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Abstract. In this note, we give an overview of the Laplace transform in Dunkl
theory associated with root systems of type A and some of its applications.
The results generalize well-known facts in the spherical analysis on symmetric
cones.

1. Introduction

In his unpublished manuscript [M13] from the 1980ies, I.G. Macdonald presented
a concept generalizing many known properties of the radial analysis on symmetric
cones, c.f. [FK94]. His idea was to replace the spherical polynomials of the cone,
which are given by Jack polynomials with a certain half-integer index, by Jack
polynomials with an arbitrary index. However, many of the statements in [M13]
remained conjectural. This was due to the fact that the associated Laplace trans-
form, now involving multivariate Bessel functions instead of the usual exponential
function, was not well-understood at that time. Macdonald’s ideas were taken up
in [BF98] within the study of quantum integrable models of Calogero-Moser type,
where also their connection to Dunkl theory was recognized, and later for example
in [SZ07]. A rigorous treatment of the relevant Laplace transform in the frame-
work of Dunkl theory was given only much later in [R20] and continued in [BR23],
where a new proof for the fundamental Laplace transform identity of Jack poly-
nomials from [BF98] is given and also various statements from [M13, Kan93] are
improved or made precise. In the present article, we give an overview of results
from [R20, BR23], which constitute natural generalizations of radial analysis on
symmetric cones in the framework of Dunkl theory associated with root systems of
type A. In particular, we describe inversion theorems for the Laplace transform as
well as applications to Riesz distributions and Jack-hypergeometric series.

2. Motivation: Analysis on Hermitian matrices

Consider the space of n × n-Hermitian matrices over one of the (skew-) fields
F = R,C,H,

Hn(F) = {x ∈ Mn(F) : x = xt}.
This is a real Euclidean vector space with scalar product 〈x, y〉 = Re tr(xy). The
cone of positive definite matrices

Ωn(F) = {x ∈ Hn(F) : x positive definite}
naturally identifies with the Riemannian symmetric space GLn(F)/Un(F). Actually,
Hn(F) carries the structure of a Euclidean Jordan algebra and Ω = Ωn(F) is a
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symmetric cone, see [FK94] for some background on these and the subsequent facts.
The fundamental objects in the harmonic analysis on Ω are its spherical functions

ϕλ(x) =

󰁝

K

∆λ(kxk
−1)dk, x ∈ Ω, λ ∈ Cn; (2.1)

here the functions ∆λ(x) are power functions on Ω generalizing the usual powers xλ

for x ∈ ]0,∞[ and λ ∈ C. In particular, if x = diag(ξ1, . . . , ξn), then xλ = ξλ1
1 · · · ξλn

n .
The spherical function ϕλ is K-invariant (K acts on Ω by conjugation), and hence
depends only on the spectrum of its argument. Of particular importance in the
analysis on Ω is their Laplace transform ([FK94, Chapt. VII]): Let Reλj >

d
2 (j−1).

Then 󰁝

Ω

e−〈x,y〉ϕλ(x)∆(x)−
d
2 (n−1)−1dx = ΓΩ(λ)ϕλ(y

−1), (2.2)

with ΓΩ the gamma function associated with Ω, ∆ the (Jordan) determinant and
d = dimRF ∈ {1, 2, 4}. Let

Λ+
n := {λ ∈ Nn

0 : λ1 ≥ . . . ≥ λn ≥ 0}

denote the set of partitions of length at most n. Then the spherical functions ϕλ

with λ ∈ Λ+
n are polynomials. More precisely, let Cα

λ = C
(α)
λ , λ ∈ Λ+

n denote the
Jack polynomials in n variables of index α ∈ [0,∞], normalized such that

(z1 + · · ·+ zn)
m =

󰁛

|λ|=m

Cα
λ (z) (z ∈ Cn, m ∈ N0).

