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INTEGRAL REPRESENTATION AND UNIFORM LIMITS FOR

SOME HECKMAN-OPDAM HYPERGEOMETRIC FUNCTIONS

OF TYPE BC

MARGIT RÖSLER AND MICHAEL VOIT

Abstract. The Heckman-Opdam hypergeometric functions of type BC ex-
tend classical Jacobi functions in one variable and include the spherical func-

tions of non-compact Grassmann manifolds over the real, complex or quater-

nionic numbers. There are various limit transitions known for such hypergeo-
metric functions, see e.g. [dJ], [RKV]. In the present paper, we use an explicit

form of the Harish-Chandra integral representation as well as an interpolated

variant, in order to obtain two limit results, each of them for three continuous
classes of hypergeometric functions of type BC which extend the group cases

over the fields R,C,H. These limits are distinguished from the known results

by explicit and uniform error bounds. The first limit realizes the approxima-
tion of the spherical functions of infinite dimensional Grassmannians of fixed

rank; here hypergeometric functions of type A appear as limits. The second
limit is a contraction limit towards Bessel functions of Dunkl type.

1. Introduction

The theory of hypergeometric functions associated with root systems provides
a framework which generalizes the classical theory of spherical functions on Rie-
mannian symmetric spaces; see [H], [HS] and [O2] for the general theory, as well
as [Sch] and [NPP] for some more recent developments. Here we consider the
non-compact Grassmannians Gp,q(F) = G/K over one of the (skew-) fields F =
R,C,H, where G is one of the indefinite orthogonal, unitary or symplectic groups
SO0(q, p), SU(q, p) or Sp(q, p) with p > q, and K is the maximal compact sub-
group K = SO(q) × SO(p), S(U(q) × U(p)) or Sp(q) × Sp(p), respectively. The
real rank of G/K is q, and the restricted root system ∆(g, a) is of type BC. Let
FBC(λ, k; t) denote the Heckman-Opdam hypergeometric function associated with
the root system

R = 2 ·BCq = {±2ei,±4ei,±2ei ± 2ej : 1 ≤ i < j ≤ q} ⊂ Rq,

with spectral variable λ ∈ Cq and multiplicity parameter k. The spherical functions
of G/K = Gp,q(F), which are K-biinvariant as functions on G, are then given by

φpλ(at) = FBC(iλ, kp; t) (t ∈ Rq)

with λ ∈ Cq and multiplicity

kp = (d(p− q)/2, (d− 1)/2, d/2)
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corresponding to the roots ±2ei, ±4ei and 2(±ei±ej) respectively; here d ∈ {1, 2, 4}
denotes the dimension of R,C,H over R; see [R2] and Remark 2.3 of [H]. In [R2],
the product formula for spherical functions,

φ(g)φ(h) =

∫
K

φ(gkh)dk (g, h ∈ G),

was made explicit in such a way that it could be extended to a product formula for
the hypergeometric function FBC with mulitplicity kp corresponding to arbitrary
real parameters p > 2q − 1. This led to three continuous series of positive product
formulas for FBC corresponding to F = R,C,H as well as associated commutative,
probability-preserving convolution algebras of measures (hypergroups in the sense
of [J]) on the BCq-Weyl chamber

Cq = {t = (t1, . . . , tq) ∈ Rq : t1 ≥ . . . ≥ tq ≥ 0}.
On the other hand, the spherical functions of G/K have the Harish-Chandra inte-
gral representation

φpλ(at) =

∫
K

e(iλ−ρ)(H(atk))dk, λ ∈ a∗C
∼= Cq,

see [Hel] or [GV] for the general theory and Section 2 for details in our particular
case. The Harish-Chandra integral was made explicit by Sawyer [Sa] for the real
Grassmannians Gp,q(R). In the present paper, we extend Sawyer’s representation
to general F and further reduce it to a form which allows an extension from the
spherical case with integers p ≥ 2q to a positive integral representation for the three
classes of hypergeometric functions FBC as above, with arbitrary real parameters
p > 2q−1, the rank q being fixed. This (in part) generalizes the well-known integral
representation of Jacobi functions, which are the hypergeometric functions of type
BC in rank one (see [K1]). We also give an analogous integral representation for
the corresponding Heckman-Opdam polynomials.

Our integral representation (Theorem 2.4) for the spherical functions of Gp,q(F)
is closely related to those for the spherical functions of the type A symmetric
spaces GL(q,F)/U(q,F). In particular, we obtain immediately that for p→∞, the
spherical functions of Gp,q(F) tend to the spherical functions of GL(q,F)/U(q,F),
a result which was proven recently by completely different methods and in more
generality in [RKV], see also the note [K2] for the polynomial case. As described in
[RKV], this limit transition realizes the approximation of the Olshanski-spherical
functions of infinite dimensional Grassmannians of fixed rank q over F, which can
be naturally identified with the spherical functions of GL(q,F)/U(q,F).

As a main result of the present paper, we shall deduce from our explicit integral
representation a result on the rate of convergence (Theorem 4.2): the convergence
of the bounded hypergeometric functions FBC , with multiplicities depending on p
as above, is of order O(p−1/2) for p→∞, uniformly on the chamber Cq and locally
uniformly in the spectral variable. Moreover, a corresponding result is obtained
in the unbounded case. It seems that these results cannot be obtained by the
methods of [RKV]. Corresponding results for q = 1, i.e., for Jacobi functions, can
be found in [V2]. We also mention that our convergence results are related to
further limits, e.g., to limits in [D] and [SK] for multivariate polynomials as well as
to the convergence of (multivariable) Bessel functions of type B to those of type A
and related results for matrix Bessel functions in [RV2], [RV3]. We point out that
these convergence results with error bounds may serve as a basis to derive central
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limit theorems for random walks on the Grassmannians Gp,q(F) when for fixed rank
q, the time parameter of the random walks as well as the dimension parameter p
tend to infinity in a coupled way. For results in this direction we refer to [RV3],
[V2].

In generalization of the contraction principle for Riemannian symmetric spaces,
Heckman-Opdam hypergeometric functions can be approximated for small space
variables and large spectral parameters by corresponding Bessel functions of Dunkl
type. This was first proven in [dJ] by an asymptotic analysis of the Cherednik
system; see also [RV1]. In the present paper, we shall use the integral representation
of Theorem 2.4 in order to obtain this approximation in our series of BC-cases
(which include the spherical functions on Grassmannians), again with an explicit
error estimate. For the case q = 1 and the use of the error estimate in the proof of
central limit theorems we refer to [V2] and references cited there.

We finally mention that the Harish-Chandra integral in Proposition 5.4.1 of
[HS] for the K-spherical functions of the symmetric spaces U(p, q)/(U(p)×SU(q))
over C may be used to derive an explicit integral representation for Heckman-
Opdam hypergeometric functions of type BC for a different class of parameters
than considered here. For such cases, associated convolution structures have been
derived in [V3].

The organization of this paper is as follows: In Section 2 we treat the Harish-
Chandra integral representation for the spherical functions of Gp,q(F) as well as for
the associated three continuous series of Heckman-Opdam hypergeometric func-
tions. In Section 3 we deduce the convergence of the spherical functions of Gp,q(F)
to those of GL(q,F)/U(q,F) as p → ∞. Section 4 is then devoted to explicit esti-
mates for the rate of convergence. In particular, in order to obtain a uniform rate
for t ∈ Cq, we need a technical result on the convex hull of Weyl group orbits of the
weighted half-sum ρ of roots which will be proven separately in an appendix (Sec-
tion 6). The quantitative contraction estimates between hypergeometric functions
of type BC and Bessel functions of type B will be presented in Section 5.

2. An integral representation for spherical functions on Grassmann
manifolds and hypergeometric functions of type BC

In this section, we extend Sawyer’s ([Sa]) integral representation for spherical
functions on real Grassmannians and deduce an explicit integral representation
(Theorem 2.4) for three continuous series for hypergeometric functions of type BC.

Let F be one of the (skew-) fields R,C,H and d = dimRF ∈ {1, 2, 4}. On F, we
have the standard involution x 7→ x and norm |x| = (xx)1/2. By Mq,p(F) we denote
the set of q× p matrices over F, also viewed as F-linear transformations from Fp to
Fq, which are considered as right F-vector spaces. We write Mq(F) = Mq,q(F).

We consider the Grassmannians G/K = Gp,q(F) where G is one of the groups
SO0(p, q), SU(p, q) or Sp(p, q), and K is the maximal compact subgroup K =
SO(p) × SO(q), S(U(p) × U(q)), Sp(p) × Sp(q), respectively. Note that G is the
identity component of SU(q, p;F), where U(q, p;F) is the isometry group for the
quadratic form

|x1|2 + . . .+ |xq|2 − |xq+1|2 − . . .− |xp+q|2

on Fp+q. In the same way, K is a subgroup of U(q,F)× U(p,F) where

U(q,F) = {X ∈Mq(F) : X∗X = Iq}
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is the unitary group over F; here X∗ = X
t

denotes the conjugate transpose. The
Lie algebra g of G consists of the matrices

X =

(
A B
B∗ D

)
∈Mp+q(F)

with blocks A = −A∗ ∈ Mq(F) and D = −D∗ ∈ Mp(F) satisfying trA + trD = 0,
as well as B ∈Mq,p(F). Let k be the Lie algebra of K and g = k⊕ p the associated
Cartan decomposition of g, with p consisting of the (q, p)-block matrices

X =

(
0 X
X∗ 0

)
, X ∈Mq,p(F).

