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Radial Multiresolution in Dimension Three

Holger Rauhut and Margit Rösler

Abstract. We present a construction of a wavelet-type orthonormal basis for the space
of radial L2-functions in R3 via the concept of a radial multiresolution analysis. The
elements of the basis are obtained from a single radial wavelet by usual dilations and
generalized translations. Hereby the generalized translation reveals the group convolu-
tion of radial functions in R3. We provide a simple way to construct a radial scaling
function and a radial wavelet from an even classical scaling function on R. Furthermore,
decomposition and reconstruction algorithms are formulated.

1. Introduction

Standard approaches in multivariate wavelet analysis are based on the construction of
multiresolution analyses and wavelet bases from affine transformations of a finite set
of basis functions, called multiwavelets (see, e.g., [15], [2]). The translations are taken
from a lattice subgroup � of (Rd ,+) and the dilations are given by the integer powers
of an expansive matrix which leaves � invariant. The number of multiwavelets needed
to obtain a full basis of L2(Rd) depends on the determinant of the dilation matrix and is
in general larger than 1 for d > 1.

However, if one restricts to the analysis of radially symmetric functions only, it suggests
itself to exploit this symmetry in the construction of corresponding wavelet transforms in
order to reduce the high amount of computational effort. A purely radial setting would,
for example, naturally occur when separating variables in polar coordinates, and treating
the spherical and radial parts separately. There is a broad literature dealing with wavelet
analysis and multiresolution on spheres, see, e.g., [1], [9] and the references therein. In
the radial case, it is not difficult to establish a continuous wavelet analysis based on the
convolution structure of radial functions or measures instead of the usual translation in
Rd . Radial convolution structures are special cases (for half-integer indices) of so-called
Bessel–Kingman hypergroups (see [4], [14]), and a continuous wavelet analysis can in
fact be developed in this general setting, see, e.g., [18], [12], and [17]. Essentially the
same concept underlies the approach of Epperson and Frazier [7], where radial wavelet
expansions in Rd are constructed which are based on sampling lattices with the spatial
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discretization determined by the positive zeros of related Bessel functions of the first
kind. The spatial lattice is equidistant only in the special cases d = 1 and d = 3. This
can be seen as an obstruction against a multiscale approach to radial wavelets in arbitrary
dimensions.

As to the author’s knowledge, radial multiresolution analyses have in fact not been
considered up to now, and there seems to be no general rigorous approach available for
the construction of orthogonal radial wavelet bases in arbitrary dimension. This problem
is closely related to the question of finding a Poisson summation formula compatible
with the Bessel–Kingman translation, which still remains open. It is important to notice
that the construction of [7] relies on the requirement that the involved radial wavelets are
band-limited, i.e., their Fourier transforms have compact support. We also mention that
in [10] a particular orthonormal basis which is adapted to a radial context is constructed
on the basis of the classical Meyer wavelets.

In the present paper, we construct radial multiscale analyses and orthogonal radial
wavelet bases in R3. In dimension 3, the algebraic structure of the radial convolution al-
lows us to carry out the constructions along the same lines as in the well-known Euclidean
setting. Hereby, the equidistance of the zeros of the corresponding Bessel function (which
is simply a sinc-function) is of decisive importance. In order to motivate our approach
and to make the intrinsic problems toward an extension to arbitrary dimensions more
visible, we start the paper with a short account of the continuous wavelet transform for
Bessel–Kingman hypergroups, and also present some material about Bessel frames. This
in particular comprises the radial case in arbitrary dimension. The continuous transform
is, up to normalization, the same as in [18], while the Bessel frames are constructed
in the spirit of the radial wavelet bases in [7]. In particular, in the spatial discretization
the zeros of associated Bessel functions occur in a natural way, and the wavelets are
band-limited.

The radial analysis in R3 is then also carried out in the setting of the corresponding
Bessel–Kingman hypergroup H on [0,∞). Our concept of a radial multiresolution anal-
ysis (MRA) in R3 is in fact that of an MRA for the L2-space L2(H) of this hypergroup.
The scale spaces (Vj )j∈Z ⊂ L2(H) are obtained by dyadic dilations from V0, which in
turn is spanned by equidistant hypergroup translates of a fixed “radial” scaling function
ϕ ∈ L2(H). It is characterized by a two-scale relation, but in contrast to classical MRAs,
ϕ itself is not contained in V0, and the scale spaces are not shift-invariant (with respect to
the hypergroup translation). Particular emphasis is put on the construction of orthogonal
MRAs. Here periodicity arguments similar to the classical case are needed which would
not be available in arbitrary dimensions. From a given orthogonal MRA we then derive
an orthogonal wavelet basis for the underlying hypergroup. By construction, this “ra-
dial” basis has a direct interpretation as an orthogonal wavelet basis for the subspace of
radial functions in L2(R3). We also provide a concise characterization of radial scaling
functions in terms of even classical scaling functions on R. This, in particular, implies
that in contrast to the classical case, there do not exist any real-valued orthonormal radial
scaling functions with compact support.

The paper is organized as follows: In Section 2, we recall basic facts from the analysis of
radial functions in Rd , explain the corresponding radial hypergroup convolution structure,
and extend the setting to Bessel–Kingman hypergroups of arbitrary index. Section 3
contains a short account on the continuous wavelet transform based on the Bessel–
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Kingman translation, as well as the construction of Bessel frames. In Section 4, radial
multiresolution analyses in R3 and their scaling functions are introduced and discussed,
while Section 5 is devoted to the construction of orthogonal radial wavelet bases. The
connection between radial scaling functions in R3 and classical scaling functions on
R is established in Section 6. Finally, in Section 7 decomposition and reconstruction
algorithms are discussed.

2. Radial Analysis and Bessel–Kingman Hypergroups

Suppose F ∈ L2(Rd) is radial, i.e., F(Ax) = F(x) a.e. for all A ∈ SO(d). Then there is
a unique f ∈ L2(R+, ωd/2−1) such that F(x) = f (|x |), where | · | denotes the Euclidean
norm on Rd and for α ≥ − 1

2 , the measure ωα on R+ = [0,∞) is defined by

dωα(r) = (2α�(α + 1))−1r2α+1 dr.

Its normalization implies that ‖F‖2 = ‖ f ‖2, ωd/2−1 , where ‖ · ‖2 is taken with respect
to the normalized Lebesgue measure (2π)−d/2 dx on Rd . On L2(R+, ωα) the Hankel
transform of index α is defined by

f̂ α(λ) =
∫ ∞

0
jα(λr) f (r) dωα(r)

with the normalized Bessel function

jα(z) = �(α + 1)(z/2)−α Jα(z), Jα(z) =
∞∑

n=0

(−1)n(z/2)2n+α

n!�(n + α + 1)
.

There is a Plancherel theorem for the Hankel transform, which states that f �→ f̂ α

establishes a self-inverse, isometric isomorphism of L2(R+, ωα). If F ∈ L2(Rd) is
radial with F(x) = f (|x |), then a short calculation shows that its Plancherel transform

F(F)(ξ) = 1

(2π)d/2

∫
Rd

F(x)e−i〈x,ξ〉 dx

is again radial with F(F)(ξ) = f̂ (d/2−1)(|ξ |). This is due to the fact that

jd/2−1(|z|) =
∫

Sd−1
e−i〈z,ξ〉 dσ(ξ),(2.1)

where dσ denotes the spherical surface measure normalized according to dσ(Sd−1) = 1.
In contrast, the usual group translates x �→ F(x + y), y ∈ Rd , will no longer be radial
(apart from trivial cases). However, we observe that the spherical means

Mr F(x) :=
∫

Sd−1
F(x + rξ) dσ(ξ), r ∈ R+,

of F are again radial. Moreover, ‖Mr F‖2 ≤ ‖F‖2. Thus Mr induces a norm-decreasing
linear mapping

Tr : L2(R+, ωd/2−1)→ L2(R+, ωd/2−1), Tr f (|x |) := Mr F(x),
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where f and F are related as above. Put α = d/2− 1. Then a short calculation in polar
coordinates gives

(2.2)

Tr f (s)= Cα

∫ π

0
f (
√

r2 + s2 − 2rs cosϕ) sin2α ϕ dϕ with Cα= �(α+1)

�(α+ 1
2 )�(

1
2 )
.