Then, as observed by Macdonald in [M87],

ϕλ(x) =
Cα

λ (spec(x))

Cα
λ (1)

with α = 2
d , 1 = (1, . . . , 1).

The Jack polynomials Cα
λ are homogeneous of degree |λ| = λ1 + · · · + λn and

symmetric. They are, among others, important in algebraic combinatorics, multi-
variate statistics, and random matrix theory; see [St89] for their basic properties.
For α = 1, they coincide with the Schur polynomials. If n = 1, then Cα

λ (z) = zλ.
Let us now consider the Laplace transform of a K-invariant function f : Ω → C.

Put R+ :=]0,∞[. Writing f(x) = 󰁨f(σ(x)) with a symmetric function 󰁨f : Rn
+ → C,

calculation in polar coordinates gives

Lf(y) =
󰁝

Ω

e−〈x,y〉f(x)dx =

󰁝

Rn
+

0F
2/d
0 (−ξ, spec(y)) 󰁨f(ξ)

󰁜

1≤i<j≤n

|ξi − ξj |d dξ

with the Jack-hypergeometric series

0F
α
0 (z, w) =

󰁛

λ∈Λ+
n

1

|λ|!
Cα

λ (z)C
α
λ (w)

Cα
λ (1)

.

In [M13], Macdonald presented a formularium involving Jack polynomials of ar-
bitrary index instead of the spherical polynomials on a cone, where he formally
replaced the index α = 2/d in the Laplace transform by an arbitrary index α > 0.
This led to his conjectural formula (C) for the Laplace transform of Jack polynomi-
als substituting (2.2), see Theorem 6.1 below. In [BF98] a first proof of this formula
was sketched, still leaving convergence issues open, and it was also observed that

0F
α
0 coincides with a Bessel function of type An−1 in Dunkl theory.
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3. The Dunkl setting and Laplace transform in type A

Dunkl operators are differential-reflection operators associated with root systems
which generalize the usual directional derivatives. For a general background, we
refer to [DX14, dJ93, R03]. In this note we consider the root system R = An−1 =
{±(ei − ej) : 1 ≤ i < j ≤ n} in Rn (with its standard inner product). The
associated reflection group is Sn, the symmetric group on n elements. The rational
Dunkl operators associated with R and some fixed multiplicity parameter k ∈ [0,∞[
are given by

Tj = ∂j + k ·
󰁛

i ∕=j

1− sij
xj − xi

(1 ≤ j ≤ n),

where sij denotes the orthogonal reflection in the hyperplane (ei−ej)
⊥, which acts

by exchanging the coordinates xi and xj . The operators Tj commute and have nice
mapping properties similar to usual directional derivatives. In particular, they act
continuously on the classical Schwartz space S(Rn), and thus by duality also on the
space S ′(Rn) of tempered distributions. For a polynomial p ∈ C[Rn], we shall write
p(T ) for the differential-reflection operator obtained from p(x) by replacing xj by
Tj . There is a unique holomorphic function E = Ek ∈ O(Cn × Cn), the Dunkl
kernel of type An−1 associated with k, satisfying

TjE(z, . ) = zjE(z, . ) for j = 1, . . . , n, E(z, 0) = 1.

The Dunkl kernel E is symmetric in its arguments and satisfies E(sz, w) = E(z, sw)
and E(σz,σw) = E(z, w) for all s ∈ C,σ ∈ Sn. Moreover, E(x, y) > 0 and
|E(ix, y)| ≤ 1 for all x, y ∈ Rn. If k = 0, then E(z, w) = e〈z,w〉, where 〈 . , . 〉 is
extended to Cn × Cn in a bilinear way. Note that

spanR(R) = {x ∈ Rn : x1 + · · ·+ xn = 0} =: Rn
0 .

This easily implies that

E(z, w + s) = e〈z,s〉 · E(z, w) for s := (s, · · · , s) ∈ Cn with s ∈ C. (3.1)

The associated (type A) Bessel function is given by

J(z, w) :=
1

n!