In accordance with [Sa], we use as a maximal abelian subspace a of p the set of
matrices

Ht =

 0q×q t 0q×(p−q)
t 0q×q 0q×(p−q)

0(p−q)×q 0(p−q)×q 0(p−q)×(p−q)


where t = diag(t1, . . . , tq) is the diagonal matrix corresponding to t = (t1, . . . , tq) ∈
Rq. We remark that our present notions are adjusted to those of [Sa] (with p and
q exchanged), and are slightly different from those used in [R2].

The restricted root system Σ = Σ(g, a) of g with respect to a consists of the
non-zero linear functionals α ∈ a∗ such that

gα = {X ∈ g : [H,X] = α(H)X ∀H ∈ a} 6= {0}.
In our case, the root system is of type Bq if F = R and of type BCq if F = C
or H. The multiplicities mα = dimR gα can be found e.g. in table 9 of [OV]. We
shall need an explicit description of the root spaces. For this, define fi ∈ a∗ by
fi(Ht) = ti, i = 1, . . . , q. We shall write matrices from g in (q, q, p− q)-block form.
By Eij we denote a matrix of appropriate size which has entries 0 except in position
(i, j), where the entry is 1. Notice that Eij · λ = λ · Eij for λ ∈ F. The following
list of roots is easily verified by block multiplications; in the real case, it matches
Theorem 5 of [Sa].

(1) α = ±fi, 1 ≤ i ≤ q. The root space gα is given by gα = {X±ir(λ) : λ ∈
F, r = 1, . . . , p− q} with

X±ir(λ) =

 0 0 λEir
0 0 ±λEir

λEri ∓λEri 0

 .

The multiplicity of α is mα = d(p− q).
(2) α = ±(fi − fj), 1 ≤ i < j ≤ q. In this case, gα = {Y ±ij (λ) : λ ∈ F} with

Y ±ij (λ) =

±(λEij − λEji) λEij + λEji 0

λEij + λEji ±(λEij − λEji) 0
0 0 0

 .

The multiplicity is mα = d.
(3) α = ±(fi + fj), 1 ≤ i < j ≤ q. Here gα = {Z±ij (λ) : λ ∈ F} with

Z±ij (λ) =

±(λEij − λEji) −λEij + λEji 0

−λEji + λEij ±(λEji − λEij) 0
0 0 0

 .

Again, the multiplicity is mα = d.
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(4) α = ±2fi , 1 ≤ i ≤ q. This family of roots occurs only for F = C,H. The
root spaces are given by gα = {λ ·W±i : λ ∈ F, λ = −λ} with

W±i =

 Eii 0 ∓Eii
0 0 0
±Eii 0 −Eii

 .

In order to obtain a unified notion, we consider α = ±2fi also a root if
F = R, with multiplicity zero. Then mα = d− 1 for F = R,C,H.

In our unified notion, Σ is of type BCq in all cases, with the understanding that
0 may occur as a multiplicity on the long roots. As usual, we choose the positive
subsystem

Σ+ = {fi, 2fi, 1 ≤ i ≤ q} ∪ {fi ± fj , 1 ≤ i < j ≤ q}.
Then the weighted half-sum of positive roots is

ρBC = ρBC(p) =
1

2

∑
α∈Σ+

mαα =

q∑
i=1

(d
2

(p+ q + 2− 2i)− 1
)
fi . (2.1)

Let
n =

∑
α∈Σ+

gα

and N = exp n, A = exp a. Then A is abelian, N is nilpotent, and G = KAN is
an Iwasawa decomposition of G. The spherical functions of G/K are given by the
Harish-Chandra integral formula

φpλ(at) =

∫
K

e(iλ−ρBC)(H(atk))dk, λ ∈ a∗C (2.2)

where H(g) ∈ A denotes the unique abelian part of g ∈ G in the Iwasawa decom-
position G = KAN (see e.g. [GV]), and

at = exp(Ht) =

cosh t sinh t 0
sinh t cosh t 0

0 0 Ip−q

 (2.3)

with cosh t = diag(cosh t1, . . . , cosh tq), sinh t = diag(cosh t1, . . . , cosh tq).

We shall identify a∗C with Cq via λ 7→ (λ1, . . . , λq) for λ ∈ a∗C given by λ(Ht) =∑q
r=1 λrtr , λr ∈ C.
In order to state a more explicit form of the Harish-Chandra integral above, we

need some further notation. For a Hermitian square matrix A = (aij) over F we
denote by ∆(A) the determinant of A, i.e. the product of its eigenvalues (which are
real) and by ∆r(A) = ∆((aij)1≤i,j≤r) its r-th principal minor, see [FK] for details.

We introduce the usual power functions on the cone

Ωq = {x ∈Mq(F) : x = x∗, x strictly positive definite},
(c.f. [FK]), Chap.VII.1.): For λ ∈ Cq ∼= a∗C and x ∈ Ωq, we define

∆λ(x) = ∆1(x)λ1−λ2 · . . . ·∆q−1(x)λq−1−λq ·∆q(x)λq . (2.4)

We also define the projection matrix

σ0 :=

(
Iq

0(p−q)×q

)
∈Mp,q(F).

The following result generalizes Theorem 16 of [Sa].
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Theorem 2.1. For the Grassmannian Gp,q(F), the spherical functions (2.2) are
given by

φpλ(at) =

∫
K

∆(iλ−ρBC)/2(xt(k))dk, λ ∈ Cq

where for k =

(
u 0
0 v

)
∈ K with u ∈ U(q,F), v ∈ U(p,F),

xt(k) := (cosh t u+ sinh t σ∗0vσ0)∗(cosh t u+ sinh t σ∗0vσ0) ∈ Ωq .

Proof. We closely follow [Sa]. Let

S =
1√
2
·

 Iq 0q×(p−q) Jq
Iq 0q×(p−q) −Jq

0(p−q)×q
√

2Ip−q 0(p−q)×q

 with Jq = (δi,q+1−j)i,j ∈Mq(F).

Notice that S∗S = Ip+q. Using the explicit form of the root spaces above, one
checks that S∗XS is strictly upper triangular for each X ∈ n. Thus for n ∈ N, the
matrix S∗nS is upper triangular with entries 1 in the diagonal. Furthermore,

S∗ exp(Ht)S = diag(et1 , . . . , etq , 1, . . . , 1, e−tq , . . . , e−t1)

with p − q entries 1. Consider g = k exp(Ht)n ∈ KAN and let 1 ≤ r ≤ q. As in
the proof of Proposition 14 of [Sa], we calculate the principal minors

∆r(S
∗g∗gS) = ∆r((S

∗nS)∗(S∗ exp(2Ht)S)S∗nS) = e2(t1+...+tr).

Writing g = k exp(Ht)n in (q, p)-block form as g =

(
A B
C D

)
, the upper left

q × q-block of S∗g∗gS becomes

(A+Bσ0)∗(A+Bσ0) with σ0 =

(
Iq

0(p−q)×q

)
∈Mp,q(F).

Thus

tr =
1

2
log

∆r((A+Bσ0)∗(A+Bσ0))

∆r−1((A+Bσ0)∗(A+Bσ0))
, (2.5)

with the agreement ∆0 := 1. Notice that this generalizes Proposition 14 of [Sa],
and that the arguments of ∆r and ∆r−1 belong to the cone Ωq, because gS is
non-singular.

Now consider g = atk with k =

(
u 0
0 v

)
∈ K. We have

atk =

cosh t sinh t 0
sinh t cosh t 0

0 0 Ip−q

 · (u 0
0 v

)
=

(
cosh t u sinh t σ∗0v
∗ ∗

)
.

By (2.5), this gives

eλ(H(atk)) =

q∏
r=1

( ∆r(xt(k))

∆r−1(xt(k))

)λr/2

= ∆λ/2(xt(k)),

which proves the statement. �

For p ≥ 2q we may reduce the integral in Theorem 2.1 by techniques from [R1],
[R2]. For this, consider the ball

Bq = {w ∈Mq(F) : w∗w < I},
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where A < B means that B − A is (strictly) positive definite. Define also the
probability measure mp on Bq given by

dmp(w) =
1

κpd/2
·∆(I − w∗w)pd/2−γdw, (2.6)

where

γ := d
(
q − 1

2

)
+ 1,

dw is the Lebesgue measure on the ball Bq, and

κpd/2 =

∫
Bq

∆(I − w∗w)pd/2−γ dw. (2.7)

Notice that mp is a probability measure on Bq.

By U0(q,F) we denote the identity component of U(q,F). Notice that U(q,F) =
U0(q,F) for F = C,H, while U0(q,R) = SO(q). With these notions, we obtain the
following integral representation:

Corollary 2.2. Let p ≥ 2q be an integer. Then the spherical functions (2.2) can
be written as

φpλ(at) =

∫
U0(q,F)×Bq

∆(iλ−ρBC)/2(gt(u,w)) dmp(w)du (2.8)

where du denotes the normalized Haar measure on U0(q), and

gt(u,w) = u−1(cosh t + sinh t w)∗(cosh t + sinh t w)u .

The same formula holds with the argument gt(u,w) replaced by

g̃t(u,w) = u−1(cosh t + sinh t w)(cosh t + sinh t w)∗u.

Proof. In a first step, we replace the integral over K in Theorem 2.1 by an integral
over U0(q,F) × U(p,F). This is achieved in the same way as for the integral (2.5)
in [R2]; it is important in this context that the argument xt(k) depends only on
the upper left q× q-block of v. Lemma 2.1 of [R2] then gives the first formula with
the argument (cosh t u+ sinh t w)∗(cosh t u+ sinh t w) instead of gt(u,w), which is
then obtained by a change of variables w 7→ wu.