This defines a norm-decreasing generalized translation on L2(R+, ωα) not only for α =
d/2 − 1, but also for general α ≥ − 1

2 . Having harmonic analysis in mind, we are thus
led to introduce a corresponding measure algebra on R+: For r, s ∈ R+ we define a
probability measure δr ∗α δs on R+ by

δr ∗α δs( f ) := Cα

∫ π

0
f
(√

r2 + s2 − 2rs cosϕ
)

sin2α ϕ dϕ, f ∈ Cc(R+).(2.3)

(Cc(R+) denotes the space of continuous, compactly supported functions on R+.) The
convolution (2.3) of point measures extends uniquely to a bilinear, commutative, asso-
ciative, and weakly continuous convolution on the space Mb(R+) of regular bounded
Borel measures on R+. It is probability preserving and makes Mb(R+) a commutative
Banach-*-algebra with respect to total variation norm, with neutral element δ0 and the
mapping µ �→ µ as involution. The pair (R+, ∗α) is called the Bessel–Kingman hyper-
group of index α. We write Hα instead of R+ when putting emphasis on the specific
convolution structure. Generally speaking, a hypergroup is a locally compact Hausdorff
space together with a weakly continuous and probability preserving convolution of reg-
ular bounded Borel measures generalizing the measure algebra of a locally compact
group; it also has a unit and an involution substituting the group inverse. In particular,
every locally compact group is also a hypergroup. There is a well-established harmonic
analysis for commutative hypergroups which, in the special case of Hd/2−1, reflects the
harmonic analysis of radial functions (and measures) in Rd . We refer the reader to [13]
or [4] for a general background on hypergroups, including [14] for the Bessel–Kingman
case. Let us mention only some aspects which are of importance in our context: The
measure ωα is a Haar measure for Hα , i.e., it satisfies∫ ∞

0
Ts f dωα =

∫ ∞
0

f dωα for all f ∈ Cc(R+).

Up to a constant factor,ωα is the unique positive Radon measure on R+with this property.
Moreover, ∫ ∞

0
(Ts f )g dωα =

∫ ∞
0

f (Ts g) dωα for s ∈ R+,(2.4)

whenever both integrals exist. The Bessel functions satisfy the product formula

δr ∗α δs( jα) = jα(r) jα(s) for all r, s ∈ R+,

see [19, 11.4]. For half-integers α, this is easily deduced from (2.1). In fact, the functions
r �→ jα(λr), λ ∈ R+, are exactly those which are bounded and multiplicative with
respect to ∗α . They constitute the so-called dual space of the hypergroup Hα . In this
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way, the Hankel transform f �→ f̂ α on L2(R+, ωα) can be interpreted as a Plancherel
transform for Hα . For abbreviation, we put L p(Hα) := L p(R+, ωα) and we denote by
〈 · , · 〉 and ‖ · ‖2 the scalar product and norm in L2(Hα). It follows easily from (2.4)
that, for f ∈ L2(Hα),

T̂r f
α
(λ) = jα(λr) f̂ α(λ).(2.5)

3. Continuous Wavelet Transform and Frames for
Bessel–Kingman Hypergroups

In order to put the multiresolution approach in the following sections into a suitable
framework, we continue with a short account on the continuous wavelet transform and
wavelet frames for Bessel–Kingman hypergroups. This in particular includes a continu-
ous radial wavelet transform and radial wavelet frames in arbitrary dimensions.

3.1. The Continuous Wavelet Transform

The following construction is essentially the same as in [18], only with a different
normalization of the dilation operators and the resulting wavelet transform. (In contrast
to [18], we choose dilations to be unitary, see below.) We shall therefore be brief in our
presentation, and refer the reader to [18, Sect. 6.III] for further details.

Let B(L2(Hα)) denote the space of continuous linear operators on L2(Hα).Besides the
translation operators Tr ∈ B(L2(Hα)) introduced in Section 2, we consider the dilations

Da f (r) := 1

aα+1
f

(
r

a

)
, a > 0,

which are obviously unitary in L2(Hα). Notice also that

(̂Da f )
α = D1/a f̂ α.(3.1)

We define

π : Hα × (0,∞) → B(L2(Hα)), π(r, a) := Tr Da .

It is easily checked that π is continuous with respect to the weak operator topology on
B(L2(Hα)), see [18, Prop. 6.III.7].

Definition 3.1. A function g ∈ L2(Hα) is called admissible, if

Cg :=
∫ ∞

0
|̂g α(λ)|2 dλ

λ
< ∞.

For abbreviation, put

dω̃α(r, a) := 1

a2α+3
da dωα(r).
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The following is a reformulation of [18, Theorem 6.III.1] in terms of our notation:

Theorem 3.2 (Plancherel Theorem). If g ∈ L2(Hα) is admissible, then, for all f ∈
L2(Hα), ∫

Hα×(0,∞)
|〈 f, π(r, a)g〉|2 dω̃α(r, a) = Cg · ‖ f ‖2

2 .

Polarization further implies for admissible g1, g2 and arbitrary f1, f2 ∈ L2(Hα) the
orthogonality relation∫

Hα×(0,∞)
〈 f1, π(r, a)g1〉〈 f2, π(r, a)g2〉 dω̃α(r, a) = 〈 f1, f2〉 ·

∫ ∞
0

ĝ α1 (λ) ĝ α2 (λ)
dλ

λ
.

Definition 3.3. Let g ∈ L2(Hα) be admissible. The mapping

�g : L2(Hα) → L2(Hα × (0,∞), ω̃α), �g f (r, a) := 〈 f, π(r, a)g〉,
is called the wavelet transform on Hα with analyzing wavelet g. For α = d/2 − 1, it
coincides with the continuous wavelet transform on Rd of a radial function f with radial
wavelet g, see [17].

Some types of inversion formulas for this transform can be found in [18].

3.2. Bessel Frames

Let us now turn to possible discretizations. In order to obtain discrete versions of
the usual wavelet transform on R, it is standard to use sampling lattices of the type
{(nbak, ak), k, n ∈ Z} with constants a > 1, b > 0. Here the discretization of the
translation parameter is in accordance with the related group structure of R and is there-
fore (in general) not appropriate for radial wavelet analysis. Following Epperson and
Frazier [7], we propose lattices where the discretization of the translation parameter
involves the positive zeros 0 < να,1 < να,2 < · · · of the Bessel function jα . By a result
of McMahon, these are asymptotically distributed according to

να,n =
(

n + α
2
− 1

4

)
π + O

(
1

n

)
.

A standard lattice in Hα × (0,∞) is given by

{(να,n bak , ak), k ∈ Z, n ∈ N } (a > 1, b > 0).

The “almost orthogonal” radial wavelet expansions of Epperson and Frazier [7] are based
on this type of sampling lattice (with a = 2). In the following result, the discretization
of the dilation parameter is still rather arbitrary.

Theorem 3.4. Let Q be a countable subset of (0,∞) and let g ∈ L2(Hα). Assume that
supp ĝ α is contained in [0, l] for some l > 0, i.e., ĝ α = 0 a.e. on (l,∞), and that there
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exist constants A, B > 0 such that

A ≤
∑
q∈Q

|̂g α(qλ)|2 ≤ B for almost all λ ∈ R+ .