󰁛

σ∈Sn

E(σz, w).

It is symmetric in both arguments. As observed in [BF98], it can be written as a
Jack-hypergeometric series:

J(z, w) = 0F
α
0 (z, w) with α = 1/k. (3.2)

For x ∈ Rn
+, a ∈ Rn and z ∈ Cn with Re z ≥ a (which is understood componen-

twise), we have the exponential bound (see [R20])

|E(−z, x)| ≤ exp
󰀃
−󰀂x󰀂1 · min

1≤i≤n
ai
󰀄
. (3.3)

Following [BF98], we define the type A Laplace transform of functions f ∈
L1
loc(Rn

+) by

Lf(z) =
󰁝

Rn
+

f(x)E(−z, x)ω(x)dx (z ∈ Cn),

with the Dunkl weight

ω(z) =
󰁜

1≤i<j≤n

|zi − zj |2k on Cn.
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Identity (3.1) and estimate (3.3), which are very specific for root systems of type A,
imply nice properties for the Laplace transform L. For example, if f is exponentially
bounded with |f(x)| ≤ Ce〈x,s〉 for some s ∈ R, then Lf(z) exists and is holomorphic
on {z ∈ Cn : Re z > s}.

Theorem 3.1 ([R20]). (1) Suppose that Lf(a) exists for some a ∈ Rn. Then
Lf(z) exists and is holomorphic on {z ∈ Cn : Re z > a}. Moreover, for
each polynomial p ∈ C[Rn], p(−T )(Lf) = L(pf) on {Re z > a}.

(2) (Cauchy inversion theorem). Suppose that Lf(s) exists for some s ∈ R and
that y 󰀁→ Lf(s+ iy) ∈ L1(Rn,ω). Then

(−i)n

c2

󰁝

Re z=s

Lf(z)E(x, z)ω(z)dz =

󰀫
f(x) a.e. on Rn

+

0 on Rn \ Rn
+,

with the Mehta-constant c =
󰁕
Rn e−|x|2/2ω(x)dx.

(3) (Injectivity) Suppose that Lf = 0 on some subspace {z ∈ Cn : Re z = s }.
Then f = 0.

The Laplace transform L extends naturally to distributions, as follows. Let

S ′
+(Rn) = {u ∈ S ′(Rn) : suppu ⊆ Rn

+ }.
Then the Laplace transform of u ∈ S ′

+(Rn) is defined, for z ∈ Cn with Re z > 0, by

Lu(z) := 〈u,χE( . ,−z)〉,
where χ ∈ C∞(Rn) is an arbitrary cutoff function for Rn

+, i.e. supp(χ) ⊆]− 󰂃,∞[n

for some 󰂃 > 0 and χ = 1 in a neighborhood of Rn
+. Indeed, χE( . ,−z) belongs

to S(Rn) and the above definition is independent of the choice of χ. The Laplace
transform on S ′

+(Rn) is also injective.

4. Riesz distributions in the Dunkl setting

We maintain the previous notations and put

µ0 := k(n− 1), ∆(x) := x1 · · ·xn for x ∈ Rn.

Moreover, we introduce the multivariate gamma function

Γn(λ) :=

n󰁜

j=1

Γ(1 + jk)

Γ(1 + k)
·

n󰁜

j=1

Γ(λj − k(j − 1)) (λ ∈ Cn).

and also write Γn(λ) = Γn(λ) for λ ∈ C. For indices µ ∈ C with Reµ > µ0 we
define the Riesz measures

〈Rµ,ϕ〉 :=
1

Γn(µ)

󰁝

Rn
+

ϕ(x)∆(x)µ−µ0−1ω(x)dx, ϕ ∈ S(Rn)

which we consider as tempered distributions on Rn. The following results of [R20]
generalize well-known properties of Riesz distributions on a symmetric cone, c.f.
[FK94].

