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A POSITIVE RADIAL PRODUCT FORMULA
FOR THE DUNKL KERNEL

MARGIT RÖSLER

Abstract. It is an open conjecture that generalized Bessel functions associ-
ated with root systems have a positive product formula for nonnegative multi-
plicity parameters of the associated Dunkl operators. In this paper, a partial
result towards this conjecture is proven, namely a positive radial product for-
mula for the non-symmetric counterpart of the generalized Bessel function,
the Dunkl kernel. Radial here means that one of the factors in the product
formula is replaced by its mean over a sphere. The key to this product for-
mula is a positivity result for the Dunkl-type spherical mean operator. It can
also be interpreted in the sense that the Dunkl-type generalized translation
of radial functions is positivity-preserving. As an application, we construct
Dunkl-type homogeneous Markov processes associated with radial probability
distributions.

1. Introduction

Along with addition formulas, product formulas have always been a challenging
topic in the area of one-variable special functions. Typically, positive product
formulas are obvious for particular parameters from a group-theoretical background
(when e.g. the functions under consideration have an interpretation as the spherical
functions of a Gelfand pair), but it is often difficult to obtain a generalization to
larger classes of parameter values. For special functions in several variables such
questions seem to be even more intricate. One open conjecture in this direction
concerns positive product formulas for multivariable Bessel functions associated
with root systems, provided all multiplicity parameters are nonnegative. In the
present paper, we prove a partial result towards a positive product formula for
multivariable Bessel functions on a Weyl chamber, namely a positive radial product
formula for the non-symmetric counterpart of the generalized Bessel function, the
Dunkl kernel. This kernel is the analogue of the usual exponential function in the
theory of rational Dunkl operators as developed in [6], [7], and [8]. To become more
precise, let us briefly introduce our setting. Let R be a (reduced, not necessarily
crystallographic) root system in RN , equipped with the standard Euclidean inner
product 〈 . , . 〉, i.e., R⊂ RN \ {0} is finite with R ∩Rα = {±α} and σα(R) = R for
all α ∈ R, where σα denotes the reflection in the hyperplane perpendicular to α.
We assume R to be normalized such that 〈α, α〉 = 2 for all α ∈ R. This simplifies
formulas, but is no loss of generality for our purposes. Further, let G denote the
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finite reflection group generated by {σα , α ∈ R} and let k : R → C be a fixed
multiplicity function on R, i.e., a function that is constant on the orbits under the
action of G. We shall always assume that k is nonnegative, i.e., k(α) ≥ 0 for all
α ∈ R. The first-order rational Dunkl operators attached to G and k are defined
by

(1.1) Tξ(k)f(x) = ∂ξf(x) +
∑
α∈R+

k(α)〈α, ξ〉f(x) − f(σαx)
〈α, x〉 , x, ξ ∈ RN .

Here ∂ξ denotes the derivative in the direction ξ and R+ is some fixed positive
subsystem of R. The definition is independent of the special choice of R+, thanks
to the G-invariance of k. As first shown in [6], the Tξ(k), ξ ∈ RN , generate a
commutative algebra of differential-reflection operators. This is the foundation for
rich analytic structures related to them. In particular, there exist a counterpart
of the usual exponential function, called the Dunkl kernel, and an analogue of the
Euclidean Fourier transform with respect to this kernel. The Dunkl kernel Ek
is holomorphic on CN × CN and symmetric in its arguments. Similarly to the
situation for spherical functions on a Riemannian symmetric space, the function
Ek( . , y) with fixed spectral parameter y ∈ CN may be characterized as the unique
analytic solution of the joint eigenvalue problem

(1.2) Tξ(k)f = 〈ξ, y〉f for all ξ ∈ CN , f(0) = 1,

cf. [20]. Apart from the trivial case k = 0, where Ek(x, y) = e〈x,y〉, the kernel Ek
is explicitly known in only a very few cases. These include the rank-one case (see
Section 2.3) as well as the symmetric group G = S3 ([9]). The reflection-invariant
counterpart of Ek is the so-called generalized Bessel function

Jk(x, y) =
1
|G|

∑
g∈G

Ek(gx, y),

which was first studied in [20]. It is G-invariant in both arguments, and is naturally
considered on the Weyl chambers of G. If the rank of R is one, then Jk coincides
with a usual Bessel function. In particular cases, all related to Weyl groups and
certain half-integer multiplicity parameters, generalized Bessel functions can be
given an interpretation as the spherical functions of a Euclidean-type symmetric
space. We shall take a closer look at these examples in the Appendix, Section 7. In
these cases, and for all nonnegative multiplicity parameters in the rank-one case,
the generalized Bessel functions Jk have a positive product formula of the form

(1.3) Jk(x, z)Jk(y, z) =
∫
C

Jk(ξ, z)dνkx,y(ξ) for all z ∈ CN .

Here C is the topological closure of the Weyl chamber

C = {x ∈ RN : 〈α, x〉 > 0 for all α ∈ R+},
and the νkx,y are compactly supported probability measures on C. It is conjectured
that a positive product formula of the form (1.3) should in fact be valid for arbi-
trary reflection groups and nonnegative multiplicity parameters. In that case, one
would obtain a positivity-preserving convolution of regular bounded Borel mea-
sures on the chamber C when defining the convolution of point measures according
to δx ◦k δy := νkx,y. In the special cases mentioned above, this convolution in-
duces the structure of a commutative hypergroup on C, and we conjecture that

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POSITIVE RADIAL PRODUCT FORMULA FOR DUNKL KERNEL 2415

this should be true in general (for nonnegative multiplicities). Roughly speaking,
a hypergroup consists of a locally compact Hausdorff space H together with a
positivity-preserving convolution on the space of regular bounded Borel measures
on H , which allows one to carry over the harmonic analysis on a locally compact
group to a large extent. The hypergroup setting in particular includes double coset
spaces G//H with H a compact subgroup of a locally compact group G. For an
introduction to the subject, the reader is referred to [5] or [17].

As already indicated, the generalized exponential function Ek is of particular
interest, since it gives rise to an integral transform on RN , commonly called the
Dunkl transform. On suitable function spaces, this transform maps Dunkl operators
to multiplication operators. The Dunkl transform provides a natural generalization
of the usual Euclidean Fourier transform, to which it reduces in case k = 0. It is
another open question whether the Dunkl transform admits an interpretation as
the Gelfand transform of a suitable L1-convolution algebra on RN for arbitrary
parameters k ≥ 0. Again this is true in the rank-one case. Here the Dunkl kernel
satisfies a product formula which leads to a convolution structure on the entire
real line, providing a natural extension of the usual group structure, see [21]. In
contrast to a hypergroup convolution, this convolution is not positivity-preserving
if k > 0. We conjecture that an analogous statement is true for arbitrary rank
and all multiplicities k ≥ 0. In particular, the Dunkl kernel should have a product
formula of the form

(1.4) Ek(x, z)Ek(y, z) =
∫
RN

Ek(ξ, z)dµkx,y(ξ) for all z ∈ CN ,

where the measures µkx,y are signed Borel measures on RN , which are uniformly
bounded with respect to the total variation norm.

This paper presents a result towards both the stated conjectures, namely a pos-
itive “radial” product formula for Ek. More precisely, we shall prove that for each
x ∈ RN and t ≥ 0 there exists a unique compactly supported probability measure
σkx,t on RN such that

(1.5) Ek(ix, z)jλ(t|z|) =
∫
RN

Ek(iξ, z)dσkx,t(ξ) for all z ∈ RN .

Here the index of the Bessel function jλ (see (2.10)) is given by λ = γ + N/2 − 1,
with

γ =
∑
α∈R+

k(α) ≥ 0.

Of course, the kernel Ek in (1.5) may be equally replaced by the generalized Bessel
function Jk. This product formula will be obtained from a study of the Dunkl-type
spherical mean operator, as first introduced in [19]. In analogy to the classical case,
the spherical mean operator f 7→Mf is defined for f ∈ C∞(RN ) by

Mf (x, t) =
1
dk

∫
SN−1

f(x ∗k ty)wk(y)dσ(y) (x ∈ RN , t ≥ 0).

Here dk is a normalization constant, wk is the G-invariant weight function

(1.6) wk(x) =
∏
α∈R+

|〈α, x〉|2k(α) (x ∈ RN ),
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and f(x ∗k y) denotes the Dunkl-type generalized translation, which coincides with
the usual group translation on RN in case k = 0 and satisfies

Ek(x ∗k y, z) = EK(x, z)Ek(y, z) for all x, y ∈ RN , z ∈ CN .
A key result of the present paper states that for k ≥ 0, the associated spherical
mean operator is positivity-preserving. This implies the existence of compactly
supported probability measures σkx,t on RN which represent this operator in the
sense that

Mf (x, t) =
∫
RN

fdσkx,t for all f ∈ C∞(RN ).

