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Bessel convolutions on matrix cones

Margit Rösler

Abstract

In this paper we introduce probability-preserving convolution algebras on cones of positive
semidefinite matrices over one of the division algebras F = R,C or H which interpolate the
convolution algebras of radial bounded Borel measures on a matrix space Mp,q(F) with
p � q. Radiality in this context means invariance under the action of the unitary group
Up(F) from the left. We obtain a continuous series of commutative hypergroups whose
characters are given by Bessel functions of matrix argument. Our results generalize well-
known structures in the rank-one case, namely the Bessel–Kingman hypergroups on the
positive real line, to a higher rank setting. In a second part of the paper we study structures
depending only on the matrix spectra. Under the mapping r �→ spec(r), the convolutions
on the underlying matrix cone induce a continuous series of hypergroup convolutions on
a Weyl chamber of type Bq. The characters are now Dunkl-type Bessel functions. These
convolution algebras on the Weyl chamber naturally extend the harmonic analysis for
Cartan motion groups associated with the Grassmann manifolds U(p, q)/(Up×Uq) over F.

1. Introduction

Let us start with the basic guiding example which corresponds to the rank-one case of our subsequent
constructions. For a natural number p � 2 consider the set M rad

b (Rp) of regular bounded Borel
measures on R

p which are radial, i.e. invariant under orthogonal transformations. M rad
b (Rp) is a

commutative Banach algebra with the usual convolution of measures. Transferring this structure
to R+ = [0,∞) via the mapping x �→ |x| = (x2

1 + · · · + x2
p)1/2, one obtains a commutative Banach

algebra of Borel measures on R+. Calculation in polar coordinates shows that its convolution ∗p is
determined on point measures by

δr ∗p δs(f) = cp

∫ π

0
f(

√
r2 + s2 − 2rs cos θ) sinp−2 θ dθ, r, s ∈ R+, f ∈ C(R+)

with a normalization constant cp > 0. The above assignment defines a probability measure δr ∗p δs
not only for integer p but for all real p > 1, and it extends uniquely to a bilinear and weakly
continuous convolution on the space Mb(R+) of regular bounded Borel measures on R+ which
is commutative, associative, and probability-preserving [Kin63]. The interesting point about this
family of convolutions is that analytic properties which are valid for integer indices p, due to their
origin in radial analysis on R

p, remain true for general indices where no longer is any group structure
present. For example, consider the normalized Bessel functions jα(z) = 0F1(α+1;−z2/4) with index
α = p/2 − 1. If p is a natural number, then

jα(|x|) =
∫

Sp−1

e−i(x|ξ) dσ(ξ), x ∈ R
p
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M. Rösler

(dσ denotes the normalized Lebesgue surface measure on the unit sphere Sp−1), and the homomor-
phism property of the exponential function entails the product formula

jα(r)jα(s) = δr ∗p δs(jα).

This formula, however, extends to arbitrary indices p > 1, see [Wat66]. The space R+ together
with the convolution ∗p is a well-known example of a commutative hypergroup, called the Bessel–
Kingman hypergroup [BH95]. A hypergroup is a locally compact Hausdorff space X together with
a probability-preserving convolution of measures on X which generalizes the measure algebra of a
locally compact group; in particular, one requires a unit element and the existence of an involution
on X generalizing the group inverse in a suitable way; for details we refer to [Jew75] and § 2.3
below. There is a rich harmonic analysis for commutative hypergroups extending the analysis on
locally compact abelian groups. In particular, there is a Haar measure, a dual space, and a Fourier
transform satisfying a Plancherel theorem. In our example (R+, ∗p) the dual space consists of the
Bessel functions

{ϕs(r) = jα(rs), s ∈ R+}, α =
p

2
− 1,

and the hypergroup Fourier transform is given by a Hankel transform,

f̂ p(s) =
2−p/2

Γ(p/2)

∫
R+

f(r)ϕs(r)rp−1 dr.

This extends the fact that the Fourier transform of a radial function F (x) = f(|x|) ∈ L1(Rp) is
again radial and given by a Hankel transform of f with integral index p.

In the present paper, we generalize the Bessel convolutions described above to a higher rank
setting, where the space of ‘radii’ is realized as a cone of positive semidefinite matrices. More
precisely, we construct convolution algebras on such cones which interpolate radial convolution
algebras on spaces of non-squared matrices. The setting is as follows: for q ∈ N and a natural
number p � q consider the space Mp,q = Mp,q(F) of p× q matrices over one of the division algebras
F = R,C or the quaternions H. It has the structure of a Euclidean vector space with scalar product
(x|y) = Rtr(x∗y) (see § 2.1 for the notation). A function or measure on Mp,q is called radial if it is
invariant under the action of the unitary group Up = Up(F) on Mp,q by left multiplication,

Up ×Mp,q →Mp,q, (u, x) �→ ux. (1.1)

Observe that this action is via orthogonal transformations, and that x and y are contained in the
same Up-orbit if and only if x∗x = y∗y. Thus, the space of Up-orbits is naturally parametrized by
the cone Πq = Πq(F) of positive semidefinite q × q-matrices over F. Note that Π1(F) coincides with
the non-negative real line R+. There is a radial harmonic analysis on Mp,q which is based on polar
coordinates with Πq as radial part and the Stiefel manifold

Σp,q = {x ∈Mp,q : x∗x = Iq} ∼= Up/Up−q

as a transversal manifold. In [FT87], this is developed to some extent within the general framework
of symmetric cones. Indeed, the open cone

Ωq = {r ∈ Πq : r strictly positive definite}
is a symmetric cone within the space Hq = {x ∈ Mq(F) : x = x∗} of Hermitian q × q matrices over
F which carries a natural Euclidean Jordan algebra structure of rank q; see § 2.1 for details.

For each integer q � p we interpret radial analysis on Mp,q in the concise context of a commu-
tative ‘orbit hypergroup’ convolution on the cone Πq which is derived from the orbit structure with
respect to the action of Up on Mp,q. Similar to the rank-one case, the characters of this hypergroup,
i.e. the multiplicative functions which make up the dual are obtained by taking the means of the
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Bessel convolutions on matrix cones

exponential characters on Mp,q over the Stiefel manifold. This implies that they are given in terms
of Bessel functions Jµ on the cone Πq with (half) integer index µ = pd/2, where d = dimRF. The
Bessel function of index µ is a hypergeometric series of the form

Jµ =
∑
λ�0

(−1)|λ|

(µ)λ |λ|! · Zλ;

here the summation is over all partitions {λ = (λ1, . . . , λq) ∈ N
q
0 : λ1 � · · · � λq}, (µ)λ is a

generalized Pochhammer symbol, and the Zλ are renormalized versions of the so-called spherical
polynomials associated with the underlying cone, cf. § 2.1. The multiplicativity of the Bessel func-
tions of index µ = pd/2 with respect to the associated orbit convolution on Πq expresses itself in a
positive product formula. Under the technical condition p � 2q, this product formula can be written
in a way which allows analytic continuation with respect to the index µ. We thus obtain a positive
product formula for all Bessel functions with index µ � d(q − 1/2), and an associated continuous
series of hypergroup structures ∗µ on the cone Πq whose dual is given by the functions

r �→ ϕs(r) = Jµ(1
4rs

2r), s ∈ Πq.

Actually, each hypergroup (Πq, ∗µ) is self-dual in a natural way; the neutral element is 0 and the
involution is the identity mapping. For matrix cones, the Hankel transform of [FT87] can now
be identified with the L2-Fourier transform on the underlying hypergroup; but in addition to the
results of [FT87], it is also (and primarily) defined as a Fourier transform on an L1-convolution
algebra.

Before continuing with structural aspects, let us spend some words on Bessel functions of matrix
argument. They trace back to ideas of Bochner and the fundamental work of Herz [Her55] and
Constantine [Con63]. Much of the interest in these functions is motivated by questions in number
theory and multivariate statistics. In particular, they occur naturally in the explicit expression of
non-central Wishart distributions which generalize non-central χ2-distributions to the higher rank
case, see [Con63] and [Mui82]. Nowadays, Bessel functions of matrix argument are imbedded in
rich theories of multivariable special functions. Firstly, they can be considered the 0F1 class among
general pFq-hypergeometric functions of matrix argument, where hypergeometric series are defined
in terms of spherical polynomials; see [GR87] and [Jam75] for an introduction. Secondly, all of this
can be done in the general setting of abstract Jordan algebras and symmetric cones, see [FK94]. In
any case, the spherical polynomials depend only on the eigenvalues of their argument. Considered as
functions of the spectra, they can be identified with Jack polynomials of a certain index depending
on the underlying cone; this was first observed by Macdonald [Mac87]. There is a natural theory of
hypergeometric expansions in terms of Jack polynomials (see [Kan93]) which encompasses the theory
on symmetric cones. Finally, hypergeometric expansions of such kind are intimately related to the
modern theory of hypergeometric functions associated with root systems as developed by Heckman,
Opdam, Dunkl, and others. As functions of the spectra, Gaussian hypergeometric functions on a
symmetric cone can be identified with hypergeometric functions associated with a root system of
type BC with a specific choice of parameters [BO93]. Similarly, Bessel functions on a symmetric
cone can be considered as a subclass of the Bessel functions associated with reduced root systems
of type B in the sense of [Opd93]. The latter play a fundamental role in the theory of rational
Dunkl operators [Dun89, Dun91]. This connection is taken up in the second part of the paper,
where we consider structures which depend only on the spectra of the matrices from the underlying
cone Πq. This amounts to assuming invariance under the action of the unitary group Uq = Uq(F)
by conjugation,

r �→ uru−1, u ∈ Uq.

The orbits under this action are naturally parametrized by the set Ξq of possible spectra of matrices
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from Πq, the eigenvalues being ordered by size:

Ξq = {ξ = (ξ1, . . . , ξq) ∈ R
q : ξ1 � · · · � ξq � 0}.

Here Ξq is a closed Weyl chamber for the reflection group Bq which acts on R
q by permutations and

sign changes of the coordinates. Via the canonical mapping from Πq onto Ξq which assigns to each
matrix its spectrum, the continuous series of hypergroup structures (Πq, ∗µ) with µ � d(q − 1/2)
induces a series of commutative hypergroup structures ◦µ on the chamber Ξq. The transfer is
established by means of so-called orbital mappings. The convolution, Haar measure, and dual space
of each hypergroup on the chamber are made explicit. In particular, the Haar measure of (Ξq, ◦µ)
is (up to a constant factor) given by hµ(ξ) dξ where

hµ(ξ) =
q∏

i=1

ξ2γ+1
i

∏
i<j

(ξ2i − ξ2j )
d, γ = µ− d

2
(q − 1) − 1.

The hypergroup characters turn out to be certain Dunkl-type Bessel functions

ξ �→ JB
k (ξ, iη), η ∈ Ξq

associated with the Bq root system {±ei,±ei ± ej} ⊂ R
q. Here k is a parameter on the root system

which is constant on each subset of roots corresponding to a conjugacy class of reflections; in our
situation it is given by k = (k1, k2) with

k1 = µ− d

2
(q − 1) − 1

2
on ± ei; k2 =

d

2
on ± ei ± ej .

The hypergroup convolution on the Weyl chamber matches the generalized Dunkl translation [Rös98]
for Weyl group invariant functions, and we have an interpretation of the Dunkl transform as a
hypergroup Fourier transform. It is an important observation in this context that Bessel functions
on an arbitrary symmetric cone of rank q are given by Dunkl Bessel functions of type Bq, see
Corollary 4.6.

In the geometric cases µ = pd/2, the support of the probability measure δξ ◦µ δη on Ξq

describes the set of possible singular spectra of sums x+ y with matrices x, y ∈ Mp,q having given
singular spectra ξ and η. Further, the characters are just the bounded spherical functions of the
Euclidean-type Riemannian symmetric space (Up×Uq)�Mp,q/(Up×Uq) associated with the Grass-
mann manifold U(p, q)/Up ×Uq. For general µ they are characterized, within the theory of rational
Dunkl operators, as the unique analytic solution of a so-called Bessel system; see [Opd93]. It is con-
jectured that for arbitrary root systems and non-negative multiplicities, the associated Dunkl-type
Bessel functions satisfy a positive product formula and can be characterized as the characters of a
commutative hypergroup structure on the underlying Weyl chamber. The three continuous series
(d = 1, 2, 4) for Bq obtained in this paper are, to the best of our knowledge, the first affirmative
examples beyond the group cases associated with Cartan motion groups of reductive symmetric
spaces. Some background, together with further partial results, is given in [Rös03a].

