Ž Ž ..Proof. In view of Theorem 4.7, it suffices to check that p X ist t G 0
w xa.e. continuous. Our proof follows the exposition in Section III.28 of Wi .

NŽ Ž ..Remember that p X is a Markov process on R rW ( C by Lemmat t G 0
˜Ž . Ž .4.8. The generator of the associated semigroup P acting on C C ist t G 0 0

given, up to a constant, by

² :=f x , aŽ .
L f s D f q 2 k a 4.3Ž . Ž .Ýk ² :a , xagRq

with domain

2 2 ² :C C [ f g C C : =f x , a s 0 for x g H l C , a g RŽ . Ž . Ž .� 40, W 0 a q

4.4Ž .

Žnotice that L coincides with the restriction of the Dunkl Laplacian tok
2Ž N ..W-invariant functions in C R . The local form of L yields readily that0 k

1
˜lim sup P x , C R U x s 0 4.5Ž . Ž .Ž .t ettx0 xgK

Ž .for all compacta K ; C and all e-balls U x around x with e ) 0; see, fore

w xinstance, Theorem 3.99 of Dy . This implies that for all compacta K ; C
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and all e , u ) 0,

ny1

lim P p X y p X ) e andŽ . Ž .½D k u r n Žkq1.u r nžnª` ks0

w xX g K for s g 0, u s 0.5s /
Ž Ž ..Together with the cadlag property of p X , this implies the almost` ` t t G 0

sure continuity.

Ž < <. w wIn the end of this section we consider the projection X on 0, `t t G 0
Ž . Nfor a k-Gaussian cadlag process X on R with generator D r2` ` t t G 0 k

Ž . Ž < <.without loss of generality . The process X has continuous paths byt t G 0

Theorem 4.10. Moreover, we shall see that this process is a Bessel process
of index a [ g q Nr2 y 1 G y1r2. For this, we first recapitulate that a

Ž a . w wBessel process B on 0, ` of index a ) y1 is a Markov processt t G 0

with continuous paths and with the transition probabilities

a < a aP B g A B s x s P x , AŽ .Ž .tqs s t

2 2 2yŽ x qy .r2 t 2 aq1[ j ixyrt e y dy 4.6Ž . Ž .H aaq1
A2 t G a q 1Ž . Ž .

w wfor t ) 0, s, x G 0, and A ; 0, ` a Borel set. We also notice here that the
Ž a . w w Ž .generator of the semigroup of Markov kernels P on 0, ` in 4.6 ist t G 0

given by the Bessel differential operator,

1 2a q 1
a 2 w wL f [ f 0 q f 9 f g C 0, ` , f 9 0 s 0 . 4.7Ž . Ž .Ž .Ž .ž /2 x

w xFor details on Bessel processes we refer to Section XI.1 of Rev-Y . In
particular, the following result is well known for k s 0:

Ž . NTHEOREM 4.11. If X is a k-Gaussian cadlag process on R with` `t t G 0
Ž < <.generator D r2, then X is a Bessel process of index g q Nr2 y 1 Gk t t G 0

y1r2.
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N � N < < 4Proof. Let x g R , 0 F a F b, and A [ z g R : a F z F b . Then,
Ž . G Ž . Ž .by use of Eq. 2.6 , the transition probabilities P x, A of X satisfytr2 t t G 0

P G x , A s G x , y , tr2 w y dyŽ . Ž . Ž .Htr2 k k
A

c 2 2k yŽ < x < q < y < .r2 ts e K xrt , y w y dyŽ . Ž .H kgqNr2
A2 tŽ .

c bks K xrt , rz w z ds zŽ . Ž . Ž .H H kgqNr2 ž /Ny1a S2 tŽ .

=eyŽ < x < 2qr 2 .r2 t r 2gqNy1 dr
2

s
gqNr22 t G g q Nr2Ž . Ž .

=
b 2 2yŽ < x < qr .r2 t 2gqNy1< <j i x rrt e r dr .Ž .H gqNr2y1

a

G Ž . < <This in particular ensures that P x, A depends on x only, and thetr2
assertion follows readily.

5. SUBORDINATION AND CAUCHY KERNELS

In this section we construct some examples of k-invariant Markov
kernels from the k-Gaussian semigroup of Section 3.3 by subordination.
This principle is based on convolution semigroups of probability measures

Ž . w won the group R, q that are supported by 0, ` ; it leads from a given
semigroup of kernels with certain algebraic properties to a new one with
the same algebraic properties. In the related setting of translation invari-
ant kernels on locally compact abelian groups, this principle is worked out

w xvery clearly in Section 9 of Be-Fo . The most prominent example of an
underlying subordinating semigroup is given by the Poisson semigroup

` kt
ytp [ e ? e . 5.1Ž .Ýt kž /k!ks0 tG0

Ž .To describe the construction, fix a convolution semigroup m oft t G 0
Ž . Ž w x.probability measures on the group R, q in the sense of Be-Fo , which

w w Ž . ` yx s Ž .is supported by 0, ` . The Laplace transforms LLm x [ H e dm st 0 t
Ž .Re x G 0 of m can be written ast

LLm x s eyt f Ž x . t G 0, Re x G 0 ,Ž . Ž .t
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Žw w. `Žx w. Žwith a unique function f g C 0, ` l C 0, ` . It is well known see
w x. w wSection 9 of Be-Fo that a function f : 0, ` ª R is a Bernstein function,

Ž .n ni.e., f G 0 and y1 D f F 0 for all n G 1, if and only if f is connected
Ž .with some convolution semigroup m of probability measures on thet t G 0

Ž . w wgroup R, q , supported by 0, ` , as described above. This leads to the
following result:

Ž .PROPOSITION 5.1. Let m and the Bernstein function f be related ast t G 0
Ž . Nabo¨e. If P is a semigroup of k-in¨ariant Markö kernels on R witht t G 0

negatï e definite function w, then

`

Q x , A [ P x , A dm sŽ . Ž . Ž .Ht s t
0

Ž . Ndefines a semigroup Q of k-in¨ariant Markö kernels on R witht t G 0
Ž . Ž .negatï e definite function f (w. We say that Q is obtained from Pt t G 0 t t G 0

Ž .by subordination with respect to m .t t G 0

Proof. For each t G 0, the kernel Q is a Markov kernel on R N witht

`n nQ x , . y s P x , . y dm sŽ . Ž . Ž . Ž . Ž .Ht s t
0

` ns K yix , y ? P 0, . y dm sŽ . Ž . Ž . Ž .H s t
0

s K yix , y ? Q 0, . n yŽ . Ž . Ž .t

and

` `n n ysw Ž y .Q 0, . y s P 0, . y dm s s e dm sŽ . Ž . Ž . Ž . Ž . Ž .H Ht s t t
0 0

s LLm w y s eyt f Žw Ž y.. .Ž . Ž .Ž .t

Together with Theorem 2.7 and the injectivity of the Dunkl transform, this
immediately leads to the assertion.

Ž . Ž . Ž .EXAMPLES 5.2. 1 The Poisson semigroup p of Eq. 5.1 ist t G 0
Ž . yxassociated with the Bernstein function f x s 1 y e . If P is any k-in-

variant Markov kernel on R N, then

` yt ke t
Žk .Q x , A [ P x , A ? ,Ž . Ž .Ýt k!ks0

with P Žk . s P ( P Žky1. , P Ž0. x , . s e ,Ž . x

defines a semigroup of k-invariant Markov kernels with negative definite
Ž . Ž .nŽ .function w x s 1 y P 0, . x .
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Ž . Ž . a w x2 The function f x s x is a Bernstein function for a g 0, 1 .
< < 2 NUsing the negative definite function x ¬ x on R associated with the

Ž G .k-Gaussian kernels P , we obtain from Proposition 5.1 and a timet t G 0
w xrescaling that for all a g 0, 1 and c ) 0,

< < 2 aw x [ c ? xŽ .c , a

is the negative definite function of a semigroup of k-invariant Markov
kernels.

Ž .3 If one takes a s 1r2 above, then the one-sided convolution
Ž . Ž .semigroup m on R, q associated with the Bernstein functiont t G 0

Ž . 1r2f x s x is given by

1 2y3r2 yt r4 sdm s s ? ts e ds s ) 0Ž . Ž .t '4p

Ž w x.see Section 9 of Be-Fo . By Proposition 5.1, the kernels Q associatedt
Ž . < <with the negative definite function w x s x are given by

Q x , A s ck x , y , t w y dy ,Ž . Ž . Ž .Ht k
A

with

`
kc x , y , t [ G x , y , s dm sŽ . Ž . Ž .H k t

0

`c t 2 2 2k yt r4 s yŽgqŽNq3.r2. yŽ < x < q < y < .r4 ss e s eHgqNr2 '4 4p 0

=
x

K , y ds, 5.2Ž .ž /2 s

where the weight function w and the constants g , c are given as ink k
kŽ .Section 2.1. In particular, for x s 0, c x, y, t can be computed explicitly

Ž 2 < < 2 .by using the substitution r s t q y r4 s and the Gamma-integral:

`c t 2 2kk yŽgqŽNq3.r2. yt r4 s y < y < r4 sc 0, y , t s ? s ? e ? e dsŽ . HgqNr2 '4 4p 0

Ž .gq Nq1 r2
`c t 4k yr gqŽNy1.r2s ? e r drH 2gqNr2 2ž /' < <4 4p t q y0

c G g q N q 1 r2 tŽ .Ž .ks ? . 5.3Ž .Ž .gq Nq1 r22' 2p < <t q yŽ .
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Having the classical case k s 0 in mind, we call the probability measures

dC k y [ ck 0, y , t w y dy 5.4Ž . Ž . Ž . Ž .t k

k-Cauchy distributions on R N, and ck the k-Cauchy kernel. Moreover, a
Markov process on R N is called a k-Cauchy process, if its transition

Ž .probabilities are associated with the semigroup Q of k-invariantt t G 0
Markov kernels above.

Proposition 5.1 has an interpretation on the level of k-invariant Markov
processes. In fact, the following result is a special case of Section X.7

w xin Fe :

Ž . Ž .Remark 5.3. Let m be a convolution semigroup on R, q sup-t t G 0
w w Ž .ported by 0, ` . Consider the associated cadlag process T defined on` ` t t G 0

Ž . w wsome probability space V, AA, P with state space 0, ` and with indepen-
dent, stationary, and nonnegative increments. Assume also that T ' 0.0

Ž .Moreover, let X be a k-invariant Markov process on the same spacet t G 0
Ž . Ž .V, AA, P , which is independent of T and also has the cadlag prop-` `t t G 0

Ž .erty. Denote the semigroup of k-invariant kernels associated with Xt t G 0
Ž . Ž . Ž .by P . Then the stochastic process Y on V, AA, P witht t G 0 t t G 0

Y v [ X v t G 0, v g VŽ . Ž . Ž .t T Žv .t

is a k-invariant Markov process on R N with the cadlag property and with` `
Ž .the same initial distribution as X . Moreover, this process is associ-t t G 0

ated with the semigroup of k-invariant Markov kernels on R N that is
Ž . Ž .obtained from P by subordination with respect to m .t t G 0 t t G 0

Ž .EXAMPLE 5.4. Let FF be a filtration on some probability spacet t G 0
Ž . Ž . Ž . ŽV, AA, P . Let B be a FF -Brownian motion on R in the classicalt t G 0 t t G 0

. Žsense and with continuous paths . It is well known see, for instance,
w x.Section 50 of Ba that the stopping times

� 4T v [ inf t G 0: B G t t G 0Ž . Ž .t t

Ž . w wform a process T on 0, ` with T s 0 and independent, stationary,t t G 0 0
and nonnegative increments; the associated convolution semigroup
Ž . 1Žw w.m ; M 0, ` is given by m s e andt t G 0 0 0

t 2yt r2 sdm s s ? e ds s, t ) 0 .Ž . Ž .t 3r2'2p ? s

Ž . NNow let X be a k-Gaussian Markov process on R with filtrationt t G 0
Ž . Ž .FF . Assume that X has the cadlag property and is independent` `t t G 0 t t G 0

Ž . Ž .of B . Remark 5.3 and Example 5.2 3 show thatt t G 0

Y v [ X v t G 0, v g VŽ . Ž . Ž .t T Žv .t

Ž . Ž . Ndefines a k-Cauchy process Y on V, AA, P with values in R .t t G 0
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We next turn to the connection between k-Cauchy kernels ck and the
Ž 2 . N w wLaplace-type equation D q ­ u s 0 on the upper half space R = 0, ` .k t

We start with the following observation:
k Ž y 2 . kŽ .LEMMA 5.5. The k-Cauchy kernel c satisfies D q ­ c x, y, t s 0k t

for x, y g R N, t ) 0.