Theorem 4.1. (1) ∆(T )Rµ = Rµ−1 in S ′(Rn).
Via this identity, the mapping µ 󰀁→ Rµ extends to a holomorphic function
on C with values in S ′(Rn).

(2) The Riesz distribution Rµ ∈ S ′(Rn) is supported in Rn
+ .

(3) Dunkl-Laplace transform: LRµ(y) = ∆(y)−µ for all y ∈ Rn
+ .
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(4) R0 = δ0.

(5) Rµ is a (positive) measure iff µ belongs to the generalized Wallach set
󰀋
0, k, . . . , k(n− 1) = µ0

󰀌
∪ {µ ∈ R : µ > µ0}.

In fact, the measures Rkj with 0 ≤ j ≤ n − 1 can be written down recursively.
They have shrinking supports in the facets of ∂(Rn

+). See [R20] for details.

5. The Cherednik kernel and non-symmetric Jack polynomials

Our generalization of the Laplace transform formula (2.2) for the spherical func-
tions of the cone Ω = Ωn(F) shall involve non-symmetric Jack polynomials and
the Opdam-Cherednik kernel of type An−1. In this section, we give the necessary
background from [KS97, F10, O95], c.f. also [BR23]. First, we recall the usual
dominance order on the set of partitions Λ+

n , which is given by

µ ≤D λ iff |λ| = |µ| and

r󰁛

j=1

µj ≤
r󰁛

j=1

λj for all r = 1, . . . , n.

This partial order extends from Λ+
n to Nn

0 as follows: For each composition η ∈ Nn
0

denote by η+ ∈ Λ+
n the unique partition in the Sn-orbit of η. The dominance order

on Nn
0 is then defined by

κ ≼ η iff

󰀫
κ+ ≤D η+ , κ+ ∕= η+

wη ≤ wκ , κ+ = η+
,

where wη ∈ Sn is the shortest element with wηη+ = η and ≤ is the Bruhat order on
Sn. Now consider the (rational) Cherednik operators associated with the positive
subsystem R+ = {ej − ei : 1 ≤ i < j ≤ n} of R = An−1 and multiplicity k ≥ 0,

Dj := xjTj + k(1− n) + k
󰁛

i>i

sij (j = 1, . . . , n),

where the Tj are the type A Dunkl operators with multiplicity k as above. The
operators Dj are related by a change of variables to the Cherednik operators Dej

of trigonometric Dunkl theory as introduced in [O95]; we refer to [BR23] for the
precise connection. Note that Dj leaves the space C[Rn] invariant and preserves
the degree of homogeneity. Indeed, it acts on C[Rn] in an upper triangular way:

Djx
η = ηjx

η +
󰁛

κ≺η

dκηx
κ

with coefficients dκη ∈ R and

ηj = ηj − k#{i < j | ηi ≥ ηj}− k#{i > j | ηi > ηj}.

The non-symmetric Jack polynomials of index α = 1/k are defined as the unique
basis

󰀃
Eη)η∈Nn

0
of C[Rn] satisfying

(1) Eη(x) = xη +
󰁓

κ≺η cηκx
κ with cκη ∈ C,

(2) DjEη = ηjEη for all j = 1, . . . , n.

By definition, Eη is homogeneous of degree |η| = η1 + . . . + ηn, and for k = 0 we
have Eη(x) = xη.
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Property (2) generalizes: For each spectral parameter λ ∈ Cn, there is a unique
analytic function f = G(λ, . ) in an open neighborhood of Rn, called the Opdam-
Cherednik kernel, satisfying

Djf =
󰀃
λj −

k

2
(n− 1)

󰀄
f for j = 1, . . . , n; f(0) = 1. (5.1)

Actually, it follows from results of [KO08] that the kernel G is holomorphic on
Cn × {z ∈ Cn : Re z > 0}. Symmetrization of G gives the Heckman-Opdam hyper-
geometric function

F(λ, z) =
1

n!

