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Abstract. Let Vk denote Dunkl’s intertwining operator for the root sytem
Bn with multiplicity k = (k1, k2) with k1 ≥ 0, k2 > 0. It was recently shown

that the positivity of the operator Vk′,k = Vk′ ◦ V −1
k which intertwines the

Dunkl operators associated with k and k′ = (k1 + h, k2) implies that h ∈
[k2(n−1),∞[∪ ({0, k2, . . . , k2(n−1)}−Z+). This is also a necessary condition
for the existence of positive Sonine formulas between the associated Bessel
functions. In this paper we present two partial converse positive results: For
k1 ≥ 0, k2 ∈ {1/2, 1, 2} and h > k2(n − 1), the operator Vk′,k is positive
when restricted to functions which are invariant under the Weyl group, and
there is an associated positive Sonine formula for the Bessel functions of type
Bn. Moreover, the same positivity results hold for arbitrary k1 ≥ 0, k2 > 0
and h ∈ k2 · Z+. The proof is based on a formula of Baker and Forrester
on connection coefficients between multivariate Laguerre polynomials and an
approximation of Bessel functions by Laguerre polynomials.

1. Introduction

Let R be a reduced root system in a finite-dimensional Euclidean space (a, 〈 . , . 〉)
with finite Coxeter groupW. Fix a multiplicity function, i.e., aW -invariant function
k : R → [0,∞[ and denote by {Tξ(k), ξ ∈ a} the associated commuting family of
rational Dunkl operators as introduced in [D1], see also [D2, DX]. Then there is a
unique isomorphism on the vector space C[a] of polynomial functions on a which
preserves the degree of homogeneity and satisfies

Vk(1) = 1, Tξ(k)Vk = Vk∂ξ for all ξ ∈ a.

By [R1], Vk is positive on C[a], i.e. for p ∈ C[a] with p ≥ 0 we have Vkp ≥ 0 on a.
This is equivalent to the fact that for each x ∈ a there is a unique compactly sup-
ported probability measure µk

x ∈ M1(a) such that the Dunkl kernel Ek associated
with R and k has the positive integral representation

Ek(x, z) =

!

a

e〈ξ,z〉dµk
x(ξ), ∀x ∈ a, z ∈ aC. (1.1)

The support of µk
x is contained in the convex hull of the W -orbit of x. Eq. (1.1)

generalizes the Harish-Chandra integral representation of spherical functions on
symmetric spaces of Euclidean type (Ch.IV of [Hel]), as for certain multiplicities k,
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the Bessel functions

Jk(x, z) :=
1

|W |
"

w∈W

Ek(wx, z), z ∈ aC, (1.2)

coincide with the spherical functions of a Cartan motion group, where R and k
depend on the root space data of the underlying symmetric space, see [O, dJ]
for details. The Bessel function Jk is W -invariant in both arguments, and in the
geometric cases, the integral formula for Jk obtained from (1.1) by taking W -means
is just the Harish-Chandra formula [Hel, Prop. IV.4.8].

We now consider two multiplicities k, k′ on R with k′ ≥ k ≥ 0, i.e., k′(α) ≥
k(α) ≥ 0 for all α ∈ R. In [RV4] we studied the operator

Vk′,k := Vk′ ◦ V −1
k

which intertwines the Dunkl operators with multiplicities k and k′:

Tξ(k
′)Vk′,k = Vk′,kTξ(k) (ξ ∈ a).

It had been conjectured until recently that Vk′,k is also positive. This is equivalent to
the statement that for each x ∈ a, there is a unique compactly supported probability
measure µk′,k

x ∈ M1(a) such that the Sonine formula

Ek′(x, z) =

!

a

Ek(ξ, z) dµ
k′,k
x (ξ) for all z ∈ aC (1.3)

holds. Notice that (1.3) yields a corresponding formula for the Bessel function:

Jk′(x, z) =

!

a

Jk(ξ, z) d#µk′,k
x (ξ) (z ∈ aC) (1.4)

with some W -invariant probability measure #µk′,k
x . Denote by #Vk′,k the restriction of

Vk′,k to W -invariant functions. As in [RV4], it is easy to see that the existence of a
positive Sonine formula (1.4) for the Bessel functions is equivalent to the positivity

of #Vk′,k.