When specializing to f(x) = Ek(ix, z) with z ∈ RN , one obtains (1.5). Similar to
the classical case k = 0, Mf satisfies a second-order differential-reflection equation
of Darboux type. A study of the domain of dependence for this equation allows one
to deduce further information on the support of the representing measures σkx,t. In
fact, the support of σkx,t turns out to be contained in the union of closed balls with
radius t around the points gx, g ∈ G. In contrast to the classical case, where the
support reduces to the sphere {ξ ∈ RN : |ξ − x| = t}, now full balls as well as the
complete G-orbit of x have to be taken into account. This is due to the reflection
parts in the generalized Darboux equation for Mf . These results are contained
in Theorem 4.1. A slightly weaker variant of Theorem 4.1 is given in Theorem
5.1. Here it is shown that the Dunkl-type generalized translation (more precisely,
the mapping f 7→ f(x ∗k y)) is positivity-preserving when restricted to radial f .
In Section 6, the results are applied to construct “radial” semigroups (Pt)t≥0 of
Markov kernels on RN , which are translation-invariant in the generalized sense of
[24]. Here Pt is obtained by a Dunkl-type translation of a probability measure µt
of the form dµt(x) = wk(x)dµ′t(x), where µ′t is rotation-invariant.

2. Preliminaries

In this introductory part we give an account on results from Dunkl theory which
will be relevant for the sequel. These concern in particular the Dunkl kernel, the
Dunkl transform and generalized translations. We also include a discussion of the
rank-one case as a motivating example. For a further background in Dunkl theory,
the reader is referred to [6], [7], [8], [15], [23], [28], and [10]. Concerning root systems
and reflection groups, see [14].

Throughout the paper, 〈 . , . 〉 denotes the standard Euclidean scalar product in
RN as well as its bilinear extension to CN×CN . For x ∈ RN , we write |x| =

√
〈x, x〉.

Further, Z+ := {0, 1, 2, . . .}, and R+ := [0,∞). We denote by C∞(RN ) the space
of infinitely differentiable functions on RN and by S(RN ) the Schwartz space of
rapidly decreasing functions, both equipped with the usual Fréchet space topologies.
For a locally compact Hausdorff space X, Cb(X) denotes the space of continuous,
bounded functions onX . Further, Mb(X), M+

b (X) and M1(X) stand for the spaces
of regular bounded complex Borel measures on X, those which are nonnegative, and
those which are probability measures, respectively. The σ(Mb(X), Cb(X))-topology
is referred to as the weak topolgy on Mb(X), and the σ-algebra of Borel sets in X
is denoted by B(X).

2.1. Basics from Dunkl theory. Let G be a finite reflection group on RN with
root system R, and fix a positive subsystem R+ of R as well as a nonnegative
multiplicity function k. The associated Dunkl operators Tξ(k), defined according

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POSITIVE RADIAL PRODUCT FORMULA FOR DUNKL KERNEL 2417

to (1.1), share many properties with usual partial derivatives. In particular, if
f ∈ Ck(RN ), then Tξ(k)f ∈ Ck−1(RN ), the Tξ(k) are homogeneous of degree −1
on polynomials, and they leave the Schwartz space S(RN ) invariant. Moreover,
Tξ(k) is G-equivariant:

g ◦ Tξ(k) ◦ g−1 = Tgξ(k) (g ∈ G).

The counterpart of the usual Laplacian is the Dunkl Laplacian, defined by

∆k :=
N∑
i=1

Tξi(k)2,

where {ξi , i = 1, . . . , N} is an arbitrary orthonormal basis of (RN , 〈 . , . 〉), cf. [6].
It is given explicitly by

∆kf(x) = Lkf(x)− 2
∑
α∈R+

k(α)
f(x) − f(σαx)
〈α, x〉2 ,

with the singular elliptic operator

(2.1) Lkf(x) := ∆f(x) + 2
∑
α∈R+

k(α)
〈∇f(x), α〉
〈α, x〉 .

According to [7], there exists a unique degree-of-homogeneity-preserving linear
isomorphism Vk on polynomials such that

Tξ(k)Vk = Vk∂ξ for all ξ ∈ RN and Vk(1) = 1.

It is shown in [23] that Vk has a Laplace-type representation of the form

(2.2) Vkf(x) =
∫
RN

f(ξ)dµkx(ξ)

with a unique probability measure µkx ∈M1(RN ) whose support is contained in

C(x) := co{gx, g ∈ G},

the convex hull of the G-orbit of x in RN . By means of formula (2.2), Vk may
be extended to various larger function spaces, including C∞(RN ). We denote this
extension by Vk again. In fact, Vk establishes a homeomorphism of C∞(RN ); see
Theorem 4.6 of [16] or [28].

The Dunkl kernel asociated with G and k is defined by

(2.3) Ek(x, y) = Vk(e〈 . ,y〉)(x) =
∫
RN

e〈ξ,y〉dµkx(ξ) (x ∈ RN , y ∈ CN ).

For fixed y, Ek( . , y) is the unique real-analytic solution of (1.2), cf. [20]. The
kernel Ek is symmetric in its arguments and has a unique holomorphic extension
to CN × CN . Moreover,

(2.4) Ek(λz, w) = Ek(z, λw) and Ek(gz, gw) = Ek(z, w)

for all z, w ∈ CN , λ ∈ C and g ∈ G. Let wk denote the G-invariant weight function
(1.6). The associated Dunkl transform on L1(RN , wk) is then defined by

f̂ k(ξ) := c−1
k

∫
RN

f(x)Ek(−iξ, x)wk(x)dx (ξ ∈ RN ).
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Here ck denotes the Mehta-type constant

ck :=
∫
RN

e−|x|
2/2wk(x)dx.

We shall also consider the Dunkl transform on the measure space Mb(RN ),

µ̂ k(ξ) :=
∫
RN

Ek(−iξ, x)dµ(x) (ξ ∈ RN ).

Many properties of the Euclidean Fourier transform carry over to the Dunkl trans-
form. The results listed below can be found in [8], [15] and [24].

Proposition 2.1.
(1) The Dunkl transform f 7→ f̂ k is a homeomorphism of S(RN ). Its inverse is

given by f∨k(ξ) := f̂ k(−ξ).
(2) (L1-inversion) If f ∈ L1(RN , wk) with f̂ k ∈ L1(RN , wk), then f = (f̂ k )∨k

a.e.
(3) (Plancherel Theorem) The Dunkl transform on S(RN ) extends uniquely to

an isometric isomorphism of L2(RN , wk).
(4) The Dunkl transform is injective on Mb(RN ).
(5) (Lévy’s continuity theorem) Let (µn)n∈N ⊂ M+

b (RN ) be such that (µ̂ kn )n∈N
converges pointwise to a function ϕ : RN → C that is continuous at 0. Then there
exists a unique measure µ ∈ M+

b (RN ) with µ̂ k = ϕ, and (µn)n∈N tends weakly to
µ.

In [28], a generalized translation on C∞(RN ) is defined by

(2.5) τyf(x) := V xk V
y
k (V −1

k f)(x+ y), x, y ∈ RN .

Here the superscript denotes the relevant variable. Notice that

τ0f = f, Tξ(k)τyf = τyTξ(k)f and τyf(x) = τxf(y) for all x, y ∈ RN .

We shall frequently use the more suggestive notation

f(x ∗k y) := τyf(x).

For k = 0, one just obtains the usual group translation on RN : f(x∗0y) = f(x+y).
It is also immediate from the definition that

(2.6) Ek(x ∗k y, z) = Ek(x, z)Ek(y, z) for all z ∈ CN .

We collect some further properties of this translation which will be used later on;
for the proofs, the reader is referred to [28].

Lemma 2.2.
(1) For fixed y ∈ RN , τy is a continuous linear mapping from C∞(RN ) into

C∞(RN ).
(2) For fixed x, y ∈ RN , the mapping f 7→ f(x∗k y) defines a compactly supported

distribution. Its support is contained in the ball {ξ ∈ RN : |ξ| ≤ |x|+ |y|}.
(3) If f ∈ S(RN ), then also τyf ∈ S(RN ), and (τyf)∧k(ξ) = Ek(iy, ξ) f̂ k(ξ).

Moreover,

τyf(x) =
1
ck

∫
RN

f̂ k(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ.
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(4) If f, g ∈ S(RN ) and x ∈ RN , then∫
RN

f(x ∗k y)g(y)wk(y)dy =
∫
RN

f(y)g(−x ∗k y)wk(y)dy .