The organization of this paper is as follows. In § 2, background on symmetric cones and Bessel
functions on cones, as well as some hypergroup analysis are provided. Section 3 is devoted to the
study of Bessel convolutions on matrix cones. In § 3.1, orbit convolutions derived from matrix spaces
Mp,q are considered. In § 3.3, the corresponding product formula for the involved Bessel functions
is analytically extended with respect to the index, and in § 3.4 the associated series of hypergroup
convolutions on the cone are studied. In particular, their Haar measure and the dual are determined.
In § 3.5 we analyse an interesting critical index. Section 4 is devoted to the induced convolution
algebras on a Weyl chamber of type B. They are derived in § 4.1 from the convolutions on the
matrix cones and are then, in the two final subsections, put into relation to rational Dunkl theory.
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Bessel convolutions on matrix cones

2. Preliminaries

In this introductory section we provide some relevant background on symmetric cones, in particular
matrix cones, and about Bessel functions on such cones. In the main part of the paper we shall
introduce orbit convolutions and their ‘interpolations’ on matrix cones within the framework of
hypergroup theory. A short account on the relevant notions and facts is therefore included in the
present section. For a general background on hypergroups, the reader is referred to the fundamental
article [Jew75] (where the notion ‘convo’ is being used instead of ‘hypergroup’), or to the mono-
graph [BH95]. An excellent reference for analysis on symmetric cones is [FK94]; for special functions
on matrix cones see also [GR87] as well as the classical papers of Herz [Her55], James [Jam75], and
Constantine [Con63].

2.1 Analysis on symmetric cones

Let F be one of the division algebras F = R,C or the quaternions H. We denote by t �→ t the
usual conjugation in F and by Rt = 1

2 (t + t) the real part of t ∈ F. Consider the set of Hermitian
q × q-matrices over F,

Hq = Hq(F) = {x ∈Mq(F) : x = x∗}; x∗ = xt.

We regard Hq as a Euclidean vector space with scalar product (x|y) = Rtr(xy), where tr denotes
the trace on Mq(F). The dimension of Hq over R is

n = q +
d

2
q(q − 1), d = dimRF.

With the above scalar product and the Jordan product x ◦ y = 1
2 (xy + yx), the matrix space Hq

becomes a Euclidean Jordan algebra with unit I = Iq, the unit matrix. The rank of Hq, that is the
number of elements of each Jordan frame in Hq, is q.

The set Ωq = Ωq(F) of those matrices from Hq which are positive definite is a symmetric
cone. Recall that a symmetric cone Ω is a proper, non-empty convex cone in a finite-dimensional
Euclidean vector space V which is self-dual and homogeneous in the sense that its group of linear
automorphisms acts transitively. Let G denote the connected component of this group. Then K =
G ∩ O(V ) is a maximal compact subgroup of G and Ω ∼= G/K, a Riemannian symmetric space.
The matrix cones are realized as Ωq(F) ∼= GLq(F)/Uq(F). Hereby GLq(F) acts via r �→ grg∗, which
reduces to conjugation when restricted to the unitary subgroup Uq(F). Our main interest will be in
the closure of Ωq relative to Hq which coincides with the set of positive semidefinite matrices over F,

Πq = Πq(F) = {x∗x : x ∈ Hq} = {x2 : x ∈ Hq}.
For a general Euclidean (i.e. formally real) Jordan algebra V , the interior Ω of the set {x2 : x ∈ V }
is a symmetric cone, and each symmetric cone in a finite-dimensional Euclidean vector space V
can be realized in such a way. For details see [FK94, § III.3]. The simple Euclidean Jordan algebras
correspond to the irreducible symmetric cones and are classified. Up to isomorphism, there are the
above series Hq(F) with F = R,C,H, the exceptional Jordan algebra H3(O), as well as one infinite
series of rank-two algebras corresponding to the Lorentz cones

Λn = {(x′, xn) ∈ R × R
n−1 : x2

n − |x′|2 > 0, xn > 0}.
Let V be a simple Euclidean Jordan algebra of rank q and real dimension n, let e be the unit of
V and Ω the associated symmetric cone. We recall that for each x ∈ V there is a Jordan frame
{e1, . . . , eq} such that x =

∑q
i=1 ξiei with real numbers ξi. Up to ordering, the ξi are uniquely

determined and are called the eigenvalues of x. Note that x ∈ Ω if and only if all its eigenvalues
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are positive. The trace and determinant of x are defined by

trx =
q∑

i=1

ξi, ∆(x) =
q∏

i=1

ξi.

In the Jordan algebras Hq(F), the function ∆ coincides with the usual determinant detF if F = R

or C, while for F = H it coincides with the Dieudonné determinant, i.e. ∆(x) = (detCx)1/2 when x
is considered as a complex matrix in the usual way.

Recall that a q-tuple λ = (λ1, . . . , λq) ∈ N
q
0 is called a partition if λ1 � · · · � λq � 0. Following

a standard convention, we shall often write λ � 0 to indicate that λ is a partition. For µ ∈ C, a
parameter α > 0 and a partition λ = (λ1, . . . , λq) ∈ N

q
0, the generalized Pochhammer symbol (µ)αλ

is defined by

(µ)αλ =
q∏

j=1

(
µ− 1

α
(j − 1)

)
λj

.

The basic functions for the harmonic analysis on a symmetric cone Ω are the so-called spherical
polynomials. These are just the polynomial spherical functions of Ω considered as a symmetric
space G/K. They are indexed by partitions λ ∈ N

q
0 and defined by

Φλ(x) =
∫

K
∆λ(kx) dk, x ∈ V

where dk is the normalized Haar measure on K and ∆λ is the generalized power function on V ,

∆λ(x) = ∆1(x)λ1−λ2∆2(x)λ2−λ3 · · · · · ∆q(x)λq .

The ∆i(x) are the principal minors of ∆(x), see [FK94] for details. The power function ∆λ is a
homogeneous polynomial of degree |λ| = λ1 + · · ·+ λq which is positive on Ω. Note that Φλ(e) = 1.
Further, Φλ is K-invariant and therefore depends only on the eigenvalues of its argument. For
the matrix cones over R the Φλ are known as zonal polynomials, for those over C they coincide
with Schur polynomials. Actually, for each symmetric cone the associated spherical polynomials
are given in terms of Jack polynomials [Sta89]. This was first observed by Macdonald [Mac87] (see
also [Far92] and the notes in [FK94, ch. XI]). More precisely, let Cα

λ denote the Jack polynomials
in q variables and with parameter α > 0, indexed by partitions λ ∈ N

q
0. We assume them to be

normalized such that

(ξ1 + · · · + ξq)k =
∑

λ�0,|λ|=k

Cα
λ (ξ) ∀k ∈ N0 (2.1)

(cf. [Kan93]). For an irreducible symmetric cone Ω ⊆ V as above, let d be the Peirce constant given
by d = dimR F if Ω is a matrix cone over F while d = n − 2 if Ω is the Lorentz cone Λn. Consider
the renormalized spherical polynomials

Zλ(x) := dλ
|λ|!

(n/q)αλ
· Φλ(x)

where α = 2/d and dλ denotes the dimension of the vector space of polynomials on V C (the
complexification of V ), which is generated by the elements z �→ ∆λ(g−1z), g ∈ G; cf. [FK94, §XI.5].
Then for x ∈ V with eigenvalues ξ = (ξ1, . . . , ξq) we have

Zλ(x) = Cα
λ (ξ), α =

2
d
.

In normalization constants, we also need the gamma function of Ω,

ΓΩ(z) =
∫

Ω
e−tr x∆(x)z−n/q dx

754

https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X06002594
Downloaded from https://www.cambridge.org/core. Universitätsbibliothek Paderborn, on 19 Apr 2018 at 17:08:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X06002594
https://www.cambridge.org/core


Bessel convolutions on matrix cones

which converges absolutely for z ∈ C with Rz > n/q−1 and can be written in terms of the classical
gamma function as

ΓΩ(z) = (2π)(n−q)/2
q∏

j=1

Γ
(
z − d

2
(j − 1)

)

see [FK94, ch. VII.1].

2.2 Bessel functions on a symmetric cone
Hypergeometric expansions in terms of spherical polynomials have a long history in multivariate
statistics, tracing back to the work of Herz [Her55], James [Jam75], and Constantine [Con63]. They
are important in the study of Wishart distributions and for questions related to total positiv-
ity [GR89]. In view of the above connection between spherical polynomials and Jack polynomials
it is natural to treat these classes of functions in the more general framework of multivariable hy-
pergeometric functions based on Jack polynomial expansions (see [Kan93]). In our context, only
hypergeometric functions of type 0F1 (which are Bessel functions) will be relevant.

For an arbitrary parameter α > 0 and an index µ ∈ C satisfying (µ)αλ �= 0 for all partitions
λ ∈ N

q
0, the generalized hypergeometric function 0F

α
1 (µ; ·) on C

q is defined by

0F
α
1 (µ; ξ) =

∑
λ�0

1
(µ)αλ |λ|!

· Cα
λ (ξ).

It is known [Kan93] that this series converges absolutely for all ξ ∈ C
q. Similarly, a 0F1-hyper-

geometric function of two arguments is defined by

0F
α
1 (µ; ξ, η) =

∑
λ�0

1
(µ)αλ |λ|!

· C
α
λ (ξ)Cα

λ (η)
Cα

λ (1)
, 1 = (1, . . . , 1).

Now suppose that α = 2/d where d is the Peirce constant of a simple Euclidean Jordan algebra
V of rank q corresponding to the symmetric cone Ω. Then the Bessel function 0F

α
1 (µ; ·) essentially

coincides with the Bessel function Jµ associated with Ω in the sense of [FK94]. Indeed, the latter
is given by

Jµ(x) =
∑
λ�0

(−1)|λ|

(µ)αλ |λ|!
Zλ(x) for x ∈ V ; α =

2
d
. (2.2)

Thus, for x ∈ V with eigenvalues ξ = (ξ1, . . . , ξq),

Jµ(x) = 0F
2/d
1 (µ;−ξ). (2.3)

If q = 1, then Jµ is independent of d and we have

Jµ

(
x2

4

)
= jµ−1(x)

with the one-variable Bessel function jµ−1 as in the introduction. In § 4.3 we also work with Bessel
functions of two arguments x, y ∈ V ,

Jµ(x, y) :=
∑
λ�0

(−1)|λ|

(µ)αλ |λ|!
Zλ(x)Zλ(y)
Zλ(e)

.

For x, y ∈ V with eigenvalues ξ = (ξ1, . . . , ξq) and η = (η1, . . . , ηq) respectively, we have

Jµ(x, y) = 0F
2/d
1 (µ; iξ, iη). (2.4)

We shall see in the following that these functions are Bessel functions of Dunkl type. The following
estimate is especially useful for large indices µ.
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Lemma 2.1. For α > 0 let 0F
α
1 (µ; ·) denote the associated generalized Bessel function of index µ

on C
q. Suppose that Rµ > 1

α(q − 1). Then for ξ = (ξ1, . . . , ξq) ∈ C
q,

|0Fα
1 (µ; ξ)| � e|ξ1|+···+|ξq|.

Proof. For n ∈ N0 and z ∈ C with Rz > 0 we have∣∣∣∣ Γ(z)
Γ(z + n)

∣∣∣∣ � Γ(Rz)
Γ(Rz + n)

� 1.

Therefore, |(µ)αλ | � |(Rµ)αλ | � 1. Moreover, it is known that the coefficients of the Jack polynomial
Cα

λ in its monomial expansion are all non-negative (see [KS97]). This implies that

|Cα
λ (ξ)| � Cα

λ (|ξ1|, . . . , |ξq|).
Using relation (2.1), we therefore obtain

|0Fα
1 (µ; ξ)| �

∑
λ�0

1
|λ|!C

α
λ (|ξ1|, . . . , |ξq|) = e|ξ1|+···+|ξq|.