In the rank-one case with R = {±1} ⊂ R, we have Jk(x, y) = jk−1/2(ixy) with
the one-dimensional Bessel function

jα(z) = 0F1(α+ 1;−z2/4) (α ∈ C \ {−1,−2, . . .}). (1.5)

Here (1.4) is just the well-known classical Sonine formula (see e.g. [A]):

jα+β(z) = 2
Γ(α+ β + 1)

Γ(α+ 1)Γ(β)

! 1

0

jα(zx)x
2α+1(1− x2)β−1dx (1.6)

for α ∈] − 1,∞[ and β ∈]0,∞[. It was proven in [X] that the operator Vk′,k with
k′ > k ≥ 0 is also positive in the rank-one setting.

On the other hand, for the root systems

Bn = {±ei, ±ei ± ej , 1 ≤ i < j ≤ n} ⊂ Rn

with n ≥ 2 and certain parameters k′ ≥ k ≥ 0, (1.3) and (1.4) were disproved in
[RV4]. For these root systems we write the multiplicities as k = (k1, k2) with k1, k2
the values of k on the roots ±ei and ±ei ± ej , respectively. The following result is
shown in Section 3 of [RV4] for the Bessel functions JB

k of type Bn.
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Theorem 1.1. Let k = (k1, k2) with k1 ≥ 0, k2 > 0, and consider k′ = (k1+h, k2)
with h > 0. Assume that there exists a probability measure m ∈ Mb(Rn) such that
the restricted Sonine formula

JB
k′ (1, iy) =

!

Rn

JB
k (ξ, iy) dm(ξ) for all y ∈ Rn (1.7)

holds, where 1 = (1, . . . , 1) ∈ Rn. Then h is contained in the set

Σ(k2) := ]k2(n− 1),∞[∪
$
{0, k2, . . . , k2(n− 1)}− Z+

%
.

Therefore, positivity of #Vk′,k or Vk′,k requires that h ∈ Σ(k2). Theorem 1.1 is
related to a classical result of Gindikin [G] about the Wallach set which parametrizes
those Riesz distributions on a Euclidean Jordan algebra which are actually positive
measures, see [FK]. Related results for Riesz and Beta distributions on symmetric
cones and in the Dunkl setting are given in [RV3, R3].

On the other hand, there are some positive Sonine formulas for JB
k′ in terms of

JB
k with k′ = (k1 + h, k2) if k1 ≥ 0 and h is large enough; these will be treated in

Section 3. Namely, if k2 ∈ {1/2, 1, 2} and h > k2(n − 1), then a Sonine formula
follows from the fact that in this case the Bessel functions JB

k are closely related to
Bessel functions on matrix cones over R,C,H where positive Sonine formulas are
available by [H, RV3]. Moreover, a restricted explicit Sonine formula of the form
(1.7) was obtained in [RV4] for arbitrary k1 ≥ 0, k2 > 0 and h > k2(n − 1) as a
consequence of Kadell’s [Kad] generalization of the Selberg integral.

The main results of this paper are contained in Sections 4 and 5. In particular,
in Theorem 4.1 we prove that the Bessel function JB

k satisfies a Sonine formula for
all k1, k2 > 0 and h ∈ k2 · Z+, which includes all parameters h in the discrete part
of the generalized Wallach set

{0, k2, . . . , k2(n− 1)} ∪ [k2(n− 1),∞[ .

The proof of this result is based on a formula of Baker and Forrester [BF1] on
positive connection coefficients between multivariate Laguerre polynomial systems
and an approximation of Bessel functions by Laguerre polynomials. Finally in
Section 5, we consider the limit h → ∞ under which the Bessel functions of type B
tend to those of type A. This leads to a positive integral representation of Bessel
functions of type A in terms of such of type B.

2. Basic facts on Bessel functions

We start with some background on rational Dunkl theory from [D1, D2, DJO,
R1]. Let R be a reduced root system in a finite-dimensional Euclidean space
(a, 〈 . , . 〉) and W the associated finite Coxeter group. The Dunkl operators as-
sociated with R and multiplicity k are

Tξ(k) = ∂ξ +
1

2

"

α∈R

k(α)〈α, ξ〉 1

〈α, . 〉 (1− σα), ξ ∈ a

where the action of W on functions f : a → C is given by w.f(x) = f(w−1x). It was
shown in [D1] that the Tξ(k), ξ ∈ a, commute. Multiplicities k ≥ 0 are regular, i.e.,
the joint kernel of the Tξ(k), considered as linear operators on polynomials, consists
of the constants only. This is equivalent to the existence of a necessarily unique
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intertwining operator Vk as described in the introduction; see [DJO]. Moreover, for
each y ∈ aC, there is a unique solution f = Ek( . , y) of the joint eigenvalue problem

Tξ(k)f = 〈ξ, y〉f ∀ ξ ∈ a, f(0) = 1.