For n ∈ Z and q ∈ Q define “wavelets” gn,q ∈ L2(Hα) by

gn,q := Mα
n · Trnq Dq(g) = Mα

n π(rnq, q)g,

where

rn := 1

l
να,n and Mα

n =
2(1−α)/2 ν αα,n√

�(α + 1) |Jα+1(να,n)|
.

Then the set {gn,q : n ∈ N, q ∈ Q} is a frame for L2(Hα) with frame bounds Al2α+2

and Bl2α+2. This means that, for f ∈ L2(Hα),

Al2α+2 · ‖ f ‖2
2 ≤

∑
q∈Q

∑
n∈N

|〈gn,q , f 〉|2 ≤ Bl2α+2 · ‖ f ‖2
2.

Proof. The decisive point in the proof is the fact that the normalized Fourier–Bessel
functions

ραn (λ) := Mα
n jα(να,nλ), n ∈ N,

form an orthonormal basis of the Hilbert space Xα := L2([0, 1], ωα|[0,1]); see, e.g.,
Erdélyi et al. [8]. Using (3.1) and (2.5), we write

ĝ αn,q(λ) = Mα
n jα(rnqλ)D1/q ĝ α(λ) = ραn

(
q

l
λ

)
D1/q ĝα(λ).

By the Plancherel theorem for the Hankel transform, we obtain

〈gn,q , f 〉 = 〈ĝ αn,q , f̂ α〉 =
∫ ∞

0
ραn

(
q

l
λ

)
D1/q ĝ α(λ) f̂ α(λ) dωα(λ)

=
∫ ∞

0
ραn D1/ l(ĝ

α)Dq/ l( f̂ α) dωα = 〈D1/ l(ĝ
α)Dq/ l l( f̂ α), ραn 〉Xα ,

where for the last identity we used that the support of D1/ l(ĝ α) is contained in [0, 1].
Parseval’s identity for Xα now yields∑

n∈N

|〈gn,q , f 〉|2 =
∫ 1

0
|D1/ l(ĝ

α)Dq/ l l( f̂ α )|2 dωα

= l2α+2
∫ ∞

0
|̂g α(qλ)|2 | f̂ α(λ)|2 dωα(λ).

Hence, ∑
q∈Q

∑
n∈N

|〈gn,q , f 〉|2 = l2α+2
∫ ∞

0
| f̂ α(λ)|2

(∑
q∈Q

|̂g α(qλ)|2
)

dωα(λ).

This implies the assertion.
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The second condition of this theorem is rather implicit. Following, e.g., Bernier and
Taylor [3], it is possible to obtain sufficient criteria which are easier to check by in-
troducing the concept of “frame generators.” But in order to stay concise, we restrict
ourselves to the most interesting special case of a standard lattice as defined above. Here
Q = {ak, k ∈ Z} with a > 1.

Proposition 3.5. Suppose that g ∈ L2(Hα) satisfies the following conditions:

(i) ĝ α has compact support which is contained in the open interval (0,∞);
(ii) ess inf {|̂g α(λ)| : λ ∈ [an, an+1]} ≥ σ for some n ∈ Z and σ > 0;

(iii) τ := ‖ĝ α‖∞ < ∞.

Then there exists a constant M > 0 such that

σ 2 ≤
∑
k∈Z

|̂g α(akλ)|2 ≤ Mτ 2 for almost all λ ∈ R+ .(3.2)

Consequently, the set {gn,ak : n ∈ N, k ∈ Z} is a frame for L2(Hα)with bounds σ 2l2α+2

and Mτ 2l2α+2.

Proof. We use the arguments of [3, Sect. 4] in a simplified form which is adapted to
our situation. Put F := [1, a). Then the intervals an F = [an, an+1), n ∈ Z, form a
disjoint cover of (0,∞). As T := supp ĝ α is compact in (0,∞), it is covered by finitely
many of the an F . This implies that

M := sup
λ∈(0,∞)

�{k ∈ Z : λ ∈ a−k T }

is finite. By (iii), this gives the upper bound in (3.2). The lower bound follows from (ii)
together with the fact that the an F cover (0,∞).

4. Radial Multiresolution Analysis in R3

Radial analysis in R3 corresponds to the Bessel–Kingman hypergroup Hα with α = 1
2 .

For convenience we shall usually omit the subscript 1
2 and put

dω(r) := dω1/2(r) =
√

2

π
r2 dr, f̂ := f̂ 1/2, j (r) := j1/2(r) = sin r

r
.

We further write H instead of H1/2 and denote by 〈 · , · 〉 and ‖ · ‖2 the scalar product
and norm in L2(H) = L2(H, ω), respectively. Notice that the Bessel function j is even
on R. Hence it is natural to assume the Hankel transform

f̂ (λ) =
∫ ∞

0
j (λr) f (r) dω(r)

of f ∈ L2(H) to be continued to an even function on R as well. We shall always do
this throughout the paper. We also mention that by a change of variables, the generalized
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translation (2.2) on H can be written in the simple form

Tr f (s) = 1

2rs

∫ r+s

|r−s|
f (t)t dt.(4.1)

The nonnegative zeros of the Bessel function j are given by

tk := kπ, k ∈ N,

and the normalized Fourier–Bessel functions

ρk(r) := Mk j (tkr) with Mk = 21/4π5/4k(4.2)

form an orthonormal basis of the Hilbert space L2([0, 1], ω|[0,1]). This is equivalent to
the obvious fact that the functions

sk(r) := (2/π)1/4 rρk(r) =
√

2 sin(kπr), k ∈ N,

are an orthonormal basis for L2[0, 1] := L2([0, 1], dr). It will be of importance in the
following that the sk are 2-periodic.

Let us come to the definition of a radial multiresolution analysis (MRA) for R3, i.e.,
for the Bessel–Kingman hypergroup H . It is close to the well-known definition of Mallat
[16] for R. For convenience, we introduce the notation

T (k) := Ttk = Tkπ (k ∈ N).

If f ∈ L2(H), then according to (2.5),

(Mk T (k) f )∧(λ) = ρk(λ) f̂ (λ) =
(
π

2

)1/4 sk(λ)

λ
f̂ (λ).(4.3)

Definition 4.1 (Radial Multiresolution Analysis). A radial MRA for R3 is a sequence
{Vj }j∈Z of closed linear subspaces of L2(H) such that:

(1) Vj ⊆ Vj+1 for all j ∈ Z;
(2)

⋂∞
j=−∞ Vj = {0};

(3)
⋃∞

j=−∞ Vj is dense in L2(H);
(4) f ∈ Vj if and only if f (2 ·) ∈ Vj+1; and
(5) there exists a function ϕ ∈ L2(H) such that

Bϕ := {Mk T (k)ϕ : k ∈ N}
is a Riesz basis of V0, i.e., span Bϕ is dense in V0 and there exist constants A, B > 0
such that

A‖α‖2
2 ≤

∥∥∥∥∥ ∞∑
k=1

αk Mk T (k)ϕ

∥∥∥∥∥
2

2

≤ B‖α‖2
2

for all α = (αk)k∈N ∈ l2(N); here ‖α‖2 = (
∑∞

k=1 |αk |2)1/2.
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The function ϕ in (5) is called a scaling function for the MRA {Vj }. We remark explicitly
that in contrast to the classical case, ϕ itself is not contained in V0, and V0 is not shift
invariant; in fact, if f ∈ V0, then T (k) f /∈ V0 for all k. This will be shown in Corollary
4.6 below.

Our first aim is to determine an orthonormal basis for V0 from its Riesz basis, i.e.,
a function ϕ∗ ∈ L2(H) such that Bϕ∗ constitutes an orthonormal basis for V0. For
ϕ ∈ L2(H) we define

Pϕ(λ) :=
∞∑

n=−∞
|ϕ̂(λ+ 2n)|2,

which is even and 2-periodic on R.