Proof. The negative definite function of the k-Cauchy semigroup is
Ž . < < Ngiven by w x s x for x g R . Therefore, Proposition 5.1 and the inver-

Ž Ž ..sion formula Theorem 2.3 3 imply that

c2
kk yt < z <c x , y , t s K yix , z K iy , z e w z dz. 5.5Ž . Ž . Ž . Ž . Ž .H kgqNr2 N4 R

y Ž . < < 2 Ž .The lemma now follows from D K iy, z s y z ? K iy, z and inter-k
Ž y 2 . Ž .changing D q ­ with the integration in 5.5 . The latter is justified byk t

the decay properties of the integrand and its derivatives, which allow
Žapplication of the dominated convergence theorem. Note that by Theo-

n <n <Ž . < Ž . < < < .rem 2.2 2 , ­ K iy, z F z for all multi-indices n .y

Ž N .THEOREM 5.6. For each function f g C R , the function u gï en byb

u x , t s Q f xŽ . Ž . Ž .t

¡ k Nc x , y , t f y w y dy for t ) 0, x g RŽ . Ž . Ž .H k~ N[ 5.6R Ž .¢ Nf x for t s 0, x g RŽ .

Ž N w w. 2Ž N x w.is a C R = 0, ` l C R = 0, ` -solution of the Cauchy problemb
N x wu q D u s 0 on R = 0, ` .t t k

2Ž N x w.Proof. To check u g C R = 0, ` with u q D u s 0, we havet t k
only to make sure that the necessary differentiations of u may be carried

Ž . Ž .out under the integral in 5.6 . For this we again employ Theorem 2.2 2
Ž . ktogether with the representation 5.5 of the Cauchy densities c . This

ensures that the derivatives of ck are sufficiently fast decaying, the
dominated converge theorem now allows the necessary differentiations of

k Žu under the integral. Moreover, the positivity and normalization of c see
Ž .. 5 5 N 5 5 NExample 5.2 3 imply that u is bounded with u F f .`, R =w0, `w `, R

Ž . Ž .Finally, we have to show that Q f x ª f j for x ª j and t ª 0.t
Ž . kUsing representation 5.2 for c , we express Q by means of the heatt

Ž . Ž . ` Ž . Ž . Ž .operators H t of Section 3.2 as Q f x s H H s f x dm s , wheret 0 t
Ž . Ž .m is the convolution semigroup of Example 5.2 3 . Hence,t t G 0

`

Q f x y f j F H s f x y f j dm s .Ž . Ž . Ž . Ž . Ž . Ž .Ht t
0
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Ž . Ž . Ž . N w wNow fix e ) 0. The continuity of x, s ¬ H s f x on R = 0, ` from
Ž . < Ž . Ž . Ž . <Theorem 3.1 2 leads to some d ) 0 with H s f x y f j F e for

< < < <0 - s - d and x y j - d . Hence, for x y j - d ,

`

Q f x y f j F e q H s f x y f j dm sŽ . Ž . Ž . Ž . Ž . Ž .Ht t
d

5 5 w wF e q 2 f ? m d , ` .Ž .` t

Žw w.As lim m d , ` s 0, this completes the proof.t ª 0 t

6. MARTINGALE CHARACTERIZATIONS OF
k-INVARIANT MARKOV PROCESSES

In this section we construct some martingales related with k-invariant
Markov processes and show that k-invariant Markov processes appear as
unique solutions of certain martingale problems in the sense of Stroock

w xand Varadhan S-V . Parts of this section may be skipped by readers not
familiar with stochastic integration.

Our first result is well known for processes with independent, stationary
increments:

Ž .PROPOSITION 6.1. Let P be a semigroup of k-in¨ariant Marköt t G 0
N Ž . Nkernels on R . Then an arbitrary stochastic process X on R is at t G 0

Ž .Markö process related with P if and only ift t G 0

1
? K X , il 6.1Ž . Ž .tnž /P 0, . ylŽ . Ž .t tG0

is a martingale for each l g R N.
Ž . NMoreo¨er, if X is a k-Gaussian process on R with negatï e definitet t G 0

Ž . < < 2 Ž Ž . y< l < 2 t.function w l s l and X s 0 almost surely, then K X , l ? e0 t t G 0
is a martingale for each l g R N.

Ž . Ž .nŽ .Proof. Notice first that the semigroup P satisfies P x, . y / 0t t G 0 t
N Ž .for all t G 0 and x, y g R ; see Proposition 4.4 1 . This ensures that the

Ž .processes above are well defined. Let V, AA, P be the probability space on
Ž .which the process X is defined.t t G 0
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To check the only-if past, take s, t G 0 and l g R N. Then for almost all
v g V,

E K X , il FF v s E K X , il X vŽ . Ž . Ž . Ž .Ž . Ž .sq t s sqt s

s K x , il P X v , dxŽ . Ž .Ž .H t s
NR

ˆ ns d yl ? P 0, . ylŽ . Ž . Ž .X Žv . ts

s K X v , il ? P 0, . n yl .Ž . Ž . Ž .Ž .s t

Ž .n Ž .n Ž .n Ž .Hence, as P 0, . s P 0, . ? P 0, . , the process 6.1 is a martingale.sq t s t
To check the if past, take again s, t G 0 and l g R N. Then, by our

assumption,

nE K X , il FF s P 0, . yl ? K X , il a.s.Ž . Ž . Ž . Ž .Ž .sq t s t s

Ž .Now take F g FF with P F ) 0. Define the probability measure P ons F
Ž . Ž . Ž .y1 Ž . F FV, AA by P A [ P F ? P A l F . The distributions m , m gF s sqt

1Ž N .M R of X and X , respectively, under P satisfys sqt F

1nF Fm yl s K y , il dm y s K X , il dPŽ . Ž . Ž . Ž .ˆŽ . H Hsq t sqt sqt
N P FŽ .R F

1
s E K X , il FF dPŽ .Ž .H sq t sP FŽ . F

1 ns P 0, . yl ? K X , il dPŽ . Ž . Ž .H t sP FŽ . F

nn nF Fs P 0, . yl ? m yl s P (m yl .Ž . Ž . Ž . Ž .Ž . Ž .t s t s

N Ž Ž ..As this holds for all l g R , the injectivity Theorem 2.6 3 of the Dunkl
tranform yields that mF s P (mF. Hence, for each Borel set B ; R N

sqt t s
and each F g FF ,s

� 4 F1 dP s P X g B l F s P F ? m BŽ . Ž .Ž .H �X g B4 sqt sqtsq t
F

s P F ? P (mF B s P X v , B dP v .Ž . Ž . Ž . Ž .Ž .Ž . Ht s t s
F

Ž Ž . . Ž . Ž .As v ¬ P X v , B is s X -measurable, and as FF > s X , we obtaint s s s s
Ž < . Ž < . Ž .that P X g B FF s P X g B X s P X , B a.e. for all Borelsq t s sqt s t s

sets B ; R N. Hence, X is a k-invariant Markov process associated with
Ž .P , as claimed.t t G 0
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Ž .Finally, if X is k-Gaussian with X s 0 a.s., then the randomt t G 0 0
Ž . Nvariables K X , l are integrable for all t G 0 and l g R ; see Theoremt

Ž . Ž2.2 2 . The computation at the beginning of this proof with il instead
.of l yields the last statement of the proposition.

Ž .We next employ the negative definite function w of a semigroup Pt t G 0
of k-invariant kernels to rewrite Proposition 6.1. The proof will be based
on Ito’s stochastic integration by parts; for stochastic integration with

w xrespect to semimartingales, see K-S, W-W, Wi .

Ž .LEMMA 6.2. Let P be a semigroup of k-in¨ariant Markö kernels ont t G 0
N Ž N . Ž .R with negatï e definite function w g C R , and let X be a cadlag` `t t G 0

process on R N. Then, for each l g R N, the C-¨alued process
ŽŽ Ž .nŽ ..y1 Ž ..P 0, . yl . K X , il is a martingale if and only if the processt t t G 0

t
lX [ K X , il q w yl ? K X , il dsŽ . Ž . Ž .Ht t sž /0 tG0

is a martingale.

< Ž . < N Ž .Proof. As K x, il F 1 for x, l g R by Theorem 2.2 2 , both pro-
cesses of the lemma are uniformly and L2-bounded on compact time
intervals. Hence each of them is a martingale if and only if it is a local

2 Ž w x.L -martingale see, for instance, Proposition 4.2.3 of W-W .
ŽŽ Ž .nŽ ..y1 Ž ..Assume now that P 0, . yl ? K X , il is a martingale andt t t G 0

2 Ž Ž ..hence a local L -martingale. Then K X , il is a semimartingale.t t G 0
Ž . tw Žyl. w Ž .xIntegration by parts for K X , il e , together with t, K X , il s 0t t

Ž w x.for the mutual variation see Section 7.3 of W-W , implies that

d K X , il etw Žyl. s etw Žyl. dK X , il q K X , il detw Žyl. .Ž . Ž . Ž .Ž .t t ty

tw Žyl. Ž . tw Žyl. t Ž . t Ž .As de s w yl e dt and H K X , il ds s H K X , il ds a.s.,0 sy 0 s
it follows that

d K X , il etw Žyl. s etw Žyl. ? dK X , il q w yl K X , il dt .Ž . Ž . Ž . Ž .Ž .Ž .t t t

6.2Ž .

Therefore,

dK X , il q w yl K X , il dt s eyt w Žyl. ? d K X , il ew tŽyl.Ž . Ž . Ž . Ž .Ž .t t t

is the differential of a local L2-martingale, as claimed.
Ž l. Ž Ž ..Conversely, if X is a martingale, then K X , il is a semi-t t G 0 t t G 0

Ž . ŽŽ Ž .nŽ ..y1martingale, and Eq. 6.2 holds also. Hence, P 0, . yl ?t
2Ž ..K X , il is a local L -martingale, as claimed.t t G 0
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We next present several equivalent characterizations of homogeneous
N Ž .Markov processes X on R associated with a specific semigroup Pt t G 0

of k-invariant Markov kernels. In particular, such processes are unique
solutions of martingale problems in the spirit of Stroock and Varadhan
w xS-V .

We introduce the following abbreviation: If X is a cadlag process on` `
N Ž . Ž .R , and if L is the generator of P , then for f g D L we define thet t G 0

C-valued process

tL , f L , fP s P s f X y f X y L f X ds . 6.3Ž . Ž . Ž . Ž . Ž .Ž . HX X , t t 0 stG0 ž /0 tG0

Ž .THEOREM 6.3. Let P be a semigroup of k-in¨ariant Markö kernelst t G 0
on R N with negatï e definite function w and generator L. Then the following

Ž . Nstatements are equï alent for each cadlag process X s X on R :` ` t t G 0

Ž .1 X is a k-in¨ariant Markö process associated with the semigroup
Ž .P .t t G 0

Ž . N ŽŽ Ž .nŽ ..y1 Ž ..2 For each l g R the process P 0, . yl ? K X , il ist t t G 0
a martingale.

Ž . Ž Ž . Ž . t Ž . .3 K X , il q w yl ? H K X , il ds is a martingale for eacht 0 s t G 0
l g R N.

Ž . L, K Ž . , il. N4 P is a martingale for each l g R .X

Ž . L, f Ž .5 P is a martingale for each f g D L .X b

Ž . Ž . Ž .Proof. 1 m 2 m 3 follows from Proposition 6.1 and Lemma 6.2;
Ž . Ž . Ž . Ž . Ž .3 m 4 ¥ 5 is obvious, and 1 « 5 is the well-known Dynkin formula;

w xsee Proposition 4.1.7 of E-K .