The function Ek is called the Dunkl kernel. The mapping (x, y) -→ Ek(x, y) is
analytic on aC × aC with Ek(x, y) = Ek(y, x), Ek(x, 0) = 1, and

Ek(λx, y) = Ek(x,λy), Ek(wx,wy) = Ek(x, y) (λ ∈ C, w ∈ W ).

In this paper, we mainly consider the Dunkl kernel EB
k and the Bessel function

JB
k associated with the root system Bn on Rn with its usual inner product, c.f. (1.2).

The associated reflection group is the hyperoctahedral group W (Bn) = Sn ⋉ Zn
2 ,

and the multiplicity has the form k = (k1, k2) as explained in the introduction. In
Section 5, we shall also consider the Bessel function JA

k associated with the root
system

An−1 = {±(ei − ej), 1 ≤ i < j ≤ n} ⊂ Rn.

Here the multiplicity is given by a single parameter k ∈ [0,∞[. The Bessel func-
tions JB

k and JA
k have simple expressions in terms of multivariate hypergeometric

functions in the sense of [K, M2]. To recall these we need some more notation. Let

Λ+
n = {λ ∈ Zn

+ : λ1 ≥ · · · ≥ λn}

be the set of partitions of length at most n. We denote by Cα
λ , λ ∈ Λ+

n the Jack
polynomials of index α > 0 in n variables (see [Sta]), normalized such that

(z1 + · · ·+ zn)
m =

"

|λ|=m

Cα
λ (z) (m ∈ Z+). (2.1)

Following [K], we define for µ ∈ C with Reµ > 1
α (n−1) and arguments z, w ∈ Cn

the hypergeometric function

0F
α
1 (µ; z, w) :=

"

λ∈Λ+
n

1

[µ]αλ |λ|! ·
Cα

λ (z)C
α
λ (w)

Cα
λ (1)

, 1 = (1, . . . , 1) ∈ Rn, (2.2)

with the generalized Pochhammer symbol

[µ]αλ =

n&

j=1

$
µ− 1

α
(j − 1)

%
λj
. (2.3)

If n = 1, then the Cα
λ are independent of α and given by Cα

λ (z) = zλ, λ ∈ Z+, and

0F
α
1 (µ;−

z2

4
, 1) = jµ−1(z).

Let k = (k1, k2) on Bn with k1 ≥ 0 and k2 > 0. Then according to [R2, Prop. 4.5]
(c.f. also [BF1, Sect. 6]),

JB
k (z, w) = 0F

α
1

'
µ;

z2

2
,
w2

2

(
(2.4)

with α = 1
k2

and µ = µ(k) = k1 + k2(n− 1) +
1

2
.
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Moreover, for n ≥ 2 and k ∈ ]0,∞[, the Bessel function of type An−1 has the
following hypergeometric expansion ([BF2, Sect. 3]):

JA
k (z, w) = 0F

α
0 (z, w) =

"

λ∈Λ+
n

1

|λ|! ·
Cα

λ (z)C
α
λ (w)

Cα
λ (1)

with α = 1/k . (2.5)

3. Explicit Sonine formulas for large parameters

We first recapitulate a restricted Sonine formula of the form (1.7) for JB
k from

[RV4]. Let k = (k1, k2) with k1 ≥ 0 and k2 > 0. For a real parameter h > k2(n−1)
consider the probability density

fk,h(x) := c−1
k,h ·

n&

i=1

(x2
i )

k1(1− x2
i )

h−k2(n−1)−1
&

i<j

|x2
i − x2

j |2k2

on [0, 1]n with the normalization constant (a Selberg-type integral)

ck,h =

!

[0,1]n

n&

i=1

(x2
i )

k1(1− x2
i )

h−k2(n−1)−1
&

i<j

|x2
i − x2

j |2k2dx.