Corollary 2.2. Let Jµ denote the Bessel function of index µ associated with the symmetric cone
Ω inside the Jordan algebra V of rank q. Suppose that Rµ > d

2 (q − 1). Then for x ∈ V with
eigenvalues ξ1, . . . , ξq,

|Jµ(x)| � e|ξ1|+···+|ξq|.

We mention at this point that for Rµ > d(q − 1) + 1 and a ∈ Ω, the Bessel function on Ω has
the absolutely convergent integral representation (an inverse Laplace integral)

Jµ(r) =
ΓΩ(µ)
(2πi)n

∫
a+iV

etrwe−(w−1|r)∆(w)−µ dw (r ∈ Ω)

see [FK94, Proposition XV.2.2]. This integral was originally used by Herz [Her55] to define Bessel
functions on the cones of positive definite matrices over R; see also [FT87] and [Dib90] for arbitrary
symmetric cones. Corollary 2.2 slightly improves the order estimate for Jµ given in [Her55, p. 486]
for F = R.

2.3 Hypergroups
We start with some notation: for a locally compact Hausdorff space X, let Mb(X) denote the
Banach space of all bounded regular (complex) Borel measures on X with total variation norm,
and M1(X) ⊂ Mb(X) the set of all probability measures. With δx we denote the point measure in
x ∈ X. We use the notation C(X), Cb(X), and Cc(X) for the spaces of continuous complex-valued
functions on X, those which are bounded, and those having compact support, respectively. Further,
C0(X) is the set of functions from C(X) which vanish at infinity.

Definition 2.3. A hypergroup (X, ∗) is a locally compact Hausdorff space X with a bilinear and
associative convolution ∗ on Mb(X) with the following properties.

(1) The map (µ, ν) �→ µ ∗ ν is weakly continuous, i.e. with respect to the topology induced by
Cb(X).

(2) For all x, y ∈ X, the product δx ∗ δy of point measures is a compactly supported probability
measure on X.

(3) The mapping (x, y) �→ supp(δx ∗ δy) from X ×X into the space of non-empty compact subsets
of X is continuous with respect to the Michael topology (see [Jew75]).

(4) There is a neutral element e ∈ X, satisfying δe ∗ δx = δx ∗ δe = δx for all x ∈ X.
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Bessel convolutions on matrix cones

(5) There is a continuous involutive automorphism x �→ x on X such that δx ∗ δy = (δy ∗ δx)− and
x = y ⇐⇒ e ∈ supp(δx ∗ δy). (For µ ∈ Mb(X), the measure µ− is given by µ−(A) = µ(A) for
Borel sets A ⊆ X.)

A hypergroup (X, ∗) is called commutative if its convolution is commutative.

For a hypergroup (X, ∗), the space (Mb(X), ∗) is a Banach algebra with unit δe. Note that by
the density of the finitely supported measures in Mb(X), the convolution is uniquely determined as
soon as it is given for point measures.

Of course, every locally compact group is a hypergroup with the usual group convolution. In our
context, only commutative hypergroups will be relevant. Of particular interest is the following.

Example 2.4 (Jewett [Jew75, ch. 8]). Let (G,+) be a locally compact abelian group andK a compact
group acting continuously on G by automorphisms of G. Then the space GK = {K.x : x ∈ G} of
K-orbits in G is a locally compact Hausdorff space with the quotient topology and becomes a
commutative hypergroup with the (natural) definition

(δK.x ∗ δK.y)(f) =
∫

K
f(K.(x+ ky)) dk, f ∈ C(GK).

The hypergroup (GK , ∗) is called an orbit hypergroup; its neutral element is K.0 = 0 and the
involution is (K.x)− = K.(−x).

In the following, we collect some further ingredients underlying the harmonic analysis on a
commutative hypergroup X. There exists (up to normalization) a unique Haar measure ω on X,
i.e. a positive Radon measure satisfying∫

X
f(x ∗ y) dω(y) =

∫
X
f(y) dω(y) ∀x ∈ X, f ∈ Cc(X).

Here and in the following we use the convenient notation

f(x ∗ y) :=
∫

X
f d(δx ∗ δy) = (δx ∗ δy)(f). (2.5)

Similar to the dual of a locally compact abelian group, one defines the dual space of X as

X̂ := {ϕ ∈ Cb(X) : ϕ �= 0, ϕ(x̄) = ϕ(x) and ϕ(x ∗ y) = ϕ(x)ϕ(y) ∀x, y ∈ X}.
This is a locally compact Hausdorff space with the topology of compact-uniform convergence. The
elements of X̂ are also called the characters of X. They are the constituting functions for harmonic
analysis on (X, ∗). The Fourier transform on Mb(X) is defined by

µ̂(ϕ) :=
∫

X
ϕ(x) dµ(x), ϕ ∈ X̂,

and on L1(X,ω) by f̂ := f̂ω. The Fourier transform is injective, and there exists a unique positive
Radon measure π on X̂, called the Plancherel measure of (X, ∗), such that f �→ f̂ extends to an
isometric isomorphism from L2(X,ω) onto L2(X̂, π). While the Haar measure ω has full support,
the support of π may be a proper subset of X̂ only.

Example 2.5 (Continuation of Example 2.4). For a Haar measure m on the group G, the image
measure of m under the canonical map π : G → GK provides a Haar measure on the orbit hyper-
group GK . Further, it is easily seen that the functions

ϕα(K.x) :=
∫

K
α(k.x) dk, α ∈ Ĝ,

belong to the dual of GK . Actually, we have the following.
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Lemma 2.6. We have

(1) ĜK = {ϕα : α ∈ Ĝ};
(2) ϕα = ϕα′ if and only if α and α′ are contained in the same orbit under the dual action of K

on Ĝ, given by (k.α)(x) = α(k−1.x).

Proof. It is known that ĜK can be identified with the extremal points of the set

Ξ = {β ∈ C(G) : β positive definite and K-invariant with β(0) = 1};
the identification is given by β �→ ϕβ , ϕβ(K.x) = β(x) for x ∈ G, see [Ros78]. By Bochner’s theorem,
each β ∈ Ξ is of the form β(x) =

∫
Ĝ α(x) dµ(α) with some K-invariant probability measure µ on Ĝ.

In this way, the extremal points of Ξ correspond to the measures of the form µα =
∫
K δk.α dk with

α ∈ Ĝ. Further, µα = µα′ if and only if α and α′ belong to the same K-orbit in Ĝ.

A commutative hypergroup (X, ∗) is called self-dual if there exists a homeomorphism Ψ : X → X̂
such that

Ψ(x)(z)Ψ(y)(z) =
∫

X
Ψ(w)(z) d(δx ∗ δy)(w) ∀x, y, z ∈ X.

In that case, X̂ is a dual hypergroup in the sense of [Jew75, § 12.4] where the convolution product
δΨ(x) ∗δΨ(y) is just the image measure of δx ∗δy under Ψ. It is easily checked that the image measure
Ψ(ω) of the Haar measure ω on X is a Haar measure on X̂ . Thus, by [Jew75, Theorem 12.4A], Ψ(ω)
coincides up to a multiplicative constant with the Plancherel measure π of X.

3. Convolution structures associated with Bessel functions on a matrix cone

3.1 Orbit hypergroups on a matrix cone
For natural numbers p � q, consider the matrix space Mp,q = Mp,q(F) of p× q-matrices over F. We
regard Mp,q as a real vector space, equipped with the Euclidean scalar product (x|y) := Rtr(x∗y)
and Hilbert–Schmidt norm ‖x‖ =

√
tr(x∗x). The unitary group Up = Up(F) acts on Mp,q by left

multiplication,
Up ×Mp,q →Mp,q, (u, x) �→ ux.

The orbit space M
Up
p,q for this action can be identified with the space Πq = Πq(F) of positive

semidefinite q × q matrices over F via

Up.x �→
√
x∗x =: |x|.

Here for r ∈ Πq,
√
r denotes the unique positive semidefinite square root of r. It is easy to see that

the above bijection becomes a homeomorphism when M
Up
p,q is equipped with the quotient topology

and Πq with the subspace topology induced from Mq. (Indeed, both the canonical map x �→ Up.x

from Mp,q onto MUp
p,q and the mapping x �→ √

x∗x,Mp,q → Πq are open and continuous.) Note that
the Stiefel manifold

Σp,q = {x ∈Mp,q : x∗x = Iq}
is the orbit of the block matrix

σ0 :=
(
Iq
0

)
∈Mp,q.

Before calculating the orbit hypergroup convolution for the above action, let us recall the basic
aspects of radial analysis in Mp,q as developed in [FT87]. As in the introduction, radiality here
means invariance under the above action of Up; a function F on Mp,q is radial if and only if it is
of the form F (x) = f(|x|) for some f : Πq → C. Suitable polar coordinates in Mp,q are defined as
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Bessel convolutions on matrix cones

follows: let dσ denote the Up-invariant measure on Σp,q, normalized according to
∫
Σp,q

dσ = 1, and
let

M ′
p,q = {x ∈Mp,q : ∆(x∗x) �= 0}

which is open and dense in Mp,q. Then the mapping

Ωq × Σp,q →M ′
p,q, (r, σ) �→ σ

√
r

is a diffeomorphism, and for integrable functions f : Mp,q → C one has∫
Mp,q

f(x) dx = Cp,q

∫
Ωq

∫
Σp,q

f(σ
√
r)∆(r)γ dr dσ

with

Cp,q =
πdp q/2

ΓΩq(dp/2)
and γ =

dp

2
− n

q
. (3.1)

As before, n is the real dimension of Hq. Our notion slightly differs from that of [FT87] (and the
monograph [FK94]); it is adapted to the left action (1.1) of Up on Mp,q while the notion of [FT87]
would require to have Up acting from the right onMq,p. As Lebesgue measure onMp,q is Up-invariant,
the Fourier transform of a radial function in L1(Mp,q) is again radial, and also the convolution of
two radial functions is radial; both can be calculated by the use of polar coordinates, cf. [FT87]. We
shall come back to this shortly. Following Example 2.4, we obtain the orbit hypergroup convolution

(δr ∗ δs)(f) =
∫

Up

f(|σ0r + uσ0s|) du, r, s ∈ Πq.

The image measure of du under the mapping Up → Σp,q, u �→ uσ0 is Up-invariant and therefore
coincides with the Up-invariant measure dσ. Hence,

(δr ∗ δs)(f) =
∫

Σp,q

f(|σ0r + σs|) dσ =
∫

Σp,q

f(
√
r2 + s2 + rσ̃s+ (rσ̃s)∗) dσ (3.2)

where σ̃ = σ∗0σ is the q × q-matrix whose rows are given by the first q rows of σ. Actually, this
convolution depends on p (and q), which we surpress for the moment. The neutral element of the
orbit hypergroup (Πq, ∗) is 0, and the involution is the identity mapping (because x ∈Mp,q and −x
are in the same Up-orbit). Further, according to Lemma 2.6, the dual space of (Πq, ∗) consists of
the functions ϕs, s ∈ Πq with

ϕs(r) =
∫

Up

e−i(uσ0r|σ0s) du =
∫

Σp,q

e−i(σ|σ0sr) dσ. (3.3)

These are Bessel functions. Indeed, according to [FK94, Proposition XVI.2.3] we have, for x ∈Mp,q,
the identity ∫

Σp,q

e−i(σ|x) dσ = Jµ

(
1
4
x∗x

)
, µ =

pd

2
(3.4)

where Jµ is the Bessel function of index µ associated with the symmetric cone Ωq as in § 2.2. Thus,

ϕs(r) = Jµ(1
4rs

2r).

We mention at this point that up to a constant factor, ϕs(r) coincides with the Bessel function
J(r2, s2) in [FT87]. As Jµ(x) depends only on the eigenvalues of x and as the matrices rs2r and
sr2s have the same eigenvalues, we see that

ϕs(r) = ϕr(s) ∀r, s ∈ Πq.

This implies that the hypergroup (Πq, ∗) is self-dual via r �→ ϕr.
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Definition 3.1. In order to stress that the convolution ∗ of the orbit hypergroup Πq
∼= M

Up
p,q

depends on p or, equivalently, on the index µ = pd/2, we denote it by ∗µ and write Πq,µ for the
orbit hypergroup (Πq, ∗µ).