Ž .The generator cD c ) 0 of a k-Gaussian semigroup of Markovk
kernels is a second-order differential-difference operator; it is more conve-

2Ž N . 2Ž N . 2Ž N .nient here to consider the spaces C R , C R and C R instead of0 b
Ž . Ž . Ž .the abstract domains D D , D D , and D D , respectively. Moreover,0 k b k k

Ž .condition 5 can be improved by using test functions f which also depend
Žon the time t this generalization is in fact also possible in the setting of

. 2, 1Ž N w w.Theorem 6.3 . To be precise, we take f g C R = 0, ` and a cadlag` `
process X on R N, and we define

P cD k , f s P cD k , fŽ .X X , t tG0

­t
s f X , t y f X , 0 y q cD f X , s ds .Ž . Ž . Ž . Ž .Ht 0 k sž /ž /­ s0 tG0
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Then, besides equivalences stated already in Theorem 6.3, we have the
following:

Ž .THEOREM 6.4. Let P be a semigroup of k-Gaussian Markö kernelst t G 0
on R N with generator cD , c ) 0. Then the following statements are equï a-k

Ž . Nlent for any cadlag process X on R whose radial component process` ` t t G 0
Ž < <. w wX on 0, ` is continuous:t t G 0

Ž . Ž .1 X is a k-Gaussian process associated with the semigroup P .t t G 0

Ž . cD k , f 2Ž N .5 P is a martingale for each f g C R .X c

Ž . cD k , f 2, 1Ž N w w.59 P is a martingale for each f g C R = 0, ` .X c

Ž . cD k , f 2Ž N .6 P is a local martingale for each f g C R .X

Ž . cD k , f 2, 1Ž N w w.69 P is a local martingale for each f g C R = 0, ` .X

Ž . Ž . Ž . Ž . Ž .Proof. 6 « 1 « 5 follows from Theorem 6.3. Moreover, 1 « 59
Žis known for arbitrary Feller]Dynkin processes apply Proposition 4.1.7 of

w x ŽŽ .. N w w.E-K to the Markov process X , t on R = 0, ` .t t G 0
Ž . Ž . Ž . Ž .It remains to check 5 « 6 and 59 « 69 . Here we check only

Ž . Ž . 2, 1Ž N59 « 69 , as both proofs are almost identical. For this take f g C R
w w.= 0, ` . For each m g N the exit times

< < 2 2 2T [ inf t G 0: X q t ) m� 4m t

ŽŽ .. Nq1of X , t from closed balls in R of radius m are stopping times.t t G 0
2, 1Ž N w w.Now choose f g C R = 0, ` , which are identically 1 on such balls.m c

2, 1Ž N w w. Ž cD k , f m f .Then f ? f g C R = 0, ` , and P is a uniformly inte-m c X , t n T m t G 0
Ž . Ž < <.grable martingale by 59 . Moreover, as X is continuous,t t G 0

P cD k , f m f s P
cD k , f for all t .X , t n T X , t n Tm m

As T ª ` for m ª `, it follows that P cD k , f is a local martingale. Thism X
Ž .proves 69 .

Ž . Ž .The assertions 6 and 69 in Theorem 6.4 are of particular interest for
Ž .functions satisfying ­r­ s q D f s 0. Examples of such functions will bek

provided by Appell characters in Theorem 8.2; see also the discussion in
Ž .Remark 8.3 1 .

We next present a probabilistic interpretation for Dirichlet problems in
2Ž .the Dunkl setting. For this, we say that a function f g C U is k-harmonic

on some open W-invariant set U ; R N if D f s 0 on U. The followingk
theorem needs stronger assumptions than in the classical setting k s 0.
This is due to the fact that k-Gaussian processes usually do not have a.s.
continuous paths.

THEOREM 6.5. Let U ; R N be open, bounded, and W-in¨ariant. Let
2Ž . Ž .h g C U l C U be a solution of the k-Dirichlet problem D h s 0 withk
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Ž .h s w g C ­U on ­U. Assume also that

Ž .1 h is W-in¨ariant, or that
Ž .2 there is an open set V > U such that h can be extended to a

k-harmonic function on V.

Then for all x g U,

h x s E h B x ,Ž . Ž .Ž .T

Ž x. Nwhere B is a k-Gaussian process on R starting in x, and T [t t G 0
� 4 xinf t ) 0: B g ­U is the entrance time of B at ­U.t t

Ž .Proof. Assume first that condition 1 holds. Consider the open, W-
invariant sets

U [ y g U: dist y , ­U - 1rn n G 1� 4Ž . Ž .n

� 4and the entrance times S [ inf t ) 0: B g U . Then the W-invariancen t n
of U, U , and h; the continuity of h on U, and Theorem 4.10 yield thatn

Ž x . Ž x .S ­T and h B ª w B almost surely. Now choose a function h gn S T nn2 N xŽ . Ž . Ž Ž ..C R with h s h on U . Then, by Theorem 6.4 5 , h B is ac n n t n S t G 0n

martingale. Thus,

h x s E h B x s E h B x for n G 1.Ž . Ž .Ž . Ž .Ž .0 Sn

Ž Ž x .. Ž Ž x ..As E h B ª E h B by the dominated convergence theorem, theS Tn

claim follows.
Ž .Assume now that condition 2 holds. Consider the open, W-invariant

sets

NV [ y g R : dist y , U - 1rn > U n G 1 .� 4Ž . Ž .n

˜Then, for large n, U ; V ; V ; V, and the stopping times S [ infn n n
˜ x x� 4 Ž . Ž .t ) 0: B f V satisfy S xT and h B ª w B almost surely by the˜t n n S Tn

W-invariance of U and V , and by Theorem 4.10. The proof is nown
completed as above.

7. MOMENT FUNCTIONS

The classical moments of probability measures on R, or more generally
on R N, have many applications to sums of independent random variables.
The definition of classical moments is based on the monomials, or ‘‘mo-
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ment functions,’’

m : R N ¬ R, x s x , . . . , x ¬ xn n g Z N . 7.1Ž . Ž .Ž .n 1 N q

We introduce modified moment functions for the Dunkl setting, which
have applications to k-invariant Markov kernels and processes. Our ap-

w xproach is motivated by corresponding results for hypergroups in Bl-He, Z .
Again, we fix a reflection group W with multiplicity function k G 0.

7.1. Modified Moment Functions

Ž . Ž . N=NThe Dunkl kernel x, y ¬ K x, y is analytic on C ; see Section 2.2.
Ž N . NTherefore, there exist unique analytic functions m n g Z on C withn q

m xŽ .n n NK x , y s y x , y g C . 7.2Ž . Ž .Ž .Ý
n !NngZq

The restriction of m to R N is called the n th moment function on R N
n

Ž . < <associated with W, k . The number n [ n q n q ??? qn is called the1 2 N
degree of m .n

We denote the jth unit vector by e g Z N. Hence, the moment functionsj q
Ž .of order 1 and 2 are given by m and m , respectively j, k s 1, . . . , N .e e qej j k

Moment functions have several useful descriptions: Clearly, m can alson

be written as

n <n < nm x s ­ K x , y s i ­ K x , yiy . 7.3Ž . Ž . Ž . Ž .Ž . Ž .n y yys0 ys0

From the definition of K, which involves the intertwining isomorphism V
Ž .on PP Section 2.2 , we see that

m x s V xn for n g Z N . 7.4Ž . Ž . Ž .n q

< <In particular, for each n g Z the moment functions m with n s nq n

form a basis of the space PP of all homogeneous polynomials of degree n.n

Ž . Ž . ² x, y: Ž . nEXAMPLES 7.1. 1 If k s 0, then K x, y s e and m x s x .n

Ž .2 If N s 1, W s Z , and k G 0, then the explicit form of K in2
Ž Ž ..terms of Bessel functions see Example 2.1 2 implies that for n G 0,

G k q 1r2 2n !Ž . Ž .
2 nm x s x andŽ .2 n 2 nG n q k q 1r2 2 n!Ž .

G k q 1r2 2n q 1 !Ž . Ž .
2 nq1m x s x .Ž .2 nq1 2 nq1G n q k q 3r2 2 n!Ž .
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Ž . Ž N3 The S case. For the symmetric group W s S acting on R byN N
.permuting the coordinates , the multiplicity function is a single parameter

k G 0. The associated Dunkl operators are given by

1 y si j
T s ­ q k i s 1, . . . , N ,Ž .Ýi i x y xi jj/i

where s denotes the operator transposing the coordinates x and x . Wei j i j
now compute the moment functions of degree F 2 by using the properties
of the operator V in Section 2.2. To obtain the first moment function mel

for
� 4 ² : N Nl g 1, . . . , N , we write Vx s a, x with a g R . Now let b [ Ý al is1 i

² : Ž .and use V 1 s 1. Then, T a, x s T Vx s V­ x s d s Kronecker d ;i i l i l i, l
on the other hand,

a x q a x y a x y a xi i j j j i i j² :T a, x s a q k s a 1 q kN y kb.Ž .Ýi i ix y xi jj/i

Ž . Ž . Ž .Hence, a s 1 q kb r 1 q kN and a s kbr 1 q kN for i / l. Summa-l i
tion yields b s 1 and

N1
m x s Vx s x q k x . 7.5Ž . Ž .Ýe l l il ž /1 q kN is1

Ž .A similar computation using 7.5 leads to

2N N1
2 2 2m x s Vx s x q k x q x q k xŽ . Ý Ý2 e l l i l il ž /ž /Nk q 1 Nk q 2Ž . Ž . is1 is1

NNk q 1 12 2 2s m x q x q k x .Ž .Ž . Ýe l il ž /Nk q 2 Nk q 1 Nk q 2Ž . Ž . is1

7.6Ž .

In particular, the Cauchy]Schwarz inequality ensures that

2 Nm x G m x G 0 for all x g R . 7.7Ž . Ž . Ž .2 e el l

Ž .In Proposition 7.2 we shall see that inequalities like 7.7 hold for general
reflection groups W. We mention that all moment functions can be
obtained as coefficients of some sophisticated power series, which makes

w xtheir computation much easier; for details see D4 .
Ž .4 The B case. Suppose that W is the Weyl group of type B ,N N

generated by sign changes and permutations. Here the multiplicity func-
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tion is characterized by two parameters k , k G 0, and the associated0 1
Dunkl operators are given by

1 y s 1 y s 1 y s s si i , j i j i , j
T s ­ q k q k q i s 1, . . . , N ,Ž .Ýi i 1 0 ž /x x y x x q xi i j i jj/i

Ž .where the operator s transfers the component x into yx , and s isi i i i, j
w x Ž .given as in the S case. From D5 or by explicit computation one obtainsN

� 4that for l, j g 1, . . . , N ,

xl
m x s Vx s ,Ž .e ll 1 q 2k q 2k N y 1Ž .1 0

x xl j
m s V x x s , for l / j, 7.8Ž . Ž .e qe l jl j 1 q 2k q 2k N y 1Ž .1 0

and

x 2 q k ÝN x 2
l 0 is1 i2m x s Vx s . 7.9Ž . Ž .2 e ll 1 q Nk 1 q 2 N y 1 k q 2kŽ . Ž .Ž .0 0 1

Ž . Ž .5 It is no accident that in the B case m x s Vx s cx holdsN e l ll
Ž .with a constant c s c W, k . In fact, the natural action of any reflection

group W on R N is a group representation, and the intertwining operators
Ž . NV s V k restricted to PP ( R are intertwining operators for this group1

w xrepresentation; see Theorem 2.3 of Dunkl D2 . Therefore, if W acts in an
N <irreducible way on R , then, by Schur’s lemma, V is a multiple of thePP1

identity.

We next collect some properties of moment functions. We mention that
w w wsimilar results are also available for hypergroups on 0, ` ; see Bl-He,

xRe-V, Z .
N N � 4PROPOSITION 7.2. For all x g R , n g Z , and l g 1, . . . , N ,q

Ž . Ž .1 T m s n q 1 ? m .l nqe l nl

Ž . < Ž . < < < <n < Ž .2 Ž .2 m x F x and 0 F m x F m x .n n 2n

Ž . nŽ N .3 Taylor formula: If f g C R for n g N, then

m yŽ .n nn < <f y s T f 0 q o y for y ª 0.Ž . Ž . Ž .Ý
n !N < <ngZ , n Fnq
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Moreo¨er, if f : C N ª C is analytic in a neighborhood of 0, then

` m yŽ .n nf y s T f 0 ,Ž . Ž .Ý Ý
n !ns0 < <n sn

where the series Ý` con¨erges absolutely and uniformly in a neighborhoodns0
of 0.