Remarks 2.3. Property (3) reveals that on S(RN ), the translation (2.5) coincides
with the version previously introduced in [22]. In [28], part (4) is shown only for
compactly supported test functions; a simple density argument gives the result
for Schwartz functions. Alternatively, (4) follows immediately from (3) and the
Plancherel theorem for the Dunkl transform.

2.2. Expansion of Ek in terms of k-spherical harmonics. In this section, we
derive a series representation for the Dunkl kernel in terms of generalized spherical
(“k-spherical”) harmonics, which will be employed in the positivity proof for the
Dunkl-type spherical mean operator. For a background in k-spherical harmonics,
the reader may consult the recent monograph [10]. The expansion below is of some
interest in its own and has been known for some time at least formally (a personal
communication by M. de Jeu). In the L2-sense, it can be readily deduced from
the Dunkl-type Funk-Hecke formula (Theorem 5.3.4 of [10]). We do, however, give
an alternative approach which yields better convergence and a special case of the
Funk-Hecke formula as a corollary. Throughout this section it is assumed that
N ≥ 2. The space of k-spherical harmonics of degree n ≥ 0 is defined by

Hkn = ker∆k ∩ PNn ,

where ∆k is the Dunkl Laplacian and PNn denotes the space of homogeneous poly-
nomials of degree n on RN . The space Hkn has a reproducing kernel P kn ( . , . ), which
is defined by the property

f(x) = d−1
k

∫
SN−1

f(y)P kn (x, y)wk(y)dσ(y) for all f ∈ Hkn and |x| < 1.

Here SN−1 = {x ∈ RN : |x| = 1} is the unit sphere in RN , dσ denotes the Lebesgue
surface measure and

dk =
∫
SN−1

wk(x)dσ(x) =
ck

2λΓ(λ+ 1)
,

with

λ = γ +N/2− 1 ≥ 0.

Suppose that {Yn,j : j = 1, . . . , d(n,N)} is a real-coefficient orthonormal basis
of Hkn in L2(SN−1, d−1

k wkdσ). In terms of this basis, P kn is given by

P kn (x, y) =
d(n,N)∑
j=1

Yn,j(x)Yn,j(y) .

If x, y ∈ SN−1, then according to Theorem 3.2 of [30], the kernel P kn (x, y) can be
written as

(2.7) P kn (x, y) =
(n+ λ)(2λ)n

λ · n!
VkC̃

λ
n(〈x, . 〉)(y),
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where the C̃λn (n ∈ Z+) are the (renormalized) Gegenbauer polynomials

C̃λn(x) =
(−1)n

2n(λ+ 1/2)n
(1− x2)1/2−λ d

n

dxn
(1 − x2)n+λ−1/2

= 2F1

(
−n, n+ 2λ, λ+ 1/2;

1− x
2
)
.(2.8)

Notice that in terms of this normalization, formula (2.7) remains true in the limiting
case λ = 0.

Proposition 2.4. Let N ≥ 2. Then for all x, y ∈ RN the Dunkl kernel Ek(ix, y)
admits the representation

(2.9) Ek(ix, y) =
∞∑
n=0

Γ(λ+ 1)
2nΓ(n+ λ+ 1)

jn+λ(|x||y|)P kn (ix, y),

where for α ≥ −1/2, jα is the normalized spherical Bessel function

(2.10) jα(z) = Γ(α+ 1) ·
∞∑
n=0

(−1)n(z/2)2n

n! Γ(n+ α+ 1)
.

The convergence of the series (2.9) is uniform on compact subsets of RN × RN .

Proof. By Gegenbauer’s degenerate form of the addition theorem for Bessel func-
tions ([29], p. 368), we have

(2.11) eirt =
∞∑
n=0

( ir
2
)n (2λ)n

(λ)n n!
jn+λ(r)C̃λn (t) for all r ∈ R, t ∈ [−1, 1]

(with the obvious extension to the case λ = 0). The series converges uniformly
on every compact subset of R × [−1, 1]. This is easily seen from the asymptotic
behavior of the gamma function and the estimates

|jn+λ(r)| ≤ 1, |C̃λn(t)| ≤ C̃λn(1) = 1,

which hold within the relevant ranges of r and t. We now put t = 〈x, y〉 with
x, y ∈ SN−1, and apply the intertwining operator Vk to both sides of (2.11). This
may be done termwise, the locally uniform convergence being maintained: in fact,
according to (2.3) together with (2.11) and (2.7), we obtain

Ek(irx, y) = Vk(eir〈x, . 〉)(y) =
∫
|η|≤1

eir〈x,η〉dµky(η)

=
∞∑
n=0

(2λ)n
(λ)n n!

( ir
2
)n
jn+λ(r)VkC̃λn(〈x, . 〉)(y)

=
∞∑
n=0

Γ(λ+ 1)
2nΓ(n+ λ+ 1)

jn+λ(r)P kn (irx, y) .

Since |VkC̃λn(〈x, . 〉)(y)| ≤ C̃λn(1) = 1 for all x, y ∈ SN−1, the series converges
uniformly on compact subsets of R×SN−1×SN−1. This implies the assertion. �

In view of the orthogonality of the k-spherical harmonics Yn,j , termwise spherical
integration of (2.9) leads to the following well known special case of the Dunkl-type
Funk-Hecke formula (Theorem 5.3.4 of [10]):
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Corollary 2.5. Let N ≥ 2. Then for all x ∈ RN ,
1
dk

∫
SN−1

Ek(ix, y)Yn,j(y)wk(y)dσ(y) =
Γ(λ+ 1)

2nΓ(n+ λ+ 1)
jn+λ(|x|)Yn,j(ix) .

2.3. The rank-one case. Here the reflection group is G = {id, σ}, acting on R via
σ(x) = −x. The corresponding kernel Ek with parameter k ≥ 0 has been calculated
in [9]. It is given by

Ek(z, w) = jk−1/2(izw) +
zw

2k + 1
jk+1/2(izw);

thus Jk(z, w) = jk−1/2(izw). It is well known (see e.g. [5], 3.5.61) that the Bessel
functions jα with α ≥ −1/2 satisfy a product formula of the form

(2.12) jα(xz)jα(yz) =
∫ ∞

0

jα(ξz)dναx,y(ξ) for all z ∈ C.

Here the ναx,y are probability measures on R+. For x, y > 0, they are given by

dναx,y(z) = mα(x, y, z)z2α+1dz

with the kernel

mα(x, y, z) =
21−2αΓ(α+ 1)√
π Γ(α+ 1

2 )
· [(z

2 − (x− y)2)((x + y)2 − z2)]α−1/2

(xyz)2α
·1[|x−y|,x+y](z).

The product formula (2.12) induces a convolution of point measures on R+ accord-
ing to

δx ◦α δy := ναx,y ,

which in turn allows a unique bilinear and weakly continuous extension to a proba-
bility-preserving convolution on Mb(R+). It induces the structure of a commutative
hypergroup on R+, called the Bessel-Kingman hypergroup of index α, cf. [5]. The
Dunkl kernel Ek itself satisfies a product formula of type (1.4); see [21] and also [25].
Here the representing measures µkx,y are not positive, but signed Borel measures on
R with uniformly bounded total variation norm. For x, y 6= 0, one has

dµkx,y(z) = mk−1/2(|x|, |y|, |z|)|z|2k · 1− σx,y,z + σz,x,y + σz,y,x
2

dz,

with

σz,x,t =


z2 + x2 − t2

2zx
if z, x 6= 0,

0 else.

There exists a unique bilinear and separately weakly continuous convolution ∗k
on Mb(R) such that the convolution of point measures satisfies δx ∗k δy = µkx,y.
This convolution makes Mb(R) into a commutative Banach ∗-algebra with unit δ0,
involution µ∗(A) = µ(−A) and norm ‖µ‖′ = ‖Lµ‖, the operator Lµ on Mb(R) being
defined by Lµ(ν) = µ ∗k ν. The Gelfand transform on Mb(R) coincides with the
corresponding Dunkl transform. For details, see [21]. Finally, the convolution ∗k
matches the Dunkl-type generalized translation as defined above. In fact, Lemma
2.2 shows that

∫
R f d(δx ∗k δy) = f(x ∗k y) for all f ∈ S(R), and hence, by a simple

density argument, also for all f ∈ C∞(R).
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3. Positivity of the spherical mean operator

Following [19] we define the Dunkl-type spherical mean operator f 7→ Mf on
C∞(RN ) by

Mf (x, t) :=
1
dk

∫
SN−1

f(x ∗k ty)wk(y)dσ(y) (x ∈ RN , t ≥ 0).