A Haar measure ωµ on the orbit hypergroup Πq,µ is given by the image measure of the (nor-
malized) Lebesgue measure (2π)−pqd/2 dx on Mp,q under the mapping x �→ |x|. Using again polar
coordinates, we obtain

ωµ(f) =
2−µq

ΓΩq(µ)

∫
Ωq

f(
√
r)∆(r)γ dr, f ∈ Cc(Πq).

Fourier transform and convolution of radial functions on Mp,q are calculated with our notation
a follows: suppose that F,G ∈ L1(Mp,q) are radial with F (x) = f(|x|) and G(x) = g(|x|). Then the
Fourier transform of F is

F̂ (λ) =
1

(2π)dp q/2

∫
Mp,q

F (x)e−i(λ|x) dx =
∫

Πq

f(r)ϕ|λ|(r) dωµ(r) = f̂(|λ|).

The convolution of F and G is given by F ∗G(x) = H(|x|) with

H(r) = (2π)−dp q/2

∫
Mp,q

F (σ0r − y)G(y) dy

=
2−µq

ΓΩq(µ)

∫
Ωq

(∫
Σp,q

f(|σ0r − σ
√
t|) dσ

)
g(
√
t)∆(t)γ dt

=
∫

Πq

f(r ∗µ s)g(s) dωµ(s) = (f ∗µ g)(r).

(Recall notation (2.5).) The multiplicativity of the characters ϕs implies a positive product formula
for the Bessel functions Jµ with index µ = p d/2, p � q an integer:

Jµ(r2)Jµ(s2) =
∫

Σp,q

Jµ(r2 + s2 + rσ̃s+ sσ̃∗r) dσ ∀r, s ∈ Πq. (3.5)

We shall generalize this formula to Bessel functions of arbitrary index µ ∈ C with Rµ > d(q− 1/2).
For real indices we shall obtain a positive product formula, which leads to a continuous family of
hypergroup structures on Πq beyond those which have a realization as orbit hypergroups as above.
The decisive observation towards this aim is that only the reduced matrix σ̃ is relevant in (3.5)
and (3.2). In the following section, we introduce coordinates on the Stiefel manifold which are
adapted to this situation.

3.2 Split coordinates on the Stiefel manifold

Let k ∈ N with p− k � q. We decompose σ ∈ Σp,q as σ =
(v
w

)
with v ∈ Mk,q and w ∈ Mp−k,q. For

fixed q, put
Dk = {v ∈Mk,q : v∗v < I}

where the notion x < y for x, y ∈Mq(F) means that y − x is (strictly) positive definite.

Proposition 3.2. The mapping

Φ : Dk × Σp−k,q −→ Σp,q, (v, σ′) �−→
(

v

σ′
√
I − v∗v

)

is a diffeomorphism onto a dense and open subset Σ̃p,q of Σp,q. Let dσ and dσ′ denote the normalized
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Riemannian volume elements on Σp,q and Σp−k,q respectively, and let η := d
2(p − k) − n

q . Then on

Σ̃p,q,

dσ = ck,p · ∆(I − v∗v)η dσ′ dv
where

ck,p =
(∫

Dk

∆(I − v∗v)η dv
)−1

= π−dk q/2 ΓΩq(dp/2)
ΓΩq(d(p − k)/2)

.

In the important special case p � 2q, k = q with F = R, this result goes back to [Her55]. For the
reader’s convenience we nevertheless supply a concise proof along a different approach.

Proof. It is easily checked that Φ : Dk ×Σp−k,q → Σp,q is C1 and injective, and that its image Σ̃p,q

is dense in Σp,q. Let f ∈ C(Σp,q) and extend it to F ∈ L1(Mp,q) by F (σ
√
r) := f(σ) if 1

2I < r < 3
2I

and F = 0 otherwise. Then∫
Mp,q

F (x) dx = C

∫
Σp,q

f dσ with C = Cp,q ·
∫

1
2
I<r< 3

2
I
∆(r)γ dr. (3.6)

On the other hand, we write x ∈ Mp,q in block form as x =
(

x1
x2

)
with x1 ∈ Mk,q and x2 ∈ Mp−k,q.

Then ∫
Mp,q

F (x) dx = Cp−k,q

∫
Mk,q

∫
Ωq

∫
Σp−k,q

F

(
x1

σ2
√
r2

)
∆(r2)η dr2 dσ2 dx1

where we used polar coordinates x2 = σ2
√
r2 in Mp−k,q. Consider now the successive transforms

r2 �→ x∗1x1 + r2 =: r with x1 fixed and x1 �→ v := x1r
−1/2 with r fixed. We have dr2 = dr and,

by [FT87, Lemma 2], dx1 = ∆(r)dk/2 dv. Thus, in a first step,∫
Mp,q

F (x) dx = Cp−k,q

∫
Mk,q

∫
x∗
1x1+Ωq

∫
Σp−k,q

F

(
x1

σ2

√
r − x∗1x1

)
∆(r − x∗1x1)η dr dσ2 dx1

where

F

(
x1

σ2

√
r − x∗1x1

)
= f

(
v
σ2w

)
with w =

√
r −√

rv∗v
√
r · r−1/2.

As w∗w = I−v∗v, it follows that w = u
√
I − v∗v with some u ∈ Uq. The invariance of the Lebesgue

measure on Mp−k,q under the action of Uq by right multiplication easily implies that dσ2 is invariant
under this action of Uq on Σp−k,q. In view of the identity η+ k d/2 = γ, the above integral therefore
becomes

Cp−k,q

∫
1
2
I<r< 3

2
I

∫
Dk

∫
Σp−k,q

f

(
v

σ2

√
I − v∗v

)
∆(r)η+k d/2∆(I − v∗v)η dσ2 dv dr

= C · Cp−k,q

Cp,q

∫
Dk

∫
Σp−k,q

f

(
v

σ2

√
I − v∗v

)
∆(I − v∗v)η dσ2 dv.

Together with (3.6), this gives the stated Jacobian (which does not vanish on Dk × Σp−k,q) and
proves the claimed diffeomorphism property of Φ.

If p � 2q, then the above proposition with k = q leads to a concise integration formula for
functions f(σ) on Σp,q which depend only on the first q rows of σ. For abbreviation, we put

� := d(q − 1
2 ) + 1

and for µ ∈ C with Rµ > ρ− 1,

κµ :=
∫

Dq

∆(I − v∗v)µ−ρ dv.
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The explicit value of κµ is obtained by using polar coordinates and [FK94, Theorem VII.1.7] about
beta integrals on symmetric cones,

κµ = Cq,q

∫
r<I

∆(I − r)µ−
∆(r)d/2−1 dr = πdq2/2 · ΓΩq(µ− dq/2)
ΓΩq(µ)

.

Corollary 3.3. Let p � 2q. Then for f ∈ C(Σp,q) of the form

f(σ) = f̃(σ̃), σ̃ = σ∗0σ

one has ∫
Σp,q

f dσ =
1

κp d/2

∫
Dq

f̃(v)∆(I − v∗v)p d/2−
 dv.

The dependence on p now occurs only in the density, not in the domain of integration.

3.3 A product formula for Bessel functions with continuous index
As the integrands in the convolution formula (3.2) and the product formula (3.5) depend only on
the reduced matrix σ̃, we obtain by Corollary 3.3 the following.

Proposition 3.4. Suppose that p � 2q and let µ = p d/2.

(1) The convolution ∗µ on the orbit hypergroup Πq,µ can be written as

(δr ∗µ δs)(f) =
1
κµ

∫
Dq

f(
√
r2 + s2 + rvs+ sv∗r)∆(I − v∗v)µ−
 dv.

(2) The Bessel function Jµ satisfies the product formula

Jµ(r2)Jµ(s2) =
1
κµ

∫
Dq

Jµ(r2 + s2 + rvs+ sv∗r)∆(I − v∗v)µ−
 dv ∀r, s ∈ Πq.

We are now going to extend the integral formulas of Proposition 3.4 to arbitrary indices µ within
the half plane {µ ∈ C : Rµ > � − 1 = d(q − 1

2)}. We use a standard technique (cf. [Ste88] for the
rank-one case), namely analytic continuation with respect to µ. The argumentation is based on a
classical theorem of Carlson.

Theorem 3.5 (Titchmarsh [Tit39, p. 186]). Let f(z) be holomorphic in a neighbourhood of {z ∈
C : Rz � 0} satisfying f(z) = O(ec|z|) on Rz � 0 for some c < π. If f(z) = 0 for all z ∈ N0, then f
is identically zero.

The following theorem is the main result of this section.

Theorem 3.6. Let µ ∈ C with Rµ > � − 1 = d(q − 1
2). Then the Bessel function Jµ satisfies the

product formula

Jµ(r2)Jµ(s2) =
1
κµ

∫
Dq

Jµ(r2 + s2 + rvs+ sv∗r)∆(I − v∗v)µ−
 dv ∀r, s ∈ Πq. (3.7)

Remark. It is easy to obtain from (3.7) the more general identity

Jµ(x∗x)Jµ(y∗y) =
1
κµ

∫
Dq

Jµ(x∗x+ y∗y + x∗vy + y∗v∗x)∆(I − v∗v)µ−
 dv (3.8)

for arbitrary x, y ∈Mq. For this, recall that every x ∈Mq has a polar decomposition x = u|x| with
|x| =

√
x∗x ∈ Πq and a unitary matrix u ∈ Uq. Choose r = |x| = u∗x and s = |y| = w∗y with

u,w ∈ Uq in (3.7). Then

Jµ(x∗x)Jµ(y∗y) =
1
κµ

∫
Dq

Jµ(x∗x+ y∗y + x∗uvw∗y + y∗wv∗u∗x)∆(I − v∗v)µ−
 dv.
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Bessel convolutions on matrix cones

Under the coordinate transform v �→ uvw∗ =: ṽ we have dv = dṽ,∆(I − v∗v) = ∆(I − ṽ∗ṽ) and
v ∈ Dq ⇔ ṽ ∈ Dq. This implies (3.8).

Proof of Theorem 3.6. Let W := {µ ∈ C : Rµ > �− 1}. By the asymptotic properties of the usual
gamma function we have

κµ ∼
(
π

µ

)d q2/2

uniformly in W as µ→ ∞. (3.9)

Consider now the claimed product formula (3.7). Its left-hand side is holomorphic and, according to
Corollary 2.2, also uniformly bounded in W as a function of µ. In order to estimate the right-hand
side of (3.7), note that the argument r2 + s2 + rvs + sv∗r is positive semidefinite for all v ∈ Dq.
Moreover,

tr(r2 + s2 + rvs+ sv∗r) = ‖r‖2 + ‖s‖2 + 2(r|vs)
� ‖r‖2 + 2‖r‖‖vs‖ + ‖s‖2 � (‖r‖ + ‖s‖)2 (3.10)

where again ‖ · ‖ is the Hilbert–Schmidt norm on Mq. For the last estimate, it was used that I− v∗v
is positive definite and therefore

‖s‖2 − ‖vs‖2 = tr(s(I − v∗v)s) � 0.

Thus by Corollary 2.2,

|Jµ(r2 + s2 + rvs+ sv∗r)| � e(‖r‖+‖s‖)2 ∀v ∈ Dq.

This easily implies that the right-hand side in (3.7) is also holomorphic as a function of µ in W ,
and can be estimated according to∣∣∣∣ 1
κµ

∫
Dq

Jµ(r2 + s2 + rvs+ sv∗r)∆(I − v∗v)µ−
 dv

∣∣∣∣ � C · 1
|κµ| ·

∫
Dq

∆(I − v∗v)Rµ−
 dv = C · κRµ

|κµ|
(3.11)

with a constant C > 0 independent of µ. In view of (3.9), the last expression is of the form

O(|µ|d q2/2) as µ→ ∞ in W.

Now define f(z) := g((z + 2q)d
2 ) where

g(µ) := Jµ(r2)Jµ(s2) − 1
κµ

∫
Dq

Jµ(r2 + s2 + rvs+ sv∗r)∆(I − v∗v)µ−
 dv, µ ∈W.

Then f(z) = 0 for all z ∈ N0 by Proposition 3.4. The above considerations further show that f is
holomorphic and of polynomial growth on Rz > −1. With Carlson’s theorem, the validity of (3.7)
follows as claimed.