Ž . Ž .Proof. 1 The intertwining property of V in Section 2.2 and Eq. 7.4
yield

T m s T Vxnqel s V­ xnqel s n q 1 ? Vxn s n q 1 ? m .Ž . Ž .l nqe l l l l nl

Ž . Ž . Ž . N2 Theorem 2.2 5 and Eq. 7.3 imply that for each x g R there
1Ž N . � Nexists a probability measure m g M R with supp m ; z g R :x x

< < < <4z F x such that

m x s yn dm y for all n g Z N and x g R N ;Ž . Ž .Hn x q
NR

w xsee also R3 . The first inequality of the lemma is now clear from the
support properties of m , while the second one follows from Jensen’sx
inequality.

Ž .3 Assume first that f g PP is a polynomial. As V PP s PP andn n
n Ž . n Ž . n Ž .V 1 s 1, we have ­ f 0 s V­ f 0 s T Vf 0 . Thus,

yn yn

n y1 nf y s T Vf 0 and V f y s T f 0 ,Ž . Ž . Ž . Ž .Ž .Ý Ý
n ! n !n n

which gives

m yŽ .n nf y s T f 0 .Ž . Ž .Ý
n !n

Ž .The assertions in 3 now follow from the corresponding results for the
classical case.

7.2. Modified Moments of Probability Measures
1Ž N .We say that the n th moment of a probability measure m g M R

1Ž N .exists if m g L R , m holds; in this case, the n th moment of m isn

defined as

m m [ m dm n g Z N . 7.10Ž . Ž .Ž .Hn n q
NR
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For N G 2 it is not correct, even if k s 0, that the existence of the n th
Žmoment of m implies the existence of the r th moment for r F n which

.means that r F n for all i . This and additional difficulties in the Dunkli i
setting for k / 0 oblige us to restrict our further attention to the spaces

1 N 1 N < r < N < <M R [ mgM R : x dm-` for all r g Z with r FnŽ . Ž . Hn q½ 5NR

n G 0 .Ž .

The following criterion is slightly weaker than its classical counterpart; cf.
w x25.2 of Ba :

1Ž N .LEMMA 7.3. For n g N and m g M R , the following statements hold:

Ž . 1Ž N .1 m g M R if and only if the n th modified moment of m exists forn
N < <all n g Z with n F n.q

Ž . Ž . nŽ N .2 If one of the conditions in 1 holds, then m g C R , withˆ

< <nn < <­ m 0 s yi ? m m for n F n.Ž . Ž . Ž .ˆ n

Ž . Ž .Proof. 1 follows from the properties of V. To prove 2 , we use
Ž .Theorem 2.2 2 , which says that

n <n < <n < r2 <n < <n << < < < < <­ K x , iy F x F N x q ??? q xŽ . Ž .y 1 N

for all n g Z N , x , y g R N .q

n Ž . NThis guarantees that x ¬ ­ K x, iy is m-integrable for each y g R andy
< < Ž .n F n whenever one of the conditions in 1 holds. It is now standard to
check inductively with the dominated convergence theorem that m gˆ

n NŽ . Ž .C R , and the last identity follows from Eq. 7.3 .

LEMMA 7.4. Let P, Q be k-in¨ariant Markö kernels on R N such that for
N Ž . Ž . Ž . 1Ž N .all x g R , the measures P x, . , Q x, . , Q( P x, . are contained in M R .n

N N < <Then, for all x g R and n g Z with n F n,q

nŽ . Ž Ž .. Ž Ž .. Ž .1 m P x, . s m P 0, . ? m x ,Ýn r nyrrž /
rFn

and
nŽ . Ž Ž .. Ž Ž .. Ž Ž ..2 m Q( P x, . s m P x, . ? m Q 0, . .Ýn r nyrrž /

rFn
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Ž . Ž .Proof. 1 follows immediately from Lemma 7.3 2 , the Leibniz rule for
Ž .partial derivatives of products, and Eq. 7.3 ; in fact,

n<n < nm P x , . s i ? ­ P 0, . y ? K yix , yŽ . Ž . Ž . Ž .Ž . Ž .n y ys0

n n< r < rs i ? ­ P 0, . yŽ . Ž .Ž .Ý y ys0rž /
rFn

<n <y < r < nyr=i ? ­ K yix , yŽ . ys0y

ns m P 0, . ? m x .Ž . Ž .Ž .Ý r nyrrž /
rFn

Ž . Ž .Part 2 can be checked in the same way by using Lemma 4.2 2 .

The algebraic properties of moment functions in Lemma 7.4 can be used
to construct martingales for k-invariant Markov processes on R N. For
simplicity, we restrict our attention first to moments of degree at most 2.
The following proposition is motivated by corresponding results for hyper-

w x Ngroups in Z, Bl-He . We say from now on that an R -valued random
variable is L p-integrable, whenever all of its components have this
property.

Ž . NPROPOSITION 7.5. Let X be a R -¨alued, k-in¨ariant Marköt t G 0
Ž . Ž .process on some probability space V, AA, P with filtration FF . Lett t G 0

Ž .P be the associated semigroup of k-in¨ariant Markö kernels witht t G 0
negatï e definite function w. Then for all l, j s 1, . . . , N, the following conclu-
sions hold:

Ž . 1Ž . Ž . 1Ž N .1 Assume that X g L V, AA, P and P x, . g M R holds for0 t 1
N Ž Ž . Ž Ž ... Ž .all t ) 0 and x g R . Then m X y E m X is a FF -martin-e t e t t G 0 t t G 0l l

gale with

E m X s E m X y it ? ­ w 0 for all t G 0.Ž . Ž . Ž .Ž . Ž .e t e 0 ll l

Ž . 2Ž . Ž . 1Ž N .2 Assume that X g L V, AA, P and P x, . g M R holds for0 t 2
all t ) 0 and x g R N. Then the second-order moment function m has thee qel j

property that

m X y m X E m X y m X E m XŽ . Ž . Ž . Ž . Ž .Ž .Ž .ž e qe t e t e t e t e tl j l j j l

qE m X E m X y E m XŽ . Ž . Ž .Ž . Ž . Ž . /e t e t e qe tl j l j tG0



ROSLER AND VOIT¨616

Ž .is a FF -martingale. Moreo¨er, the ‘‘modified ¨ariances’’t t G 0

2lV X [ E m X y E m XŽ . Ž . Ž .Ž . Ž .k t 2 e t e tl l

satisfy

V l X s V l X q t ? ­ 2w 0 for all t G 0.Ž . Ž . Ž .k t k 0 l

Ž . Ž . Ž . Ž .n ytwProof. 1 By Proposition 4.4 3 we have w 0 s 0 and P 0, . s et
for t G 0. Therefore, by Lemma 7.3,

m P 0, . s i ? ­ P 0, . n 0 s yit ­ w 0 .Ž . Ž . Ž . Ž .Ž . Ž .e t l t ll

Ž .Now take s, t G 0. Lemma 7.4 1 ensures that for almost all v g V,

E m X FF v s m dP X v , .Ž . Ž . Ž .Ž .Ž . He sqt t e t sl lNR

s m P 0, . q m X vŽ . Ž .Ž . Ž .e t e sl l

s yit ? ­ w 0 q m X v . 7.11Ž . Ž . Ž .Ž .l e sl

Ž .If we take the usual expectation of both sides of 7.11 with s s 0, then we
Ž Ž ..obtain the formula for E m X in the proposition. Moreover, thise tl

Ž . Ž Ž . Ž Ž ...formula, together with 7.11 , readily yields that m X y E m Xe t e t t G 0l l

is a martingale.
Ž . Ž .2 Again, Proposition 4.4 3 and Lemma 7.3 yield that for t G 0,

m P 0, . s t ­ ­ w 0 y t 2 ? ­ w 0 ­ w 0Ž . Ž . Ž . Ž .Ž .e qe t l j l jl j

s t ­ ­ w 0 q m P 0, . m P 0, . .Ž . Ž . Ž .Ž . Ž .l j e t e tl j

Ž . Ž .Now take s, t G 0. Lemma 7.4 2 and Part 1 imply that for almost all
v g V,

E m X FF vŽ . Ž .ž /e qe sqt tl j

s m dP X v , .Ž .Ž .H e qe t sl jNR

s m P 0, . q m X v q m P 0, . m X vŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .e qe t e qe s e t e sl j l j l j

q m P 0, . m X vŽ . Ž .Ž . Ž .e t e sj l

s t ­ ­ w 0 y t 2 ? ­ w 0 ­ w 0 q m X vŽ . Ž . Ž . Ž .Ž .l j l j e qe sl j

y it ? ­ w 0 m X v q ­ w 0 m X v .Ž . Ž . Ž . Ž .Ž . Ž .l e s j e sj l
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Ž .If we combine this with Eq. 7.11 and take the usual expectations of these
equations, we obtain the martingale property claimed above. Finally, the
formula for modified variances follows from that equation with j s l and
Ž .7.11 again by taking the usual expectations.

Ž . Ž . Ž 1 N .Remarks 7.6. 1 Let X s X , . . . , X be a k-invariantt t G 0 t t t G 0
Ž .Markov process as studied in Proposition 7.5 1 . As the moment functions

Ž .m l s 1, . . . , N form a basis of the space PP of all homogeneouse 1l
Ž lpolynomials of degree 1 by Section 7.1, all component processes X yt

Ž l.. ŽE X form martingales under the corresponding integrability condi-t t G 0
.tion . This strict separation of the components is not usually possible for

higher moments.
Ž . Ž2 There exists an obvious analogue of Proposition 7.5 for not

. Ž .necessarily time-homogeneous k-invariant Markov processes X inn nG 0
Ž .discrete time that are related to a sequence P of k-invariant Markovn nG 0

kernels by

< N NP X g A X s x s P x , A for n G 1, x g R , A g BB R .Ž . Ž .Ž .n ny1 n

7.12Ž .

In particular, the methods of the proof of Proposition 7.5 yield that under
suitable moment conditions, the processes

2
m X y 2m X ? E m X q 2 ? E m XŽ . Ž . Ž . Ž .Ž . Ž .2 e n e n e n e nž l l l l

yE m X 7.13Ž . Ž .Ž .2 e n /l nG0

are martingales for l s 1, . . . , N. Moreover, the modified variances satisfy

2l lV X s V X q m P 0, . y m P 0, . . 7.14Ž . Ž . Ž . Ž . Ž .Ž . Ž .k n k ny1 2 e n e nl l

Ž .3 Let n G 1, and let P, Q be k-invariant Markov kernels with
Ž . Ž . 1Ž N . Ž .P 0, . , Q 0, . g M R i.e., all moments up to degree n exist . It is ourn

Ž . 1Ž N . Ž .conjecture that then automatically also Q( P 0, . g M R and P x, .n
1Ž N . Ng M R holds for all x g R . This conjecture is obviously true in then

classical setting k s 0; it can also be checked for the one-dimensional
Ž . Ž .examples discussed in Examples 2.1 2 and 7.1 2 . The proof there is based

Ž .on the knowledge of a convolution of measures in M R with sufficientlyb
w xnice properties; see R1 . Clearly, this can also be extended to direct

products of the one-dimensional case.

Ž . Ž .EXAMPLE 7.7 k-Gaussian processes . Let X be a k-Gaussiant t G 0
N Ž G .process on R associated with the k-Gaussian semigroup P andt t G 0
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starting in 0 at time 0; see Sections 3 and 4. In this case, all moments of
GŽ . NP x, . and X exist for all x g R and t G 0. Therefore, all assumptionst t

of the preceding results in Section 7 are satisfied. We can write

< <nytŽ .2nG yt < y < 2n NP 0, . y s e s y for t G 0, y g R .Ž . Ž . Ýt n !NngZq

Ž .Lemma 7.3 2 yields that

2n !Ž .
G <n < NE m X s m P 0, . s t n g Z , t G 0 , 7.15Ž . Ž . Ž .Ž . Ž . Ž .2n t 2n t qn !

Ž Ž ..as well as E m X s 0, whenever at least one component of n is odd.n t
In fact, this exactly extends the result known for classical N-dimensional
normal distributions.

Ž . Ž .If we apply Proposition 7.5 1 and Remark 7.6 1 , we conclude that the
Ž Ž .. Ž l.processes m X as well as the coordinate processes X aree t t G 0 t t G 0l

� 4 Ž .martingales for l g 1, . . . , N . Moreover, Proposition 7.5 2 , together with
Ž Ž ..E m X s 0, yields thate tl

m X y E m XŽ . Ž .Ž .ž /e qe t e qe tl j l j tG0

� 4is a martingale for all l, j g 1, . . . , N . As the moment functions me qej l
� 4form a basis of PP , it follows that for all l, j g 1, . . . , N , the processes2

X l ? X j y E X l ? X jŽ .Ž .t t t t tG0

are martingales. For higher moments, results of this type will be more
complicated; we deal with this problem in the next section.