Proposition 4.2. Let ϕ ∈ L2(H) and A, B > 0. Then

A‖α‖2
2 ≤

∥∥∥∥∥ ∞∑
k=1

αk Mk T (k)ϕ

∥∥∥∥∥
2

2

≤ B‖α‖2
2 for all α ∈ l2(N)(4.4)

if and only if

A ≤ Pϕ(λ) ≤ B for almost all λ ∈ R.(4.5)

Proof. Let α ∈ l2(N) be an arbitrary finite sequence. Define

α̃ :=
∞∑

k=1

αksk ∈ L2[0, 1].(4.6)

We may regard α̃ as an odd, 2-periodic function on R. By the Plancherel theorem for the
Hankel transform and (4.3),∥∥∥∥∥ ∞∑

k=1

αk Mk T (k)ϕ

∥∥∥∥∥
2

2

=
∥∥∥∥∥ ∞∑

k=1

αkρk ϕ̂

∥∥∥∥∥
2

2

=
∫ ∞

0

∣∣∣∣∣ ∞∑
k=1

αksk(λ)

∣∣∣∣∣
2

|ϕ̂(λ)|2d λ

= 1

2

∫ ∞
−∞
|̃α(λ)|2|ϕ̂(λ)|2 dλ = 1

2

∫ 1

−1
|̃α(λ)|2 Pϕ(λ) dλ

=
∫ 1

0
|̃α(λ)|2 Pϕ(λ) dλ.

The sk forming an orthonormal basis of L2[0, 1], we have ‖α‖2 = ‖α̃‖L2[0,1]. As the
finite sequences form a dense subspace of l2(N), this implies the assertion.

With A = B = 1 we immediately obtain

Corollary 4.3. For ϕ ∈ L2(H) the following statements are equivalent:

(1) the set Bϕ = {Mk T (k)ϕ : k ∈ N} is orthonormal in L2(H);
(2) Pϕ = 1 a.e.
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For ϕ ∈ L2(H), put

Vϕ := span Bϕ ,

the closure being taken in L2(H). The set Bϕ is a Riesz basis of Vϕ if and only if there
exist constants A, B > 0 such that the equivalent conditions of Proposition 4.2 are
satisfied. This will be a standard requirement in the sequel, and we therefore introduce
a separate notation:

Definition 4.4. A function ϕ ∈ L2(H) satisfies condition (RB) if Bϕ is a Riesz basis
of Vϕ .

As before, we shall often consider functions from L2[0, 1] as odd, 2-periodic functions
on R. We therefore define

S :={α : R→C, α|[0,1]∈ L2[0, 1], α(−x)=−α(x), α(x +2)=α(x) for almost all x}.

S is a Hilbert space with norm ‖ · ‖L2[0,1].

Lemma 4.5. Let ϕ ∈ L2(H) satisfy (RB). Then for f ∈ L2(H) we have the equiva-
lence

f ∈ Vϕ ⇔ f̂ (λ) = β(λ)

λ
ϕ̂(λ) with β ∈ S.

The function f ∈ Vϕ corresponding to β = ∑∞
k=1 αksk ∈ S with (αk)k∈N ∈ l2(N) is

given by f = (2/π)1/4∑∞k=1 αk Mk T (k)ϕ.

Proof. By (4.3) we have

sk(λ)

λ
ϕ̂(λ) =

(
2

π

)1/4

(Mk T (k)ϕ)∧(λ).

The translates Mk T (k)ϕ form a Riesz basis of Vϕ , and hence the (Mk T (k)ϕ)∧ are a Riesz
basis of V̂ϕ . As (sk)k∈N is an orthonormal basis of S, this implies the assertion.

Lemma 4.5 is of particular interest when ϕ is the scaling function of an MRA {Vj }.
Then V0 = Vϕ , and we easily deduce the previously mentioned lack of shift-invariance:

Corollary 4.6. Let {Vj }j∈Z be a radial MRA. Then f ∈ V0 implies that T (k) f = Ttk f /∈
V0 for all k ∈ N. Similarly, f ∈ Vj implies that T2− j tk f /∈ Vj for all k ∈ N.

Proof. After rescaling it is enough to consider V0. Recall that Mk(T (k) f )∧ = ρk f̂ .
But if β ∈ S, then ρkβ /∈ S for all k, because periodicity is lost. The characterization of
Vϕ = V0 according to the previous lemma thus shows that for f ∈ V0, T (k) f /∈ V0.
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In the situation of the lemma, we can easily determine an orthonormal basis of Vϕ by
renormalization:

Theorem 4.7 (Orthogonalization). Suppose ϕ ∈ L2(H) satisfies condition (RB). De-
fine ϕ∗ ∈ L2(H) by its Hankel transform

ϕ̂∗ := ϕ̂√
Pϕ
.(4.7)

Then Bϕ∗ = {Mk T (k)ϕ∗ : k ∈ N} forms an orthonormal basis of Vϕ = Vϕ∗ .

If ϕ is a scaling function of an MRA {Vj }, then Vϕ = Vϕ∗ = V0, and we call ϕ∗ an
orthonormal scaling function for {Vj }.

Proof. By definition ofϕ∗we have Pϕ∗ = 1 a.e. and hence Bϕ∗ is orthonormal according
to Corollary 4.3. It remains to prove that Vϕ∗ = Vϕ . For this, we have to verify that
Mk T (k)ϕ∗ ∈ Vϕ and Mk T (k)ϕ ∈ Vϕ∗ for all k ∈ N. Employing Lemma 4.5, relation
(4.3), and, finally, the relation sk(r) = (π/2)1/4 rρk(r), one obtains that the above
conditions are equivalent to

sk√
Pϕ
∈ S, sk

√
Pϕ ∈ S for all k ∈ N.

But these conditions are obviously satisfied by our assumption on Pϕ .

Let us return to our definition of a radial MRA for R3. Suppose we start with a
function ϕ ∈ L2(H) satisfying condition (RB) with Riesz constants A, B > 0. Define
corresponding scale spaces {Vj }j∈Z by

V0 := Vϕ, Vj := D2− j V0,

where the dilation operator Da ∈ B(L2(H)) is defined as in Section 3. Then, in particular,
the Vj satisfy axiom (4) of Definition 4.1. Put further

ϕj,k(r) := D2− j (Mk T (k)ϕ)(r) = 8 j/2 Mk(T
(k)ϕ)(2 j r), j ∈ Z, k ∈ N.(4.8)

Then 〈ϕj,k, ϕj,l〉 = 〈ϕ0,k, ϕ0,l〉 for all j, k, l. Thus the {ϕj,k, k ∈ N} form a Riesz basis
of Vj , with the same Riesz constants A, B as for j = 0. In particular,

Vj = span{ϕj,k, k ∈ N}.
Moreover, if Bϕ = {ϕ0,k : k ∈ N} is an orthonormal basis for V0, then {ϕj,k, k ∈ N} is
an orthonormal basis of Vj .

Recall now axiom (1) of Definition 4.1, which requires that the Vj are nested. As in
the classical case, this condition can be reformulated in terms of a two-scale relation
for ϕ:

Proposition 4.8. For ϕ with (RB) and {Vj }j∈Z as above, the following statements are
equivalent:

(1) Vj ⊆ Vj+1 for all j ∈ Z.
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(2) V−1 ⊆ V0.

(3) There exists a function γ ∈ S such that

sin(2πλ)ϕ̂(2λ) = γ (λ)ϕ̂(λ).(4.9)

In this case, the coefficients (hk)k∈N ∈ l2(N) in the two-scale relation

ϕ−1,1 =
∞∑

k=1

hk ϕ0,k(4.10)

are the coefficients in the Fourier sine series of γ ∈ S:

γ = 1

2

∞∑
k=1

hksk .