For the proof of the second equation, notice that for a := cosh t + sinh t · w ∈
Mq(F), the matrices a∗a and aa∗ have the same eigenvalues with the same multi-
plicities. Therefore, a∗a = vaa∗v∗ with some v ∈ U(q,F) for F = R,C. In fact,
this also valid for H. To check this, write a ∈ Mq(H) as a = a1 + ja2 for complex
matrices a1, a2 ∈Mq(C), and form

χa :=

(
a1 a2

−ā2 ā1

)
∈M2q(C).

The mapping χ : Mq(H) → M2q(C), a 7→ χa, is a ∗-homomorphism of algebras,
and χ∗aχa and χaχ

∗
a have the same eigenvalues as a∗a and aa∗ respectively with

the doubled multiplicities; see the survey [Zh]. Thus, a∗a and aa∗ have the same
eigenvalues with the same multiplicities, and hence a∗a = vaa∗v∗ with some v ∈
U(q,H).

Using a∗a = vaa∗v∗ for some v ∈ U(q,F), we see that for each fixed w ∈ Bq∫
U0(q,F)

∆(iλ−ρ)/2(g̃(t, u, w))du =

∫
U0(q,F)

∆(iλ−ρ)/2(u∗vaa∗v∗u)du =

∫
U0(q,F)

∆(iλ−ρ)/2(g(t, u, w))du.
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This yields the second equation. �

We now identify t ∈ Cq with the matrices at ∈ G as above and regard the
spherical functions φpλ above as functions on the Weyl chamber Cq. With this
agreement we now extend the integral representation (2.8) above from integer pa-
rameters p ≥ 2q to arbitrary real parameters p ≥ 2q − 1. For this we fix F (and
thus d = 1, 2, 4) and define the functions

φpλ(t) := FBC(iλ, kp; t) (t ∈ Cq, λ ∈ Cq) (2.9)

with

kp = (d(p− q)/2, (d− 1)/2, d/2),

which are analytic in p with Re p > q. Note that for integers p, the functions
φpλ are precisely the spherical functions (2.2). For the extension of the integral
representation, we shall employ Carlson’s theorem on analytic continuation which
we recapitulate from [Ti], p.186:

Theorem 2.3. Let f(z) be holomorphic in a neighbourhood of {z ∈ C : Re z ≥ 0}
satisfying f(z) = O

(
ec|z|

)
on Re z ≥ 0 for some c < π. If f(z) = 0 for all

nonnegative integers z, then f is identically zero for Re z > 0.

We shall prove:

Theorem 2.4. Let p ∈ R with p > 2q − 1. Then the functions (2.9) satisfy

φpλ(t) =

∫
Bq×U0(q,F)

∆(iλ−ρBC)/2(gt(u,w)) dmp(w)du (2.10)

for all λ ∈ Cq and t ∈ Cq , where again the argument gt may be replaced by g̃t as
in Corollary 2.2.

Proof. We first observe that both sides of (2.10) are analytic in p and λ. In order
to employ Carlson’s theorem to extend (2.8) to p ∈]2q − 1,∞[, we need a suit-
able exponential growth bound on FBC w.r.t. p in some right half plane. Such
exponential estimates are available only for real, nonnegative multiplicities; see
Proposition 6.1 of [O2], [Sch], and Section 3 of [RKV]. We thus proceed in two
steps and closely follow the proof of Theorem 4.1 of [R2], where a product formula
is obtained by analytic continuation. We first restrict our attention to a discrete
set of spectral parameters λ for which FBC is a (renormalized) Jacobi polynomial
and where the growth condition is easily checked. Carlson’s theorem then leads to
(2.10) for this discrete set of parameters λ and all p ∈]2q− 1,∞[. In a further step
we fix p ∈]2q − 1,∞[ and extend (2.10) to all λ ∈ Cq.

Let us go into details. We need some notation and facts from [O2] and [HS]. For
R = 2 · BCq with the set R+ of positive roots, consider the weighted half-sum of
positive roots

ρ(k) :=
1

2

∑
α∈R+

k(α)α =

q∑
i=1

(k1 + 2k2 + 2k3(q − i))ei (2.11)

as well the c-function

c(λ, k) :=
∏
α∈R+

Γ(〈λ, α∨〉+ 1
2k(α2 ))

Γ(〈λ, α∨〉+ 1
2k(α2 ) + k(α))

·
∏
α∈R+

Γ(〈ρ(k), α∨〉+ 1
2k(α2 ) + k(α))

Γ(〈ρ(k), α∨〉+ 1
2k(α2 ))

(2.12)
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with the usual inner product on Cq and the conventions α∨ := 2α/〈α, α〉 and
k(α2 ) = 0 for α

2 /∈ R. The c-function is meromorphic on Cq × C3. We consider
the dual root system R∨ = {α∨ : α ∈ R}, the coroot lattice Q∨ = Z.R∨, and
the weight lattice P = {λ ∈ Rq : 〈λ, α∨〉 ∈ Z ∀α ∈ R}. Further, denote by
P+ = {λ ∈ P : 〈λ, α∨〉 ≥ 0 ∀α ∈ R+} the set of dominant weights associated with
R+. In our case, P+ = Cq ∩ 2Zq. According to Eq. (4.4.10) of [HS], we have for
k ≥ 0 and λ ∈ P+ the connection

FBC(λ+ ρ(k), k; t) = c(λ+ ρ(k), k)Pλ(k; t) (2.13)

where the Pλ are the Heckman-Opdam Jacobi polynomials associated with BCq.
We also consider the specific multiplicities kp := (d(p − q)/2, (d − 1)/2, d/2) and
the associated constants ρ(kp) = ρBC as in (2.1). With these notations we obtain
from (2.13) and (2.9) that the integral representation (2.10) can be written as

Pλ(kp; t) =
1

c(λ+ ρ(kp), kp)
· 1

κpd/2

∫
Bq

∫
U0(q,F)

∆λ/2(gt(u,w))∆(I−w∗w)pd/2−γdwdu.

(2.14)
Exactly as in the proof of Theorem 4.1 of [R2], it is now checked that both sides

of (2.14) are, as functions of p, of polynomial growth in the half-plane {p ∈ C :
Re(pd/2) > γ−1}; we omit the details. We may therefore apply Carlson’s theorem
to (2.14), and this proves (2.10) for p with Re(pd/2) > γ − 1 and all spectral
parameters of the form −i(λ+ ρ(kp)) with λ ∈ P+.

We next fix p ∈ R with p > 2q − 1 (in which case kp is nonnegative) and extend
(2.10) with respect to the spectral parameter λ. According to Proposition 6.1 of
[O2],

|FBC(λ, kp; t)| ≤ |W |1/2emaxw∈W Re 〈wλ,t〉

where W is the Weyl group of BCq. Let C0
q denote the interior of Cq and H ′ :=

{λ ∈ Cq : Reλ ∈ C0
q }. Then

Re〈wλ, t〉 ≤ Re〈λ, t〉 for λ ∈ H ′, t ∈ Cq, w ∈W.

Now fix t ∈ Cq and p as above, and choose a vector a ∈ C0
q sufficiently large. Then

(2.10) for the spectral parameter λ+ ρ(kp) is equvalent to

e−〈λ,a+t〉φp−i(λ+ρ(kp))(t) =

∫
Bq×U0(q,F)

e−〈λ,a+t〉 ·∆λ/2(gt(u,w)) dmp(w)du.

The left hand side remains bounded for λ ∈ H ′. Moreover, for a ∈ C0
q sufficiently

large,

sup
(u,w)∈U0(q,F)×Bq ;λ∈H′

|e−〈λ,a+t〉 ·∆λ/2(gt(u,w))| <∞,

which proves that also the right hand side remains bounded for λ ∈ H ′. By a q-fold
application of Carlson’s theorem we thus may extend the preceding equation from
λ ∈ P+ to λ ∈ H ′. A classical analytic continuation now finishes the proof. �

The above proof reveals in particular the following integral representation for
Heckman-Opdam polynomials of type BC:

Corollary 2.5. Let kp = (d(p− q)/2, (d− 1)/2, d/2) with p ∈ R, p > 2q − 1. Then
the Heckman-Opdam polynomials of type BCq with multiplicity kp have the integral
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representation

Pλ(kp; t) =
1

c(λ+ ρ(kp), kp)

∫
Bq×U0(q,F)

∆λ/2(gt(u,w))dmp(w)du for t ∈ Cq.

Here λ ∈ P+ = Cq ∩ 2Zq and

gt(u,w) = u−1(cosh t + w∗ sinh t)(cosh t + sinh t w)u .

Remark 2.6. For the limit case p = 2q − 1, a degenerate version of the integral
representation (2.10) is available. For this we follow Section 3 of [R1].