Remark 7.8. As mentioned above, it is an interesting problem whether
Ž N .there exists a convolution ) on the Banach space M R associated withb

Ž .n Ž N .the Dunkl transform, i.e, with m)n s m ? n for all m, n g M R . If )ˆ ˆ b
Ž .existed, then all k-invariant Markov kernels would satisfy P x, . s

Ž . Ne ) P 0, . for x g R . Moreover, by Lemma 7.4, the moment functionsx
m would satisfyn

n N Ne )e m s m x m y x , y g R , n g Z . 7.16Ž . Ž . Ž . Ž .Ž .Ýx y n r nyr qrž /
rFn

Ž .Linear extension of 7.16 would lead to e )e for arbitrary polynomialsx y
in PP. On the other hand, it is possible to go the converse way and

Ž .to define a weak form of a generalized translation via 7.16 . This
w xcan be performed as in Be for the one-dimensional setting by using the
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estimation

< <n2 G Nm dP 0, . F 4 t ? n ! t ) 0, n g Z . 7.17Ž . Ž . Ž .Ž .H n t q
NR

Ž . Ž . Ž .In fact, 7.17 is a consequence of Proposition 7.2 2 , Eq. 7.15 , and the
Ž . <n < Ž .2relation 2n !F 4 ? n ! .

8. APPELL CHARACTERS AND
HERMITE POLYNOMIALS

Based on the moment funtions of the previous section and certain
Ž . Ž .N Ngenerating functions, we construct two systems R and S ofn n g Z n n g Zq qN Ž G .functions on R = R associated with the k-Gaussian semigroup P .t t G 0

These systems, called Appell characters and cocharacters, satisfy several
useful algebraic relations. Among other results, we present a new proof for

w xa generalized version of a formula of Macdonald M , which is due to
w xDunkl D3 . Our approach is motivated by related concepts in algebraic

w xprobability theory and white-noise analysis; see ADKS, F-S, B-K1, B-K2 ,
Ž .and references there. The notation of Appell co- characters has its origin

w xin the umbral calculus; see Rom . Parts of this section are also published
w xin R-V2 .
As several of these results can be obtained for more general k-invariant

semigroups than just the Gaussian ones without additional effort, we start
with some concepts in a general setting. Later on we shall restrict our
attention to the k-Gaussian case only.

8.1. Appell Characters

Ž .For n G 1, let P be a semigroup of k-invariant Markov kernels ont t G 0
N Ž . 1Ž N . NR such that P x, . g M R holds for all t G 0 and x g R . Let w bet n

the associated negative definite function. We know from Lemma 7.3 and
Ž .nŽ . yt w Ž y .Proposition 4.4 that P 0, . y s e is n times continuously partiallyt

differentiable with respect to y for all t G 0. Therefore,

K x , yiyŽ .
tw Ž y .y ¬ s K x , yiy ? eŽ .nP 0, . yŽ . Ž .t

is n times continuously partially differentiable for all t G 0 and x g R N.
By Taylor’s formula,

nyiyŽ . ntw Ž y . < <K x , yiy ? e s R t , x q o y for y ª 0,Ž . Ž . Ž .Ý nn !N < <ngZ , n Fnq

8.1Ž .
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where the functions R are determined uniquely and satisfyn

<n < n tw Ž y .R t , x s i ­ K x , yiy ? eŽ . Ž .Ž . ys0n y

n<n < r nyr tw Ž y .s i ­ K x , yiy ?­ eŽ . Ž .Ž .Ý y yys0 ys0rž /
NrgZ , rFnq

n ws m x ? a t . 8.2Ž . Ž . Ž .Ý r nyrrž /
NrgZ , rFnq

Ž .For the last equation Eq. 7.3 was used, and

w < l < l tw Ž y . N < <a t [ i ? ­ e l g Z , l F n 8.3Ž . Ž . Ž .Ž .ys0l q

< <is a real-valued polynomial in t g R of degree at most l . Note that by
Ž . wŽ . Ž Ž .. Ž .Lemma 7.3 2 , a yt s m P 0, . g R for t G 0. Clearly, formulas 8.2l n t

Ž .and 8.3 also make sense for all t g R. In summary, the functions Rn

Ž N . Ž . < <n g Z are real polynomials in N q 1 variables of degree n , and forq
Ž . < <each fixed t g R, R t, . is a real polynomial of degree n . We call then

Ž .polynomials R the Appell characters associated with the semigroup Pn t t G 0
Žwhere the reflection group W with multiplicity function k is assumed to

.be fixed .

LEMMA 8.1. In the setting of Section 8.1, the following holds for all
N < <n g Z with n F n:q

Ž . N1 In¨ersion formula: For all x g R and t g R,

n wm x s R t , x ? a yt .Ž . Ž . Ž .Ýn r nyrrž /
NrgZ , rFnq

Ž . Ž Ž .. N2 For all t g R and 0 F l F n, the family R t, . is an n g Z , <n < F lq
basis of the space [l

PP of all polynomials of degree at most l.jjs0

Ž . N3 For x g R and t G 0,

R t , y dP x , . y s m x .Ž . Ž . Ž . Ž .H n t n
NR

Ž . N � 4 Ž .4 For all x g R , t g R, and j g 1, . . . , N , T R t, x sj nqe j
Ž . Ž .n q 1 ? R t, x ; here the Dunkl operator T acts with respect to the ¨aria-j n j
ble x.
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Ž . Ž . Ž .Proof. 1 Using 8.1 and 8.3 , we obtain for y small enough that

K x , yiy s eyt w Ž y . ? etw Ž y .K x , yiyŽ . Ž .Ž .
aw ytŽ .l l n< <s yiy q o yŽ . Ž .Ýž /l!< <l Fn

=

ryiyŽ . n< <R t , x q o yŽ . Ž .Ý rž /r !< <r Fn

nyiyŽ .n nw < <s a yt R t , x q o y .Ž . Ž . Ž .Ý Ý nyr rrž /ž / n !rFn< <n Fn

Ž . Ž .A comparison of this expansion with Eq. 7.2 leads to Part 1 .
Ž . Ž .2 This follows from Part 1 of this lemma and the fact that

Ž .m is a basis of PP .n <n <sl l

Ž . Ž Ž .. wŽ . Ž .3 Recall that m P 0, . s a yt . Thus Eq. 8.2 and Lemmal t l

Ž .7.4 1 yield that

R t , y dP x , . yŽ . Ž . Ž .H n t
NR

n ws a t ? m y dP x , . yŽ . Ž . Ž . Ž .Ý Hnyr r trž / NRrFn

rn ws a t ? m P 0, . ? m xŽ . Ž . Ž .Ž .Ý Ýnyr l t rylrž / ž /ž /lrFn lFr

rn w ws a t ? a yt ? m x .Ž . Ž . Ž .Ý Ýnyr l rylrž / ž /ž /lrFn lFr

Ž .The assertion now follows from Part 1 .
Ž . Ž . Ž .4 By Eq. 8.2 and Proposition 7.2 1 ,

n q en q e jj w wT R s T m ? a s r q 1 m ? aŽ .Ý Ýj nqe j r nqe yr j r nyrj j r q ež / ž /r jrFnqe rFnj

n ws n q 1 ? m ? a s n q 1 ? R .Ž . Ž .Ýj r nyw j nrž /
rFn
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Ž .THEOREM 8.2. Let n G 1 and suppose that P is a semigroup oft t G 0
N Ž . 1Ž N .k-in¨ariant Markö kernels on R such that P x, . g M R for all t ) 0t n

N Ž . Nand x g R . Let X be a k-in¨ariant Markö process on R associatedt t G 0
Ž . N < < Ž Ž ..with P . Then for each n g Z with n F n, the process R t, Xt t G 0 q n t t G 0

is a martingale.

Proof. We prove more generally that for all y g R N and n g Z N withq
< <n F n, the process

Wn , y [ ­ n K X , yiy ? etw Ž y . 8.4Ž . Ž .Ž .Ž .t y t tG0

Ž .is a martingale. The theorem then follows for y s 0; see Eq. 8.2 .
< <The statement above will be proved by induction on n . In fact, the case

� 4n s 0 is shown in Proposition 6.1. Now take j g 1, . . . , N and let e gj
N N Ž n , y.Z ; R be the jth unit vector. Assume that W is a martingaleq t t G 0

N N < < Ž nqe j, y.for all y g R and some n g Z with n F n. To prove that Wq t t G 0
is a martingale, we observe that for t G 0,

1
n , y n , yqh?e nqe , yj jlim W y W s W pointwise.Ž .t t thhª0

Ž . w xMoreover, by the mean value theorem, we find r s r n , X , y, h g 0, ht
such that

< <n q11 sn , y n , yqh?e nqe , yqr?ej j j< < < <W y W s W F d X 8.5Ž .Ž . Ýt t t s th ss1

x xwith bounded constants d for h g 0, 1 . In fact, the last inequality aboves
Ž . Ž .follows from Eq. 8.4 and the estimations of Theorem 2.2 2 . The integra-

Ž . Ž .bility conditions on X and 8.5 ensure that the dominated conver-t t G 0
gence theorem may be applied to the limit above; hence,

1
n , y n , yqh?e nqe , yj jlim W y W y W s 0 for all t G 0.Ž .t t thhª0 1

Ž . Ž .It follows for the filtration FF associated with the process X thatt t G 0 t t G 0
for s, t G 0,

1
n , y n , yqh ?e nqe , ys j j <E W y W FF ª E W FF almost surelyŽ .Ž .sq t sqt t sqt tž /hs

Ž . Ž nqe j, y.for any sequence h with h x0. Hence, W is a martingale.s sG 0 s t t G 0
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Ž . < < Ž .Remarks 8.3. 1 For n s 1, 2, the martingales R t, X of Theoremn t
8.2 agree with the martingales of Proposition 7.5, i.e, Theorem 8.2 general-

Ž .izes Proposition 7.5. Moreover, Proposition 8.7 below and Theorem 3.1 3
yield that the Appell characters RG for the k-Gaussian semigroup satisfyn

Ž . G­ q D R s 0, reflecting the close connection between Theorems 8.2t k n

and 6.4.
Ž .2 There is a close connection between the Appell characters Rn

Ž k .and Dunkl’s intertwining operator V: Let n G 0, and let P be at t G 0
N kŽ .semigroup of k-invariant Markov kernels on R such that P x, . gt

1Ž N . N kM R for all t G 0 and x g R . Let R be the associated Appelln n

< < Ž .characters for n F n. By Theorem 2.2 5 , there exist probability measures
1Ž N .m g M R such that the negative definite function w associated withx

Ž k .P satisfiest t G 0

eyt w Ž y . s P k 0, . n y s e² z , yi y: dm z dP k 0, . xŽ . Ž . Ž . Ž . Ž .H Ht x t
N NR R

for t G 0, y g R N. Hence, the functions eyt w are positive definite in the
Ž 0.classical sense. Thus, by Bochner’s theorem, there is a semigroup Pt t G 0

Ž N . Ž . Nof R , q -translation invariant or, 0-invariant Markov kernels on R . If
0 Ž .the associated Appell characters are denoted by R , we obtain from 8.2

Ž .and 7.4 that

n nk w r w 0R t , x s m x a t s Vx a t s VR t , x .Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýn r nyr nyr nr rž / ž /
rFn rFn

8.6Ž .

We restrict our attention to k-Gaussian semigroups from now on.

8.2. Appell Characters of k-Gaussian Semigroups

Ž G .Let P be the k-Gaussian semigroup of Section 3, i.e.,t t G 0

c x y2 2kG yŽ < x < q < y < .r4 tdP x , . y s ? e K , ? w y dy.Ž . Ž . Ž .t kgqNr2 ž /' '2 t 2 t4 tŽ .

Ž .Here all moments exist, and the Taylor expansion 8.1 becomes a power
GŽ . Gseries. The coefficients a t of the associated Appell characters Rn n

GŽ . Ž GŽ .. Ž .satisfy a yt s m P 0, . for t G 0. Equation 7.15 and analytic con-n n t
tinuation show that for all t g R,

2n !Ž . < <nG Ga t s ? yt and a t s 0 otherwise,Ž . Ž . Ž .2n ln !
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i.e., if at least one component of l g Z N is odd. Therefore,q

n ! < <rG NR t , x s yt m x for n g Z .Ž . Ž . Ž .Ýn ny2 r qn y 2 r !r !Ž .NrgZ , 2 rFnq

8.7Ž .