Proof. Rescaling by the factor 2 j shows that (1) and (2) are equivalent. For (2), we
need at least ϕ−1,1 ∈ V0. According to Lemma 4.5 this is equivalent to the existence of
a function β ∈ S such that, for almost all λ,

√
8M1 j (2πλ)ϕ̂(2λ) = ϕ̂−1,1(λ) = β(λ)

λ
ϕ̂(λ).(4.11)

Moreover, if ϕ−1,1 has the expansion (4.10), then β = (π/2)1/4
∑∞

k=1 hksk . In turn,
equation (4.11) is equivalent to relation (4.9) with γ = (8π)−1/4β. This gives the stated
connection between γ and ϕ−1,1. It remains to show that ϕ−1,1 ∈ V0 (or, equivalently,
relation (4.9)) already implies that ϕ−1,k ∈ V0 for all k ∈ N. As above, the latter is
equivalent to

sin(2kπλ)ϕ̂(2λ) = kγk(λ)ϕ̂(λ)(4.12)

with γk ∈ S. The relation between γk and ϕ−1,k is now given by

γk = 1

2k

∞∑
l=1

h(k)l sk, ϕ−1,k =
∞∑

l=1

h(k)l ϕ0,l .

Comparison of (4.9) with (4.12) yields

γk(λ) = γ (λ)
sin(2kπλ)

k sin(2πλ)
= γ (λ)Uk−1(cos 2πλ)(4.13)

where

Uk(x) = sin(k + 1)t

(k + 1) sin t
, x = cos t,

denotes the kth Chebychev polynomial of the second kind, normalized such that Uk(1) =
1. Thus given γ ∈ S, we define

γk(λ) := γ (λ)Uk−1(cos 2πλ).

As Uk−1 is bounded on [−1, 1], γk is contained in S as well, and hence ϕ−1,k ∈ V0.
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Let us now consider the remaining axioms (2) and (3) of a radial MRA.

Theorem 4.9. Let ϕ ∈ L2(H) satisfy condition (RB) and assume that the scale spaces

Vj = span{ϕj,k : k ∈ N}, j ∈ Z,

satisfy V−1 ⊆ V0. Suppose further that |ϕ̂ | is continuous at 0. Then {Vj }j∈Z is a radial
MRA if and only if ϕ̂(0) �= 0. Moreover, ϕ is an orthonormal scaling function if and
only if |ϕ̂(0)| = 1.

We remark that continuity of ϕ̂ at 0 (even on R+) is, for example, guaranteed if
ϕ ∈ L2(H) ∩ L1(H).

Proof. We have to check axioms (2) and (3). This may be done by slight modifications
of standard arguments in the affine case. The condition on ϕ̂ at 0 will be needed only
for (3). We define an orthonormal scaling function ϕ∗ according to Theorem 4.7. The
orthogonal projection Pj of L2(H) onto Vj is then given by

Pj f =
∞∑

k=1

〈 f, ϕ∗j,k〉ϕ∗j,k

where theϕ∗j,k are defined as in (4.8). For (2), we need to show that limj→−∞ ‖Pj f ‖2 = 0
for all f ∈ L2(H). Since functions with compact support are dense in L2(H), we may
assume that supp f is contained in a compact interval [0, R]. Parseval’s equation then
implies

‖Pj f ‖2
2 =

∞∑
k=1

|〈 f, ϕ∗j,k〉|2 ≤
∞∑

k=1

∣∣∣∣∫ R

0
f (r)ϕ∗j,k(r) dω(r)

∣∣∣∣2
≤ ‖ f ‖2

2 ·
∫ R

0

∞∑
k=1

|ϕ∗j,k(r)|2 dω(r) = ‖ f ‖2
2 ·
∫ 2 jR

0

∞∑
k=1

|ϕ∗0,k(r)|2 dω(r).

Using the explicit formula (4.1) for the hypergroup translation in H we further deduce

∞∑
k=1

|ϕ∗0,k(r)|2 =
∞∑

k=1

|Mk T (k)ϕ∗(r)|2 =
∞∑

k=1

∣∣∣∣ (2π)1/42r

∫ kπ+r

|kπ−r |
ϕ∗(t)t dt

∣∣∣∣2 .
Now assume that j is sufficiently small so that 2 jR < π/2. Then, for r ∈ [0, 2 jR ], the
integration domains [kπ − r, kπ + r ] do not overlap and we obtain

∞∑
k=1

|ϕ∗0,k(r)|2 ≤
C

r

∞∑
k=1

∫ kπ+r

kπ−r
|ϕ∗(t)|2t2 dt ≤ C ′

r
‖ϕ∗‖2

2

with suitable constants C,C ′ > 0 independent of j . Hence, for j sufficiently small,

‖Pj f ‖2
2 ≤ C ′′

∫ 2 jR

0

1

r
dω(r),

which tends to 0 as j →−∞. This proves (2).
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As to (3), suppose first that ϕ̂(0) �= 0 and let h ∈ (⋃∞j=−∞ Vj )
⊥, i.e., Pj h = 0 for all

j ∈ Z. We claim that h = 0. Indeed, for ε > 0 there exists a function f ∈ L2(H) such
that the support of its Hankel transform f̂ is compact and ‖ f − h‖2 ≤ ε. This implies

‖Pj f ‖2 = ‖Pj ( f − h)‖2 ≤ ε for all j ∈ Z.

By the Riesz basis assumption on ϕ, we further have

A
∞∑

k=1

|〈 f, ϕj,k〉|2 ≤ ‖Pj f ‖2
2 ≤ B

∞∑
k=1

|〈 f, ϕj,k〉|2,(4.14)

see Lemma 2.7 in [20]. Further, if supp f̂ ∈ [0, R], then

〈 f, ϕj,k〉 = 〈 f̂ , ϕ̂j,k〉 =
∫ R

0
f̂ (λ)ρ( j)

k (λ) ϕ̂(2− jλ) dω(λ)

where

ρ
( j)
k := D2 jρk .

Note that the functions {ρ( j)
k , k ∈ N} form an orthonormal basis of L2([0, 2 j ], ω|[0,2 j ]) =:

X j . Suppose now that j is sufficiently large, i.e., 2 j ≥ R. Then

〈 f, ϕj,k〉 = 〈 f̂ ϕ̂(2− j ·) , ρ( j)
k 〉X j .

Thus by Parseval’s equation for X j ,

∞∑
k=1

|〈 f, ϕj,k〉|2 = ‖ f̂ ϕ̂(2− j ·)‖2
X j
=
∫ R

0
| f̂ (λ)|2 |ϕ̂(2− jλ)|2 dω(λ).

As
∣∣ϕ̂∣∣ is assumed to be continuous in 0, the functions λ→ |ϕ̂(2− jλ)| converge to the

constant |ϕ̂(0)| > 0 uniformly on [0, R] as j →∞. Hence

ε ≥ lim sup
j→∞

‖Pj f ‖2 ≥
√

A |ϕ̂(0)|‖ f̂ ‖2 ≥
√

A |ϕ̂(0)|(‖h‖2 − ε).

As ε is arbitrarily small, this shows that h = 0 and hence axiom (3) is satisfied. Vice
versa, axiom (3) implies that

lim
j→∞

Pj f = f for all f ∈ L2(H).

If f̂ is compactly supported, then the same calculation as above shows that

lim
j→∞
‖Pj f ‖2 ≤

√
B |ϕ̂(0)| ‖ f̂ ‖2

which enforces ϕ̂(0) �= 0.
If the ϕj,k , k ∈ N, are orthonormal then we may choose A = B = 1 in (4.14). The

converse is also true. Indeed, by assumption the ϕj,k, k ∈ N, form a Riesz basis of Vj , in
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particular an exact frame, whose frame operator is the identity if A = B = 1 (see, e.g.,
[11, Theorem 2.1.3]). It then follows from Corollary 2.1.7 in [11] that the ϕj,k, k ∈ N,
are orthonormal. Furthermore, in the case A = B = 1 we obtain (for f as just before)

lim
j→∞
‖Pj f ‖2 = |ϕ̂(0)| ‖ f̂ ‖2 = |ϕ̂(0)|‖ f ‖2.