Remarks. (1) We may as well establish a Bochner-type integral representation for the Bessel function
Jµ with Rµ > �−1 by analytic continuation. Indeed, for µ = p d/2 with an integer p � q, we obtain
from (3.4) that for all x ∈Mq,

Jµ(x∗x) =
∫

Σp,q

e−2i(σ|σ0x) dσ =
∫

Σp,q

e−2i(σ̃|x) dσ.

If p � 2q, then according to Corollary 3.3 this can be written as

Jµ(x∗x) =
1
κµ

∫
Dq

e−2i(v|x)∆(I − v∗v)µ−
 dv. (3.12)

Analytic continuation with respect to µ as above shows that (3.12) remains valid for all µ ∈ C

with Rµ > � − 1. From this identity, it follows by the Riemann–Lebesgue lemma for the additive
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M. Rösler

matrix group (Mq,+) that Jµ ∈ C0(Πq). In case F = R, the integral representation (3.12) for
Rµ > �− 1 goes back to [Her55], where it was proven by a different method.

(2) In the rank-one case q = 1 we have

Jµ

(
r2

4

)
= jµ−1(r) (r ∈ R+)

with the one-variable Bessel functions

jα(z) = 0F1

(
α+ 1;−z

2

4

)
=

∞∑
n=0

(−1)nΓ(α+ 1)
n!Γ(α+ n+ 1)

(
z

2

)2n

.

Formulas (3.12) and (3.7) reduce to the well-known Mehler formula

jα(r) = cα

∫ 1

−1
e−irt(1 − t2)α−1/2 dt

and the product formula

jα(r)jα(s) = cα

∫ 1

−1
jα(

√
r2 + s2 + 2rst)(1 − t2)α−1/2 dt,

which are both valid for α ∈ C with Rα > −1/2.

We finish this section with an alternative form of product formula (3.7) and the integral repre-
sentation (3.12) for the Bessel functions Jµ. Let

B := {z ∈M1,q(F) : |z| < 1}
denote the unit ball in M1,q(F) ∼= F

q with respect to the standard norm |z| = (
∑q

j=1 zjzj)
1/2. It is

easily checked that
∆(I − z∗z) = 1 − |z|2.

Lemma 3.7. The mapping

P (y1, . . . , yq) :=




y1

y2(I − y∗1y1)1/2

...

yq(I − y∗q−1yq−1)1/2 · · · (I − y∗1y1)1/2


 ; y1, . . . , yq ∈ B

establishes a diffeomorphism from Bq onto Dq with Jacobi determinant

|det dP (y)| =
q−1∏
j=1

(1 − |yj|2)d(q−j)/2.

Proof. For k with 2 � k � q, the mapping

B ×Dk−1 −→ Dk, (z,w) �→
(

z

w
√
I − z∗z

)
is obviously a diffeomorphism. By [FT87, Lemma 2] and Fubini’s theorem, its Jacobi determinant is
given by (1− |z|2)d(k−1)/2. The (q− 1)-fold iteration of this decomposition yields the assertion.

It is easily checked that for v = P (y) ∈ Dq,

∆(I − v∗v) =
q∏

j=1

∆(I − y∗j yj) =
q∏

j=1

(1 − |yj|2).

This implies the following corollary.
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Bessel convolutions on matrix cones

Corollary 3.8. Let ζ ∈ C with Rζ > −1. Then the image measure of ∆(I − v∗v)ζ dv under
P−1 : Dq → Bq is given by

∏q
j=1(1 − |yj|2)ζ+d(q−j)/2 dy.

Application to the product formula (3.7) and the integral representation (3.12) for the Bessel
function Jµ gives the following.

Corollary 3.9. Let µ ∈ C with Rµ > �− 1. Then for all r, s ∈ Πq,

Jµ(r2)Jµ(s2) =
1
κµ

∫
Bq

Jµ(r2 + s2 + rP (y)s+ sP (y)∗r)
q∏

j=1

(1 − |yj|2)µ−
+d(q−j)/2 dy;

Jµ(r2) =
1
κµ

∫
Bq

e−2i(P (y)|r)
q∏

j=1

(1 − |yj|2)µ−
+d(q−j)/2 dy.

3.4 Bessel convolutions on the cone Πq
For real µ > �−1 the measure κ−1

µ ·∆(I−v∗v)µ−
 in product formula (3.7) is a probability measure
on Dq. We shall see that (3.7) leads to a hypergroup convolution on Πq which is of the same form as
those of Proposition 3.4. This will give us a continuous series of commutative hypergroup structures
on Πq which interpolate those occurring as orbit hypergroups for the indices µ = p d/2, p � 2q an
integer.

Theorem 3.10. Fix an index µ ∈ R with µ > �− 1.

(a) The assignment

(δr ∗µ δs)(f) :=
1
κµ

∫
Dq

f(
√
r2 + s2 + rvs+ sv∗r)∆(I − v∗v)µ−
 dv; f ∈ C(Πq)

defines a commutative hypergroup structure Πq,µ = (Πq, ∗µ) with neutral element 0 and the
identity mapping as involution. The support of δr ∗µ δs satisfies

supp(δr ∗µ δs) ⊆ {t ∈ Πq : ‖t‖ � ‖r‖ + ‖s‖}.
(b) A Haar measure of the hypergroup Πq,µ is given by

ωµ(f) =
2−qµ

ΓΩq(µ)

∫
Ωq

f(
√
r)∆(r)γ dr

with γ = µ− d
2 (q − 1) − 1 = µ− n

q .

Remark. The specific normalization of the Haar measure is motivated by Theorem 3.12 below.

Proof. (a) Clearly δr ∗µ δs is a probability measure on Πq and

supp(δr ∗µ δs) = {
√
r2 + s2 + rvs+ sv∗r : v ∈ Dq},

which does not depend on µ. The stated support inclusion is immediate from the estimate (3.10).
This shows hypergroup axiom (2). Property (3) is clear because it is known to be true for indices
µ = p d/2 which lead to an orbit hypergroup structure. Property (4) is obvious, and (5) with r = r
also follows in general because it is true in the orbit hypergroup cases. For the proof of (1) it suffices
to show that for each f ∈ Cb(Πq) the mapping (r, s) �→ f(r∗µ s) is continuous. However, this is clear
from the continuity of the map (r, s, v) �→ f(

√
r2 + s2 + rvs+ sv∗r) on Π2

q × Dq. Commutativity
of the convolution is obvious, and for the proof of associativity it again suffices to consider point
measures. So let r, s, t ∈ Πq and f ∈ Cb(Πq). Then

δr ∗µ (δs ∗µ δt)(f) =
1
κ2

µ

∫
Dq

∫
Dq

f(H(r, s, t; v,w))∆(I − v∗v)µ−
∆(I −w∗w)µ−
 dv dw =: I(µ)
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M. Rösler

with a certain Πq-valued argument H that is independent of the index µ. Similarly,

(δr ∗µ δs) ∗µ δt(f) = I ′(µ)

with some µ-independent argument H ′ instead of H. The integrals I(µ) and I ′(µ) are well-defined
and holomorphic in {µ ∈ C : Rµ > � − 1}. Further, we know that I(µ) = I ′(µ) for all µ = p d/2
with an integer p � 2q. By analytic continuation as in the proof of Theorem 3.6 (use (3.9) again)
we obtain validity of this relation for all µ with Rµ > �− 1.

(b) We need to prove that ∫
Ωq

f(s ∗µ

√
r)∆(r)γ dr =

∫
Ωq

f(
√
r)∆(r)γ dr

for all f ∈ Cc(Πq) and s ∈ Πq. Equivalently,∫
Ωq

∫
Dq

f(
√
s2 + r + sv

√
r +

√
rv∗s)∆(I − v∗v)µ−
∆(r)µ−n/q dr dv =

∫
Ωq

f(
√
r)∆(r)µ−n/q dr.

(3.13)

We know from § 3.1 that this relation is true if µ = p d/2 with an integer p � 2q. Moreover, the
stated result is well known in the case d = q = 1 for all µ in question; actually, in these cases ∗µ is
just the convolution of a Bessel–Kingman hypergroup (see [BH95, § 3.5]). So we may assume that
dq � 2. Again let W = {µ ∈ C : Rµ > � − 1}. Then Rµ − n/q > 0 for all µ ∈ W , and for fixed f
both sides of (3.13) are well-defined and holomorphic as functions of µ in W . We shall again carry
out analytic continuation with respect to µ, based on Carlson’s theorem. We proceed in two steps.

Step 1. For R > 0 let BR := {r ∈ Πq : ‖r‖ � R}. Choose R > 0 with Rq � eπ/d. The explicit
formula for the convolution ∗µ shows that there exist constants S0, R0 > 0 such that for f ∈ Cc(Πq)
with suppf ⊆ BR0 and for s ∈ Πq with ‖s‖ � S0 we have

f(s ∗µ

√
r) = 0 if ‖r‖ � R.

Suppose that |f | � C on Πq and note that ∆(r) � ‖r‖q. The left-hand side of (3.13) may then be
estimated according to

|LHS| � C

∫
BR

∆(r)Rµ−n/q dr ·
∫

Dq

∆(I − v∗v)Rµ−
 dv

� C · κRµ · vol(BR) · (Rq)Rµ−n/q. (3.14)

Due to the asymptotics (3.9), µ �→ κRµ is bounded on W . Thus, by our initial assumption on R,
we arrive at

|LHS| = O(eπ/d|µ|) as µ→ ∞ in W.

The right-hand side of (3.13) coincides with the left-hand side for s = 0 and is therefore of (at
most) the same order as a function of µ. As in the proof of Theorem 3.6, we have to substitute
µ = (z + 2q)d

2 to obtain holomorphic functions in z on Rz > −1 which coincide for all z ∈ N0

and are of order O(eπ|z|/2) in Rz � 0. Carlson’s theorem now implies the assertion under the above
restrictions on f and s.

Step 2. Let f ∈ Cc(Πq) and s ∈ Πq be arbitrary. For δ > 0 define fδ(r) := f(δr). We shall use that
the convolution ∗µ is homothetic, i.e.

fδ(r ∗µ s) = f(δr ∗µ δs).
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Bessel convolutions on matrix cones

Fix constants S0, R0 as in step 1 and choose δ > 1 such that suppfδ ⊆ BR0 and ‖s/δ‖ � S0. Then

I(s) :=
∫

Ωq

f(s ∗µ

√
r)∆(r)γ dr =

∫
Ωq

fδ

(
s

δ
∗µ

√
r

δ

)
∆(r)γ dr

= δ2qγ+2n

∫
Ωq

fδ

(
s

δ
∗µ

√
t

)
∆(t)γ dt.

As fδ and s/δ satisfy the conditions of step 1, we conclude that I(s) = I(0), which finishes the proof
of part (b).

Our next aim is to determine the dual and the Plancherel measure of the hypergroup Πq,µ with
µ > �− 1. For s ∈ Πq we define

ϕs(r) = ϕµ
s (r) := Jµ(1

4sr
2s), r ∈ Πq.

Note that

ϕs(r) = ϕr(s) (3.15)

because Jµ depends only on the eigenvalues of its argument. Moreover, we have the following.

Lemma 3.11. Let µ > � − 1. Then for each s ∈ Πq, ϕs = ϕµ
s belongs to Cb(Πq) with ‖ϕs‖∞ =

ϕs(0) = 1. If s belongs to the open cone Ωq, then even ϕs ∈ C0(Πq).

Proof. The first assertion is immediate from the Bochner-type integral representation (3.12) for Jµ.
Now suppose s ∈ Ωq. Then r → ∞ in Πq implies that r2 → ∞ and also sr2s → ∞, because s is
invertible. The second assertion thus follows from the fact that Jµ vanishes at infinity.

From this lemma together with the product formula (3.8) it is immediate that each ϕs with
s ∈ Πq belongs to the dual Π̂q,µ. The results of § 3.1 suggest that these Bessel functions actually
make up the complete dual.

Theorem 3.12. (1) The dual space of Πq,µ with µ > ρ− 1 is given by

Π̂q,µ = {ϕs = ϕµ
s : s ∈ Πq}.

(2) The hypergroup Πq,µ is self-dual via the homeomorphism Ψ : Πq,µ → Π̂q,µ, s �→ ϕs. Under

this identification, the Plancherel measure πµ on Π̂q,µ coincides with the Haar measure ωµ.