In particular, the homogeneity of the moment functions m yields thatn

< <nG G N' 'R t , x s t ? R 1, xr t x g R , t ) 0 . 8.8Ž . Ž . Ž .Ž .n n

Ž . Ž . nEXAMPLES 8.4. 1 In the classical case k s 0 with m x [ x , Eq.n

Ž .8.7 leads to

x< <nG N N˜'R t , x s t ? H x g R , n g Z , t g R 8.9Ž . Ž .Ž .n n qž /'2 t

˜where the H are the classical, N-dimensional Hermite polynomials de-n

fined by

jnr2? @N y1 n!Ž . ny2 jH̃ x s H x with H y s 2 y ;Ž . Ž . Ž . Ž .Ł Ýn n i ni j! n y 2 j !Ž .is1 js0

w xcf. Section 5.5 of Sz for the one-dimensional case.

Ž . Ž .2 If N s 1, W s Z , and k G 0, then the results of Example 7.1 22
lead to

nG 2 n n Žky1r2. 2R t , x s y1 2 n! t L x r4 tŽ . Ž . Ž .2 n n

and
nG 2 nq1 n Žkq1r2. 2R t , x s y1 2 n! t xL x r4 tŽ . Ž . Ž .2 nq1 n

Ža . Žfor n g Z , where the L are the Laguerre polynomials see Section 5.1q n
w x.of Sz with

jn n1 d yxŽ .n q aŽa . ya x nqa yxL x s x e ? x e s .Ž . Ž . Ýn n ž /n y jn! dx j!js0

Ž G . ŽThe polynomials R are called generalized Hermite polynomials see,n nG 0
w x. Ž GŽ ..e.g., Ros . For each t ) 0 the polynomials R t, . are orthogonaln nG 0

with respect to the k-Gaussian measure

G k q 1r2Ž . 22 kG yx r4 t< <dP 0, . x s x e dx.Ž . Ž .t kq1r24 tŽ .
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An uninformed reader might suggest from these examples that k-Gaus-
sian Appell characters are always orthogonal with respect to the k-Gaus-

GŽ .sian measure P 0, . for t ) 0. We shall see, however, in Remark 8.6 thatt
this is not correct in many cases. We therefore now introduce so-called
Appell cocharacters, which turn out to form biorthogonal systems for
the Appell characters.

8.3. Appell Cocharacters of k-Gaussian Semigroups
GŽ . GŽ .Denote the P 0, . -density of the k-Gaussian measure P x, . byt t

Ž .u x, . for t ) 0. Thent

dP G x , . yŽ . Ž . 2t y < x < r4 tu x , y [ s e K x , yr2 tŽ . Ž .t GdP 0, . yŽ . Ž .t

` m xŽ .n Gs S t , y , 8.10Ž . Ž .Ý Ý nn !ns0 < <n sn

Ž .where, by Proposition 7.2 3 , the coefficients S are given byn

2G n y < x < r4 tS t , y s T e K x , yr2 t .Ž . Ž .Ž .n x xs0

GŽ . GŽ . < <Like the R t, . , the S t, . are polynomials of degree n . The conver-n n
` Ž . N Ngence of the series Ý in 8.10 is normal on C = C by Propositionns0

w x G3.8 of R2 . The functions S are called the Appell cocharacters of then

Ž G .k-Gaussian semigroup P .t t G 0
Ž .Using the homogeneity of m , we obtain the following analogue of 8.8 :n

< <n1
G G N'S t , y s ? S 1, yr t y g R , t ) 0 . 8.11Ž . Ž .Ž .Ž .n nž /'t

A comparison of the homogeneous parts of degree n in the expansions
Ž . Ž . Ž GŽ ..8.1 and 8.10 shows that the linear spaces generated by S t, . andn <n <sn
Ž GŽ .. Ž .R t, . are equal for each t ) 0. Hence, by Lemma 8.1 2 ,n <n <sn
Ž GŽ .. nS t, . is a basis of [ PP .n <n < F n jjs0

Appell characters and cocharacters are related by the following biortho-
gonality relation:

THEOREM 8.5. Let t ) 0, n , r g Z N, and let p g PP be a polynomial ofq
< <degree less than n . Then

Ž . GŽ . GŽ . GŽ .Ž .1 R t, y ? S t, y dP 0, . y s n !d .H n r t n , r
NR

Ž . Ž . GŽ . GŽ .Ž . Ž . GŽ . GŽ .Ž .2 p y ? S t, y dP 0, . y s p y ? R t, y dP 0, . yH Hn t n t
N NR R

s 0.
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Ž .Proof. We use the definition of u and Lemma 8.1 3 and conclude thatt
for x g R N,

m x s RG t , y u x , y dP G 0, . yŽ . Ž . Ž . Ž . Ž .Hn n t t
NR

` m xŽ .rG G Gs R t , y S t , y dP 0, . yŽ . Ž . Ž . Ž .Ý ÝH n r t
N r !R ns0 < <r sn

` m xŽ .r G G Gs R t , y S t , y dP 0, . y , 8.12Ž . Ž . Ž . Ž . Ž .Ý Ý H n r t
Nr ! Rns0 < <r sn

where we still have to justify that summation and integration commute.
For this, we restrict our attention to the case t s 1r4, as the general case
then follows by renormalization. We follow the proof of Proposition 3.8 of
w x Ž .R2 and decompose u x, y into its x-homogeneous parts:1r4

` m xŽ .n Gu x , y s L y , x with L y , x s S 1r4, y .Ž . Ž . Ž . Ž .Ý Ý1r4 n n nn !ns0 < <n sn

Ž .The estimations of Theorem 2.2 2 imply that

< < 2 nx n2< <L y , x F ? 1 q 2 y for n g Z ,Ž . Ž .2 n qn!

Žand a similar estimation holds for odd indices. For details see the proof of
w x .3.8 in R2 . Therefore,

`
G GL y , x R 1r4, y dP 0, . y - `.Ž . Ž . Ž . Ž .Ý H n n 1r4

NRns0

The dominated convergence theorem now justifies the last step in Eq.
Ž . Ž . Ž .8.12 for t s 1r4, which yields Part 1 of the theorem. Part 2 follows

Ž . Ž .from Part 1 , together with Lemma 8.1 2 and the present section.

Remark 8.6. The most important case of the biorthogonality in
Ž . Ž GŽ .. NTheorem 8.5 1 occurs for t s 1r2. It shows that R 1r2, . isn n g Zq

G Ž .orthogonal with respect to the k-Gaussian measure dP 0, . if and only if1r2
GŽ . GŽ .R 1r2, x s c S 1r2, x with suitable constants c g R. A comparisonn n n n

Ž . Ž . Ž .of the expansions 8.1 and 8.10 shows that this is equivalent to m x sn

c xn. This is in fact obviously true for Examples 8.4. On the other hand,n

this is not correct for the S and the B cases of Examples 7.1 for N G 3.N N
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The following result reflects the dual nature of k-Gaussian characters
and cocharacters.

PROPOSITION 8.7. Let t g R, x g R N, and n g Z N. Thenq

< <n1
G ytD G ytD nk kR t , x s e m x and S t , x s e x .Ž . Ž . Ž .n n n ž /2 t

Ž . Ž . tD k GŽ .Proof. Lemma 8.1 3 and Theorem 3.1 1 yield that e R t, x sn

Ž .m x for t G 0. This yields the first statement for t G 0. As both sidesn

there are polynomials in t, this holds generally.
Let D y be the k-Laplacian acting on the variable y, and let V be thek x

intertwining operator acting on the variable x. Then

etD y
k ey< x < 2 r4 tK x , yr2 t s ey< x < 2 r4 t ? e < x < 2 r4 tK x , yr2 tŽ . Ž .Ž .

s K x , yr2 t s V e² x , yr2 t: .Ž . Ž .x

Now consider on both sides the homogeneous part W of degree n in then
Ž .variable x. Using the left-hand side, we obtain from 8.10 that

m x m xŽ . Ž .y yn ntD G tD Gk kW s e S t , y s e S t , y .Ž . Ž .Ý Ýn n nž /n ! n !< < < <n sn n sn

Moreover, using the right-hand side, we conclude from Section 2.2 and
Ž n . Ž .V x s m x thatn

xn m xŽ .nn n
W s V yr2 t s yr2 t .Ž . Ž .Ý Ýn x ž /n ! n !< < < <n sn n sn

A comparison of the corresponding coefficients leads to the second state-
ment.

We now combine Theorem 8.5 and Proposition 8.7 to rediscover a
w x w xgeneralization of a formula of Macdonald M due to Dunkl D2 ; our
w xproof is completely different from that in D2 . We need the following

w xnotation: For a multiplicty function k G 0, the bilinear form ., . on PP isk
given by

w xp , q [ p T q 0 for p , q g PP.Ž . Ž .Ž .k
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COROLLARY 8.8. For all p, q g PP and t ) 0,

1
ytD ytD Gk kw xp , q s ? e p ? e q dP 0, . .Ž .Ž . Ž .Hk t< <n NR2 tŽ .

w xIn particular, ., . is positï e-definite and symmetric on PP.k

N Ž .Proof. Let t ) 0 and n , r g Z . Then, by Theorem 8.5 1 and Proposi-q
tion 8.7,

1
ytD n ytD Gk k? e x ? e m dP 0, . s n !? d .Ž . Ž .Ž .H r t n , r< <n NR2 tŽ .

On the other hand, as V acts on PP in a homogeneous way:

n n n r n rx , m s T m 0 s T Vx 0 s V ­ x 0 s n !? d .Ž . Ž . Ž . Ž . Ž .Ž .Ž .r r n , rk

This yields the first statement. The second statement is clear.

We give a further application of Theorem 8.5 for t s 1r2. For this, we
U Ž .employ the adjoint operator T of the Dunkl operator T j s 1, . . . , Nj j

2Ž N G Ž ..on L R , dP 0, . , which is given by1r2

TU f x s x f x y T f x s ye < x < 2 r2 ? T ey< x < 2 r2 f x f g PP ;Ž . Ž . Ž . Ž . Ž .Ž .j j j j

8.13Ž .

w x Žsee Lemma 3.7 of D2 . The second equation is a consequence of the
Ž Ž .. .product rule Section 2.2 3 .

COROLLARY 8.9. For all n g Z N, j s 1, . . . , N, x g R N, and t ) 0,q

Ž . G Ž . U GŽ .1 S 1r2, x s T S 1r2, x .nqe j nj

Ž . GŽ . Ž . <n < < x < 2 r4 t n Ž y< x < 2 r4 t.2 Rodriguez formula: S t, x s y1 e T e .n

Proof. For simplicity, we suppress the time parameter t s 1r2 in Part
Ž . Ž . Ž . N1 . Theorem 8.5 1 and Lemma 8.1 4 yield that for all r g Z ,q

RG ? TUSG dP G s T RG ? SG dP G s r q 1 RG ? SG dP GŽ .H H Hrqe j n j rqe n j r nj jN N NR R R

s d ? r q e !s RG ? SG dP G .Ž . Hr , n j rqe nqej jNR

2Ž N G Ž .. Ž . Ž .As PP is dense in L R , dP 0, . , Part 1 is clear. Part 2 for t s 1r21r2
Ž .follows now from 8.13 , and the general case is a consequence of

Ž .Eq. 8.11 .
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Theorem 8.5 and orthogonalization within the spaces

V [ eyD k r4 PP ; PPn n

N G Ž .lead to systems of orthogonal polynomials on R with respect to P 0, . .1r4
Such polynomials are called generalized Hermite polynomials; they are

w xdiscussed in B-F1, B-F2, vD, L, R2 , and references cited therein. Here
we discuss only some main features of these polynomials:

8.4. Generalized Hermite Polynomials

� N 4 Ž w x .Let w , n g Z be an orthonormal basis of PP, ., . with real coeffi-n q k
cients and with w g PP . As PP s [ PP and PP H PP for n / m, then <n < n n mnG 0

< <w with n s n can be constructed, for example, by Gram]Schmidt or-n

thogonalization within PP from an arbitrary ordered real-coefficient basisn
� N 4of PP . The generalized Hermite polynomials H , n g Z associated withn n q

� 4 Nthe basis w on R are defined byn

H x [ 2 <n < eyD k r4w x g V . 8.14Ž . Ž . Ž .n n <n <

2Ž N G Ž . ŽBy a standard argument, PP is dense in L R , dP 0, . see, for in-1r4
w x. � y< n < r2stance, R3 . It thus follows from Corollary 8.8 that the 2 H ,n

N 4 2Ž N G Ž ..n g Z form an orthonormal basis of L R , dP 0, . .q 1r4
We conclude this section with a list of known properties of generalized

Hermite polynomials and of k-Gaussian Appell characters and cocharac-
ters.