Thus (3) is satisfied exactly if |ϕ̂(0)| = 1.

Let us now write the two-scale relation (4.9) in a slightly different form, namely

ϕ̂(2λ) = G(λ) ϕ̂(λ)(4.15)

with

G(λ) := γ (λ)

sin(2πλ)
.

The filter function G is obviously 2-periodic and even. As for a classical MRA one
proves the following:

Lemma 4.10. Suppose that ϕ ∈ L2(H) is an orthonormal scaling function of a radial
MRA. Then the associated filter function G satisfies

|G(λ)|2 + |G(λ+ 1)|2 = 1 a.e.(4.16)

Consequently, G is essentially bounded and contained in L2[0, 1], which allows us to
develop it into a cosine series,

G(λ) =
√

2
∞∑

n=0

gn cos(nπλ).

If, in addition, ϕ ∈ L1(H), then (4.16) holds pointwise and

G(0) = 1, G(1) = 0,

which implies

√
2
∞∑

n=0

gn = 1,
√

2
∞∑

n=0

(−1)ngn = 0.

Proof. In view of Corollary 4.3, we have

1 =
∞∑

n=−∞
|ϕ̂(λ+ 2n)|2 =

∞∑
n=−∞

|G(λ/2+ n)|2 |ϕ̂(λ/2+ n)|2

= |G(λ/2)|2
∞∑

n=−∞
|ϕ̂(λ/2+ 2n)|2 + |G(λ/2+ 1)|2

∞∑
n=−∞

|ϕ̂(λ/2+ 2n + 1)|2

= |G(λ/2)|2 + |G(λ/2+ 1)|2

almost everywhere. If ϕ ∈ L1(H), then ϕ̂ is continuous and ϕ̂(0) �= 0 by Theorem 4.9.
Hence G(0) = 1 by (4.15) and G(1) = 0 is an immediate consequence of (4.16).
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5. Orthogonal Radial Wavelets

In this section we construct wavelets for a given radial MRA {Vj }j∈Z in R3 with or-
thonormal scaling function ϕ and filter function G. As usual, the wavelet space Wj is
defined as the orthogonal complement of Vj in Vj+1,

Wj := Vj+1 � Vj .

Thus L2(H) decomposes as an orthogonal Hilbert sum

L2(H) =
∞⊕

j=−∞
Wj .

Recall the definition of S in Section 4 and the characterization of V0 = Vϕ according to
Lemma 4.5,

f ∈ V0 ⇔ f̂ (λ) = β(λ)

λ
ϕ̂(λ) with β ∈ S.(5.1)

Define

S0 := {α ∈ S : α(λ+ 1) = −α(λ) for almost all λ}
which is a closed subspace of S with respect to ‖ .‖L2[0,1]. Then W−1 = V0 � V−1 is
characterized as follows:

Proposition 5.1.

(i) Let f ∈ L2(H). Then

f ∈ W−1 ⇔ f̂ (λ) = α(λ)

λ
G(λ+ 1) ϕ̂(λ) for some α ∈ S0.

(ii) The mapping S0 → W−1 , α �→ fα with

f̂α(λ) := (2π)1/4 α(λ)
λ

G(λ+ 1) ϕ̂(λ)

is an isometric isomorphism.

Proof. For (i), notice first that the Hankel transform is a unitary isomorphism of L2(H),
so Ŵ−1 = V̂0 � V̂−1. Rescaling of (5.1) by the factor 2 and relation (4.15) imply that
h ∈ L2(H) is contained in V̂−1 if and only if there exists some β̃ ∈ S such that

h(λ) = β̃(2λ)

λ
ϕ̂(2λ) = β̃(2λ)

λ
G(λ) ϕ̂(λ).

Thus β ∈ S corresponds to f ∈ W−1 according to (5.1) if and only if∫ ∞
0

β̃(2λ)

λ
G(λ)

β(λ)

λ
|ϕ̂(λ)|2 dω(λ) = 0 for all β̃ ∈ S.
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Up to a constant factor, the integral on the left equals∫ ∞
−∞

β̃(2λ)G(λ) β(λ)|ϕ̂(λ)|2 dλ

=
∑
n∈Z

∫ 1

0
β̃(2λ)β(λ+ 2n)G(λ+ 2n) |ϕ̂(λ+ 2n)|2 dλ

+
∑
n∈Z

∫ 1

0
β̃(2λ)β(λ+ 2n + 1)G(λ+ 2n + 1)|ϕ̂(λ+ 2n + 1)|2dλ

=
∫ 1

0
β̃(2λ)(β(λ)G(λ)+ β(λ+ 1)G(λ+ 1)) dλ,

where we used the periodicity and symmetry properties of β, β̃,G as well as Corollary
4.3. Since β̃ ∈ S is arbitrary, we conclude that the vectors (β(λ), β(λ + 1))T and
(G(λ),G(λ+ 1))T must be orthogonal in C2 for almost all λ. This means that(

β(λ)

β(λ+ 1)

)
= α(λ)

(
G(λ+ 1)
−G(λ)

)
(5.2)

for some function α : [0, 1]→ C. Taking the norm in C2 on both sides and using (4.15)
yields

|β(λ)|2 + |β(λ+ 1)|2 = |α(λ)|2,
which by β ∈ S implies that α belongs to L2[0, 1]. Since β and G are 2-periodic on
R, β is odd and G is even, an extension of α to R must be 2-periodic and odd; hence
α ∈ S with β(λ) = α(λ)G(λ+ 1). Using the 2-periodicity of β and G in the second
component of (5.2), we further deduce that β(λ) = −α(λ + 1)G(λ+ 1) and therefore
α(λ + 1) = −α(λ) apart from the zero-set of G(λ + 1). If G(λ + 1) = 0 we simply
define α(λ+ 1) := −α(λ), which clearly does not affect the equation in (i). Moreover,
in this case α(λ) is well defined, since G(λ) = 1 by (4.15) except on a null-set. Thus
f̂ is of the claimed form. Conversely, if α ∈ S0, then β(λ) := α(λ)G(λ+ 1) ∈ S, and
(5.2) is satisfied.

For the proof of (ii), we calculate

‖ fα‖2
2 = ‖ f̂α‖2

2 =
√

2π
∫ ∞

0

|α(λ)|2
λ2

|G(λ+ 1)|2|ϕ̂(λ)|2 dω(λ)

=
∫ ∞
−∞
|α(λ)|2|G(λ+ 1)|2|ϕ̂(λ)|2 dλ =

∫ 1

−1
|α(λ)|2|G(λ+ 1)|2 dλ,

where we used that α and G are 2-periodic and ϕ is an orthonormal scaling function. By
assumption on α, we have α(λ− 1) = α(λ+ 1) = −α(λ). Thus, by Lemma 4.10,∫ 1

−1
|α(λ)|2|G(λ+ 1)|2 dλ =

∫ 1

0
|α(λ− 1)|2|G(λ)|2 dλ+

∫ 1

0
|α(λ)|2|G(λ+ 1)|2 dλ

=
∫ 1

0
|α(λ)|2 dλ = ‖α‖2

2.