We fix q and consider the matrix ball Bq := {w ∈ Mq(F) : w∗w < Iq} as above

as well as the ball B := {y ∈ Fq : ‖y‖2 = (
∑q
j=1 yjyj)

1/2 < 1} and the sphere

S := {y ∈ Fq : ‖y‖2 = 1}. By Lemma 3.7 and Corollary 3.8 of [R1], the mapping

P (y1, . . . , yq) :=


y1

y2(Iq − y∗1y1)1/2

...
yq(Iq − y∗q−1yq−1)1/2 · · · (Iq − y∗1y1)1/2

 (2.15)

establishes a diffeomorphism P : Bq → Bq. The image of the measure dmp(w)
under P−1 is given by

1

κpd/2

q∏
j=1

(1− ‖yj‖22)d(p−q−j+1)/2−1dy1 . . . dyq . (2.16)

Thus for p > 2q − 1, the integral representation (2.10) may be rewritten as

φpλ(t) =
1

κpd/2

∫
Bq

∫
U0(q,F)

∆(iλ−ρBC)/2(gt(u, P (y)))·
q∏
j=1

(1−‖yj‖22)d(p−q−j+1)/2−1dy1 . . . dyqdw

(2.17)
where dy1, . . . , dyq means integration w.r.t. the Lebesgue measure on Fq. Moreover,
for p ↓ 2q − 1, (2.17) and continuity lead to the following degenerated product
formula:

φ2q−1
λ (t) =

1

κ(2q−1)d/2

∫
Bq−1

∫
S

∫
U0(q,F)

∆(iλ−ρBC)/2(gt(u, P (y))) ·

·
q−1∏
j=1

(1− ‖yj‖22)d(q−j)/2−1dy1 . . . dyq−1 dσ(yq) dw (2.18)

where σ ∈M1(S) is the uniform distribution on the sphere S and

κ(2q−1)d/2 =

∫
Bq−1

∫
S

q−1∏
j=1

(1− ‖yj‖22)d(q−j)/2−1dy1 . . . dyq−1 dσ(yq).

Notice that the φ2q−1
λ are the spherical functions of the Grassmannian G2q−1,q(F).

3. The connection with spherical functions of type Aq−1

We shall compare the spherical functions of the Grassmannians Gp,q(F) with the
spherical functions of the symmetric space Pq(F) = G/K with G = GL(q,F),K =
U(q,F). It is well-known that G has the Iwasawa decomposition G = KAN where
A = exp a, a = {Ht = t, t = (t1, . . . , tq) ∈ Rq} and N is the unipotent group
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consisting of all upper triangular matrices with entries 1 in the diagonal. The
restricted root system ∆(g, a) is of type Aq−1, with a positive subsystem given by

∆+ = {fi − fj : 1 ≤ i < j ≤ q}.

Here the multiplicity is mα = d for all α ∈ ∆+ and the weighted half-sum of
positive roots is

ρA =

q∑
i=1

d

2
(q + 1− 2i)fi .

Again, a∗C may be identified with Cq via λ 7→ (λ1, . . . , λq) for λ ∈ a∗C given by
λ(Ht) =

∑q
r=1 λrtr , λr ∈ C. We briefly recall the further well-known calculation,

which is similar to the Grassmannian case: For g = k exp(Ht)n ∈ KAN one obtains
∆r(g

∗g) = e2(t1+...+tr) and thus

tr =
1

2
log

∆r(g
∗g)

∆r−1(g∗g)
(r = 1, . . . , q).

If g = atk with at = exp(Ht) = et and k ∈ K, then g∗g = k−1e2tk. The spherical
functions of G/K = Pq(F) are given by

ψAλ (et) =

∫
K

e(iλ−ρA)(H(atk))dk, λ ∈ Cq. (3.1)

The above considerations lead to the known integral representation

ψAλ (et) =

∫
U(q,F)

∆(iλ−ρA)/2

(
u−1e2t u

)
du =

∫
U0(q,F)

∆(iλ−ρA)/2

(
u−1e2t u

)
du.

(3.2)
We also remark that the functions ψAλ can be written in terms of the Heckman-
Opdam hypergeometric function FA associated with the root system 2Aq−1 =
{±2(ei − ej) : 1 ≤ i < j ≤ q}, as follows:

ψAλ (et) = e〈t−π(t),λ〉 · FA(π(λ), d/2;π(t)) (λ ∈ Cq, t ∈ Rq). (3.3)

Here π denotes the orthogonal projection Rq → Rq0 := {t ∈ Rq : t1 + . . .+ tq = 0};
see Eq. (6.7) of [RKV] and note our rescaling of the root system by the factor 2.

We compare (3.2) with the integral (2.8) for the spherical functions of Gp,q(F)
and, more generally, with representation (2.10) for the hypergeometric functions
φp
λ−iρBC . As for p → ∞ the probability measures mp on Bq tend weakly to the

point measure at the zero matrix, we obtain:

Corollary 3.1. The spherical functions of Gp,q(F), and more generally, the hyper-
geometric functions φp

λ−iρBC with p ∈ R, p > 2q − 1 are related to the spherical

functions of Pq(F) by

lim
p→∞

φp
λ−iρBC (t) = ψAλ−iρA(cosh t) (t ∈ Rq).

This result was already obtained in Corollary 6.1 of [RKV] by completely dif-
ferent methods, namely as a special case of a general limit transition for hypergeo-
metric functions of type BC. However, the approach in [RKV] seems not suitable
to gain information on the rate of convergence. In the following section, we study
the integral representations (3.2) and (2.8) (or (2.10) for continuous p) in order to
derive precise estimates on the rate of convergence.
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4. The rate of convergence for p→∞

The main result of this section is Theorem 4.2. It sharpens the qualitative limit
of Corollary 3.1 for the Heckman-Opdam hypergeometric functions φpλ by a precise
estimate of the approximation error. Again, p > 2q − 1 varies and the rank q as
well as the dimension d = 1, 2, 4 of F are fixed. For convenience, we consider the
type A spherical functions ψAλ as functions on Rq and study

ψλ(t) := ψAλ (cosh t) =

∫
U0(q,F)

∆(iλ−ρA)/2

(
u−1 cosh2tu

)
du. (4.1)

We write

‖λ‖1 := |λ1|+ . . .+ |λq| for λ ∈ Cq;
t̃ := min(t1, 1) ≥ 0 for t = (t1, . . . , tq) ∈ Cq .

The action of the Weyl group W of type BCq extends in a natural way to Cq. We
write

ρ := ρBC(p)

for the weighted half-sum defined in (2.1). Moreover, co(W.ρ) ⊂ Rq denotes the
convex hull of the W -orbit of ρ.

Let us recapitulate the following known properties of φpλ:

Lemma 4.1. (1) For all t ∈ Cq, λ ∈ Cq, and p ∈ R with p ≥ q,∣∣∣φpλ−iρ(t)∣∣∣ ≤ emaxw∈W Im〈wλ,t〉.

(2) φpλ is bounded if and only if Imλ ∈ co(W.ρ). In this case, ‖φpλ‖∞ = 1.
(3) If λ is purely imaginary, then φpλ is real-valued and strictly positive on Cq.

Proof. (1) follows from Corollary 3.4 of [RKV]. For part (2) we refer to Theorem
5.4 of [R2] and Theorem 4.2 of [NPP] (the proof of the only-if-part in [R2] contains
a gap). Part (3) follows from Lemma 3.1 of [Sch]. �

Notice that by Corollary 3.1, the same estimates as in Lemma 4.1 hold for the
function ψλ−iρA(t). The following theorem is the main result of this section:

Theorem 4.2. There exists a universal constant C = C(F, q) as follows:

(1) For all p > 2q − 1, t ∈ Cq and λ ∈ Cq,∣∣∣φpλ−iρ(t)− ψλ−iρA(t)
∣∣∣ ≤ C · ‖λ‖1 · t̃

p1/2
· emaxw∈W Im〈wλ,t〉.

(2) Let p > 2q − 1, t ∈ Cq, and λ ∈ Cq such that Imλ − ρ is contained in
co(W.ρ), i.e., φpλ−iρ is bounded on Cq. Then∣∣∣φpλ−iρ(t)− ψλ−iρA(t)

∣∣∣ ≤ C · ‖λ‖1 · t̃
p1/2

.

In particular, for these spectral parameters λ the convergence is uniform of
order O(p−1/2) in t ∈ Cq.

We briefly discuss this result in the rank-one case q = 1. Here the Heckman-

Opdam functions φpλ are Jacobi functions φ
(α,β)
λ as studied in Koornwinder [K1].

More precisely,

φpλ(t) = φ
(α,β)
λ (t) with α = dp/2, β = d/2− 1, d = 1, 2, 4
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and ρ = α+ β + 1 = d(p+ 1)/2. Furthermore,

ψλ(t) = eiλ·ln(cosh t) = (cosh t)iλ

independently of d, and ρA = 0. Thus, Theorem 4.2 implies for q = 1 the following

Corollary 4.3. There exists a constant C > 0 as follows:

(1) For β = −1/2, 0, 1, all t ∈ [0,∞[, α > 0, and λ ∈ C,∣∣∣φ(α,β)
λ−iρ (t)− (cosh t)iλ

∣∣∣ ≤ C · |λ| min(t, 1)√
α

· e|Imλ|·t.

(2) Let β = −1/2, 0, 1, t ∈ [0,∞[, α > 0, and λ ∈ C with Imλ ∈ [0, 2ρ]. Then∣∣∣φ(α,β)
λ−iρ (t)− (cosh t)iλ

∣∣∣ ≤ C · |λ| min(t, 1)√
α

.

Remarks 4.4. (1) For Imλ = 0 and all β ≥ −1/2, Corollary 4.3(2) was proven
in [V2]. The proof there relies on the well-known integral representation for
the Jacobi functions for α ≥ β ≥ −1/2 in [K1] and is similar to that given
here. Corollary 4.3 (2) for Imλ = 0 is used in [V2] to derive a central limit
theorem for the hyperbolic distances of radial random walks on hyperbolic
spaces from their starting point when the number of time steps as well as
the dimensions of the hyperbolic spaces tend to infinity. Similar results can
be derived from Theorem 4.2 for q ≥ 2.