For the proof of part (1) we need the following.

Lemma 3.13. The set A := {ϕs : s ∈ Πq} is closed in Π̂q,µ with respect to the topology of locally
uniform convergence.

Proof. Let (ϕsj )j∈N be a sequence in A converging to α ∈ Π̂q,µ locally uniformly. If the sequence
(sj) ⊂ Πq is bounded, then after passing to a subsequence we may assume that sj → s ∈ Πq

as j → ∞. Then ϕsj → ϕs and therefore α = ϕs ∈ A. If, otherwise, the original sequence (sj) is
unbounded, then after passing to a subsequence we may assume that sj → ∞. Thus, by Lemma 3.11,
ϕsj (r) = ϕr(sj) → 0 for all r ∈ Ωq as j → ∞. This implies α = 0 which contradicts the convention
0 /∈ Π̂q,µ.

Proof of Theorem 3.12. In a first step, we establish that Πq,µ has subexponential growth in the
sense of [Voi88], i.e. for each compact subset K ⊂ Πq and each c > 1, the Haar measure satisfies
ωµ(Km) = o(cm) as m→ ∞. Here Km denotes the m-fold convolution power of K, the convolution
product of subsets A,B of a hypergroup (X, ∗) being defined by A ∗ B =

⋃
x∈A,y∈B supp(δx ∗ δy).

Once subexponential growth is known, [Voi88, Theorem 2.17] will imply that the support of the
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Plancherel measure πµ coincides with the complete dual Π̂q,µ. For the proof of subexponential
growth, it suffices to consider the balls BR = {r ∈ Πq : ‖r‖ � R}. From the support properties of
∗µ we see that Bm

R ⊆ BmR. Moreover,

ωµ(BR) = C ·
∫
‖√r‖�R

∆(r)γ dr = O(R2qγ+2n) = O(R2qµ) as R→ ∞.

Thus, for fixed R > 0, we obtain ωµ(Bm
R ) = O(m2qµ), and the assertion follows.

In a second step, we determine πµ. The decisive ingredient will be known results about the
Hankel transform on a symmetric cone. For s, r ∈ Ωq, define

Hµ(s, r) =
1

ΓΩq(µ)
Jµ(

√
sr
√
s).

Suppose that µ > d(q − 1) + 1. Then according to [FK94, Theorem XV.4.1], the Hankel transform

UµF (s) :=
∫

Ωq

Hµ(s, r)F (r)∆(r)γ dr

defines an isometric and involutive isomorphism of L2(Ωq,∆(r)γ dr). The argumentation of [Her55]
and [FT87, § 5] shows that this statement actually extends to all µ ∈ R with µ > d

2(q−1), i.e. γ > −1.
Let f ∈ L2(Πq, ωµ). Then F (r) := f(

√
r) belongs to L2(Ωq,∆(r)γ dr) and a short calculation shows

that

f̂(ϕs) =
∫

Πq

ϕs(r)f(r) dωµ(r) = 2−qµUµF

(
s2

4

)
∀s ∈ Ωq.

Moreover, by the isometry of Uµ we readily obtain∫
Πq

|f̂(ϕs)|2 dωµ(s) =
∫

Πq

|f(s)|2 dωµ(s).

This shows that the Plancherel measure πµ associated with ωµ is given by

πµ(g) =
∫

Πq

g(ϕs) dωµ(s), g ∈ Cc(Π̂q,µ).

Hence, the support of πµ, which we already know to coincide with Π̂q,µ, also coincides with the
closure of the set {ϕs : s ∈ Πq} in Π̂q,µ with respect to the topology of locally uniform convergence.
The proof of part (1) is therefore accomplished by Lemma 3.13. For part (2), it remains to verify
that Ψ is a homeomorphism. Continuity and surjectivity are clear. For injectivity, suppose ϕs = ϕr.
Then in view of (3.15) we have δ̂s = δ̂r and the injectivity of the Fourier transform of measures on the
hypergroup Πq,µ implies s = r. To check continuity of Ψ−1 suppose that ϕsi → ϕs locally uniformly.
Then δ̂si → δ̂s locally uniformly on Π̂q,µ. Levy’s continuity theorem [BH95, Theorem 4.2.2] implies
that δsi → δs weakly, and hence si → s.

3.5 The limit case µ = � − 1
Using Corollary 3.8 we see that the convolution ∗µ with µ > �− 1 can be written in the alternative
form

(δr ∗µ δs)(f) =
1
κµ

∫
Bq

f(
√
r2 + s2 + rP (y)s+ sP (y)∗r)

q∏
j=1

(1 − |yj|2)µ−
+ d
2
(q−j) dy. (3.16)

We shall use this representation to determine the limit of the convolution ∗µ as µ ↓ ρ − 1, where
it assumes a degenerate form. As ρ − 1 = p d/2 with p = 2q − 1, it is natural to expect that the
resulting limit convolution coincides with the orbit hypergroup convolution ∗ρ−1 on Πq derived from
Mq,2q−1.
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In the following, dσ denotes the normalized surface measure on the unit sphere S = {z ∈M1,q :
|z| = 1}. The coordinate transform P : Bq → Dq of Lemma 3.7 is assumed to be continuously
extended to Bq.

Proposition 3.14. As µ ↓ �−1, the convolution product δr∗µδs converges weakly to the probability
measure δr ∗̃δs on Πq given by

(δr̃ ∗ δs)(f)

= κ̃

∫
Bq−1

∫
S
f(

√
r2 + s2 + rP (y)s+ sP (y)∗r)

q−1∏
j=1

(1 − |yj|2)µ−
+ d
2
(q−j) dy1 · · · dyq−1 dσ(yq)

with a normalization constant κ̃ > 0. The product ∗̃ defines a commutative hypergroup structure on
Πq which coincides with the orbit hypergroup Πρ−1

q derived from Mq,2q−1 as in § 3.1. In particular,

(δr̃ ∗ δs)(f) = (δr ∗ρ−1 δs)(f) =
∫

Σq,2q−1

f(
√
r2 + s2 + rσ̃s+ (rσ̃s)∗) dσ

and the additional statements of Theorems 3.10 and 3.12 extend to the case µ = �− 1.

Proof. For µ > �− 1 consider the probability measure

pµ := c−1
µ (1 − |y|2)µ−
1B(y) dy

on M1,q, where cµ :=
∫
B(1−|y|2)µ−
 dy and 1B denotes the characteristic function of the ball B. It is

easily checked that pµ tends weakly to the normalized surface measure dσ on S as µ→ �−1. Indeed,
let f ∈ C(M1,q) and put F (τ) :=

∫
S f(τy) dσ(y), τ � 0. Then with c′µ =

∫ 1
0 (1 − τ2)µ−
τdq−1 dτ ,∫

B
f dpµ =

1
c′µ

∫ 1

0
F (τ)(1 − τ2)µ−
τdq−1 dτ −→ F (1) as µ → �− 1.

This proves that δr ∗µ δs → δr ∗̃ δs weakly. It is clear that supp(δr ∗̃ δs) ⊆ supp(δr ∗µ δs) for µ > �−1
which implies the same support inclusion as in Theorem 3.10(a). In the limit µ→ �− 1 we further
obtain that the Bessel functions

ϕs(r) = J
−1(1
4sr

2s), s, r ∈ Πq

satisfy the product formula

ϕs(r)ϕs(t) =
∫

Πq

ϕs(τ) d(δr̃ ∗ δt)(τ) ∀s ∈ Πq.

On the other hand, consider the orbit hypergroup X
−1 = (Πq, ∗
−1) derived from Mp,q with
p = 2q− 1. Its dual space consists exactly of the Bessel functions ϕs(r) = Jρ−1(1

4rs
2r) as above. In

particular,

ϕs(r)ϕs(t) =
∫

Πq

ϕs(τ) d(δr ∗
−1 δt)(τ) ∀s ∈ Πq.

The injectivity of the Fourier transform on the hypergroup X
−1 now implies that δr ∗
−1 δt = δr∗̃δt
for all r, t.

Remarks. (1) We conjecture that the formulas of Corollary 3.9 permit degenerate extensions to
successively larger index ranges. As soon as the exponent in one of the iterated integrals becomes
critical, the corresponding integral over B should be replaced by an integral over S. More precisely,
we conjecture that within the range{

µ ∈ R : �− d

2
(q − k) − 1 < µ � �− d

2
(q − k − 1) − 1

}
, k = q − 1, . . . , 1
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M. Rösler

the following product formula is valid:

Jµ(r2)Jµ(s2) =
1
κµ,j

∫
Bk

∫
Sq−k

Jµ(r2 + s2 + rP (y)s+ sP (y)∗r)

×
k∏

j=1

(1 − |yj|2)µ−
+ d
2
(q−j) dy1 . . . dyk dσ(yk+1) . . . dσ(yq).

Also, there should be analogous integral representations for Jµ within the above ranges of µ.

(2) Further properties of the hypergroups Πq,µ concerning their automorphism groups as well as
stochastic aspects (such as limit theorems for random walks on matrix cones associated with Bessel
convolutions) have recently been studied in [Voi06].

4. Hypergroups associated with rational Dunkl operators of type Bq

In the analysis of the previous sections, one may be interested in questions which depend only on
the spectra of the matrices from the underlying cone Πq = Πq(F). This amounts to considering
functions and measures on Πq which are invariant under unitary conjugation. For x ∈ Hq we denote
by σ(x) = (ξ1, . . . , ξq) ∈ R

q the set of eigenvalues of x ordered by size, i.e. ξ1 � · · · � ξq. The unitary
group Uq acts on Πq via conjugation, (u, r) �→ uru−1. The orbits under this action are parametrized
by the set Ξq of possible spectra σ(r) of matrices r ∈ Πq,

Ξq = {ξ = (ξ1, . . . , ξq) ∈ R
q : ξ1 � · · · � ξq � 0}.

Recall at this point that Uq is the maximal compact subgroup of the automorphism group of Ωq;
the latter coincides with GLq = GLq(F), acting on Hq via (g, x) �→ gxg∗. The set Ξq is a closed
Weyl chamber of the hyperoctahedral group Bq = Sq � Z

q
2 which acts on R

q by permutations of the
basis vectors and sign changes. In § 3 we saw that Πq carries a continuously parametrized family
of commutative hypergroup structures ∗µ with µ � � − 1, as well as additional orbit hypergroup
structures for µ = p d/2, p � q an integer. In the following section we are going to show that under the
above action of Uq on Πq each convolution ∗µ induces a commutative orbit hypergroup convolution
◦µ on Ξq, in a similar manner as the orbit hypergroups were obtained from group convolutions
in § 2.3. In § 4.2 we then identify the characters of (Ξq, ◦µ) with multivariable Bessel functions
of Dunkl type which are associated with the root system of type Bq. In effect, we thus obtain a
continuous series of commutative hypergroup structures on the chamber Ξq whose characters are
given by Dunkl-type Bessel functions.

4.1 Convolutions on the spectra of positive definite matrices

In the situation described above, the canonical mapping

π : Πq → Ξq, r �→ σ(r)

is continuous, surjective, and open with respect to the standard topologies on both sets. Therefore,
the map ΠUq

q → Ξq, Uq.r �→ σ(r) becomes a homeomorphism when ΠUq
q is equipped with the

quotient topology. In the following, du denotes the normalized Haar measure on Uq and ξ ∈ Ξq is
always identified with the diagonal matrix diag(ξ1, . . . , ξq) ∈ Πq without mentioning. Moreover, we
introduce the index set

Mq :=
{
pd

2
, p = q, q + 1, . . .

}
∪ ]ρ− 1,∞[.
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Bessel convolutions on matrix cones

Theorem 4.1. (1) For each µ ∈ Mq the chamber Ξq carries a commutative hypergroup structure
with convolution

(δξ ◦µ δη)(f) :=
∫

Uq

(f ◦ π)(ξ ∗µ uηu
−1) du, f ∈ C(Ξq).

The neutral element of the hypergroup Ξq,µ := (Ξq, ◦µ) is 0 ∈ Ξq and the involution is given by the
identity mapping.