This proves (ii).
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It is now easy to obtain an orthonormal basis of W−1. Recall that the sk, k ∈ N, form
an orthonormal basis of S. Moreover, the s2k−1, k ∈ N, are an orthonormal basis of S0.
Thus by the previous result, the functions

fk := fs2k−1 (k ∈ N)

constitute an orthonormal basis of W−1. Define ψ ∈ L2(H) by

ψ̂(2λ) = G(λ+ 1) ϕ̂(λ).(5.3)

Then, in view of (4.3),

fk = M2k−1

2
T (2k−1)D2ψ.

To obtain an orthonormal basis of W0, we just have to rescale. Extending the notation
T (r) := Tπr to r ∈ N/2 and using the relation Da Tx = Tax Da , we obtain that an
orthonormal basis of W0 is given by the functions

ψk := D1/2 fk = M2k−1

2
T ((2k−1)/2)ψ, k ∈ N.

We call ψ a (basic) wavelet for the radial mutiresolution (Vj ).

Definition 5.2. For j ∈ Z and k ∈ N, define the “radial” wavelets

ψj,k(r) := D2− jψk(r) = 8 j/2 M2k−1

2
T ((2k−1)/2)ψ(2 j r).

We have proven:

Theorem 5.3.

(i) For each j ∈ Z, the set {ψj,k : k ∈ N} constitutes an orthonormal basis of Wj .
(ii) The set {ψj,k : j ∈ Z, k ∈ N} is an orthonormal wavelet basis of L2(H).

Corollary 5.4. The functions

�j,k(x) := ψj,k(|x |), x ∈ R3, j ∈ Z, k ∈ N,

form an orthonormal basis for the closed subspace L2
rad(R

3) := { f ∈ L2(R3) :
f radial} of radial functions in L2(R3).

6. Construction of Radial Scaling Functions and Wavelets

Yet, we do not have handsome criteria in order to decide whether a given function
ϕ ∈ L2(H) is a radial scaling function, i.e., a scaling function for a radial MRA. The
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analogy of our constructions to those on the group (R,+), however, leads to the following
close relationship:

Theorem 6.1. Suppose ϕR is a classical scaling function on R which is even and such
that its (classical) Fourier transform F(ϕR) is continuous at 0 and satisfies F(ϕR) ∈
L2(H). Define ϕ ∈ L2(H) via its Hankel transform,

ϕ̂(λ) :=
√

2π F(ϕR)(πλ).(6.1)

Then ϕ is a radial scaling function.
Conversely, if ϕ is a scaling function for a radial MRA such that ϕ̂ is continuous at

0, then ϕ̂ ∈ L2(R) and the function ϕR defined by (6.1) (where ϕ̂ is extended to an even
function on R) is a classical scaling function on R.

Moreover, ϕ is an orthonormal radial scaling function if and only if ϕR is an orthonor-
mal classical scaling function.

Proof. Let us start with the first assertion. As ϕR is a classical scaling function, we
have, by eq. (5.3.2) in [6],

A

2π
≤
∑
k∈Z

|F(ϕR)(ξ + 2πk)|2 ≤ B

2π
a.e.

with suitable constants 0 < A ≤ B < ∞. Moreover, ϕR is orthonormal if and only if
A = B = 1. Since ϕR is assumed to be even, definition (6.1) is compatible with the
even extension of ϕ̂. By Proposition 4.2, the set {Mk T (k)ϕ, k ∈ N} forms a Riesz basis
for V0 = span{Bϕ} which is an orthonormal basis if and only if ϕR is orthonormal;
see Corollary 4.3. Moreover, by eq. (5.3.18) of [6], there exists a 2π -periodic function
m0 ∈ L2([−π, π ]) such that F(ϕR)(ξ) = m0(ξ/2)F(ϕR)(ξ/2), and m0 is necessarily
even in our case. Hence, with γ (λ) := m0(λπ) sin(2πλ) which clearly is contained in
S, we have sin(2πλ)ϕ̂(2λ) = γ (λ)ϕ̂(λ). This is exactly the radial two-scale equation
(4.9). As ϕ̂ is continuous in 0, the condition ϕ̂(0) �= 0 of Theorem 4.9 is automatically
satisfied (see, e.g., Remark 3 on p. 144 in [6]), and thus we finally obtain that ϕ is a radial
scaling function.

For the converse part notice first that continuity of ϕ̂ in 0 already implies that ϕ̂ ∈
L2(R).We further proceed similarly as before, using Propositions 5.3.1 and 5.3.2 in [6]
and the corresponding results of the present paper. Hereby, it is important to note that
the filter function of ϕR is given by

m0(ξ) = γ (ξ/π)

sin(2ξ)
= G(ξ/π).

By Lemma 4.10, m0 is thus contained in L2([−π, π ]).

This theorem supplies a variety of radial scaling functions since there are many clas-
sical scaling functions on R which satisfy the assumptions of the theorem. However,
as to orthonormal radial scaling functions with compact support, a famous theorem of
Daubechies implies the following negative result.



Radial Multiresolution in Dimension Three 213

Corollary 6.2. There do not exist any real-valued orthonormal radial scaling functions
with compact support.

Proof. The proof of Theorem 8.1.4 in [6] shows that an even, real-valued and compactly
supported scaling function is necessarily the Haar function χ[−1/2,1/2], the characteristic
function of the interval [− 1

2 ,
1
2 ]. However, its Fourier transform F(χ[−1/2,1/2])(ξ) =√

2/π sin(ξ/2)/ξ is not contained in L2(H).

If ϕ corresponds to an even classical scaling function ϕR according to Theorem 6.1,
then the hypergroup translates ϕ0,k = Mk Tkπϕ may be expressed according to the
formula

ϕ0,k(x) = 1

(2π)1/4 x

(
ϕR

(
x

π
− k

)
− ϕR

(
x

π
+ k

))
.(6.2)

In fact, by the Plancherel theorem for the Hankel transform and (2.5),

Trϕ(s) =
∫ ∞

0
j (λr) j (λs)ϕ̂(λ) dω(λ) = 1√

2π · rs

∫ ∞
−∞

ϕ̂(λ) sin(sλ) sin(rλ) dλ

for all r, s ∈ R+. Here ϕ̂ is as usual extended to an even function on R. Using relation
(6.1) as well as basic trigonometric identities and the Plancherel theorem for the classical
Fourier transform, we can write

Trϕ(s) = 1

2
√

2π · rs

∫ ∞
−∞

ϕ̂(λ)(cos λ(r − s)− cos λ(r + s)) dλ

= 1

2rs

∫ ∞
−∞
F(ϕR)(πλ)(e

iλ(r−s) − eiλ(r+s)) dλ

= 1√
2π · rs

(
ϕR

(
r − s

π

)
− ϕR

(
r + s

π

))
.

This implies (6.2).
As an example, we consider the radial analogue of the Shannon wavelets. We define

the scaling function via its Hankel transform,

ϕ̂(λ) = χ[0,1](λ), ϕ(x) =
√

2

π

sin(x)− x cos(x)

x3
.

Constructing the associated basic wavelet according to formula (5.3) yields (after a short
calculation)

ψ̂(λ) = χ[1,2](λ), ψ(x) =
√

2

π

sin(2x)− sin(x)− 2x cos(2x)+ x cos(x)

x3
.

The translates of the scaling function and the wavelet turn out to be

ϕ0,k(x) = 1

(2π)1/4x

(
sin(x − kπ)

x − kπ
− sin(x + kπ)

x + kπ

)
, k ∈ N,

ψ0,k(x) = 1

(2π)1/4x

(
p

(
x − 2k − 1

2
π

)
− p

(
x + 2k − 1

2
π

))
, k ∈ N,

with p(x) = (sin(2x)− sin(x))/x .
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7. Algorithms

For the use of our radial multiresolution in applications we need to formulate decom-
position and reconstruction algorithms. The first step in such an algorithm consists of
projecting the function f into a scale space Vj for some suitable j . We obtain a repre-
sentation

Pj f =
∞∑

k=1

c( j)
k ϕj,k .

We shall discuss below how to obtain an approximation of the coefficients c( j)
k .