(2) Corollary 4.3 corresponds to the convergence of the known one-dimensional
Jacobi convolutions ∗(α,β) to a semigroup convolution on [0,∞[ in [V1]
where the multiplicative functions of the limit semigroup are precisely the
functions t 7→ (cosh t)iλ ; i.e., the convergence of the convolution structures
∗(α,β) for α → ∞ corresponds to the convergence of the multiplicative
functions. The same picture appears for q > 1; see [R2] for the explicit
convolution and [RKV] for the corresponding limit transition. In [K2], a
corresponding result for polynomials was derived.

(3) There are similar limit results to those of Theorem 4.2 for Dunkl-type Bessel
functions of types A and B, and for Bessel functions on matrix cones with
applications in probability; see [RV2], [RV3].

We now turn to the proof of Theorem 4.2. In fact, our main result is essentially
a consequence of Lemma 4.1 and the following technical variant of Theorem 4.2:

Theorem 4.5. For each n ∈ N there is a constant C = C(F, q, n) such that for all
p > 2q − 1, t ∈ Cq and λ ∈ Cq,∣∣∣φpλ−iρ(t)−ψλ−iρA(t)

∣∣∣ ≤ C ·(φp2n
2n−1 i Imλ−iρ(t)

2n−1
2n +ψ 2n

2n−1 i Imλ−iρA(t)
2n−1
2n

)‖λ‖1 · t̃
p1/2

.

Notice that the functions φ, ψ on the right side take positive values by Lemma
4.1. In fact, Theorem 4.2(1) follows immediately from Lemma 4.1(1) and Theorem
4.5 with n = 1. For the proof of Theorem 4.2(2), consider λ ∈ Cq with Imλ− ρ ∈
co(W.ρ). As φpλ is W -invariant in the spectral variable λ and the mapping λ 7→ −λ
is an element of W , we may assume without loss of generality that Imλ−ρ ∈ −Cq .
Now choose ε0 = ε0(q) > 0 according to the following Lemma 4.6, and choose n ∈ N
such that ε := (2n − 1)−1 ≤ ε0. Lemma 4.6 below for y := Imλ − ρ thus implies
that

2n

2n− 1
Imλ− ρ = (1 + ε)Imλ− ρ = (1 + ε)y + ερ ∈ co(W.ρ).
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This fact, Lemma 4.1(2), and Theorem 4.5 then lead to Theorem 4.2(2) as claimed.

Lemma 4.6. For each dimension q there exists a constant ε0 = ε0(q) > 0 such
that for all 0 < ε ≤ ε0, all ρ in the interior of Cq, and all y ∈ co(W.ρ) ∩ (−Cq),

(1 + ε)y + ερ ∈ co(W.ρ).

The proof of this lemma will be postponed to an appendix at the end of this
paper. We here only mention that for q = 1, 2 the lemma can be easily checked
with ε0 = 1 at hand of a picture, but for q ≥ 3 the situation is more complicated,
and the lemma is then no longer true with ε0 = 1.

We now turn to the technical proof of Theorem 4.5. We decompose it into several
steps. We first recall the integral representation (2.10),

φpλ−iρ(t) =

∫
Bq

∫
U0(q,F)

∆iλ/2(g̃t(u,w)) dmp(w)du (4.2)

with the probability measure dmp as in Section 2 and

g̃t(u,w) = u∗(cosh t+ sinh t w)(cosh t+ sinh t w)∗u. (4.3)

In order to analyze the principal minors ∆1, . . . ,∆q appearing in the definition of
the power function ∆iλ/2, we use the singular values σ1(a) ≥ σ2(a) ≥ . . . ≥ σq(a)
of a matrix a ∈Mq ordered by size, i.e., the square roots of the eigenvalues of a∗a.
We need the following known estimates for singular values:

Lemma 4.7. For all matrices a1, a2 ∈Mq(F) and i = 1, . . . , q,

|σi(a1 + a2)− σi(a1)| ≤ σ1(a2) and σi(a1 · a2) ≤ σi(a1)σ1(a2).

Proof. For F = R,C we refer to Theorem 3.3.16 of [HJ]. The case F = H can be
reduced to F = C by the same arguments as in the second part of the proof of
Corollary 2.2. �

Lemma 4.8. For t ∈ Cq, w ∈ Bq, u ∈ U0(q,F) and r = 1, . . . , q,

∆r(g̃t(u,w))

∆r(g̃t(u, 0))
∈
[
(1− t̃ σ1(w))2r, (1 + t̃ σ1(w))2r

]
, with t̃ := min(t1, 1).

Proof. We write the matrix g̃t(u,w) as

g̃t(u,w) = b(I + w̃)(I + w̃∗)b∗ (4.4)

with
b := u∗ cosh t, w̃ := (cosh t)−1 sinh t · w = tanh t · w

The inequalities of Lemma 4.7 imply for i = 1, . . . , q that

|1− σi(I + w̃)| = |σi(I)− σi(I + w̃)| ≤ σ1(w̃) = σ1(tanh t · w)

≤ σ1(tanh t ) · σ1(w).

As 0 ≤ tanhx ≤ min(x, 1) for x ≥ 0 and x 7→ tanhx is increasing, we conclude
that

σ1(tanh t ) ≤ min(t1, 1) = t̃

and thus
|1− σi(I + w̃)| ≤ t̃ · σ1(w) ∈ [0, 1]. (4.5)

This implies for i = 1, . . . , q that

(1− t̃ σ1(w))2 ≤ σi(I + w̃)2 ≤ (1 + t̃ σ1(w))2. (4.6)
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This leads to the matrix inequality

(1− t̃σ1(w))2I ≤ (I + w̃)(I + w̃∗) ≤ (1 + t̃σ1(w))2I,

and thus

(1− t̃σ1(w))2 bb∗ ≤ b(I + w̃)(I + w̃∗)b∗ ≤ (1 + t̃σ1(w))2 bb∗.

As for Hermitian matrices a, b with 0 ≤ a ≤ b the determinants satisfy 0 ≤ ∆(a) ≤
∆(b), we finally obtain

∆r(b(I + w̃)(I + w̃∗)b∗) ∈
[
(1− t̃σ1(w))2r∆r(bb

∗), (1 + t̃σ1(w))2r∆r(bb
∗)
]

(4.7)

as claimed. �

For the next step in the proof of Theorem 4.5 we use the integral representation
(4.1),

ψλ−iρA(t) =

∫
U0(q,F)

∆iλ/2(u−1(cosh t)2u)du

=

∫
Bq

∫
U0(q,F)

∆iλ/2(g̃t(u, 0))dmp(w)du. (4.8)

Using Lemma 4.8, we estimate the difference of the integrands in (4.2) and (4.8).
We shall obtain the following result.

Lemma 4.9. Let t ∈ Rq and λ ∈ Cq. Then for all n ∈ N,∣∣φpλ−iρ(t)− ψλ−iρA(t)
∣∣ ≤ 8q‖λ‖1 t̃ ·

( 1

κpd/2

∫
Bq

σ1(w)2n∆(I − w∗w)pd/2−γ−2n dw
)1/2n

·
(
φp2n

2n−1 iImλ−iρ
(t)

2n−1
2n + ψ 2n

2n−1 iImλ−iρA
(t)

2n−1
2n

)
Proof. We write the difference

D :=
∣∣∆iλ/2(g̃t(u,w))−∆iλ/2(g̃t(u, 0))

∣∣
of the integrands in (4.2), (4.8) as D = |eα − eβ | with

α := α(t, λ, u, w) =
i

2

q∑
r=1

(λr − λr+1) · ln ∆r(g̃t(u,w))

and

β := β(t, λ, u) =
i

2

q∑
r=1

(λr − λr+1) · ln ∆r(g̃t(u, 0))

with the agreement λq+1 = 0. We further write the functions α, β as α = α1 + iα2

and β = β1 + iβ2 with α1, α2, β1, β2 ∈ R. By elementary calculus, we obtain

|eα − eβ | = |eα1+iα2 − eβ1+iβ2 | ≤ |eiα2 | · |eα1 − eβ1 |+ eβ1 · |eiα2 − eiβ2 |

≤ |eα1 − eβ1 |+
√

2 · eβ1 |α2 − β2|

≤ |α1 − β1| · (eα1 + eβ1) +
√

2(eα1 + eβ1)|α2 − β2|

≤ 2 · |α− β| · (eα1 + eβ1). (4.9)

We have

|α− β| ≤ ‖λ‖1 · max
r=1,...,q

∣∣ln ∆r(g̃(t, u, w))− ln ∆r(g̃(t, u, 0))
∣∣.
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Hence we obtain from Lemma 4.8, together with the elementary inequality

| ln(1 + z)| ≤ |z|
1− |z|

for |z| < 1 (4.10)

and with t̃ ∈ [0, 1] that

|α− β| ≤ ‖λ‖1 · 2q ·
t̃ σ1(w)

1− t̃ σ1(w)
≤ ‖λ‖1 · 2q t̃ ·

σ1(w)

1− σ1(w)
.

Furthermore, as 1 ≥ σ1(w) ≥ . . . ≥ σq(w) ≥ 0 for w ∈ Bq, we have

1

1− σ1(w)
≤ 2

1− σ1(w)2
≤ 2

q∏
r=1

1

1− σr(w)2
=

2

∆(I − w∗w)
. (4.11)

We thus conclude that

D ≤ 2(eα1 + eβ1)|α− β| ≤ 8q(eα1 + eβ1)‖λ‖1 t̃ ·
σ1(w)

∆(I − w∗w)
.