Then according to Eq. (3.4) in [RV4],

JB
(k1+h,k2)

(1, z) =

!

[0,1]n
JB
k (x, z)fk,h(x)dx (z ∈ Cn). (3.1)

The proof of this formula is based on (2.4) and Kadell’s [Kad] generalization of the
Selberg integral, which implies a restricted Sonine formula for 0F

α
1 . The restricted

Sonine formula (3.1) can be extended to a complete Sonine formula, i.e. a Sonine
formula for Bessel functions with arbitrary second argument, in the cases k2 =
1/2, 1, 2 via Bessel functions on matrix cones. To explain this, we recapitulate
some notations from [FK, R2, RV3]. For the (skew) fields F := R,C,H with real
dimension d = 1, 2, 4 consider the vector spaces Hn := Hn(F) of all Hermitian n×n
matrices over F as well as the cones Πn := Πn(F) ⊂ Hn of all positive semidefinite
matrices. Let Ωn be the interior of Πn consisting of all strictly positive definite
matrices. The Bessel functions associated with the symmetric cone Ωn (in the
sense of [FK]) are defined in terms of the spherical polynomials

Φλ(a) =

!

Un

∆λ(uau
−1)du (λ ∈ Λ+

n , a ∈ Hn).

Here du is the normalized Haar measure of the compact group Un = Un(F) and
∆λ denotes the power function

∆λ(a) := ∆1(a)
λ1−λ2∆2(a)

λ2−λ3 · . . . ·∆q(a)
λq

with the principal minors ∆i(a). We renormalize the spherical polynomials accord-
ing to Zλ := cλΦλ with cλ > 0 such that

(tr a)k =
"

|λ|=k

Zλ(a) for k ∈ N0 ;

c.f. Section XI.5. of [FK]. The Zλ depend only on the eigenvalues of their argument
and are given in terms of Jack polynomials: for a ∈ Hn with eigenvalues x =
(x1, . . . , xn) ∈ Rn,

Zλ(a) = Cα
λ (x) with α =

2

d
,
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see [FK, M1]. Let

µ0 :=
d

2
(n− 1).

Then for µ > µ0, the Bessel function Jµ associated with Ωn is defined according to
[FK] as the 0F1-hypergeometric series

Jµ(a) =
"

λ∈Λ+
n

(−1)|λ|

[µ]
2/d
λ |λ|!

Zλ(a) (a ∈ Hn). (3.2)

Notice that here [µ]
2/d
λ ∕= 0 for all λ. Comparing formulas (3.2) and (2.4), one

obtains for a ∈ Hn with eigenvalues x ∈ Rn and µ ≥ µ0 +
1
2 the identity

Jµ(a
2) = JB

k (2ix,1) with k = k(µ, d) =
$
µ− µ0 −

1

2
,
d

2

%
; (3.3)

see [R2, Cor. 4.4]. Recall that JB
k is invariant under W (Bn) in both variables. We

denote the associated standard Weyl chamber by

CB
n := {x ∈ Rn : x1 ≥ . . . ≥ xn ≥ 0}.

Now consider r, s ∈ Πn with ordered eigenvalues x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
CB

n . Then by Corollary 4.6. of [R2],

JB
k (2ix, y) =

!

Un

Jµ(rus
2u−1r) du with k = k(µ, d). (3.4)

For indices µ, ν > µ0 we introduce the Beta-Riesz probability measures

dβµ,ν(r) :=
1

BΩ(µ, ν)
∆(r)µ−1−µ0∆(I − r)ν−1−µ0dr

)))
ΩI

n

(3.5)

on the relatively compact set ΩI
n := {r ∈ Ωn : In − r ∈ Ωn}, where

BΩ(µ, ν) :=

!

ΩI
n

∆(r)µ−1−µ0∆(I − r)ν−1−µ0dr.

We recall the following Sonine formula from [RV3, Theorem 1]; see also (2.6’) of
[H] for F = R.

Proposition 3.1. For all µ, ν > µ0 and r ∈ Πn,

Jµ+ν(r) =

!

ΩI
n

Jµ(rs)dβµ,ν(s).

Here we adopt a common notation in the literature and consider the Bessel
function Jµ as a function of the eigenvalues of the (not necessarily Hermitian) matrix
rs, which coincide with those of the Hermitian matrices

√
s r

√
s and

√
r s

√
r.