So from now on we assume that we have given a function f ∈ Vj in terms of its
coefficients c( j)

k . The decomposition algorithm consists of decomposing f into Vj−1 and
Wj−1, i.e., of calculating the coefficients c( j−1)

k and d( j−1)
k in the representation

f =
∞∑

k=1

c( j−1)
k ϕj−1,k +

∞∑
k=1

d( j−1)
k ψj−1,k .

(Such a representation exists, since by construction {ϕj−1,k, ψj−1,k : k ∈ N} is also a
basis of Vj .) A reconstruction algorithm determines the coefficients c( j)

k when f is given
in terms of c( j−1)

k and d( j−1)
k , k ∈ N.

We still assume that ϕ is an orthonormal scaling function (andψ is hence an orthonor-
mal wavelet). Let

q(k)� := 〈ϕ1,k, ϕ0,l〉 = 〈ϕj,k, ϕj−1,l〉, r (k)� := 〈ϕ1,k, ψ0,l〉 = 〈ϕj,k, ψj−1,l〉.
By using Hilbert space techniques—in particular, Parseval’s equation—we obtain anal-
ogously as in standard wavelet theory the decomposition formulas

c( j−1)
� =

∞∑
k=1

c( j)
k q(k)� , d( j−1)

� =
∞∑

k=1

c( j)
k r (k)� ,

and the reconstruction formula

c( j)
k =

∞∑
�=1

c( j−1)
� q(k)� +

∞∑
�=1

d( j−1)
� r (k)� .

It turns out that the coefficients q(k)� and r (k)� are determined in terms of the numbers gn

in the cosine expansion of G, i.e., the coefficients in

G(λ) =
√

2
∞∑

n=0

gn cos(nπλ).

Theorem 7.1. For �, k ∈ N it holds that

q(k)� =


gk−2� − g2�+k for 2� < k,
2g0 − g4� for 2� = k,
g2�−k − g2�+k for 2� > k,

r (k)� =

(−1)k−1(gk−2�+1 − gk+2�−1) for 2�− 1 < k,
2g0 − g4�−2 for 2�− 1 = k,
(−1)k−1(g2�−1−k − g2�−1+k) for 2�− 1 > k.
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Proof. Using the Plancherel theorem, relation (4.15), and Corollary 4.3 we obtain

q(k)� = 〈ϕ1,k, ϕ0,�〉 = 〈ϕ̂1,k, ϕ̂0,�〉(7.1)

= 8−1/2
∫ ∞

0
ρk(λ/2)ρ�(λ)G(λ/2)|ϕ̂(λ/2)|2 dω(λ)

=
√

2
∫ 1

0
sk(λ)s�(2λ)G(λ)

∞∑
n=−∞

|ϕ̂(λ+ 2n)|2 dλ

= 4
∞∑

n=0

gn

∫ 1

0
sin(kλπ) sin(2�λπ) cos(nπλ) dλ.

An easy calculation using trigonometric identities shows that∫ 1

0
sin(kλπ) sin(tλπ) cos(nπλ) dλ =

{
1
4 (δn,|t−k| − δn,t+k) for n > 0,
1
4 (2δ0,t−k − δ0,t+k) for n = 0.

(7.2)

Setting t = 2� and inserting into (7.1) yields the assertion for q(k)� . We proceed similarly
for r (k)� :

r ( j)
� = 〈ϕ1,k, ψ0,�〉 =

√
2
∫ 1

0
sk(λ)s2�−1(λ)G(λ+ 1) dλ

= 4
∞∑

n=0

gn

∫ 1

0
sin(kπλ) sin((2�− 1)πλ) cos(nπ(λ+ 1)) dλ

= 4
∞∑

n=0

gn(−1)n
∫ 1

0
sin(kπλ) sin((2�− 1)πλ) cos(nπλ) dλ.

Setting t = 2� − 1 in (7.2) and inserting into the last expression gives the result
for r (k)� .

Let us consider the case where only finitely many coefficients gk are different from
zero. Although this is not possible for real-valued orthonormal scaling functions this
assumption makes it easier to compare the radial wavelet algorithm with the classical one.
Of course, in applications one can only handle finitely many coefficients anyway. So let
us assume supp g ⊂ [0, N ], i.e., gk = 0 for k /∈ {0, . . . , N }. Elementary considerations
show the following. Leaving k fixed yields

q(k)� = 0 for � /∈
[

k − N

2
,

k + N

2

]
if k > N ,

q(k)� = 0 for � /∈
[

1,
k + N

2

]
if k ≤ N ,

r (k)� = 0 for � /∈
[

k − N + 1

2
,

N + k + 1

2

]
if k > N + 1,

r (k)� = 0 for � /∈
[

1,
N + k + 1

2

]
if k ≤ N + 1.

(7.3)
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If � is fixed, then

q(k)� = 0 for k /∈ [2�− N , 2�+ N ] if 2� > N ,

q(k)� = 0 for k /∈ [1, N + 2�] if 2� ≤ N ,

r (k)� = 0 for k /∈ [2�− 1− N , 2�− 1+ N ] if 2�− 1 > N ,

r (k)� = 0 for k /∈ [1, 2�− 1+ N ] if 2�− 1 ≤ N .

With

hk :=


g|k| for 1 ≤ |k| ≤ N ,
2g0 for k = 0,
0 otherwise,

it holds that G(λ) = (1/√2)
∑N

k=−N hkeikπλ. Because of the conditions on it, G is also
the filter function for an ordinary MRA on R with coefficients hk . Now, if 2� > N (resp.,
2�− 1 > N ), then it is easy to see that

q(2�+k)
� = hk for all k ≥ −2�+ 1,

r (2�−1+k)
� = (−1)khk for all k ≥ −2�+ 2.

Similarly, if k > N , then

q(k)� = hk−2�, r (k)� = (−1)k+1hk+1−2� for all � ∈ N.

Hence, for 2� > N + 1, the decomposition formulas become

c( j−1)
� =

∞∑
k=1

c( j)
k hk−2�, d( j−1)

� =
∞∑

k=1

c( j)
k (−1)k+1hk+1−2�,

and, for k > N + 1, the reconstruction formula is

c( j)
k =

∞∑
�=1

c( j−1)
� hk−2� +

∞∑
�=1

d( j−1)
� (−1)k+1hk+1−2�.

These formulas are well known. Indeed, they are the decomposition and reconstruction
formulas of the classical discrete wavelet transform. So our approach leads to the classical
algorithm if we are far enough away from the origin. If we are close to the origin we
have derived an algorithm to handle the boundary point 0.

Let us finally discuss how to obtain an approximation of the coefficients c( j)
k repre-

senting Pj f when the function f is given. We assume for the moment that the classical
scaling function ϕR related to ϕ as in Theorem 6.1 is interpolatory, i.e., ϕR(k) = cδ0,k

for k ∈ Z, c �= 0. According to (6.2) we have

Pj f (x) =
∞∑

k=1

c( j)
k

8 j/2

(2π)1/42 j x

(
ϕR

(
2 j x

π
− k

)
− ϕR

(
2 j x

π
+ k

))
.
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Letting x = π�2− j , � ∈ N, and reordering yields

∞∑
k=1

c( j)
k ϕR(�− k) = M�D2 j (Pj f )(�π)+

∞∑
l=1

c( j)
k ϕR(�+ k).

Using the interpolatory condition we obtain

c( j)
� = c−1 M�D2 j (Pj f )(�π) ≈ c−1 M�D2 j ( f )(�π).(7.4)

We note that by axiom (3) it is reasonable that Pj f (x) ≈ f (x) if j is large enough. So
we suggest using the formula

c( j)
k = c−1 Mk D2 j ( f )(kπ)

as a heuristic approximation. As in the classical case this should also be reasonable even
if ϕR is not interpolatory.
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