By this this estimate and Hölders inequality we obtain∣∣φpλ−iρ(t)− ψλ−iρA(t)
∣∣ ≤ (4.12)

≤ 8q‖λ‖1 t̃ ·
∫
Bq×U0(q,F)

(eα1 + eβ1)
σ1(w)

∆(I − w∗w)
dmp(w)du

≤ 8q‖λ‖1 t̃ ·
(∫

Bq

σ1(w)2n

∆(I − w∗w)2n
dmp(w)

)1/2n

×

×
[(∫

Bq×U0(q,F)

e
2n

2n−1α1dmp(w)du
) 2n−1

2n

+
(∫

Bq×U0(q,F)

e
2n

2n−1β1dmp(w)du
) 2n−1

2n
]
.

In view of (4.2) and (4.8), the [. . .]-term in the last two lines is equal to

φp 2n
2n−1 iImλ−iρ

(t)
2n−1
2n + ψ 2n

2n−1 iImλ−iρA
(t)

2n−1
2n ,

and the lemma follows. �

The estimate of Theorem 4.5 is now a consequence of Lemma 4.9 and the fol-
lowing result:

Lemma 4.10. For each n ∈ N there is a constant C = C(F, q, n) > 0 such that for
all p ≥ 2q,

R(p) :=

∫
Bq

σ1(w)2n

∆(I − w∗w)2n
dmp(w) ≤ C

pn
.

Proof. We transform the integral in the lemma. The diffeomorphism P : Bq → Bq
introduced in Remark 2.6, where B is the ball B := {y ∈ Fq : ‖y‖2 < 1}. We recall
from [R1] that for w = P (y1, . . . , yq), one has ∆(I − w∗w) =

∏q
j=1(1 − ‖yj‖22).

With (2.16) in mind, we obtain

R(p) =
1

κpd/2
·
∫
Bq

σ1(P (y1, . . . , yq))
2n·

q∏
j=1

(1−‖yj‖22)d(p−q−j+1)/2−1−2nd(y1, . . . , yq).

(4.13)
Moreover, the j, j-element (ww∗)jj of ww∗ satisfies

(ww∗)jj = yj(I−y∗1y1)1/2 . . . (I−y∗j−1yj−1)1/2(I−y∗j−1yj−1)1/2 . . . (I−y∗1y1)1/2y∗j .
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As the hermitian matrix I − y∗y has eigenvalues in [0, 1], it follows readily that
0 ≤ (ww∗)jj ≤ ‖yj‖22 and hence

σ1(w)2 ≤
q∑
j=1

(ww∗)jj ≤
q∑
j=1

‖yj‖22.

Therefore,

σ1(w)2n ≤ C ·
q∑
j=1

‖yj‖2n2

with some constant C > 0. This leads to the estimate

R(p) ≤ C

κpd/2

q∑
j=1

∫
Bq

‖yj‖2n2 ·
q∏
r=1

(1−‖yr‖22)d(p−q−r+1)/2−1−2nd(y1, . . . , yq). (4.14)

Using polar coordinates, we obtain for y = yr and arbitrary α > 0 that∫
B

(1− ‖y‖22)α−1 dy = ωdq

∫ 1

0

xdq−1(1− x2)α−1 dx = ωdq ·
Γ(α) Γ

(
dq
2

)
2 · Γ

(
α+ dq

2

)
and∫
B

‖y‖2n2 (1−‖y‖22)α−1dy = ωdq

∫ 1

0

xdq−1+2n(1−x2)α−1dx = ωdq ·
Γ(α) Γ

(
n+ dq

2

)
2 · Γ

(
α+ n+ dq

2

)
with the surface measure ωdq := vol(Sdq−1) of the unit sphere in Rdq as normaliza-
tion constant. These formulas yield that

κpd/2 =

∫
Bq

q∏
r=1

(1− ‖yr‖22)d(p−q−r+1)/2−1d(y1, . . . , yq)

=
(ωdq

2
· Γ
(dq

2

))q
·
q∏
r=1

Γ
(
d
2 (p− q − r + 1)

)
Γ
(
d
2 (p− r + 1)

) (4.15)

and

Ij(p) :=
1

κpd/2
·
∫
Bq

‖yj‖2n2 ·
q∏
r=1

(1− ‖yr‖22)d(p−q−r+1)/2−1−2n d(y1, . . . , yq) =

=
Γ
(
n+ dq

2

)
Γ
(
dq
2

) ·
∏q
r=1 Γ

(
d
2 (p− q − r + 1)− 2n)

Γ
(
d
2 (p− j + 1)− n

)
·
∏
r 6=j Γ

(
d
2 (p− r + 1)− 2n

) · q∏
r=1

Γ
(
d
2 (p− r + 1)

)
Γ
(
d
2 (p− q − r + 1)

) .
From the asymptotics of the gamma function we obtain for p→∞ the asymptotic
equality

Ij(p) ∼
Γ
(
n+ dq

2

)
Γ
(
dq
2

) ·
(dp

2

)−n
(p→∞).

This implies that R(p) is of order O(p−n) for p→∞. �

The proof of Theorem 4.5 is now complete.
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5. Convergence to Bessel functions of type B

In this section we consider the Heckman-Opdam function φpλ for fixed p ∈ R with
p ≥ 2q − 1 in a scaling limit. More precisely, we use the integral repesentation of
Theorem 2.4 in order to derive convergence of the rescaled functions φpnλ−iρ(t/n)
for n→∞ to Dunkl-type Bessel functions associated with root system Bq. While
such limit transitions are well-known in a general context from the asymptotics
of the hypergeometric system, we here obtain a precise estimate for the rate of
convergence.

To explain the result, let us first recall some facts on Bessel functions from
[FK],[Ka] and [R1].

Multivariate Bessel functions 5.1. Let m = (m1, . . . ,mq) be a partition of length
q with integers m1 ≥ m2 ≥ . . . ≥ mq ≥ 0 and let |m| := m1 + . . .+mq. For x ∈ C
and a parameter α > 0, the generalized Pochhammer symbol is given by

(x)αm =

q∏
j=1

(
x− 1

α
(j − 1)

)
mj
. (5.1)

For F = R,C,H with d = dimRF and partitions m, the spherical polynomials Φm

are defined by

Φm(x) =

∫
Uq

∆m(uxu−1)du for x ∈ Hq(F)

where ∆m is the power function of Eq. (2.4). We also consider the renormalized
polynomials Zm = cm ·Φm with certain normalization constants cm > 0 which are
characterized by the formula

(trx)k =
∑
|m|=k

Zm(x) for k ∈ N0, x ∈ Hq(F). (5.2)

By construction, the Φm and Zm are invariant under conjugation by U(q,F)
and thus depend only on the eigenvalues of their argument. More precisely, for
a Hermitian matrix x ∈ Hq(F) with eigenvalues ξ = (ξ1, . . . , ξq) ∈ Rq, we have
Zm(x) = Cαm(ξ) where the Cαm are the Jack polynomials of index α := 2/d; see Sec-
tion XI of [FK] and references cited there. The Jack polynomials are homogeneous
of degree |m| and symmetric in their arguments.

Following Kaneko [Ka] (see also Section 2.2 of [R1]) we define Bessel functions
in two arguments

Jµ(ξ, η) :=
∑
m

(−1)|m|

(µ)αm|m|!
· C

α
m(ξ)Cαm(η)

Cαm(1, . . . , 1)
(5.3)

for µ ∈ C with (µ)αm 6= 0 for all partitions m and with fixed parameter α := 2/d. A
comparison of (5.3) with the explicit form of the Dunkl-type Bessel functions JBk
associated with root system Bq in [BF] shows that the Bessel function Jµ can be
expressed in terms of JBk as

Jµ
(ξ2

2
,
η2

2

)
= JBk (ξ, iη),

with the multiplicity parameter k := k(µ, d) := (µ− (q− 1)d/2− 1/2, d/2). For the
details see Section 4.3 of [R1] and [O1] for the general context.
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For certain indices µ, the Bessel functions Jµ appear as the spherical functions of
the Euclidean-type symmetric spaces G0/K where K = U(p,F)×U(q,F) and G0 =
KnMp,q(F) is the Cartan motion group associated with the Grassmannian Gp,q(F).
The double coset space G0//K is naturally identified with the Weyl chamber Cq,
with t ∈ Cq corresponding to the double coset of (Ip, Iq, t ) ∈ G0. So we may
consider biinvariant functions on G0 as functions on Cq. It is well known (see
Section 4 of [R1]) that the spherical functions of (G0,K) are given in terms of the
Bessel function Jµ as follows:

Proposition 5.2. The spherical functions of (G0,K) are given by the Dunkl-type
Bessel functions

φ̃ pλ (t) := JBk (t, iλ) = Jµ
(λ2

2
,
t2

2

)
, λ ∈ Cq

with µ := pd/2 and k as in Section 5.1. Moreover, φ̃ pλ is bounded precisely for
λ ∈ Rq.