From Proposition 3.1 and formula (3.4) we now derive a Sonine representation for
JB
k . For this, consider the map σ : Πn → CB

n where σ(r) is the ordered spectrum of
r ∈ Πn. We shall identify x ∈ Rn with the diagonal matrix diag(x1, . . . , xn) ∈ Hn.
Theorem VI.2.3 of [FK] states that

!

Πn

f(r) dr = c0

!

Un

!

CB
n

f(uxu−1) ·
&

i<j

(xi − xj)
d dx du (3.6)

for integrable functions f : Πn → C, with some constant c0 > 0. Let

CB
n,1 := {x ∈ CB

n : x1 ≤ 1} = {x ∈ Rn : 1 ≥ x1 ≥ · · · ≥ xn ≥ 0}.
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Then by (3.6), the image measure of βµ,ν under σ is the probability measure

dρk1,k2,h(x) =
1

Bk1,k2,h

n&

i=1

x
k1−1/2
i (1− xi)

h−1−µ0 ·
&

i<j

(xi − xj)
2k2dt

)))
CB

n,1

(3.7)

on CB
n,1 with the normalization constant Bk1,k2,h = BΩ(µ, ν)/c0 where (k1, k2) =

k(µ, d) as in (3.3) and h = ν. We obtain

Theorem 3.2. Let F ∈ {R,C,H} and k2 = d/2 with d = dimRF. Let further
k1 ≥ 0 and h > µ0 = d

2 (n− 1). Then for all z ∈ Cn and x ∈ CB
n ,

JB
(k1+h,k2)

(x, z) =

!

CB
n,1

!

Un(F)
JB
(k1,k2)

$*
σ(xuξu−1x) , z

%
du dρk1,k2,h(ξ).

Proof. Let x, y ∈ CB
n and put µ = k1+µ0+

1
2 . Formulas (3.4), (3.6) and Proposition

3.1 imply that

JB
(k1+h,k2)

(x, 2iy) =

!

Un

!

ΩI
n

Jµ
$
xuy2u−1xs

%
dβµ,h(s) du

=

!

Un

!

ΩI
n

Jµ
$
uy2u−1xsx

%
dβµ,h(s) du

=

!

Un

!

Un

!

CB
n,1

Jµ
$
uy2u−1 · xvξv−1x

%
dρk1,k2,h(ξ) dv du

=

!

CB
n,1

!

Un

JB
(k1,k2)

$*
σ(xvξv−1x) , 2iy

%
dv dρk1,k2,h(ξ).

Analytic extension in the first argument now yields the assertion. □

Note that for k2 = 1/2, 1, 2 and η = 1, the integral representation in Theorem
3.2 coincides with formula (3.1).

4. Positive Sonine formulas for discrete parameters

Besides the Sonine formulas in Theorem 3.2 and Eq. (3.1), Theorem 1.1 admits
the following partial converse statement:

Theorem 4.1. Let k = (k1, k2) with k1 ≥ 0, k2 > 0 and h ∈ k2·Z+ = {0, k2, 2k2, . . .}.
Then for each x ∈ CB

n there exists a unique probability measure mx ∈ M1(CB
n ) such

that

JB
(k1+h,k2)

(x, z) =

!

CB
n

JB
k (ξ, z) dmx(ξ) (4.1)

for all z ∈ Cn. The support of mx is contained in [0, x] := [0, x1]× . . .× [0, xn].

The uniqueness statement in Theorem 4.1 follows from the injectivity of the
Dunkl transform of bounded measures, see [RV1, Theorem 2.6]. For the proof of
the existence part, it suffices to consider z = iy with y ∈ Rn and prove the case
h = k2. In this case, the theorem can be derived from an explicit formula of
Baker and Forrester [BF1, formula (4.23)] on the connection coefficients between
multivariate Laguerre polynomial systems. To start with, recall that according to
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[BF1, Proposition 4.3], the Laguerre polynomials in n variables associated with
parameters α > 0 and a > −1 are given by

La
κ(x;α) =

[a+ q]ακ
|κ|!