In case N = 1 this reduces to

Mf (x, t) =
1
2
(
f(x ∗k t) + f(x ∗k −t)

)
.

Lemma 2.2 easily implies that Mf ∈ C∞(RN × R+). The following is a key result
of this paper:

Theorem 3.1. The spherical mean operator f 7→ Mf is positivity-preserving on
C∞(RN ), i.e.,

f ≥ 0 on RN implies that Mf ≥ 0 on RN × R+ .

Remark 3.2. The assertion is obvious in the rank-one case: In fact, Mf can then
be calculated explicitly in terms of the data given in Section 2.3. We have

Mf (x, t) =
∫
R
f(z)dσkx,t(z)

with
σkx,t =

1
2

(µkx,t + µkx,−t),

which is easily checked to be a probability measure.

The proof of Theorem 3.1 in the higher rank case is achieved by a reduction to
initial data of the form f(x) = Γk(s, x, y), where Γk is the Dunkl-type heat kernel

(3.1) Γk(s, x, y) =
1

(2s)γ+N/2ck
e−(|x|2+|y|2)/4sEk

( x√
2s
,
y√
2s

)
(x, y ∈ RN , s > 0), see [22]. (Notice that the constant ck was defined differently
there.) We recall from [22] that Γk is strictly positive with∫

RN
Γk(s, x, y)wk(y)dy = 1.

Moreover,

(3.2) Γk(s, x, y) =
1
c2k

∫
RN

e−s|ξ|
2
Ek(−ix, ξ)Ek(iy, ξ)wk(ξ)dξ .

Lemma 3.3.
(1) For all x, y, z ∈ RN and s > 0,

Γk(s, x ∗k y, z) =
1
c2k

∫
RN

e−s|ξ|
2
Ek(−iz, ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ.

In particular, Γk(s, x∗ky, z) belongs to S(RN ) as a function of each of the arguments
x, y, z.

(2)
∫
RN

Γk(s, x ∗k y, z)wk(z)dz = 1.

(3) If f ∈ S(RN ) and (x, t) ∈ RN × R+, then

Mf (x, t) = lim
s↓0

∫
RN

MΓk(s, . ,z)(x, t) f(z)wk(z)dz.
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Proof. (1) By the inversion theorem for the Dunkl transform, formula (3.2) is equiv-
alent to

Γk(s, . , z)∧k(ξ) = c−1
k e−s|ξ|

2
Ek(−iz, ξ).

Lemma 2.2(3) thus implies the stated identity. The rest follows from the invariance
of S(RN ) under the Dunkl transform.

(2) In view of (1), we write

Γk(s, x ∗k y, z) = ĝx,y
k(z), with gx,y(ξ) :=

1
ck
e−s|ξ|

2
Ek(ix, ξ)Ek(iy, ξ).

This gives∫
RN

Γk(s, x ∗k y, z)wk(z)dz =
∫
RN

ĝx,y
k(z)wk(z)dz = ckgx,y(0) = 1.

(3) By (1) and the definition of the Dunkl transform, one obtains∫
RN
MΓk(s, . ,z)(x, t)f(z)wk(z)dz

=
1
dk

∫
RN

(∫
SN−1

Γk(s, x ∗k ty, z)(x, r)wk(y)dσ(y)
)
f(z)wk(z)dz

=
1

ckdk

∫
RN

∫
SN−1

e−s|ξ|
2
f̂ k(ξ)Ek(ix, ξ)Ek(ity, ξ)wk(y)dσ(y)wk(ξ)dξ.

Thus, by the dominated convergence theorem,

lim
s↓0

∫
RN
MΓk(s, . ,z)(x, t)f(z)wk(z)dz

=
1

ckdk

∫
RN

∫
SN−1

f̂ k(ξ)Ek(ix, ξ)Ek(ity, ξ)wk(y)dσ(y)wk(ξ)dξ

=
1
dk

∫
SN−1

f(x ∗k ty)wk(y)dσ(y) = Mf (x, t).

�

Remark 3.4. A similar calculation shows that for f ∈ S(RN ) and x, y ∈ RN ,

f(x ∗k y) = lim
s↓0

∫
RN

f(z)Γk(s, x ∗k y, z)wk(z)dz.

Proof of Theorem 3.1. We may assume that N ≥ 2 and γ > 0, hence also λ > 0.
Moreover, it suffices to prove the result for f ∈ S(RN ), because S(RN ) is dense
in C∞(RN ) and Mf (x, t) depends continuously on f as a consequence of Lemma
2.2(2). Thus, by part (3) of Lemma 3.3, it remains to show that

(3.3) MΓk(s, . ,z)(x, t) > 0 for all s ≥ 0, z ∈ RN and all t ≥ 0, x ∈ RN .
Let us write M(x, t) := MΓk(s, . ,z)(x, t) for brevity. Invoking part (1) of Lemma 3.3
and Corollary 2.5 leads to

M(x, t) =
1
dk

∫
SN−1

Γk(s, x ∗k ty, z)wk(y)dσ(y)

=
1
c2k

∫
RN

e−s|ξ|
2
Ek(−iz, ξ)Ek(ix, ξ) jλ(t|ξ|)wk(ξ)dξ

=
dk
c2k

∫ ∞
0

I(x, z, r) e−sr
2
jλ(tr)r2λ+1dr,(3.4)
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with

(3.5) I(x, z, r) =
1
dk

∫
SN−1

Ek(ix, rξ)Ek(−iz, rξ)wk(ξ)dσ(ξ).

This integral has to be brought into a form from which the positivity of M(x, t)
can be read off. For this, we insert the series expansion (2.9) for Ek(ix, rξ), thus
obtaining

I(x, z, r) =
1
dk

∞∑
n=0

Γ(λ + 1)
2n Γ(n+ λ+ 1)

jn+λ(r|x|)·

·
∫
SN−1

P kn (irx, ξ)Ek(−irz, ξ)wk(ξ)dσ(ξ)

=
∞∑
n=0

( Γ(λ+ 1)
2n Γ(n+ λ+ 1)

)2

jn+λ(r|x|)jn+λ(r|z|)P kn (irx,−irz),(3.6)

where for the second identity, again Corollary 2.5 was used. In case x, z 6= 0, the
homogeneity of P kn allows one to write

(3.7) P kn (irx,−irz) =
(n+ λ)(2λ)n

λ · n!
(r2|x||z|)n VkC̃λn

(〈 x

|x| , .
〉)( z
|z|

)
.

We now employ a well-known degenerate version of the addition theorem for Gegen-
bauer polynomials (see [2], (4.36)): For all s, t, θ ∈ R,

jλ
(√

s2 + t2 − 2st cos θ
)

=
∞∑
n=0

(n+ λ)(2λ)n
λ · n!

( Γ(λ+ 1)
2n Γ(n+ λ+ 1)

)2

(st)njn+λ(s)jn+λ(t) C̃λn(cos θ).

This series converges uniformly with respect to θ ∈ R. Combining (3.6) and (3.7)
and recalling the Laplace representation (2.2) for Vk, we now see that for all x, z 6= 0,

I(x, z, r) =
∫
RN

jλ
(
r
√
|x|2 + |z|2 − 2|z|〈x, η〉

)
dµkz/|z|(η)

=
∫
RN

jλ
(
r
√
|x|2 + |z|2 − 2〈x, η〉

)
dµkz(η).(3.8)

The second identity follows from the dilation equivariance of µkz : µkrz(A) = µkz(r−1A)
for all r > 0, A ∈ B(RN), cf. [23]. By virtue of Corollary 2.5, (3.8) remains true if
x = 0 or z = 0. For abbreviation, put

vz(η) :=
√
|x|2 + |z|2 − 2〈x, η〉.

Then by (3.4), the product formula (2.12) for the Bessel functions jλ and 11.4.29
of [1], we arrive at

M(x, t) =
dk
c2k

∫
RN

∫ ∞
0

jλ(rvz(η)) jλ(rt) e−sr
2
r2λ+1dr dµkz (η)

=
dk
c2k

∫
RN

∫ ∞
0

(∫ ∞
0

jλ(ru)e−sr
2
r2λ+1dr

)
dνλvz(η),t(u) dµkz(η)

=
dk
c2k

Γ(λ+ 1)
2sλ+1

∫
RN

(∫ ∞
0

e−u
2/4sdνλvz(η),t(u)

)
dµkz(η),

which is obviously nonnegative. This finishes the proof. �
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4. A positive radial product formula for the Dunkl kernel

4.1. Statement of the main result. Consider f(x) = Ek(ix, z) with z ∈ RN .
Then

(4.1) Mf(x, t) = Ek(ix, z)jλ(t|z|).
Indeed, we have

1
dk

∫
SN−1

Ek(ix, z)wk(z)dσ(z) = jλ(|x|),

which follows from Corollary 2.5 if N ≥ 2 and is obviously also true if N = 1.
In view of (2.6), this gives (4.1). Theorem 3.1 easily implies the existence of the
representing measures stated in the next theorem, which is the main result of this
paper.