󰁛

σ∈Sn

G(λ,σz).

Both F and G differ by a change of variables from the notions used in [O95, HO21].
The uniqueness of G shows that for η ∈ Nn

0 ,

Eη(x)

Eη(1)
= G

󰀃
η +

k

2
(n− 1)1 , x

󰀄
, η = (η1, . . . , ηn). (5.2)

Moreover, the symmetric Jack polynomials can be obtained via symmetrization
from the non-symmetric ones: For partitions λ ∈ Λ+

n ,

Cλ(x)

Cλ(1)
=

1

n!

󰁛

σ∈Sn

Eλ(σx)

Eλ(1)
= F(λ− ρ, x)

with the Weyl vector ρ = −k
2 (n − 1, n − 3, . . . ,−n + 1). Recall the matrix cone

Ω = Ωn(F) with d = dimR(F). For k = d
2 , the functions F(λ, . ) can be identified

with the spherical functions of Ω.

6. Laplace transform identities

In this section, we present the main results from [BR23], which generalize the
Laplace transform formula (2.2) for the spherical functions of a matrix cone.

Theorem 6.1. (Master theorem for the type A Laplace transform). Let µ ∈ C with
Reµ > µ0 and z ∈ Cn with Re z > 0. Then for all η ∈ Nn

0 and λ ∈ Λ+
n ,

(1)

󰁝

Rn
+

E(−x, z)Eη(x)∆(x)µ−µ0−1ω(x)dx = Γn(η+ + µ)Eη

󰀃
1
z

󰀄
∆(z)−µ.

(2)

󰁝

Rn
+

J(−x, z)Cλ(x)∆(x)µ−µ0−1ω(x)dx = Γn(λ+ µ)Cλ

󰀃
1
z

󰀄
∆(z)−µ.

In view of identity (3.2), formula (2) is just Macdonald’s [M13] Conjecture (C).
It follows immediately from part (1) by symmetrization. Part (1) was first stated
(at a formal level) by Baker and Forrester in [BF98], and justified via Laguerre
expansions. In [BR23] we give a completely different, rigorous proof by induction
on η, using the raising operator of Knop and Sahi [KS97] for the non-symmetric
Jack polynomials. By analytic continuation, Theorem 6.1 extends to the Cherednik
kernel and the Heckman-Opdam hypergeometric function, as follows.

Theorem 6.2. Let µ ∈ C with Reµ > µ0. Then for λ ∈ Cn with Reλ ≥ 0 and
z ∈ Cn with Re z > 0, we have

(1)

󰁝

Rn
+

E(−z, x)G(λ, x)∆(x)µ−µ0−1ω(x)dx = Γn(λ+ ρ+ µ)G(λ, 1
z )∆(z)−µ.
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(2)

󰁝

Rn
+

J(−z, x)F(λ, x)∆(x)µ−µ0−1ω(x)dx = Γn(λ+ ρ+ µ)F(λ, 1
z )∆(z)−µ.

Formula (2) generalizes the Laplace transform identity (2.2) for the spherical
functions of a cone Ωn(F).

7. Some applications of the master theorem.

We conclude this overview with two results from [BR23] which are based on
Master Theorem 6.1. The first one is a Post-Widder inversion theorem for the type
A Laplace transform L, which is the counterpart of an inversion formula of Faraut
and Gindikin [FG90] on symmetric cones.

Theorem 7.1 (Post-Widder inversion formula for L). Let f : Rn
+ → C be measur-

able and bounded, and suppose that f is continuous at ξ ∈ Rn
+ . Then

f(ξ) = lim
ν→∞

(−1)nν

Γn(ν + µ0 + 1)
∆
󰀓ν
ξ

󰀔ν+µ0+1󰀃
∆(T )ν(Lf)

󰀄󰀓ν
ξ

󰀔
,

As a second application, we present some Laplace transform identities for Jack-
hypergeometric series. First, one observes that the non-symmetric Jack polynomials
Eη have a renormalization Lη = cηEη such that

󰁛

|η|=m

Lη(z) = (z1 + . . .+ zn)
m =

󰁛

|λ|=m

Cλ(z) (m ∈ N0).