The spherical functions of (G0,K) with dimension parameters p ≥ 2q admit a
Harish-Chandra integral representation which can be extended by Carlson’s theo-
rem to all real parameters p > 2q−1 and thus to the corresponding indices µ. This
leads to the following

Proposition 5.3. For all real parameters p > 2q − 1 and all t ∈ Cq and λ ∈ Cq,

φ̃ pλ (t) =

∫
Bq

∫
U0(q,F)

e−iRe tr(wtuλ )dmp(w)du (5.4)

with the probability measure mp ∈ M1(Bq) of Eq. (2.6). Moreover, for p = 2q − 1
and with the notations of Remark 2.6,

φ̃ pλ (t) =
1

κ(2q−1)d/2

∫
Bq−1×S

∫
U0(q,F)

e−iRe tr(P (y)tuλ )·
q−1∏
j=1

(1−‖yj‖22)q−1−jdy1 . . . dyq−1dσ(yq)du.

(5.5)

Proof. For p > 2q− 1 and λ ∈ Cq, the first formula is immediate by a combination
of the integral representations (3.12) and (4.4) in [R1] (in the latter, integration
over U(q,F) may be replaced by integration over U0(q,F).) The general case λ ∈ Cq
then follows by analytic continuation.

The singular limit case p = 2q− 1 can be derived in the same way as in [R1]; see
also Remark 2.6. We omit the details. �

A comparison of these integral representations for the Bessel functions φ̃ pλ with
the integral representation for the Heckman-Opdam functions φpλ of Section 2 leads
to the following theorem, which is the main result of this section.

Theorem 5.4. For each compact subset K ⊂ Rq there exists a constant C =
C(K) > 0 such that for all p ∈ R with p ≥ 2q−1, all λ ∈ Rq, t ∈ K, and all n ∈ N,

|φpnλ−iρ(t/n)− φ̃ pλ (t)| ≤ C · ‖λ‖1
n

.

Here again, ‖λ‖1 = |λ1|+ . . .+ |λq|.
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Proof. We only give a proof for the non-degenerate case p > 2q − 1. The case
p = 2q − 1 follows in the same way from (5.5) and Remark 2.6.

We substitute w 7→ −u∗w∗ in the integral (5.4) and obtain

φ̃ pλ (t) =

∫
Bq

∫
U0(q,F)

ei·Re tr(u∗w∗t uλ )dmp(w)du .

Moreover, denoting the trace of the upper left r× r-block of a q× q-matrix by trr ,
we have

Re tr(u∗w∗tuλ ) =
1

2
·
q∑
r=1

(u∗((tw)∗ + tw)u)rr · λr

=

q∑
r=1

[
trr(u

∗((tw)∗ + tw)u)− trr−1(u∗((tw)∗ + tw)u)
]
· λr/2

=

q∑
r=1

trr(u
∗((tw)∗ + tw)u) · (λr − λr+1)/2

with λq+1 := 0. Thus,

φ̃ pλ (t) =

∫
U0(q,F)×Bq

q∏
r=1

exp (i · trr(u∗((tw)∗ + tw)u) · (λr − λr+1)/2) dmp(w)du.

Further, according to Theorem 2.4,

φpnλ−iρ(t/n) =

∫
U0(q,F)×Bq

q∏
r=1

∆r(gt/n(u,w))in(λr−λr+1)/2 dmp(w)du

with the positive definite matrix

gt/n(u,w) = u∗(cosh(t/n) + sinh(t/n) · w)∗(cosh(t/n) + sinh(t/n) · w)u.

Using the well-known estimate∣∣∣∣∣
q∏
r=1

ar −
q∏
r=1

br

∣∣∣∣∣ ≤
q∑
r=1

|ar − br| for ar, br ∈ {z ∈ C : |z| = 1},

we obtain

C := |φpnλ−iρ(t/n)− φ̃ pλ (t)|

≤
q∑
r=1

∫
U0(q,F)×Bq

∣∣∣∆r(gt/n(u,w))in(λr−λr+1)/2

− exp (i · trr(u∗((tw)∗ + tw)u) · (λr − λr+1)/2)
∣∣∣ dmp(w)du.

Further, by the inequality

|eix − eiy| ≤
√

2 · |x− y| for x, y ∈ R,

we obtain

C ≤ 1√
2

q∑
r=1

|λr − λr+1| · Cr

with

Cr :=

∫
U0(q,F)×Bq

∣∣n ln ∆r(gt/n(u,w))− trr(u
∗((tw)∗ + tw)u)

∣∣ dmp(w)du.
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We now write gt/n(u,w) = I +A/n+H/n2 with A := u∗((tw)∗ + tw)u and some
Hermitian matrix H = H(u,w, t, n) which stays in a compact subset of Mq for
(u,w, t, n) ∈ U0(q,F)×Bq ×K × N. Therefore,

n ln ∆r(gt/n(u,w)) = n ln ∆r(I +A/n+H/n2) = n ln
(
1 + trr(A)/n+ h/n2

)
with some constant h = h(u,w, t, n) ∈ C which remains bounded for the arguments
under consideration. Using the power series for ln(1 + z), we get

n ln ∆r(gt/n(u,w))− trr(A) = O(1/n) for n→∞,

uniformly in u,w and t ∈ K. This yields the assertion. �

Remarks 5.5. (1) Similar to the results in Section 4, Theorem 5.4 can be ex-
tended from λ ∈ Rq to λ ∈ Cq with suitable exponential bounds on the
right side of the estimate.

(2) We point out that one may also compare the integral representation for the
spherical functions of the symmetric spaces GL(q,F)/U(q,F) in Section 3

with the integral representation for the spherical functions ψ̃λ of (U(q,F)n
Hq(F), U(q,F)), where U(q,F) acts by conjugation on the space Hq(F) of
all Hermitian q × q-matrices. In this case, the methods of the preceding
proof lead to a result analogous to that of Theorem 5.4. Moreover, for
real spectral variables λ it is possible to combine this result with Theorems
5.4 and 4.2(2), in order to obtain a convergence result for the Dunkl-type

Bessel functions φ̃ pλ to the functions ψ̃λ for p → ∞ with explicit error
bounds, similar to Theorem 4.2(2). However, these results will be weaker
than those which were derived directly in [RV2].

6. Appendix: On convex hulls of Weyl group orbits

In this appendix we present a proof of Lemma 4.6. We start with some general
facts, where we assume that R is a crystallographic root system of rank q in a
Euclidean vector space (V, 〈 . 〉) with Weyl group W . We fix a closed Weyl chamber
Cq for R and denote by α1, . . . , αq ⊂ R the simple roots associated with Cq . We
further introduce the dual cone

C+
q := {x ∈ V : 〈x, y〉 ≥ 0}.

It is well-known (see e.g. Lemma IV.8.3 of [Hel]) that for each x ∈ C+
q ,

co(W.x) ∩ Cq = Cq ∩ (x− C+
q ). (6.1)

Lemma 6.1. Suppose that R is irreducible.

(1) Let x, y ∈ Cq \ {0}. Then 〈x, y〉 > 0.
(2) There exists a constant ε0 > 0 such that the ball Bε0(0) = {x ∈ V : ‖x‖ <

ε0} is contained in co(W.x) for each x ∈ Cq with ‖x‖ = 1.

Proof. (1) Let λ1, . . . , λq ∈ V denote the fundamental weights associated with
α1, . . . , αq, defined by 〈λj , α∨i 〉 = δij with α∨i = 2αi/〈αi, αi〉. Then both x and y
can be written as linear combinations of the λi with non-negative coefficients (see
[Hu], Section 13.1). By our assumption on R and Section 13 of [Hu], the weights
λi satisfy 〈λi, λj〉 > 0 for all i, j. We therefore obtain that 〈x, y〉 > 0.
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(2) Let C1
q := {x ∈ Cq : ‖x‖ = 1} and consider the continuous mapping (x, y) 7→

〈x, y〉 on the compact set C1
q ×C1

q . By part (1), there exists some ε0 > 0 such that

〈x, y〉 > ε0 for all x, y ∈ C1
q .

Now fix x ∈ C1
q . We claim that Bε0(0) ⊆ co(W.x). For this, let z ∈ Bε0(0) ∩ Cq .

Then for each y ∈ C1
q , we have

〈z, y〉 < ε < 〈x, y〉.

This shows that x− z ∈ C+
q and z ∈ x− C+

q . In view of (6.1), we thus obtain

Bε0(0) ∩ Cq ⊆ co(W.x) ∩ Cq.

The claim is now immediate. �

We now fix some ρ ∈ Cq and consider the compact convex set

K := co(W.ρ) ∩ Cq .

We collect some simple facts on the extreme points of K.

Lemma 6.2. (1) The topological boundary ∂Cq of Cq is contained in the union
of the reflecting hyperplanes Hα1 , . . . ,Hαq associated with the simple reflec-
tions σα1 , . . . , σα2 , and Cq is the intersection of q closed half-spaces.

(2) The closed cone ρ−C+
q is also the intersection of q closed half-spaces cor-

responding to hyperplanes H+
1 , . . . ,H

+
q .

(3) K is a compact convex polytope which is obtained as the intersection of 2q
closed half-spaces. Moreover, if x is an extreme point of K , then x = 0,
x = ρ, or x ∈ ∂Cq ∩ ∂(co(W.ρ)).

(4) If x ∈ K is an extreme point different from 0 and ρ, then there exists
k ∈ {1, . . . , q − 1} such that x is contained in the q-fold intersection of k
hyperplanes Hαj

and q − k hyperplanes H+
l .

Proof. (1) See Section 10.1 of [Hu].
(2) This follows from (1) and the definition of the dual cone.
(3) The first statement is clear by (1), (2) and (6.1). For the second statement,

consider some extreme point x of K = Cq ∩ (ρ − C+
q ). If x is contained

in the interior of Cq, then it is easily checked that x has to be an extreme
point of the cone ρ− C+

q which implies x = ρ. Moreover, if x is contained

in the interior of ρ−C+
q then by the same reasons, x has to be an extreme

point of Cq and hence x = 0.This yields the assertion.
(4) This follows from (3).