Theorem 4.1. For each x ∈ RN and t ∈ R+ there exists a unique compactly
supported probability measure σkx,t ∈M1(RN ) such that

(4.2) Ek(ix, y) jλ(t|y|) =
∫
RN

Ek(iξ, y)dσkx,t(ξ) for all y ∈ RN .

It represents the spherical mean operator f 7→Mf in the sense that

(4.3) Mf(x, t) =
∫
RN

f dσkx,t for all f ∈ C∞(RN ).

The measure σkx,t satisfies

suppσkx,t ⊆
⋃
g∈G
{ξ ∈ RN : |ξ − gx| ≤ t},

and the mapping (x, t) 7→ σkx,t is continuous with respect to the weak topology on
M1(RN ). Moreover,

σkgx,t(A) = σkx,t(g
−1(A)) and σkrx,rt(A) = σkx,t(r

−1A)

for all g ∈ G, r > 0, and all Borel sets A ∈ B(RN).

Remarks 4.2.
1. The above result also gives a natural extension of the spherical mean operator

at hand: namely, for f ∈ Cb(RN ), we may define Mf ∈ Cb(RN × R+) by

Mf (x, t) :=
∫
RN

fdσkx,t .

2. In the rank-one case, the support of σkx,t with t 6= 0 is given by

suppσkx,t =
[
− |x| − t,−||x| − t|

]
∪
[
||x| − t|, |x|+ t

]
.

This illustrates that the complete G-orbit of x has to be taken into account in the
description of suppσkx,t.

3. From part (2) of Lemma 2.2, a weaker statement on the support of σkx,t is
immediate, namely suppσkx,t ⊆ {ξ ∈ RN : |ξ| ≤ |x|+ t}.

In order to derive the stated properties of the support of σkx,t we use an approach
via a Darboux-type initial value problem satisfied by the spherical mean Mf . For
α ≥ −1/2, denote by Aα the singular Sturm-Liouville operator

Aα := ∂2
t +

2α+ 1
t

∂t
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on R+. The Bessel functions t 7→ jα(tz), z ∈ C, are (up to normalization) the
unique even and analytic eigenfunctions of this operator, satisfying

Atαjα(tz) = −z2jα(tz);

here the upper index indicates the relevant variable.
For f ∈ S(RN ), we may write

(4.4) Mf (x, t) =
1
ck

∫
RN

f̂ k(ξ)Ek(x, iξ)jλ(t|ξ|)wk(ξ)dξ.

In this case, a direct calculation verifies that u = Mf solves the following initial
value problem for the Darboux-type differential-reflection operator ∆x

k −Atλ:

(∆x
k −Atλ)u = 0 in RN × R+ ;(4.5)

u(x, 0) = f(x), ut(x, 0) = 0 for all x ∈ RN .

(To obtain the initial data, one has to use the inversion theorem for the Dunkl
transform as well as the fact that Mf is even with respect to t.) In [19], Prop. 5.2,
it is shown that for arbitrary f ∈ C∞(RN ), Mf is in fact the unique C∞-solution
of (4.5). Instead of studying the domain of dependence for the above Darboux-
type operator directly, we shall consider the corresponding reflection-invariant wave
operator, which is easier to handle.

4.2. Domain of dependence for wave operators related to reflection
groups. This section is devoted to the study of the Dunkl-type wave operator
Lk− ∂2

t , where Lk denotes the reflection-invariant part of the Dunkl Laplacian ∆k,
cf. (2.1). Notice that in the rank-one case, Lk coincides with the Sturm-Liouville
operator Ak−1/2. It will be important for the following that Lk can be written in
divergence form,

(4.6) Lk =
1

wk(x)

N∑
i=1

∂xi
(
wk(x)∂xi

)
.

Let us now turn to the Dunkl-type wave equation on RN × R+ associated with G
and k,

(4.7) (Lk − ∂2
t )u = 0.

The following uniqueness result for solutions of this equation is in close analogy to
well-known facts in the classical case k = 0.

Lemma 4.3. Suppose that u is a real-valued C2-solution of (4.7), given in the
truncated cone

C(x0, t0) = {(x, t) ∈ RN × R+ : |x− x0| ≤ t0 − t}.
Define the energy of u at time t within this cone by

E(t) :=
1
2

∫
Bt

(
u2
t + |∇xu(x, t)|2

)
wk(x)dx,

where the integration is taken over the level set

Bt = {x ∈ RN : |x− x0| ≤ t0 − t}.
Then E′ ≤ 0 on R+.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



POSITIVE RADIAL PRODUCT FORMULA FOR DUNKL KERNEL 2427

Proof. The chain rule gives

E′(t) = I(t)− 1
2

∫
∂Bt

(
ut(x, t)2 + |∇xu(x, t)|2

)
wk(x)dx

with

I(t) =
∫
Bt

(
ut(x, t)utt(x, t) +

∑
j

uxj(x, t)ut,xj (x, t)
)
wk(x)dx

=
∫
Bt

(
utt(x, t)− Lxku(x, t)

)
ut(x, t)wk(x)dx

+
∫
Bt

N∑
j=1

(
ut(x, t)uxj (x, t)wk(x)

)
xj
dx

=
∫
∂Bt

ut(x, t) ∂νu(x, t)wk(x)dσ(x),

where the second identity follows from (4.6) and the last one from the divergence
theorem (ν is the exterior unit normal to Bt and dσ the Lebesgue surface measure
on ∂Bt). By the Cauchy-Schwarz inequality,

ut∂νu ≤
1
2
(
u2
t + |∇xu|2

)
.

This implies the assertion. �

The following uniqueness result is an immediate consequence:

Theorem 4.4. Suppose that u is a C2-solution of the wave equation (Lk−∂2
t )u = 0,

defined in the cone C(x0, t0) and satisfying

ut(x, 0) = u(x, 0) = 0 for all x ∈ RN with |x− x0| ≤ t0.

Then u vanishes in C(x0, t0).

Proof. We may assume that u is real-valued. Since E(t) ≥ 0 and E(0) = 0, the
lemma shows that E(t) = 0 for 0 ≤ t ≤ t0, and hence ut = 0 and ∇xu = 0 in
C(x0, t0). This implies the assertion. �

We mention that there exists a thorough study of wave operators (and more gen-
eral hyperbolic operators) related to root systems especially in the case of integer-
valued multiplicity functions; see [3] and the references cited there. In particular,
for integer-valued k and odd dimensions N satisfying N ≥ 2γ+3, the wave operator
Lk − ∂2

t in fact satisfies the strong Huygens principle. This means that a solution
at (x0, t0) depends only on the data in an infinitesimal neighborhood of the surface
of the propagation cone with vertex at (x0, t0).

4.3. Proof of the main result. For the proof of the properties of the representing
measures in Theorem 4.1, we have to relate the Darboux-type equation (4.5) to the
hyperbolic equation (4.7). For this, we involve the Riemann-Liouville transform
with parameter α > −1/2 on R+. It is given by

(4.8) Rαf(t) =
2Γ(α+ 1)

Γ(1/2)Γ(α+ 1/2)

∫ 1

0

f(st)(1 − s2)α−1/2ds

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2428 MARGIT RÖSLER

for f ∈ C∞(R+), see [27]. The operator Rα satisfies the intertwining property

AαRα = Rα
d2

dt2
.

Notice that the rank-one intertwining operator Vk, when restricted to even func-
tions, just coincides with Rk−1/2. According to [27], Rα is a topological isomor-
phism of C∞(R+) with respect to the usual Fréchet topology, which is induced from
the identification of C∞(R+) with {f ∈ C∞(R) : f(−t) = f(t)}.

Proof of Theorem 4.1. For fixed x ∈ RN and t ≥ 0, consider the linear functional

Φx,t : f 7→Mf (x, t),

which is positivity-preserving on C∞(RN ) according to Theorem 3.1. Moreover,
Φx,t(1) = 1. It follows that Φx,t is represented by a compactly supported probability
measure σkx,t ∈ M1(RN ) (cf. Theorem 2.1.7 of [13]). This implies statement (4.3)
and also (4.2) in view of relation (4.1). Notice that

(4.9) Ek(ix, z)jλ(t|z|) = (σkx,t)
∧k(−z).