(2) A Haar measure on Ξq,µ is given by

ω̃µ = π(ωµ) = dµhµ(ξ) dξ with hµ(ξ) =
q∏

i=1

ξ2γ+1
i

∏
i<j

(ξ2i − ξ2j )
d

and a constant dµ > 0.

Remarks. (1) The constant dµ is determined in § 4.2.

(2) In the generic case µ > �− 1 the convolution ◦µ can be more explicitly written as

(δξ ◦µ δη)(f) =
1
κµ

∫
Dq

∫
Uq

f(σ(
√
ξ2 + uη2u−1 + ξvuηu−1 + uηu−1v∗ξ))∆(I − v∗v)µ−
 du dv.

We start with some preparations for the proof of Theorem 4.1.

Lemma 4.2. For u ∈ Uq consider the homeomorphism of Πq given by Tu : r �→ uru−1. The image
measure of the convolution product δr ∗µ δs ∈M1(Πq) under Tu is given by

Tu(δr ∗µ δs) = δuru−1 ∗µ δusu−1.

Proof. Recall that the measure ∆(I − v∗v)µ−
 dv in the convolution formula of Theorem 3.10 is
invariant under unitary conjugation. This yields immediately that

(g ◦ Tu)(r ∗µ s) = g(uru−1 ∗µ usu
−1) ∀g ∈ C(Πq).

Aside. This lemma just says that Tu is actually a hypergroup automorphism for each of the convo-
lutions ∗µ. The next lemma is a special case of [FK94, Theorem VI.2.3].

Lemma 4.3. For integrable functions g : Πq → C,∫
Πq

g(r) dr = κ

∫
Ξq

∫
Uq

g(uξu−1) du
∏
i<j

(ξi − ξj)d dξ

with a normalization constant κ = κq > 0.

Proof of Theorem 4.1. (1) We employ the technique of [Jew75, § 13] for the transfer of hypergroup
structures via orbital mappings. Note first that the continuous open surjection π : Πq → Ξq is also
proper (because Uq is compact) and thus provides an orbital mapping from the hypergroup Πq,µ

onto Ξq in the sense of [Jew75, § 13]. For ξ ∈ Ξq define

εξ :=
∫

Uq

δuξu−1 du

which is a probability measure on Πq and satisfies suppεξ = π−1(ξ). We claim that each εξ is
π-consistent in the following sense:

π(εξ ∗µ δs) = π(εξ ∗µ δt) for all s, t ∈ Πq with π(s) = π(t); (4.1)
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here π is extended to M+(Πq) by taking image measures. For the proof of (4.1), suppose that
s, t ∈ Πq satisfy π(s) = π(t). Then for each g ∈ C(Πq) which is invariant under Uq-conjugation we
have ∫

Πq

g d(εξ ∗µ δs) =
∫

Uq

g(uξu−1 ∗µ s) du =
∫

Uq

g(ξ ∗µ u−1su) du.

Note that Lemma 4.2 has been used for the second identity. As s and t have the same spectra, the
last integral does not change when s is replaced by t. This proves (4.1). The orbital mapping π also
satisfies π(0) = 0 ∈ Ξq and π−1(0) = 0 ∈ Πq. We can now apply [Jew75, Theorem 13.5.A]. This
shows that Ξq becomes a commutative hypergroup with convolution

δξ ◦µ δη = π(εξ ∗µ εη),

the identity mapping as involution and neutral element π(0) = 0. This proves the assertions of
part (1).

(2) According to [Jew75, Theorem 13.3.A], a Haar measure ω̃µ on Ξq,µ is given by the image
measure of ωµ under π. Let f ∈ Cc(Ξq) and put g = f ◦ π, which is Uq-invariant. Then∫

Ξq

f dω̃µ = κ

∫
Πq

g dωµ = κ′
∫

Ξq

g(
√
ξ)

q∏
i=1

ξγ
i

∏
i<j

(ξi − ξj)d dξ

where
√
ξ = (

√
ξ1, . . . ,

√
ξq). Up to a constant factor, the last integral coincides with

∫
Ξq
g(ξ)

hµ(ξ) dξ.

Remarks. (1) Recall that for µ = p d/2 with an integer p � q the hypergroup Πq,µ is just the orbit
hypergroup obtained from the multiplication action of the unitary group Up on Mp,q. In this case,
the above hypergroup structure of (Ξq, ◦µ) can also be described as an orbit hypergroup derived
directly from Mp,q, as follows. Consider the action of the group L := Up × Uq on Mp,q by

x �→ uxv−1, (u, v) ∈ L.

The orbits of this action are parametrized by the possible sets of singular values of matrices
from Mp,q. Indeed, let σsing(x) = σ(

√
x∗x) = (ξ1, . . . , ξq) ∈ Ξq denote the singular spectrum of

x ∈Mp,q, the singular values being ordered by size. We have the equivalences

σsing(x) = σsing(y) ⇐⇒ σ(x∗x) = σ(y∗y)

⇐⇒ ∃v ∈ Uq : y∗y = vx∗xv−1 = (xv−1)∗(xv−1)

⇐⇒ ∃(u, v) ∈ Up × Uq : y = uxv−1.

Therefore the orbit space ML
p,q can be identified with the chamber Ξq via UpxUq �→ σsing(x), and this

is easily checked to be a homeomorphism with respect to the natural topologies on both spaces. Note
that (uxv−1)∗uxv−1 = vx∗xv−1. Hence, under the mapping Φ : Mp,q → Πq, x �→ √

x∗x, the above
action of L on Mp,q induces the conjugation action of Uq on Πq. Moreover, the orbit convolution on
Πq,µ is defined in such a way that

δr ∗µ δs = Φ(Qr ∗Qs) with Qr =
∫

Up

δuσ0r du ∈M1(Mp,q)

where ∗ denotes the usual convolution on the additive groupMp,q. This shows that for µ = p d/2, the
convolution of the hypergroup Ξq,µ coincides with the convolution of the orbit hypergroupML

p,q
∼= Ξq,

which is, in turn, naturally identified with the convolution of the Gelfand pair (L�Mp,q, L).

(2) For µ = p d/2 with an integer p � q, the support of the measure δξ ◦µ δη describes the set
of possible singular spectra of sums x+ y made up by matrices x, y ∈ Mp,q(F) with given singular
spectra ξ and η.
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Bessel convolutions on matrix cones

Let us return to general indices µ ∈ Mq. In analogy to Lemma 2.6 for orbit hypergroups from
groups, we expect that the characters of the hypergroup Ξq,µ are all obtained by taking Uq-means
of the characters of Πq,µ. For ξ ∈ Ξq, define ψξ = ψµ

ξ ∈ Cb(Ξq) by

ψξ(η) :=
∫

Uq

ϕξ(uηu−1) du

where ϕξ(r) = ϕµ
ξ (r) = Jµ(1

4rξ
2r). The ϕξ are the characters of Πq,µ which are parametrized by

diagonal matrices. Note that by Uq-invariance of Jµ we have

ϕs(uru−1) = ϕu−1su(r) ∀r, s ∈ Πq. (4.2)

Hence, the mean of ϕs is equal to the mean of ϕξ for ξ = σ(s) and ψξ(η) = ψη(ξ) for all ξ, η ∈ Ξq.

Theorem 4.4. Let µ ∈ Mq.

(1) The dual space of the hypergroup Ξq,µ = (Ξq, ◦µ) is given by

Ξ̂q,µ = {ψξ = ψµ
ξ : ξ ∈ Ξq}.

(2) The hypergroup Ξq,µ is self-dual via the homeomorphism Ξq,µ → Ξ̂q,µ, ξ �→ ψξ. Under this
identification, the Plancherel measure π̃µ of Ξq,µ coincides with the Haar measure ω̃µ.

Proof. (1) It is easily checked that each ψξ is multiplicative with respect to ◦µ and therefore belongs
to Ξ̂q,µ. Indeed, for η, ζ ∈ Ξq we calculate

ψξ(η ◦µ ζ) =
∫

Uq

(ψξ ◦ π)(η ∗µ uζu
−1) du =

∫
Πq

∫
Uq

∫
Uq

ϕξ(vrv−1) d(δη ∗µ δuζu−1)(r) du dv.

By Lemma 4.2 this is equal to∫
Uq

∫
Uq

ϕξ(vηv−1 ∗µ vuζu
−1v−1) du dv = ψξ(η)ψξ(ζ).

It remains to show that each character of Ξq,µ is of the form ψξ with some ξ ∈ Ξq. For this, note
first that the hypergroup Ξq,µ has subexponential growth, just as Πq,µ. Thus according to [Voi88,
Theorem 2.17], the support of the Plancherel measure π̃µ of Ξq,µ coincides with the full dual Ξ̂q,µ. Let
ψ ∈ Ξ̂q,µ = suppπ̃µ. Then by [Voi91, Corollary 6] there exists a sequence of functions fn ∈ Cc(Ξq)
such that fn◦µfn converges to ψ locally uniformly. Hence, (fn◦π)∗µ(fn◦π) converges to ψ◦π locally
uniformly on Πq, which implies that ψ ◦ π is positive definite on the hypergroup Πq,µ. Note that
(ψ ◦π)(0) = 1. Thus, by Bochner’s theorem for commutative hypergroups [Jew75, Theorem 12.3.B]
and the self-duality of Πq,µ, there exists a probability measure a ∈M1(Πq) such that

(ψ ◦ π)(r) =
∫

Πq

ϕs(r) da(s) ∀r ∈ Πq. (4.3)

As ψ ◦π is invariant under the action of Uq and in view of (4.2), the measure a must be Uq-invariant
as well, i.e.

∫
f(uru−1) da(r) =

∫
f(r) da(r) for all f ∈ Cc(Πq). Let ã denote the image measure of

a under π. Then with η = π(r) relation (4.3) becomes

ψ(η) =
∫

Πq

ϕs(η) da(s) =
∫

Ξq

ψξ(η) dã(ξ).

On the other hand, by Bochner’s theorem for the hypergroup Ξq,µ, the character ψ of Ξq,µ is an
extremal point of the set of positive definite functions f on the hypergroup Ξq,µ with the additional
property f(0) = 1. This implies that ã must be a point measure, i.e. ã = δξ for some ξ ∈ Ξq. Hence,
ψ = ψξ.
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(2) The self-duality of Ξq,µ is proven in the same way as that of Πq,µ (Theorem 3.12). To
determine the Plancherel measure, let f ∈ Cc(Ξq) and g := f ◦ π. Then the Fourier transforms of f
and g with respect to the hypergroup structures Ξq,µ and Πq,µ are related via

ĝ(s) =
∫

Πq

g(r)ϕs(r) dωµ(r) =
∫

Ξq

f(ξ)ψσ(s)(ξ) dω̃µ(ξ) = (f̂ ◦ π)(s).

By the Plancherel theorem for Πq,µ we readily obtain
∫
Ξq

|f |2 dω̃µ =
∫
Ξq

|f̂ |2 dω̃µ. This finishes the
proof.

We would like to write the characters ψξ in a more explicit form. Recall that ϕs(r) = Jµ(1
4sr

2s)
for r, s ∈ Πq, where Jµ is given in terms of the spherical series (2.2). The spherical polynomials
satisfy the product formula

Zλ(r)Zλ(s)
Zλ(I)

=
∫

Uq

Zλ(
√
rusu−1√r) du ∀r, s ∈ Πq,

see [FK94, Corollary XI.3.2] or [GR87, Proposition 5.5]. This implies an integral representation for
the Bessel functions Jµ of two matrix arguments (recall § 2.2):

Jµ(r, s) =
∫

Uq

Jµ(
√
rusu−1√r) du, r, s ∈ Πq.

Thus, for ξ, η ∈ Ξq we have

ψξ(η) =
∫

Uq

Jµ

(
1
4
ξuη2u−1ξ

)
du = Jµ

(
ξ2

2
,
η2

2

)
. (4.4)

We shall use this representation in order to identify the characters ψξ with Dunkl-type Bessel
functions for the root system of type Bq.

4.2 Bessel functions associated with root systems
Bessel functions associated with root systems are an important ingredient in the theory of rational
Dunkl operators, which was initiated by Dunkl in the late 1980s [Dun89, Dun91]. They are a
symmetrized version of the Dunkl kernel, which is the analogue of the usual exponential function in
this theory. As a subclass, they include the spherical functions of a Cartan motion group, cf. [deJ06].
In this section we give a brief account on Dunkl theory and the associated Bessel functions; for a
general background, the reader is referred to [DX01], [Opd93] and [Rös03b].