�

Lemma 6.3. Let W1,W2 be reflection groups acting on V1 and V2 respectively.
Let ρi ∈ Vi and ai ∈ co(Wi.ρi) for i = 1, 2. Then (a1, a2) ∈ V1 × V2 satisfies
(a1, a2) ∈ co((W1 ×W2)(ρ1, ρ2)).

Proof. For i = 1, 2, we have ai =
∑
wi∈Wi

λiwi
wiρi with λiwi

≥ 0 and
∑
wi∈Wi

λiwi
=

1. Therefore,

(a1, a2) =
∑

w1∈W1

∑
w2∈W2

λ1
w1
λ2
w2
· (w1ρ1, w2ρ2)

as claimed. �
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We finally turn to the proof of Lemma 4.6. As for Weyl groups of type B the
mapping x 7→ −x on Rq corresponds to the action of some Weyl group element,
Lemma 4.6 is a consequence of part (1) of the following result.

Proposition 6.4. Consider a root system R of rank q in a Euclidean space V
with reflection group W ⊂ O(V ) and a fixed closed Weyl chamber Cq in one of the
following cases:

(1) R = Bq and V = Rq, or
(2) R = Aq and the symmetric group W = Sq+1 acts either on V = Rq+1 or

V = (1, . . . , 1)⊥ ⊂ Rq+1 in a non-effective or effective way.

Then there exists some ε0 > 0 (depending on R) such that for all 0 ≤ ε ≤ ε0,
ρ ∈ Cq, and y ∈ co(W.ρ) ∩ Cq,

(1 + ε)y − ερ ∈ co(W.ρ).

Notice that for fixed y, the point (1 + ε)y − ερ = y + ε(y − ρ) is opposite to ρ
with respect to y on the line through y and ρ, with distance ε‖y − ρ‖ from y. In
case ε = 1, it is obtained from ρ by reflection in y.

For the root systems A1, B1 and B2 the maximal parameter is ε0 = 1 while in
the reduced A2-case the maximal parameter is ε0 = 1/2. In fact, the cases A1, B1

are trivial, while the cases A2, B2 follow easily from the following diagrams:

ρ

y

ϕ 
1
(y)

ρ

ϕ 
1/2

(0)

ϕ 
1
(0)

W= A 2W= B 2

Proof of Proposition 6.4. For the proof of the general case, we fix ρ ∈ Cq and
consider

K := co(W.ρ) ∩ Cq
as well as for ε > 0, its image Kε := φε(K) under the affine mapping

φε : y 7→ (1 + ε)y − ερ .

Clearly, Kε is again compact and convex, and φε maps extreme points of K onto
extreme point of Kε. For the proof of Proposition 6.4 it suffices to prove that
extreme points of K are mapped to points in co(W.ρ) for ε ∈ [0, ε0] with ε0 > 0
sufficiently small. For the proof of this statement, we may assume that in addition
‖ρ‖2 = 1 holds, and that, by a continuity argument, ρ is contained in the interior
of Cq.
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We prove Proposition 6.4 by induction on q first for the Aq-cases and then for
Bq, where the A-cases are used. The proposition is clear for A1 and B1. Let y ∈ K
be an extreme point. By Lemma 6.2(4), we have 3 cases of extreme points:

If y = ρ, then φε(ρ) = ρ, and the claimed statement is trivial.
Moreover, if y = 0, then φε(0) = −ερ, and the statement follows in all cases with

ε0 > 0 as in Lemma 6.1(2).

We now turn to the third case. Assume that Sq+1 acts on the vector space
Vq := (1, . . . , 1)⊥ ⊂ Rq+1 where Cq is the closed Weyl chamber associated with the
simple roots

α1 := e1 − e2, α2 := e2 − e3, . . . , αq := eq − eq+1,

and e1, . . . , eq+1 is the standard basis of Rq+1. We first study the extreme point
x0 ∈ Cq∩co(W.ρ) contained in the intersection of the hyperplanes Hα1 , . . . ,Hαq−1 ⊂
Vq and the hyperplane

H := {x ∈ Vq : 〈x, eq+1〉 = 〈ρ, eq+1〉}
which contains the q affinely independent points ρ, σα1

(ρ), . . . , σαq−1
(ρ) (notice that

ρ is in the interior of Cq). We observe that Sq as a subgroup of Sq+1 acts on H by
permutations of the first q components. We now identify H with the vector space
Vq−1 ⊂ Rq via the affine mapping

(x1, . . . , xq, ρq+1) 7→ (x1 − ρq+1/q, . . . , xq − ρq+1/q).

In terms of this identification, the action of Sq on H is just the usual action of
Sq on Vq−1 with the simple reflections σα1 , . . . , σαq−1 . We now regard the points
ρ, x0, φε(x0), σα1

(ρ), . . . , σαq−1
(ρ) ∈ H as points of Vq−1 and may apply the as-

sumption in the induction for Aq−1. This shows that φε0(x0) is contained in
co(Sq.ρ) ⊂ co(Sq+1.ρ) for ε0 > 0 sufficiently small. This proves the claim for
this extreme point x0.

The case of the extreme point in the intersection of Hα2 , . . . ,Hαq and the corre-
sponding hyperplane H containing the q points ρ, σα2

(ρ), . . . , σαq
(ρ) can be handled

in the same way.
For the next type of an extreme point, we fix k = 2, . . . , q − 1 and define

S := ρ1 + . . .+ ρk = −(ρk+1 + . . .+ ρq+1).

We now consider the extreme point x0 which is contained in the intersection of the
hyperplanes Hα1

, . . . ,Hαk−1
, Hαk+1

, . . . ,Hαq
and the hyperplane

H := {(x1, . . . , xq+1) ∈ Rq+1 : x1 + . . .+ xk = S, xk+1 + . . .+ xq+1 = −S} ⊂ Vq.
H contains the affinely independent q points ρ, σα1(ρ), . . . , σαk−1

(ρ), σαk+1
(ρ), . . . , σαq (ρ).

We write H as H := H1 ×H2 with H1 := {(x1, . . . , xk) ∈ Rk : x1 + . . .+ xk = S}
and H2 := {(xk+1, . . . , xq+1) ∈ Rq+1−k : xk+1 + . . .+xq+1 = −S} where the group
Sk×Sq+1−k as a subgroup of Sq+1 acts on H. We now identify H1 with Vk−1 ⊂ Rk
via the affine mapping

p1 : (x1, . . . , xk) 7→ (x1 − S/k, . . . , xk − S/k),

and H2 with Vq−k ⊂ Rq+1−k via

p2 : (xk+1, . . . , xq+1) 7→ (xk+1 + S/(q + 1− k), . . . , xq+1 + S/(q + 1− k)).

In terms of this identification of H with Vk−1 × Vq−k, the action of Sk × Sq+1−k
above on H is just the usual action of Sk×Sq+1−k on Vk−1×Vq−k. We now consider
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the Weyl chamber Ck−1 ⊂ Vk−1 associated with the reflections σα1
, . . . , σαk−1

. We
see that p1(ρ) ∈ Ck−1, and that the points

p1(ρ), p1(x0), p1(φε(x0)), σα1(p1(ρ)), . . . , σαk−1
(p1(ρ)) ∈ Vk−1

are related in a way such that we may apply the induction assumption for Ak−1.
We conclude that p1(φε(x0)) is contained in co(Sk.p1(ρ)) for sufficiently small ε > 0.
In the same way, p2(φε0(x0)) ∈ co(Sq+1−k.p2(ρ)) for sufficiently small ε > 0. In
view of Lemma 6.3 we conclude that there exists some ε0 > 0 such that φε(x0) ∈
co
(
(Sk × Sq+1−k).ρ

)
⊂ co(Sq+1.ρ) for 0 ≤ ε ≤ ε0 as claimed.

We next study the extreme points x0 with the property that for some k ∈
{1, . . . , q−1}, the point x0 is contained in the k reflecting hyperplanesHαj1

, . . . ,Hαjk

with 1 ≤ j1 < . . . < jk ≤ q+1 as well as in the k-dimensional affine subspaceH ⊂ Vq
which is spanned by the k+1 affinely independent points ρ, σαj1

(ρ), . . . , σαjk
(ρ). As

in the preceding case, we split the problem into several lower dimensional problems
which can be handled separately by induction. Again, by Lemma 6.3 we obtain
some ε0 > 0 such that φε0(x0) ∈ co(Sq+1.ρ) for ε ≤ ε0. This completes the proof for
the Aq-case.

We finally consider the case Bq for q > 1. We assume that Cq is the Weyl
chamber associated with the simple roots

α1 := e1 − e2, α2 := e2 − e3, . . . , αq−1 := eq−1 − eq, αq = eq.

We here immediately study the general case where for some k ∈ {1, . . . , q− 1}, the
extreme point x0 is contained in the k reflecting hyperplanes Hαj1

, . . . ,Hαjk
with

1 ≤ j1 < . . . < jk ≤ q + 1 as well as in the affine subspace H ⊂ Rq+1 of dimension
k which is spanned by the k+ 1 points ρ, σαj1

(ρ), . . . , σαjk
(ρ). As in the preceding

case, we split the problem into several lower dimensional problems which can be
handled either as a lower-dimensional B-case or as a known A-case. The proof is
again completed by induction and by use of Lemma 6.3. �
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