Thus the uniqueness of σkx,t follows from the injectivity of the Dunkl transform on
M1(RN ), cf. Proposition 2.1. In order to check the weak continuity of (x, t) 7→ σkx,t,
take a sequence (xn, tn)n∈N ⊂ RN ×R+ with limn→∞(xn, tn) = (x0, t0). Then (4.9)
implies that (σkxn,tn)∧k → (σkxn,tn)∧k pointwise on RN . Lévy’s continuity theorem
for the Dunkl transform (Lemma 2.1 (5)) now yields that the σkxn,tn converge weakly
to σkx0,t0 . Further, the claimed transformation properties of σkx,t are immediate
consequences of the invariance properties (2.4) of the kernel Ek. It remains to
analyse the support of σkx,t. For this, we shall employ Theorem 4.4. We therefore
first reduce the general situation to the group-invariant case. We introduce the
group means

σ̃ kx,t :=
1
|G|

∑
g∈G

σkgx,t =
1
|G|

∑
g∈G

σkx,t ◦ g−1.

Since σkx,t is positive, it is enough to show that σ̃ kx,t is supported in

K(x, t) :=
⋃
g∈G
{ξ ∈ RN : |ξ − gx| ≤ t},

as stated for σkx,t. For this in turn, it suffices to show that∫
RN

f dσ̃kx,t = 0

for all G-invariant f ∈ S(RN ) whose support does not intersect K(x, t). So suppose
that f ∈ S(RN ) is G-invariant. Then according to Proposition 2.4 of [24], f̂ k is
also G-invariant, and (4.4) shows that x 7→ Mf (x, t) is G-invariant as well. Put
uf(x, t) := (Rtλ)−1Mf (x, t), which is still G-invariant with respect to x. According
to (4.5) and the intertwining property of the Riemann-Liouville transform, u = uf
belongs to C∞(RN × R+) and solves the initial value problem

(Lk − ∂2
t )u = 0 in RN × R+;

u(x, 0) = f(x), ut(x, 0) = 0 for all x ∈ RN .(4.10)
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Now suppose in addition that supp f ∩K(x, t) = ∅. Then Theorem 4.4 implies that
uf(x, s) = 0 for all 0 ≤ s ≤ t. From the explicit form (4.8) of the Riemann-Liouville
transform Rλ we further deduce that∫

RN
f dσ̃kx,t = Mf(x, t) = Rtλuf (x, t) = 0,

as claimed. This completes the proof of Theorem 4.1. �

5. Positive translation of radial functions

In this section, we derive a slightly weaker variant of Theorem 4.1. For its
formulation, we introduce some additional notation: If F is a space of C-valued
functions on RN , denote by

Frad := {f ∈ F : f ◦A = f for all A ∈ O(N,R)}
the subspace of those f ∈ F that are radial. For f ∈ Frad there exists a unique
function f̃ : R+ → C such that f(x) = f̃(|x|) for all x ∈ RN . Similarly, if M is a
space of Borel measures on RN , then

Mrad := {µ ∈M : µ ◦A = µ for all A ∈ O(N,R)}
denotes the subspace of radial measures from M.

Theorem 5.1. For each x, y ∈ RN there exists a unique compactly supported,
radial probability measure ρkx,y ∈M1

rad(RN ) such that for all f ∈ C∞rad(RN ),

(5.1) f(x ∗k y) =
∫
RN

fdρkx,y .

The support of ρkx,y is contained in

{ξ ∈ RN : min
g∈G
|x+ gy| ≤ |ξ| ≤ max

g∈G
|x+ gy|}.

In particular, if 0 ∈ supp ρkx,y, then the G-orbits of x and −y coincide.

Proof. Take f ∈ Srad(RN ). Then according to Proposition 2.4 of [24], f̂ k ∈
Srad(RN ) with f̂ k(ξ) = Hλ(f̃ )(|ξ|). Here Hλ stands for the Hankel transform
of index λ on L1(R+ , r

2λ+1dr), given by

Hλ(g)(s) =
1

2λΓ(λ+ 1)

∫ ∞
0

g(r)jλ(rs)r2λ+1dr.

Employing Lemma 2.2 (3), relations (3.5), (3.8) as well as the inversion theorem
for the Hankel transform, one obtains

f(x ∗k y) =
1
ck

∫ ∞
0

Hλ(f̃ )(r)
∫
SN−1

Ek(ix, rξ)Ek(iy, rξ)wk(ξ)dσ(ξ) r2λ+1dr

=
dk
ck

∫ ∞
0

Hλ(f̃)(r)I(−x, y, r)r2λ+1dr

=
1

2λΓ(λ+ 1)

∫
RN

∫ ∞
0

Hλ(f̃ )(r)jλ(r
√
|x|2 + |y|2 + 2〈x, η〉)r2λ+1dr dµky(η)

=
∫
C(y)

f̃
(√
|x|2 + |y|2 + 2〈x, η〉

)
dµky(η);
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here for the second identity, we used the fact that I(x,−y, r) = I(−x, y, r). This
shows that f(x ∗k y) ≥ 0 if f ≥ 0 on RN . Since µky is a compactly supported
probability measure, it also follows that

sup{|f(x ∗k y)| : f ∈ S(RN ), ‖f‖∞ ≤ 1} = 1.

Similarly to the proof of Theorem 4.1, we proceed by considering the linear func-
tional Ψx,y : f 7→ f(x ∗k y), which is positive and bounded with norm ‖Ψx,y‖ = 1
on the dense subspace Srad(RN ) of (C0,rad(RN ), ‖ . ‖∞). Its continuous extension to
C0,rad(RN ) is a probability measure ρkx,y ∈ M1

rad(RN ) that satisfies (5.1). Finally,
the statement concerning the support of ρkx,y is immediate from the implication

η ∈ C(y) =⇒ min
g∈G
|x+ gy| ≤

√
|x|2 + |y|2 + 2〈x, η〉 ≤ max

g∈G
|x+ gy|.

�

The information on the support of the measures ρkx,y can in turn be used to
obtain a sharper statement on the supports of the representing measures for the
spherical mean operator in Theorem 4.1:

Corollary 5.2. The measures σkx,t from Theorem 4.1 satisfy

suppσkx,t ⊆ {ξ ∈ RN : |ξ| ≥
∣∣|x| − t∣∣}.

In particular, if 0 ∈ suppσkx,t, then |x| = t.

Proof. Suppose to the contrary that suppσkx,t * {ξ ∈ RN : |ξ| ≥
∣∣|x| − t∣∣}. Then

there exists some f ∈ Srad(RN ) with f ≥ 0,

(5.2) suppf ∩ {ξ ∈ RN : |ξ| ≥
∣∣|x| − t∣∣} = ∅,

and such that Mf(x, t) > 0. But then η 7→ f(x ∗k tη) is not identically zero on
SN−1. In view of Theorem 5.1, this is a contradiction to (5.2). �

6. An application: Semigroups of k-invariant Markov kernels

with radial distributions

There is a concept of homogeneity for Markov processes on RN , called k-invari-
ance, which generalizes the classical notion of processes with independent, station-
ary increments to the Dunkl setting. This was introduced and studied in some
detail in [24]. The most important example is a generalization of Brownian motion,
with the transition probabilities given in terms of the generalized heat kernel Γk, cf.
example 6.8(1) below. A Dunkl-type Brownian motion is a Feller process and there-
fore admits a version with càdlàg paths. This version gives, after symmetrization
with respect to the underlying reflection group, a diffusion on the Weyl chambers.
k-invariant Markov processes are constructed from semigroups of Markov kernels
that are k-invariant in the following sense:

Definition 6.1 ([24]). A Markov kernel P : RN × B(RN) → [0, 1] is called k-
invariant if

P (x, . )∧k(ξ) = P (0, . )∧k(ξ) ·Ek(−ix, ξ) for all x, ξ ∈ RN .

Here P (x, . ) is regarded as a probability measure on RN .
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If k = 0, the k-invariant Markov kernels are exactly those that are translation-
invariant, which means that they satisfy P (x+x0, A+x0) = P (x,A) for all x, x0 ∈
RN and all A ∈ B(RN). Equivalently, the translation-invariant Markov kernels
(with k = 0) are those of the form P (x,A) := δx ∗µ(A) with a probability measure
µ ∈ M1(RN ); here ∗ denotes the usual group convolution. If k > 0, then for
given µ ∈ M1(RN ) there usually exists no k-invariant Markov kernel such that
P (0, . ) = µ. This is due to the fact that the associated generalized translation on
RN cannot be expected to be probability-preserving (and is definitely not in the
rank-one case).