PROPOSITION 8.10. For all t g R, x, y g R N, n g N, and n g Z N:q

1 <n <
G ytD G ytD nk kŽ . Ž . Ž . Ž .1 R t, x s e m x and S t, x s e x .n n n ž /2 t

Ž . G Ž . Ž .2 Rodriguez formulas for R and H : Let m T and w T denoten n n n

Ž . Ž .the operators that are obtained from m x , w x by replacing the ¨ariables xn n j
by the Dunkl operators T . Thenj

< < 2 2nG < x < r4 t y < x < r4 tR t , x s y2 t e m T eŽ . Ž . Ž .n n

and
< < 2 2n < x < y < x <H x s y1 e w T e .Ž . Ž . Ž .n n

Ž .3 Eigenfunctions of a CMS-type Schrodinger operator: The functions¨
GŽ . GŽ .R t, . and S t, . satisfyn n

N

< <4 tD y 2 x ­ f s y2 n ? f .Ýk l lž /
ls1

Moreo¨er, H is a solution of this equation for t s 1r4.n
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Ž . Ž . y< x < 2 r8 t GŽ . Ž . y< x < 2 r8 t Ž .4 The functions f x [ e R t, x and f x [ e S t, xn n

satisfy

< < 2 < <4 tD y x f s y 2 n q 2g q N f .Ž .Ž .k

Ž . y< x < 2 r2 Ž .Moreo¨er, the Hermite function h x [ e H x sol̈ es this equationn n

for t s 1r4.
Ž . Ž .5 Eigenfunctions of the Dunkl transform: If p g V and h x sn

y< x < 2 r2 ˆ gqNr2 y1 nŽ . Ž .e p x , then h s 2 c yi h.k

Ž . < <6 Mehler formula: For all r g C with r - 1,

H x H yŽ . Ž .n n <n <rÝ <n <2NngZq

RG 1r4, x SG 1r4, yŽ . Ž .n n <n <s rÝ
n !NngZq

2 < < 2 < < 21 r x q y 2 rxŽ .
s exp y K , y .

gqNr2 2 2½ 5 ž /2 1 y r 1 y r1 y rŽ .

Ž . Ž .Proof. Part 1 is Proposition 8.7, and Part 2 follows from Corollary
w x Ž .8.9; for the Hermite polynomials, it is shown in R2 . Part 3 follows for

Ž . Ž . w xt s 1r4 from Part 1 and Theorem 3.4 1 of R2 ; renormalization then
leads to the case t ) 0, and the general case follows by analytic continua-

Ž . Ž . w xtion. Part 4 follows in the same way from Theorem 3.4 2 of R2 . Finally,
Ž . Ž . w xPart 5 and Part 6 for the Hermite case are also shown in R2 . The

Ž .extension in 6 to Appell characters is a consequence of the identity

m x ? ynŽ .n
K x , y s w x w y s ,Ž . Ž . Ž .Ý Ýn n n !n n

w x Ž .which follows from Lemma 3.1 in R2 and Eq. 7.2 . The proof can now be
w xcompleted in the same way as in R2 , by an obvious extension of Lemma

3.11 there; we omit the details.

9. STRONG LAWS AND TRANSIENCE

In this section we present some limit theorems for k-invariant Markov
processes on R N in continuous and discrete time. Our first result is the
iterated logarithm for k-Gaussian processes.
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Ž .THEOREM 9.1. Let X be a k-Gaussian, right-continuous process ont t G 0
R N with X s 0 a.e. and with generator D r2. Then, almost surely,0 k

< < < <X Xt t
lim sup s 1 and lim sup s 1.

y1'2 t ln ln tŽ . '2 t ln ln ttª` tª0 Ž .

Ž < <.Proof. As X is a Bessel process of index g q Nr2 y 1 G y1r2t t G 0
Theorem 4.11, the assertion follows from a corresponding result for Bessel
processes. This is known to specialists, but for the sake of completeness we
include a proof: By the classical law of the iterated logarithm for Brownian

d Ž w x. Ž a .motions on R see Section 47 of Ba , Bessel processes B of indext t G 0
a s dr2 y 1 G y1r2 satisfy

B a B a
t t

lim sup s 1 and lim sup s 1 a.e.
y1'2 t ln ln tŽ . '2 t ln ln ttª` tª0 Ž .

To extend this to all a G y1r2, one has to notice that Bessel processes
Ž a .exist for all a ) y1, and that for independent Bessel processes Bt t G 0

Ž b . ŽŽŽ a .2 Ž b .2 .1r2 .and B on a common probability space, B q B ist t G 0 t t t G 0
w xagain a Bessel process of index a q b q 1; see Section XI.1 of Rev-Y .

Hence, for all a G y1r2 we can realize Bessel processes on a common
probability space such that

.? @ ? @2 a r2 a Ž 2 a q1 r2B F B F B .t t t

This completes the proof.

We turn next to strong laws of large numbers for general k-invariant
Markov processes. For simplicity, we restrict our attention to processes in
discrete time with rather strong moment conditions. To describe the

1Ž N .setting, we recapitulate that M R denotes the space of all probability2
Ž .measures on R having all moments up to order 2. Let P be an nG1

N Ž .sequence of k-invariant Markov kernels on R such that P x, . gn
1Ž N . N ŽM R holds for all n G 1 and x g R . Then a k-invariant usually2

. Ž . Ntime-inhomogeneous Markov process X on R associated withn nG 0
Ž .P satisfiesn nG1

< N NP X g A X s x s P x , A for n G 1, x g R , A g BB R .Ž . Ž .Ž .n ny1 n

In this case, the following version of Kolmogorov’s law of large numbers
holds:

Ž . NTHEOREM 9.2. Let X be a k-in¨ariant Markö process on R withn nG 0
Ž .X s 0 a.e. and associated with P as described abo¨e. Let j g0 n nG1
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� 4 Ž . x w1, . . . , N and r ; 0, ` be a sequence with lim r s ` andn nG1 nª` n

` 1 2
m P 0, . y m P 0, . - `. 9.1Ž . Ž . Ž .Ž . Ž .Ý ž /2 e n e nž /j jrnns1

Then, almost surely,

1
lim m X y E m X s 0.Ž . Ž .Ž .ž /e n e nj jtª` r' n

Ž Ž ..Proof. Proposition 7.5 in the discrete-time setting cf. Remark 7.6 2
implies that

m X y 2m X ? E m XŽ . Ž . Ž .Ž .2 e n e n e nž j j j

2q2 ? E m X y E m XŽ . Ž .Ž . Ž .e n 2 e n /J j nG0

is a martingale, and that for n G 1,

2 2
E m X y E m X y E m X y E m XŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .2 e n e n 2 e ny1 e ny1j j j j

2
s m P 0, . y m P 0, . .Ž . Ž .Ž . Ž .ž /2 e n e nj j

Ž .2 Ž .As m G m by Proposition 7.2 2 , it follows from Jensen’s inequality2 e ej j
Ž .that both sides above and all summands of 9.1 are nonnegative. In

particular, we conclude that

2
Y [ m X y 2m X ? E m X q E m XŽ . Ž . Ž . Ž .Ž . Ž .n 2 e n e n e n e nž /j j j j nG0

is a nonnegative submartingale with

` `1 1 2
E Y y Y s m P 0, . y m P 0, . - `.Ž . Ž . Ž .Ž . Ž .Ý Ý ž /n ny1 2 e n e nž /j jr rn nns1 ns1

Ž w x.Chow’s law of large numbers see Corollary 3.3.4 of St now yields that
Ž .2lim Y rr s 0 a.e.. As m G m ensures thatnª` n n 2 e ej j

2
m X y E m X F Y ,Ž . Ž .Ž .ž /e n e n nj j

the proof is complete.
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Ž .If assumption 9.1 in Theorem 9.2 holds for all j s 1, . . . , N, then the
² Ž . Ž .:conclusion of the theorem holds for all j, and as m x , . . . , m x se e1 N

² :x , . . . , x , it follows that1 N

1
lim X y E X s 0 a.e., 9.2Ž . Ž .Ž .n n

nª` r' n

Ž . Ž Ž 1. Ž N .. Nwhere the abbreviation E X [ E X , . . . , E X g R is used. Inn n n
Žthe time-homogeneous case i.e., the P are independent of n and equal ton

.some kernel P , we obtain, in particular, the following:

Ž .COROLLARY 9.3. Let X be a k-in¨ariant, time-homogeneousn nG 0
Markö process with X s 0 and associated with some k-in¨ariant Markö0

Ž . 1Ž N .kernel P satisfying P 0, . g M R . Then2

1
x xlim X y E X s 0 a.e. for all l g 1r2, 1 .Ž .Ž .n nlnnª`

In the end of this section, we turn to a transience criterion for semi-
groups of k-invariant Markov kernels on R N. We start with some prepara-
tory notation:

Ž .DEFINITION 9.4. Let P be a semigroup of k-invariant Markovt t G 0
kernels on R N.

Ž . Ž .1 The semigroup P is said to be transient ift t G 0

`
q N Nk f x [ P f x dt - ` for all f g C R , x g R .Ž . Ž . Ž .H t c

0

The positive kernel k defined by this equation is called the potential
Ž . Ž .kernel for P .t t G 0

Ž . Ž .2 If P is not transient, then it is called recurrent.t t G 0

Ž . qŽ N . Ž .3 The resolvent measures r g M R of P are given byl b t t G 0

`
yl tr s e P 0, . dt for l ) 0.Ž .Hl t

0

It is easily seen via monotone convergence that in each case the resolvents
Ž . Ž . Ž N .r are related to the potential k by k f 0 s lim r f for f g C R .l lª 0 l c

Similar to the setting of locally compact abelian groups or commutative
Ž w x w x.hypergroups see Be-Fo and Bl-He , there exist transience criteria in

Žterms of negative definite functions. We say from now on that a measura-
. N < Ž . < Ž .ble function g : R ª C is locally w -integrable, if H g x w x dx - `k L k
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for all compacta L ; R N. With this notation, we have the following
theorem:

Ž .THEOREM 9.5. Let P be a semigroup of k-in¨ariant Markö kernelst t G 0
N Ž N .on R with negatï e definite function w g C R .

Ž . Ž . Ž .1 If P is transient, then Re 1rw is locally w -integrable.t t G 0 k

Ž . Ž . Ž .2 If 1rw is locally w -integrable, then P is transient withk t t G 0
5 5 qŽ N .k f - ` for all f g C R .` c

Ž . Ž . Ž .Proof. 1 Combining Lemma 4.2 3 and Proposition 4.4 3 , we first
Ž .observe that Re w G 0, and hence Re 1rw G 0. For a fixed compactum

N q N ˆ q N 1 NŽ . Ž . Ž Ž . .L ; R , we choose f g C R with f g C R l L R , w x dxc 0 k
ˆand f G 1 on L according to Lemma 2.5. Therefore, Fatou’s lemma,

Ž .Theorem 2.6 2 , as well as

` ` 1n ytl ytŽw Ž y .ql.r y s P 0, . y e dt s e dt s , 9.3Ž . Ž . Ž . Ž .ˆ H Hl t l q w yŽ .0 0

lead to

1
Re 1rw x w x dx s lim Re w x dxŽ . Ž . Ž .Ž .H Hk kž /l q w xlx0 Ž .L L

1 ˆF lim inf Re f x w x dxŽ . Ž .H kž /N l q w xlx0 Ž .R

1ˆF lim inf f x Re w x dxŽ . Ž .H kž /N l q w xlx0 Ž .R

1
nn yF lim f d r q r - `.Ž .H l l

N2lx0 R

Ž .Part 1 is now clear.