"

λ⊆κ

+
κ

λ

,
(−1)|λ|

[a+ q]αλ

Cα
λ (x)

Cα
λ (1)

(κ ∈ Λ+
n , x ∈ Rn) (4.2)

where q = 1+(n−1)/α, the notion λ ⊆ κ means that the diagram of λ is contained
in that of κ, i.e. λi ≤ κi for all i = 1, . . . , n, and the generalized binomial coefficients$
κ
λ

%
=

$
κ
λ

%
α
are defined by the binomial formula for the Jack polynomials,

Cα
κ (x+ 1)

Cα
κ (1)

=
"

λ⊆κ

+
κ

λ

,
Cα

λ (x)

Cα
λ (1)

.

We consider the renormalized Laguerre polynomials

#La
κ(x;α) :=

La
κ(x;α)

La
κ(0;α)

=
"

λ⊆κ

+
κ

λ

,
(−1)|λ|

[a+ q]αλ

Cα
λ (x)

Cα
λ (1)

and choose the parameters according to those in (2.4), namely α := 1
k2
, a := k1− 1

2 .

Then a+ q = k1 + k2(n− 1) + 1
2 = µ(k) =: µ.

The first step towards the proof of Theorem 4.1 is the following limit result for
Laguerre polynomials which generalizes Proposition 3.3 of [F] for α = 1. In the
one-dimensional case n = 1, this limit transition is well-known.

Lemma 4.2. Let k = (k1, k2) with k1 ≥ 0, k2 > 0, put α := 1
k2

, a := k1 − 1
2

and fix y ∈ Rn. For x ∈ CB
n consider the sequence of partitions (λj(x))j∈N ⊆ Λ+

n

with λj(x) := ⌊j · x⌋ where Gaussian brackets are taken componentwise. Then
limj→∞ λj(x)/j = x, and

lim
j→∞

#La
λj(x)

(y2/j;α) = JB
k (iy, 2

√
x )

locally uniformly in x (here the square root is also taken componentwise).

Proof. We adopt the method from [F]. First, recall the monic renormalization of
the Jack polynomials Cα

λ , which is determined by

Pα
λ = mλ +

"

µ<λ

dλµ(α)mµ

where the mλ are the monomial symmetric functions mλ(z) =
-

w∈Sn
zw.λ and

µ < ν means that µ is strictly lower than ν in the usual dominance order on Λ+
n .

According to [K, formula (16)] and the identities on p. 15 of [KS],

Pα
λ =

c′λ
α|λ||λ|!

Cα
λ with c′λ =

&

s∈λ

(α(aλ(s) + 1) + lλ(s)),

where aλ(s) and lλ(s) denote the arm-length and leg-length of s ∈ λ, c.f. [KS, S1]
for the definitions. According to [OO], the generalized binomial coefficients

$
κ
λ

%
can

be written in terms of the so-called shifted Jack polynomials P ∗
λ (x, 1/α) as+

κ

λ

,
=

P ∗
λ (κ; 1/α)

P ∗
λ (λ; 1/α)

.

Moreover,

P ∗
λ (λ; 1/α) =

1

α|λ| c
′
λ.
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The shifted Jack polynomials are of the form (c.f. [OO])

P ∗
λ (z; 1/α) = Pα

λ (z) + terms of lower degree in dominance order.

Therefore

lim
j→∞

1

j|λ|

+
λj(x)

λ

,
=

α|λ|

c′λ
· lim
j→∞

Pα
λ

$λj(x)

j

%
=

α|λ|

c′λ
· Pα

λ (x) =
Cα

λ (x)

|λ|! , (4.3)

and the convergence is locally uniform in x. With α = 1
k2
, a = k1 − 1

2 and µ =

µ(k) = k1 + k2(n− 1) + 1
2 we thus obtain

lim
j→∞

#La
λj(x)

$
y2/j;α

%
= lim

j→∞

"

λ⊆λj(x)

1

j|λ|

+
λj(x)

λ

,
(−1)|λ|

[µ]αλ

Cα
λ (y

2)

Cα
λ (1)

=
"

λ∈Λ+
n

(−1)|λ|

[µ]αλ
· C

α
λ (x)C

α
λ (y

2)

|λ|!Cα
λ (1)

= JB
k (iy, 2

√
x). (4.4)

For the uniformity statement, we proceed as in [V]. We use that the binomial
coefficients satisfy

$
κ
λ

%
≥ 0 for λ ⊆ κ (Theorem 5 of [S2]) as well as

"

|λ|=m

+
κ

λ

,
=

+
|κ|
m

,
, m ∈ Z+

from [L]. Note also that [µ]αλ ≥ ( 12 )
|λ|. As the coefficients of the Cα

λ in their
monomial expansion are nonnegative, we may estimate

)))
Cα

λ (y
2)

Cα
λ (1)

))) ≤ ‖y‖ 2|λ|
∞ .