However, our results allow us to define associated k-invariant Markov kernels for
all measures µ ∈M1(RN ) belonging to the class

M1
k (RN ) := {µ ∈M1(RN ) : w−1

k (x)dµ(x) is radial}.
This leads to a considerable variety of k-invariant Markov processes beyond those
discussed in [24]. Concerning the definition of M1

k (RN ), one should notice that for
µ ∈M1

k (RN ), the measure w−1
k dµ need not be a Radon measure.

Proposition 6.2. Let µ ∈ M1
k (RN ). Then for each x ∈ RN , there exists a unique

probability measure δx ∗k µ ∈M1(RN ) such that

(6.1) (δx ∗k µ)(f) =
∫
RN

f(x ∗k y)dµ(y) for all f ∈ S(RN ).

It satisfies

(6.2) (δx ∗k µ)(f) =
∫
RN

Mf (x, |y|)dµ(y) for all f ∈ Cb(RN ).

Proof. Recall first that y 7→ f(x ∗k y) belongs to S(RN ) for f ∈ S(RN ); whence
the integral on the right side of (6.1) is well-defined. If µ ∈ M1

k (RN ), then for
f ∈ S(RN ),∫
RN

f(x ∗k y)dµ(y) =
∫
RN

1
d0

(∫
SN−1

f(x ∗k |y|ξ)wk(|y|ξ)dσ(ξ)
)
w−1
k (y)dµ(y)

=
dk
d0

∫
RN

Mf (x, |y|)|y|2kw−1
k (y)dµ(y) =

∫
RN

Mf(x, |y|)dµ(y).

This shows that the functional f 7→
∫
RN f(x ∗k y)dµ(y) extends uniquely to a

positive bounded Borel measure δx ∗k µ ∈Mb(RN ) and that (6.2) is satisfied. Since
Mf = 1 for f = 1, δx ∗k µ is in fact a probability measure. �

Theorem 6.3.
(i) If µ ∈ M1

k (RN ), then P (x,A) := δx ∗k µ(A) defines a k-invariant Markov
kernel on RN with P (0, . ) = µ.

(ii) Conversely, if P is a k-invariant Markov kernel with P (0, . ) ∈ M1
k (RN ),

then P (x, . ) = δx ∗k P (0, . ).

Proof. For (i), notice first that δ0 ∗kµ = µ. Moreover, by the above proposition and
equation (4.1),

(δx ∗k µ)∧k(ξ) =
∫
RN

Ek(y,−iξ)d(δx ∗k µ)(y) =
∫
RN

MEk( . ,−iξ)(x, |y|)dµ(y)

=Ek(x,−iξ)
∫
RN

jλ(|y||ξ|)dµ(y).
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Specializing to x = 0, this gives

(6.3) µ̂ k(ξ) =
∫
RN

jλ(|y||ξ|)dµ(y),

and thus
(δx ∗k µ)∧k(ξ) = Ek(−ix, ξ) · µ̂ k(ξ),

which proves that P is k-invariant. By Lévy’s continuity theorem for the Dunkl
transfrom, this also ensures that x 7→ δx ∗k µ is continuous with respect to the weak
topology on M1(RN ). This easily implies that x 7→ P (x,A) is measurable for any
A ∈ B(RN). Thus the proof of (i) is complete. Part (ii) follows immediately from
the definition of k-invariance and the injectivity of the Dunkl transform. �

We also introduce a convolution product for measures from M1
k (RN ):

Definition 6.4. Let µ, ν ∈M1
k (RN ). Then µ ∗k ν ∈M1(RN ) is defined by

µ ∗k ν(f) :=
∫
RN

δx ∗k ν(f)dµ(x) =
∫
RN

∫
RN

f(x ∗k y)dµ(x)dν(y), f ∈ S(RN ).

Notice that

(6.4) (µ ∗k ν)∧k = µ̂ kν̂ k for all µ, ν ∈M1
k (RN ).

There is a close relationship between ∗k on M1
k (RN ) and the convolution ◦λ of the

Bessel-Kingman hypergroup of index λ = γ +N/2− 1 on R+ (cf. Section 2.3). We
shall in particular obtain from this connection that M1

k (RN ) is closed w.r.t. ∗k.
Let us start with some additional notation.

We denote by p(µ) ∈ Mb(R+) the image measure of µ ∈ Mb(RN ) under the
mapping x 7→ |x|, characterized by∫

RN
f(|x|)dµ(x) =

∫ ∞
0

f(r)dp(µ)(r) for all f ∈ Cb(R+).

Further, we write Hλ for the Hankel transform of index λ on Mb(R+), i.e.,

Hλ(σ)(r) =
∫ ∞

0

jλ(rt)dσ(t), σ ∈Mb(R+).

In these terms, (6.3) just states that for µ ∈M1
k (RN ),

(6.5) µ̂k(ξ) = Hλ
(
p(µ)

)
(|ξ|).

We also recall from hypergroup theory that the Hankel transfrom Hλ is multiplica-
tive w.r.t. the convolution ◦λ on Mb(R+), i.e.,

Hλ(σ ◦λ τ) = Hλ(σ)Hλ(τ) for all σ, τ ∈Mb(R+).

Lemma 6.5. M1
k (RN ) is a commutative semigroup with respect to ∗k with neutral

element δ0. The mapping p : (M1
k (RN ), ∗k) → (M1(R+), ◦λ), µ 7→ p(µ), estab-

lishes an isometric isomorphism of semigroups as well as a homeomorphism with
respect to the weak topologies on both spaces.

Proof. It is obvious that p is an isometric bijection from M1
k (RN ) onto M1(R+).

Moreover, by Lévy’s continuity theorem for the Dunkl transform and the Hankel
transform respectively, we deduce from (6.5) that p is a homeomorphism w.r.t. the
weak topologies on the stated spaces. Commutativity of ∗k and the statement on
the neutral element are clear. It remains to prove that M1

k (RN ) is closed with
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respect to ∗k, and that p is multiplicative. For this, let µ, ν ∈ M1
k (RN ). Then by

(6.4) and (6.5),

(µ ∗k ν)∧k(ξ) = µ̂ k(ξ)ν̂ k(ξ) = Hλ(p(µ))(|ξ|)Hλ(p(ν))(|ξ|)
=Hλ(p(µ) ◦λ p(ν))(|ξ|).

Let τ ∈M1
k (RN ) with p(τ) = p(µ) ◦λ p(ν). Then the above calculation shows that

(µ ∗k ν)∧k = τ̂ k. The injectivity of the Dunkl transform implies that µ ∗k ν = τ ∈
M1
k (RN ), as well as

p(µ ∗k ν) = p(τ) = p(µ) ◦λ p(ν).

This finishes the proof. �

Recall that for two Markov kernels P,Q on RN , the composition P ◦Q is defined
by

P ◦Q(x,A) =
∫
RN

Q(z,A)P (x, dz).

If P and Q are k-invariant, then P ◦Q is again k-invariant with(
(P ◦Q)(x, . )

)∧k(ξ) = P (0, · )∧k(ξ) ·Q(0, · )∧k(ξ) ·Ek(−ix, ξ) (x, ξ ∈ RN ),

cf. [24]. A family (Pt)t≥0 of k-invariant Markov kernels on RN is called a semigroup
of k-invariant Markov kernels if the following statements hold:

(i) The kernels (Pt)t≥0 form a semigroup, i.e., Ps ◦ Pt = Ps+t for s, t ≥ 0.
(ii) The mapping R+ →M1(RN ), t 7→ Pt(0, . ), is weakly continuous.

The above results enable us to construct semigroups of k-invariant Markov ker-
nels from convolution semigroups with respect to the hypergroup structure ◦λ on
R+.

Definition 6.6. A family (σt)t≥0 ⊂ M1(R+) of probability measures on R+ is
called a convolution semigroup on R+ with respect to ◦λ, if σs ◦λ σt = σs+t for
all s, t ≥ 0 with σ0 = δ0, and if the mapping R+ → M1(R+), t 7→ σt, is weakly
continuous.

Theorem 6.7. Suppose that (σt)t≥0 is a convolution semigroup on R+ w.r.t. ◦λ,
and define (µt)t≥0 ⊂M1

k (RN ) by µt := p−1(σt) ∈M1
k (RN ). Then µs ∗k µt = µs+t

for all s, t ≥ 0, and Pt(x,A) := δx ◦k µt defines a semigroup of k-invariant Markov
kernels on RN .

Proof. Let s, t ≥ 0. Then by Lemma 6.5,

p(µs ∗k µt) = νs ◦λ νt = νs+t = p(µs+t).