Let G be a finite reflection group on R
q (equipped with the usual Euclidean scalar product

〈·, ·〉), and let R be the reduced root system of G. We extend the action of G to C
q and 〈·, ·〉 to a

bilinear form on C
q × C

q. A function k : R → C which is invariant under G is called a multiplicity
function on R. Important special cases of reflection groups are the symmetric group Sq which acts
on R

q by permuting the standard basis vectors ei, and the hyperoctahedral group Bq = Sq � Z
q
2

which acts by permutations of the basis vectors and sign changes. The root system of Bq is given by
R = {±ei, 1 � i � q} ∪ {±ei ± ej , 1 � i < j � q}, and a multiplicity on it is of the form k = (k1, k2)
where k1 is the value on the roots ±ei and k2 is the value on the roots ±ei ± ej .

For a finite reflection group G and a fixed multiplicity function k on its root system, the asso-
ciated (rational) Dunkl operators are defined by

Tξ = Tξ(k) = ∂ξ +
1
2

∑
α∈R

kα〈α, ξ〉 1
〈α, ·〉 (1 − σα), ξ ∈ C

q;

here σα denotes the reflection in the hyperplane perpendicular to α and the action of G is extended
to functions on C

q via g.f(ξ) = f(g−1ξ). The Tξ are homogeneous of degree −1 on the space
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Bessel convolutions on matrix cones

P = C[Cq] of polynomial functions on C
q and they commute: TξTη = TηTξ (see [Dun89]). Hence,

the map ξ �→ Tξ extends uniquely to a linear map p �→ p(T ),P → End(Cq). The Dunkl operators
induce a sesquilinear pairing

[p, q]k = (p(T )q)(0)

on P, where q(ξ) := q(ξ). In the following we assume that k is non-negative. Then [p, q]k is actually
a scalar product on P, see [DO03, Proposition 2.4]. Moreover, for each fixed w ∈ C

q, the joint
eigenvalue problem

Tξf = 〈ξ, w〉f ∀ξ ∈ C
q; f(0) = 1

has a unique holomorphic solution f(z) = Ek(z,w) called the Dunkl kernel. It is symmetric in its
arguments and satisfies Ek(λz,w) = Ek(z, λw) for all λ ∈ C as well as Ek(gz,w) = Ek(z, gw) for
all g ∈ G. The generalized Bessel function

Jk(z,w) :=
1
|G|

∑
g∈G

Ek(z, gw)

is G-invariant in both arguments. Moreover, g(z) = Jk(z,w) is the unique holomorphic solution of
the ‘Bessel system’

p(T )g = p(w)g ∀p ∈ PG; g(0) = 1 (4.5)
where PG denotes the subalgebra of G-invariant polynomials in P, see [Opd93]. For crystallographic
reflection groups and certain values of k, the operators p(T ), when restricted to G-invariant functions
on R

q, constitute the system of invariant differential operators of a Euclidean-type symmetric space
and the Bessel functions Jk(·, w) can be identified with the associated spherical functions; for details
see [deJ06]. The Dunkl kernel Ek gives rise to an integral transform on R

q called the Dunkl transform.
Let wk denote the weight function

wk(x) =
∏
α∈R

|〈α, x〉|2kα

on R
q. The Dunkl transform is the integral transform on L1(Rq, wk) defined by

f �→ f̂ k, f̂k(ξ) = c−1
k

∫
Rq

f(x)Ek(−iξ, x)wk(x) dx (ξ ∈ R
q)

with the constant

ck :=
∫
Rq

e−|x|2/2wk(x) dx.

A thorough study of this transform is given in [deJ93]. It has many properties in common with the
usual Fourier transform to which it reduces in the case k = 0. In particular, the Dunkl transform (as
normalized above) extends to an isometric isomorphism of L2(Rq, wk), and (Tηf)∧k(ξ) = i〈ξ, η〉f̂k(ξ)
for differentiable f of sufficient decay. It is a long-standing open question whether L1(Rq, wk) can
be given the structure of a commutative Banach algebra so that the Dunkl transform becomes the
Gelfand transform on its (symmetric) spectrum, in a similar manner as for commutative hyper-
groups. In the rank-one case there is such a convolution, but it is not positivity-preserving. For
details and affirmative results in this direction see [Rös03a]. It is, however, conjectured that for
arbitrary G and k � 0, the Bessel functions Jk have a positive product formula which leads to
a commutative hypergroup structure on a distinguished closed Weyl chamber Ξ of G, the dual
of this hypergroup being made up by the functions ξ �→ Jk(ξ, η), η ∈ Ξ. In rank one and in all
Cartan motion group cases this is true, see [Rös03a]. In the following, we confirm this conjecture
for three continuous series of multiplicities for root system Bq. Indeed, we identify the characters of
the hypergroups Ξq,µ in § 4.1 with Dunkl-type Bessel functions for Bq and thus obtain hypergroup
structures with these Bessel functions as characters.
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4.3 Dunkl theory and the convolutions on the Weyl chamber
Let us denote by JB

k the Dunkl-type Bessel function associated with the reflection group G = Bq and
multiplicity k = (k1, k2), and by [·, ·]Bk the associated Dunkl pairing. For z = (z1, . . . , zq) ∈ C

q we
put z2 = (z2

1 , . . . , z
2
q ). The following key result identifies JB

k with a generalized 0F1-hypergeometric
function of two arguments (recall the notions of § 2.2). It goes essentially back to [BF97, § 6], but
the reasoning there is rather sketchy and there is an erraneous sign in one of the arguments. We
therefore include a proof by different methods.

Proposition 4.5. Let k = (k1, k2) � 0 and k2 > 0. Then for all z,w ∈ C
q,

JB
k (z,w) = 0F

α
1

(
µ;
z2

2
,
w2

2

)
with α =

1
k2
, µ = k1 + (q − 1)k2 +

1
2
.

Proof. The modified Jack polynomials pλ(z) = Cα
λ (z2), indexed by partitions λ � 0, are homoge-

neous of degree 2|λ| and form a basis of the vector space PG for G = Bq. Thus, the Bessel function
JB

k has a homogeneous expansion of the form

JB
k (z,w) =

∑
λ�0

aλ(w)pλ(z) (4.6)

with certain coefficients aλ(w) ∈ C. In view of the Bessel system we have

pλ(T z)JB
k (z,w)|z=0 = pλ(w)JB

k (0, w) = Cα
λ (w2),

where the superscript z indicates operation with respect to the variable z. On the other hand, the
results of [BF97] (relation (2.9) and the formula on top of p. 214) imply that the pλ are orthogonal
with respect to [·, ·]Bk with

[pλ, pλ]Bk = 4|λ||λ|!(µ)αλ · Cα
λ (1) =: Mλ, µ = k1 + (q − 1)k2 + 1

2 .

Differentiation of (4.6) (recall that pν has real coefficients) now gives

pλ(T z)JB
k (z,w)

∣∣
z=0

=
∑
ν�0

aλ(w)[pλ, pν ]Bk = Mλaλ(w).

Hence, aλ(w) = M−1
λ Cα

λ (w2), which implies the assertion.

As a consequence of (2.4), Bessel functions associated with a symmetric cone can now be iden-
tified with Dunkl Bessel functions of type Bq with specific multiplicities.

Corollary 4.6. Let Ω be an irreducible symmetric cone inside a Euclidean Jordan algebra of
rank q. Then for r, s ∈ Ω with eigenvalues ξ = (ξ1, . . . , ξq) and η = (η1, . . . , ηq), respectively,
we have

Jµ

(
r2

2
,
s2

2

)
= JB

k (ξ, iη)

where k is given by k = k(µ, d) = (µ− d
2 (q − 1) − 1

2 ,
d
2 ).

Now consider again the hypergroup structures Ξq,µ = (Ξq, ◦µ) on

Ξq = {ξ = (ξ1, . . . , ξq) ∈ R
q : ξ1 � · · · � ξq � 0}

which is actually a closed Weyl chamber for the reflection group Bq. The consequence of our above
identification can be formulated in a twofold way.

Corollary 4.7. The characters of the hypergroup Ξq,µ, µ ∈ Mq are given by

ψη(ξ) = JB
k (ξ, iη), η ∈ Ξq

with the multiplicity k = k(µ, d) as in the previous corollary.
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Corollary 4.8. Consider the root system of type Bq with a multiplicity k = (k1, k2) where k2 = d
2

with d ∈ {1, 2, 4} and k1 = d
2(p− q + 1)− 1

2 for integer p � q or arbitrary k1 � 1
2(dq − 1). Then the

associated Dunkl-type Bessel functions ξ �→ JB
k (ξ, iη) are the characters of the hypergroup (Ξq, ◦µ)

on the closed Weyl chamber Ξq, where µ = k1 +(q− 1)k2 + 1
2 and the convolution ◦µ is defined over

F = R,C,H, depending on the value of d. In particular, the Bessel function JB
k satisfies the positive

product formula

JB
k (ξ, z)JB

k (η, z) =
∫

Ξq

JB
k (ζ, z) d(δξ ◦µ δη)(ζ) ∀ξ, η ∈ Ξq, z ∈ C

q.

The hypergroup Fourier transform on Ξq,µ is given by

f̂(η) =
∫

Ξq

f(ξ)JB
k (ξ, iη) dω̃µ(ξ),

with ω̃µ = dµhµ(ξ) dξ, as in Theorem 4.1. Note that hµ coincides up to a constant factor with the
weight wk for k = k(µ, d). As wk is Bq-invariant, we therefore have

f̂(η) = constant · F̂ k(η),

where F denotes the Bq-invariant extension of f to R
q and F̂ k its Dunkl transform. Note that

F̂ k is Bq-invariant as well. With the Plancherel theorem for the Dunkl transform at hand, we are
now also in a position to determine the normalization constant dµ of ω̃µ as announced previously.
Indeed, recall from Theorem 4.4 that the Plancherel measure of the hypergroup Ξq,µ coincides with
ω̃µ under the natural identification of Ξq,µ with its dual. Using this and the Plancherel theorem for
the Dunkl transform, we readily obtain

f̂ = F̂ k|Ξq

and

dµ =
(∫

Ξq

hµ(x)e−|x|2/2 dx

)−1

.

The value of dµ can be calculated explicitly; it is a particular case of a Selberg type integral which
was evaluated by Macdonald [Mac82] for the classical root systems.

In the general Dunkl setting, there is a generalized translation on suitable function spaces which
replaces the usual group addition to some extent, see [Rös98, Rös03a] and the references cited there.
On L2(Rq, wk), this translation is defined by

τηf(ξ) = c−1
k

∫
Rq

f̂k(ξ)Ek(iξ, ζ)Ek(iη, ζ)wk(ζ) dζ.

One has τη : L2(Rq, wk) → L2(Rq, wk) with (τηf)∧k(ζ) = Ek(iη, ζ)f̂k(ζ). If we restrict to the Weyl
group invariant case for Bq with multiplicities as in Corollary 4.8, then this generalized translation
just coincides with the translation defined in terms of hypergroup convolution. If, say, f belongs to
L2(Rq, wk) and is also continuous and Weyl group invariant, then with the notions of Corollary 4.8
we have

τηf(ξ) = δξ ∗µ δη(f) ∀ξ, η ∈ Ξq.

When µ = p d/2 with an integer p � q, i.e. k1 = d
2 (p − q + 1) − 1

2 , then the Bessel func-
tions JB

k (·, z) can be identified with the spherical functions of the Cartan motion group associated
with the Grassmann manifold U(p, q)/(Up × Uq). This follows from the discussion in [deJ06] (see
also [Rös03a]), and is in accordance with Remark (1) after the proof of Theorem 4.1 which implies
that for µ = p d/2, the hypergroup convolution of Ξq,µ coincides with that of biinvariant measures
for the Gelfand pair ((Up × Uq) � Mp,q, Up × Uq). The multiplicative functions coincide with the
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(elementary) spherical functions of this Gelfand pair. Thus, the hypergroups Ξq,µ with µ � ρ − 1
interpolate the discrete series of convolution algebras derived from the tangent space analysis on
Grassmann manifolds.
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