We therefore obtain

"

λ⊆λj(x)

1

j|λ|

+
λj(x)

λ

,
1

[µ]αλ

)))
Cα

λ (y
2)

Cα
λ (1)

))) ≤
∞"

m=0

2m

jm
‖y‖2m∞ ·

"

|λ|=m

+
λj(x)

λ

,

=

∞"

m=0

'2‖y‖2∞
j

(m
·
+
|λj(x)|

m

,
≤

∞"

m=0

(2n‖y‖2∞‖x‖∞)m

m!
.

This estimate shows that the convergence in (4.4) is locally uniform in x ∈ CB
n . □

The following observation is the central ingredient for the proof of Theorem 4.1.
It follows immediately from identity (4.23) of [BF1].

Lemma 4.3. For each partition κ ∈ Λ+
n there exist connection coefficients cκ,λ =

cκ,λ(a,α) ≥ 0 with
-

λ⊆κ cκ,λ = 1 such that

#La+1/α
κ (x;α) =

"

λ⊆κ

cκ,λ #La
λ(x;α) (x ∈ Rn).

Proof of Theorem 4.1. Let k = (k1, k2), a := k1 − 1
2 and α = 1

k2
. Fix y ∈ Rn.

For x ∈ CB
n consider the sequence of partitions (λj = λj(x))j∈N as described in

Lemma 4.2 with limj→∞ λj/j = x. We proceed as in [RV4] and introduce the
discrete probability measures

µj := µj(x) :=
"

λ⊆λj

cλj ,λ δλ/j ∈ M1(Rn), j ∈ N;
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here δξ denotes the point measure in ξ ∈ Rn. The supports of the µj are contained
in the compact set [0, x]∩CB

n . In terms of these measures, Lemma 4.3 implies that

#La+k2

λj
(ξ;α) =

!

[0,η]

#La
jw(ξ;α)dµj(w), ξ ∈ Rn.

By Prohorov’s theorem (see e.g. [Kal]), the set {µj : j ∈ N} is relatively sequentially
compact. After passing to a subsequence if necessary, we obtain that the µj tend
weakly to a probability measure mx ∈ M1([0, x]) as j → ∞. Using Lemma 4.2, we
conclude that

JB
(k1+k2,k2)

$
iy, 2

√
x
%
= lim

j→∞
#La+k2

λj
(y2/j;α) = lim

j→∞

!

[0,x]

#La
jw(y

2/j;α) dµj(w)

=

!

[0,x]

JB
k

$
iy, 2

√
w
%
dmx(w).

This readily implies the assertion. □

Remark 4.4. Our results on complete Sonine formulas for JB
k in Theorems 3.2

and 4.1 do not cover the case k = (k1, k2) with arbitrary k1 ≥ 0, k2 > 0 and
h > k2(n− 1). We conjecture that in this case, a positive Sonine formula exists as
well.

We conclude this section with an immediate consequence of Theorem 1.1, Lemma
4.2, and the proof of Theorem 4.1:

Corollary 4.5. Let a ≥ −1/2, α > 0 and h > 0. Assume that for each partition
κ ∈ Λ+

n there exist nonnegative connection coefficients cκ,λ ≥ 0 such that

La+h
κ (x;α) =

"

λ⊆κ

cκ,λL
a
λ(x;α) (x ∈ Rn).

Then h is contained in the set Σ(α−1) of Theorem 1.1.

5. The limit h → ∞

We finally turn to some application of Theorem 4.1 for h → ∞ which is based
on the fact that the Bessel function JB

(k1,k2)
of type Bn tends to a Bessel function

of type An−1 as k1 → ∞.
Indeed, the following limit relation follows easily from a comparison of the coef-

ficients in (2.5) and (2.2) and is well-known; see e.g. [RV2] where also estimations
for the rate of convergence are given.