Since p is injective on M1
k (RN ), this proves that µs ∗k µt = µs+t. Further, the

weak continuity of the mapping t 7→ µt on R+ is clear from the continuity of p−1.
According to Theorem 6.3, each Pt is a k-invariant Markov kernel with Pt(0, . ) =
µt, and

(Ps ◦ Pt)(x, . )∧k(ξ) = Ek(−ix, ξ)Ps(0, . )∧k(ξ)Pt(0, . )∧k(ξ)

=Ek(−ix, ξ)µ̂ ks (ξ)µ̂ kt (ξ) = Ek(−ix, ξ)µ̂ ks+t(ξ) = Ps+t(x, . )∧k(ξ).

This implies the semigroup property of (Pt)t≥0. �
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Examples 6.8. All the examples for semigroups of k-invariant Markov kernels
discussed in [24] fit into the concept of Theorem 6.7:

(1) (k-Gaussian semigroups). The k-Gaussian semigroup (PΓ
t )t≥0 is defined by

PΓ
t (x,A) =

∫
A

Γk(t, x, y)wk(y)dy (t > 0),

with the Dunkl-type heat kernel Γk (cf. (3.1)). It is k-invariant and defines a Feller
process on RN , the Dunkl-type Brownian motion. According to (3.2) and Lemma
2.2, we may write

Γk(t, x, y) = Fk(t,−x ∗k y)

with

Fk(t, x) := Γk(t, x, 0) =
1

(2t)λ+1ck
e−|x|

2/4t .

For t > 0, put

dµt(x) := Fk(t, x)wk(x)dx ∈M1
k (RN ).

Then σt := p(µt) ∈M1
γ (R+) is given by the Rayleigh distribution

dσt(r) =
dk

(2t)λ+1ck
r2λ+1e−r

2/4t, t > 0.

It is well known (see e.g. 7.3.18 of [5]) that (νt)t≥0 (with ν0 := 0) is a convolution
semigroup on R+ w.r.t. ◦λ. It defines a Bessel process of index λ. In order to see
that (PΓ

t )t≥0 is associated with (σt)t≥0 as in Theorem 6.7, it remains to verify that

δx ∗k µt = PΓ
t (x, . ).

But if f ∈ S(RN ), then by Lemma 2.2,

δx ∗k µt(f) =
∫
RN

Fk(t, y)f(x ∗k y)wk(y)dy =
∫
RN

Γk(t, x, y)f(y)wk(y)dy.

This yields the claimed identity.
(2) (Subordination). If (Pt)t≥0 is a semigroup of k-invariant Markov kernels

and (ρt)t≥0 ⊂ M1(R) is a convolution semigroup of probability measures on the
group (R,+) (in the sense of [4]) which is supported by R+, then a subordinated
semigroup (P̃t)t≥0 of k-invariant Markov kernels is defined by

P̃t(x,A) =
∫ ∞

0

Ps(x,A)dρt(s).

Suppose now that (Pt)t≥0 is associated with a ◦λ-convolution semigroup (σt)t≥0 on
R+ according to Theorem 6.7. Then it is immediate that (P̃t)t≥0 is associated in
the same way with the ◦λ-convolution semigroup (σ̃t)t≥0 defined by

σ̃t :=
∫ ∞

0

σs dρt(s).

This example in particular includes the k-Cauchy kernels in [24].
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7. Appendix: Generalized Bessel functions as spherical functions

For crystallographic reflection groups and certain discrete sets of half-integer
multiplicity functions, generalized Bessel functions have an interpretation as the
spherical functions of a Euclidean-type symmetric space. This in particular implies
a positive product formula as stated in (1.3).

To become more precise, let us first recall the context from [20] and [16]: Suppose
that G is a connected, non-compact semisimple Lie group with finite center. Choose
a maximal compact subgroup K of G, and let K n p be the Cartan motion group
associated with the Cartan decomposition g = k + p of the Lie algebra g; here K
acts on p via the adjoint representation. Choose a maximal abelian subspace a of
p, and denote by Σ ⊂ a∗ the roots of g with respect to a. We consider Σ as a subset
of a, identifying a with its dual via the Killing form B, and denote by G the Weyl
group of Σ, acting on the Euclidean space (a, B) ∼= (RN , 〈 . , . 〉). Let us consider
the spherical functions of the Gelfand pair (K n p,K) as K-invariant functions on
(K n p)/K ∼= p. According to Chap. IV of [12], they are of the form ψλ , λ ∈ aC,
where ψλ ∈ C∞(p) is characterized as the unique K-invariant solution of the joint
eigenvalue problem

∂(p)ψ = p(λ)ψ for all p ∈ I(p), ψ(0) = 1;

here I(p) is the space of K-invariants in the symmetric algebra over p and ∂(p) is
the constant coefficient differential operator associated with p. Further, ψλ = ψµ
iff µ = gλ for some g ∈ G. By taking radial parts of constant coefficient differential
operators on p, it can now be shown that the restriction ψλ|a (which is G-invariant
and determines ψλ uniquely) coincides with the generalized Bessel function Jk( . , λ)
associated with G; the multiplicity function k is given by k(α) = 1

4

∑
β∈Rα∩Σmβ,

with mα the multiplicity of α ∈ Σ. A detailed proof of this can be found in [16].
The convolution of K-biinvariant functions on the Cartan motion group can be

interpreted as the convolution of a commutative hypergroup structure on the double
coset space (K n p)//K ∼= K \p, which is defined by

δK·x ∗ δK·y =
∫
K
δK·(x+k·y) dk, x, y ∈ p.

(See [17], Chap. 8 for information about double coset and orbit hypergroups.) If
a+ is an arbitrary fixed Weyl chamber of a, then each orbit K · x contains a unique
x+ ∈ a+, and the mapping K \p 7→ a+, K · x → x+ is a homeomorphism; see
[12], Prop. I.5.18. Thus, we obtain an induced hypergroup structure on the closed
chamber a+ which is determined by the convolution

(7.1) δx ∗ δy =
∫
K
δ(x+k·y)+dk , x, y ∈ a+.

In particular, the δx ∗ δy are compactly supported probability measures on a+. The
identity element of this hypergroup is 0, and the involution is given by (x+)− =
(−x)+. From (7.1) together with the characterization of the spherical functions ψλ
by means of their product formula, we see that the set

{ψ ∈ C(a+ ) : δx ∗ δy(ψ) = ψ(x)ψ(y)}

of continuous, multiplicative functions on the hypergroup a+ consists exactly of the
functions ψλ , λ ∈ aC. With the identification (a, B) ∼= (RN , 〈 . , . 〉), a+

∼= C and
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Jk as above, we in particular obtain

Jk(x, λ)Jk(y, λ) =
∫
C

Jk(ξ, λ)d(δx ∗ δy)(ξ) for all x, y ∈ C, λ ∈ CN .

Suppose now that G is complex. Then k(α) = 1 for all α ∈ R, and the associated
Bessel function J1( . , λ) is given by

J1(x, λ) = c
∑
g∈G

det (g)
π(x)π(λ)

e〈x,gλ〉

with some constant c ∈ C; here π denotes the fundamental alternating polynomial

π(x) =
∏
α∈R+

〈α, x〉 ,

cf. [9], Prop. 1.4. (This result remains obviously true if not a single G-orbit in
R, but any G-invariant subset, in particular R itself, is considered.) The Laplace
representation (2.3) for Ek implies that for all x, λ ∈ RN ,

J1(x, λ) =
∫
RN

e〈ξ,λ〉dµ̃x(ξ)

with the G-invariant probability measure

µ̃x :=
1
|G|

∑
g∈G

µ1
gx.

For y ∈ RN , denote by νx,y ∈ M1(RN ) the image measure of µ̃x under the trans-
lation ξ 7→ ξ + y. Then

J1(x, λ)J1(y, λ) = c

∫
RN

∑
g∈G

det (g)
π(y)π(λ)

e〈y+ξ,gλ〉dµ̃x(ξ)

= c

∫
RN

∑
g∈G

π(ξ)
π(y)

det (g)
π(ξ)π(λ)

e〈ξ,gλ〉dνx,y(ξ) =
∫
RN

J1(ξ, λ)
π(ξ)
π(y)

dνx,y(ξ).

This shows that in the present case, the hypergroup convolution on C is given by
δx ∗ δy = π(y)−1ρx,y, where ρx,y is the image measure of πνx,y under the canonical
projection RN → G\RN ∼= C. Up to a common multiplicative factor, the spherical
functions ψλ of (K n p,K) can be identified with the spherical functions Φλ of
the symmetric space G/K, cf. [12], Prop. IV.4.10. So the Φλ satisfy a slightly
modified positive product formula, which has recently been investigated in [11]. The
representing measures are absolutely continuous with respect to Lebesgue measure
in the generic case, and the authors of [11] obtained detailed information on their
supports.
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