For parameters µ ∈ Cp and ν ∈ Cq with p, q ∈ N0 we define the symmetric and
non-symmetric Jack hypergeometric series

pFq(µ, ν; z, w) :=
󰁛

λ∈Λ+
n

[µ1]λ · · · [µp]λ
[ν1]λ · · · [νq]λ

Cλ(z)Cλ(w)

|λ|!Cλ(1)

pKq(µ, ν; z, w) :=
󰁛

η∈Nn
0

[µ1]η+
· · · [µp]η+

[ν1]η+ · · · [νq]η+

Lλ(z)Lλ(w)

|λ|!Lλ(1)
,

with the generalized Pochhammer symbol

[a]λ =
Γn(a+ λ)

Γn(a)
(a ∈ C, λ ∈ Λ+

n ).

The convergence properties of these series are made precise in [BR23], improving
results for pFq from [Kan93]. In particular, for p ≤ q both series are entire functions.

For w = 1 and multiplicity k = d
2 related to a matrix cone Ωn(F), the pFq-series

coincide with classical hypergeometric series on Ω, c.f. [FK94, GR89]. They are for
instance useful in multivariate statistics. There are interesting special cases leading
to special functions from Dunkl theory, such as the type A Dunkl kernel and Bessel
function:

0K0(z, w) = E(z, w), 0F0(z, w) = J(z, w).

Theorem 7.2. (1) Let p < q and consider µ′ ∈ C with Reµ′ > µ0. Then for
all z, w ∈ Cn with Re z > 0,

󰁝

Rn
+

E(−z, x) pKq(µ; ν;w, x)∆(x)µ
′−µ0−1ω(x)dx

= Γn(µ
′)∆(z)−µ′

p+1Kq((µ
′, µ); ν;w, 1

z ).
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(2) If p = q, then part (1) is valid under the condition 󰀂w󰀂∞ · 󰀂 1
Re z󰀂∞ < 1

n .

The same formulas hold for pFq .
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[KO08] B. Krötz, E. Opdam, Analysis on the crown domain. Geom. Funct. Anal. 18 (2008),

1326–1421.
[KS97] F. Knop, S. Sahi, A recursion and a combinatorial formula for Jack polynomials. Invent.

Math. 128 (1997), 9–22.
[M87] I.G. Macdonald, Commuting differential operators and zonal spherical functions. In: Al-

gebraic groups (Utrecht 1986), eds. A.M. Cohen et al, Lecture Notes in Mathematics 1271,
Springer-Verlag, Berlin, 1987.

[M13] I.G. Macdonald, Hypergeometric functions I. arXiv: 1309.4568v1 (math.CA).
[O95] E.M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras. Acta

Math. 175, (1995), 75–112.
[R03] M. Rösler, Dunkl operators: Theory and applications. In: E. Koelink, W. van Assche (Eds.),

Lecture Notes in Math. 1817, Springer-Verlag, 2003, pp. 93–136.
[R20] M. Rösler, Riesz distributions and the Laplace transform in the Dunkl setting of type A.

J. Funct. Anal. 278 (2020), no 12, 108506, 29 pp.
[SZ07] S. Sahi, G. Zhang, Biorthogonal expansion of non-symmetric Jack functions. SIGMA Sym-

metry Integrability Geom. Methods Appl. 3 (2007), Paper 106, 9 pp.
[St89] R.P. Stanley, Some combinatorial properties of Jack symmetric functions. Adv. Math. 77

(1989), 76–115.

Dominik Brennecken
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Pader-
born, Germany

Email address: bdominik@math.upb.de

Margit Rösler
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Pader-
born, Germany

Email address: roesler@math.upb.de