Lemma 5.1. Let n ≥ 2 and k2 > 0. Then, locally uniformly in x, y ∈ Rn,

lim
k1→+∞

JB
(k1,k2)

(2
*
k1 x, iy) = JA

k2
(x2,−y2).

Using Prohorov’s theorem as in the proof of Theorem 4.1, we obtain the following
integral representation from Lemma 5.1 and Theorem 4.1:

Theorem 5.2. Let k = (k1, k2) with k1, k2 > 0. Then for each x ∈ CB
n there exists

a unique probability measure µx = µx(k) ∈ M1(CB
n ) such that

JA
k2
(x2,−y2) =

!

CB
n

JB
(k1,k2)

(ξ, iy) dµx(ξ) for all y ∈ Rn. (5.1)



POSITIVE INTERTWINERS FOR BESSEL FUNCTIONS OF TYPE B 11

Proof. The uniqueness again follows from the injectivity of the Dunkl transform of
measures. For the existence, fix k1, k2 as well as x ∈ CB

n . Theorem 4.1 shows that
for each j ∈ N there is a probability measure µj ∈ M1(CB

n ) such that

JB
(k1+jk2,k2)

$
2
*
k1 + jk2 · x , iy

%
=

!

CB
n

JB
(k1,k2)

(ξ, iy) dµj(ξ) ∀ y ∈ Rn, (5.2)

where the support of µj is contained in
.
0, 2

√
k1 + jk2 · x

/
. We prove that the

sequence (µj) is tight, which implies that it has a subsequence which converges
weakly to some probability measure µx ∈ M1(CB

n ); for tightness and the existence
of convergent subsequences we refer to Section 4 of [Kal]. The arguments at the
end of the proof of Theorem 4.1 in combination with Lemma 5.1 will then lead to

JA
k2
(x2,−y2) =

!

CB
n

JB
(k1,k2)

(ξ, iy) dµx(ξ)

as claimed. In order to check the tightness of (µj), we recapitulate from formulas
(2.2) and (2.4) that for k = (k1, k2),

JB
k (z, w) =

"

λ∈Λ+
n

1

[µ(k)]αλ |λ|! 4|λ|
· C

α
λ (z

2)Cα
λ (w

2)

Cα
λ (1)

(z, w ∈ Cn) (5.3)

with µ(k) = k1 + k2(n− 1) + 1
2 . Hence, by (5.2),

"

λ∈Λ+
n

(k1 + jk2)
|λ|

[µ(k1 + jk2, k2)]αλ |λ|! ·
Cα

λ (x
2)Cα

λ (−y2)

Cα
λ (1)

=
"

λ∈Λ+
n

1

[µ(k)]αλ |λ|! 4|λ|
· C

α
λ (−y2)

Cα
λ (1)

·
!

CB
n

Cα
λ (ξ

2) dµj(ξ)

for all y ∈ [0,∞[n. If we compare the coefficients of this power series in y for
λ = (1, 0, . . . , 0) and use that Cα

(1,0,...,0)(z) = z1 + . . . + zn (c.f. the normalization

(2.1)), we obtain from (2.3) and a straightforward computation that
!

CB
n

(ξ21 + . . .+ ξ2n) dµj(ξ) =
4(k1 + jk2)(k1 + k2(n− 1) + 1/2)

k1 + k2(n+ j − 1) + 1/2
(5.4)

which remains bounded as j → ∞. By Exercise 4 in Section 4 of [Kal] this implies
the tightness of (µj) and thus the claim. □

We have no general explicit formula for the measures µη in Theorem 5.2. How-
ever, in certain cases explicit formulas are known. For example, Lemma 5.1 and
Theorem 3.2 lead for k2 = d/2 ∈ {1/2, 1, 2} to the following

Corollary 5.3. Let F ∈ {R,C,H} and d = dimRF. Then for k1 ≥ 0, x ∈ CB
n and

all z ∈ Cn,

JA
d/2(x

2,−z2) =

!

CB
n

!

Un(F)
JB
(k1,d/2)

$*
σ(xuξu−1x) , z

%
du dµk1,d(ξ) (5.5)

with the probability measure

dµk1,d(ξ) = ck1,d

n&

i=1

ξ
k1−1/2
i

&

i<j

(ξi − ξj)
d · e−(ξ1+...+ξn)/2 dξ

with suitable normalizing constant ck1,d > 0.
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