Ž . qŽ N .2 Now assume that 1rw is locally w -integrable. For f g C Rk c
qŽ N . Nwe find g g C R with f F g on R by Lemma 2.5. Hence, Theoremˆc

Ž . Ž .2.6 2 , the dominated convergence theorem, and Theorem 2.2 2 imply that
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for all x g R N,

`
yl tk f x F k g x F lim sup g y dP x , . y e dtŽ . Ž . Ž . Ž . Ž .ˆ ˆH H t

N0 Rlx0

` n yl ts lim sup g y P x , . y w y dy e dtŽ . Ž . Ž . Ž .H H t k
N0 Rlx0

g yŽ .
s lim sup K yix , y w y dyŽ . Ž .H k

N l q w yŽ .Rlx0

g yŽ .
s K yix , y w y dyŽ . Ž .H k

N w yŽ .R

g yŽ .
F w y dy - `,Ž .H k

N w yŽ .R

which gives the transience as claimed.

COROLLARY 9.6. A semigroup of k-Gaussian kernels on R N is transient if
and only if 2g q N ) 2.

Ž . < < 2Proof. The negative definite function is here given by w x s x .
Hence, for 2g q N ) 2,

1 Ž .2 k ay2< < ² :w x dx s x a , x dxŽ . ŁH Hkw xŽ .< < < <x F1 x F1 agRq

< < 2gy2F C x dx - `H
< <x F1

with a suitable constant C. On the other hand, if 2g q N F 2, then either
N s 2 with g s 0 or N s 1 with g F 1r2, i.e., a classical two-dimensional
recurrent Gaussian semigroup emerges, or, in the second case, one has

1 y2 1 2gy2Ž .H x w x dx s H x dx s `, which also yields recurrence.y1 k y1

Ž . < <The negative definite function of a k-Cauchy process is w x s c x for
some c ) 0; hence:

COROLLARY 9.7. A k-Cauchy semigroup on R N is recurrent if and only if
N s 1 and k s 0.

Remark 9.8. It is well known that a convolution semigroup on a locally
compact abelian group is transient if and only if the associated negative

Ž .definite function w has the property that Re 1rw is locally integrable. We
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do not know whether this stronger result holds also in the Dunkl setting.
On the other hand, Theorem 9.5 is completely sufficient in the context
of this paper, as we here consider only examples of semigroups with real-
valued negative definite functions.

10. GENERALIZED ORNSTEIN]UHLENBECK PROCESSES

In this section we show how the k-Gaussian processes and semigroups
of Sections 3 and 4 lead to k-analogues of classical multidimensional
Ornstein]Uhlenbeck processes and semigroups in a natural way. There
are different approaches to classical Ornstein]Uhlenbeck processes:

Ž .a Ornstein]Uhlenbeck semigroups can be defined in terms of heat
semigroups.

Ž .b The generators of the associated positive, strongly continuous
Ž N .contraction semigroups on C R are the ‘‘oscillator-operators’’ cD y0

aÝN x ­ with parameters c, a ) 0.is1 i i

Ž .c The pathwise definition of stationary Ornstein]Uhlenbeck is in
terms of a Brownian motion on R N.

Ž .d Ornstein]Uhlenbeck processes are solutions of certain stochas-
tic differential equations.

Ž .Because of technical difficulties in approach d , we deal here only with
Ž . Ž . Ž .aspects a ] c . We start with a . As usual, let a reflection group W and

multiplicity function k G 0 be fixed.

10.1. k-Ornstein]Uhlenbeck Semigroups of Markö Kernels

Ž G .Let P be the k-Gaussian semigroup of Section 3.3. The k-Orn-t t G 0
Ž O .stein]Uhlenbeck Markov kernels P with parameters c, a ) 0 aret t G 0

defined by

P O x , A [ P G
y2 a t eya t x , A x g R N , A g BB R N .Ž . Ž . Ž .Ž .t Ž1ye .?cr2 a

Ž O .LEMMA 10.1. For all parameters a , c ) 0, P is a semigroup oft t G 0
Markö kernels on R N.

Proof. Obviously, each P O is a Markov kernel. We know from Sectiont
Ž G .3.3 that the k-Gaussian Markov kernels P form a semigroup oft t G 0

Markov kernels with the homogeneity property

P 2 rx , rA s P x , A for x g R N , A g BB R N , r , t ) 0. 10.1Ž . Ž . Ž . Ž .r t t
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N Ž N .This implies that for all s, t ) 0, x g R , and A g BB R ,

P O ( P O x , AŽ .s t

s P O z , A P O x , dzŽ . Ž .H t s
NR

s P G
y2 a t eya t z , A P G

y2 a s eya s x , dzŽ . Ž .H Ž1ye .?cr2 a Ž1ye .?cr2 a
NR

s P G
y2 a t y , A P G

y2 a t y2 a s eya Ž sqt .x , dyŽ . Ž .H Ž1ye .?cr2 a e Ž1ye .?cr2 a
NR

s P G
y2 a t y2 a t y2 a Ž sq t . eya Ž sqt .x , A s P O x , A .Ž . Ž .Ž1ye qe ye .?cr2 a sqt

PROPOSITION 10.2. For all c, a ) 0, the integral operators

H O t f x [ f y P O x , dy t G 0Ž . Ž . Ž . Ž . Ž .H t
NR

Ž N .form a positï e, strongly continuous contraction semigroup on C R with0
generator

N
O 2 NG f x [ cD y a x ­ f x for f g C R .Ž . Ž . Ž .Ýk i i cž /

is1

Ž OŽ ..Proof. By construction and by Lemma 10.1, H t is a semigroupt G 0
Ž N .consisting of positive contraction operators on C R . To see the strong0

OŽ .continuity, we note that the operators H t are related to the heat
Ž .operators H t of Section 3.2 by

1 y ey2 a t
O ya tH t f x s H ? c f e xŽ . Ž . Ž .ž /2a

x g R N , t G 0, f g C R N , 10.2Ž . Ž .Ž .0

Ž Ž ..and recall that the semigroup H t is strongly continuous. Now fixt G 0
Ž N .f g C R . Then0

ya tsup f e x y f x ª 0 for tx0,Ž . Ž .
NxgR
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and hence

y2 a t1 y e
O ya tsup H t f x y f x s sup H ? c f e x y f xŽ . Ž . Ž . Ž . Ž .ž /2aN NxgR xgR

y2 a t1 y e
ya tF H ? c f y f q sup f e x y f x ª 0Ž . Ž .ž /2a N` xgR

for tx0 as claimed. The proof of the generator formula is similar; we have

H O t f x y f x H t f eya t x y f eya t x tŽ . Ž . Ž . Ž . Ž . Ž .
s ?

t t t

f eya t x y f xŽ . Ž .
q , 10.3Ž .

t

Ž y2 a t. Ž .with t [ c 1 y e r 2a . For tx0,

trt ª c and H t f y f rt ª D f uniformly;Ž .Ž . k

Ž .it follows that the first summand in 10.3 tends to cD f uniformly fork
tx0. Moreover, the mean value theorem ensures that there exists l gt
w ya t xe , 1 with

f eya t x y f x eya t y 1Ž . Ž . ² :s =f l x , x ? ,Ž .tt t

² Ž . :which uniformly tends to ya =f x , x for tx0. This finishes the proof.

Ž N .PROPOSITION 10.3. For each f g C R , the functionb

u x , t [ H O t f x s f y P O x , dyŽ . Ž . Ž . Ž . Ž .H t
NR

Ž N w w.is a C R = 0, ` -solution of the Cauchy problemb

u s cD y aÝN x ­ uŽ .t k is1 i i

N x w Ž . Ž . Non R = 0, ` with initial data u x, 0 s f x for x g R .

Ž . Ž Ž y2 a t. . Ž ya t .Proof. We write u x, t s H c ? 1 y e r2a f e x and recall
Ž . Ž . Ž . Ž N w w.from Section 3.2 that w t, x [ H t f x belongs to C R = 0, ` andb
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satisfies ­ w s D w. Therefore,t k

1 y ey2 a t
y2 a t ya tu x , t s c ? e w e x , ? cŽ .t t ž /2a

N y2 a t1 y e
ya t ya tq w e x , ? c ? ya x ? eŽ .Ý x ii ž /2ais1

N

s c ? D u x , t y a x u x , t . 10.4Ž . Ž . Ž .Ýk i x i
is1

Ž Ž ..Remark 10.4. The Mehler formula Proposition 8.10 6 for generalized
Hermite polynomials says that

1 y ey4 t
2y2 t y < y < y2 t NG e x , y , s c e M x , y , e t ) 0, x , y g R ,Ž . Ž .k kž /4

with the Mehler kernel

H x H yŽ . Ž .n n <n < N< <M x , y , r [ ? r r - 1, x , y g R .Ž . Ž .Ý <n <2NngZq

Ž N .As the generalized Hermite polynomials satisfy D y 2Ý x ­ H sk is1 i i n

< < N Ž Ž ..y2 n ? H for n g Z see Proposition 8.10 3 , it follows that forn q
N ˜ y2 tŽ . Ž . Žeach y g R , the function M x, t [ M x, y, e satisfies D yy k

N ˜ ˜. Ž .2Ý x ­ M s ­ M . This leads to an alternative proof of Eq. 10.4is1 i i y t y
above.

10.2. k-Ornstein]Uhlenbeck Processes

Ž . NA Markov process X on R is called a k-Ornstein]Uhlenbeckt t G 0
Ž .process with parameters a , c ) 0 if its transition probabilities are given

Ž O .by the semigroup P of Section 10.1. Such a process is called at t G 0
Ž .stationary k-Ornstein]Uhlenbeck process with parameters c, a ) 0 if its

initial distribution is given by

dP G 0, . x s G 0, x , cr2a ? w x dx.Ž . Ž . Ž . Ž .cr2 a k k

This notion is justified by the fact that each stationary k-Ornstein]
Ž . G Ž .Uhlenbeck process X is stationary, i.e., P 0, . is the distributiont t G 0 cr2 a
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Ž .of all X , t G 0. In fact, Eq. 10.1 shows thatt

P X g A s P O x , A P G 0, dxŽ . Ž . Ž .Ht t cr2 a
NR

s P G
y2 a t eya t x , A P G 0, dxŽ . Ž .H Ž1ye .?cr2 a cr2 a

NR

s P G
y2 a t x , A P G

y2 a t 0, dxŽ . Ž .H Ž1ye .?cr2 a e ?cr2 a
NR

s P G
y2 a t y2 a t 0, AŽ .Ž1ye qe .?cr2 a

s P G 0, A .Ž .cr2 a

The following result shows that stationary k-Ornstein]Uhlenbeck pro-
cesses can be constructed directly from k-Gaussian processes:

Ž .LEMMA 10.5. Let B be a k-Gaussian process on some probabilityt t G 0
Ž . N Nspace V, AA, P with ¨alues in R . Assume that this process starts in 0 g R

Ž G .at time 0, and that it is associated with the k-Gaussian semigroup P oft t G 0
Section 3.3. Then for any a , b ) 0,

X v [ eya t ? B v v g V , t G 0Ž . Ž . Ž .t b?expŽ2 a t .

defines a stationary k-Ornstein]Uhlenbeck process with parameters a and
c [ 2ab.

Ž .Proof. Obviously, X is a Markov process with initial distributiont t G 0
GŽ . 1Ž N . N Ž N .P 0, . g M R . Take s, t G 0, x g R , and A g BB R . The homo-b

G Ž . GŽ .2geneity P rx, rA s P x, A yields thatr t t

< a Ž sqt . < a sP X g A X s x s P B g e A B s e xŽ . Ž .sq t s b expŽ2 a Ž sqt .. b expŽ2 a s.

s P G ea s x , ea Ž sqt .AŽ .b ŽexpŽ2 a Ž sqt ..yexpŽ2 a s..

s P G eya t x , A .Ž .b Ž1yexpŽy2 a t ..

OA comparison with the kernels P of Section 10.1 completes the proof.t

Ž .If the process B in Lemma 10.5 has the continuity properties oft t G 0
Theorem 4.10, then the associated stationary k-Ornstein]Uhlenbeck pro-

Ž .cess X also has these properties. Combining this with Propositiont t G 0
10.2 and the methods in the proofs of Theorems 4.7 and 4.10, we obtain:

THEOREM 10.6. Each k-Ornstein]Uhlenbeck process on R N admits an
Ž . Ž .equï alent k-Ornstein]Uhlenbeck process X such that X has thet t G 0 t t G 0

NŽ ..cadlag property and that its projection p X on R rW ( C has almost` ` t t G 0
surely continuous paths.
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