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Partial Characters and Signed
Quotient Hypergroups
Margit Rösler and Michael Voit

Abstract. If G is a closed subgroup of a commutative hypergroup K, then the coset space K/G carries a quo-
tient hypergroup structure. In this paper, we study related convolution structures on K/G coming from defor-
mations of the quotient hypergroup structure by certain functions on K which we call partial characters with
respect to G. They are usually not probability-preserving, but lead to so-called signed hypergroups on K/G.
A first example is provided by the Laguerre convolution on [0,∞[, which is interpreted as a signed quotient
hypergroup convolution derived from the Heisenberg group. Moreover, signed hypergroups associated with
the Gelfand pair

(
U (n, 1),U (n)

)
are discussed.

1 Introduction

There are several constructions which lead from locally compact groups to hypergroups;
an important one arises in the context of Gelfand pairs: If H is a compact subgroup of a
locally compact group G such that (G,H) is a Gelfand pair, then the double coset space
G//H = {HgH : g ∈ G} inherits a commutative hypergroup structure. Roughly speaking,
a hypergroup is a locally compact Hausdorff space K with a convolution on the Banach
space Mb(K) of regular bounded Borel measures on K with properties similar to those of
group convolutions. For an introduction we refer to Jewett [11] and Bloom and Heyer [3];
a good reference to Gelfand pairs is Faraut [5].

Constructions as described above usually lead to probability-preserving convolutions.
On the other hand, there exist some not-probability-preserving convolution structures
with a group theoretical background. A good example is provided by the Laguerre con-
volution on [0,∞[ which is closely related to the Heisenberg group. This convolution is
discussed, for instance, in [1], [9], [12], [25]. Non-positive convolution structures of this
kind are covered by the axiomatic framework of signed hypergroups of Rösler [18]; see also
Ross [22].

As already observed by Koornwinder [12], Laguerre convolutions and Heisenberg
groups are related as follows: The unitary group U (n) acts in a canonical way on the
(2n + 1)-dimensional Heisenberg group Hn = Cn × R, and the orbit space HU (n)

n of U (n)-
orbits on Hn may be identified with a commutative hypergroup on R × [0,∞[. The space
R×{0} is a closed subgroup of this hypergroup, and the quotient space (R × [0,∞[) /(R×
{0}) ∼== [0,∞[ carries two different convolution structures: the first one is the usual quo-
tient hypergroup and leads to a Bessel-Kingman hypergroup on [0,∞[. The second one is
constructed via some twist by characters of the subgroup R × {0}, and it leads to a signed
Laguerre hypergroup on [0,∞[.
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The purpose of this paper is to generalize this twisted quotient convolution to closed
subgroups G of commutative hypergroups K. We define the twist by means of a continuous
function σ : K → T := {z ∈ C : |z| = 1} satisfying σ(xg) = σ(x)σ(g) and σ(x̄) = σ(x) for
x ∈ K, g ∈ G. We prove that such a σ, which we call a partial character of K with respect
to G, leads in a natural way to a commutative signed hypergroup structure on the quo-
tient K/G that is closely related to the usual quotient hypergroup structure on K/G (which
appears as the special case for σ ≡ 1). Our approach leads to new signed hypergroup struc-
tures for some classes of commutative hypergroups with a group-theoretical background.
As a further example, we consider the Gelfand pair

(
U (n, 1),U (n)

)
. Up to some covering,

it leads to a double coset hypergroup on R × [0,∞[ with “two-dimensional” Jacobi func-
tions as characters; see Flensted-Jensen [6] and Trimèche [26]. In this case, R×{0} is again
a closed subgroup, the quotient hypergroup is a Jacobi hypergroup of non-compact type,
and partial characters lead to new convolution structures on [0,∞[ which are related to
product formulas for Jacobi functions.

This paper is organized as follows: Section 2 gives an outline of the relation between
Heisenberg groups and Laguerre convolutions. Section 3 contains some facts on com-
mutative signed hypergroups. Here also uniqueness of the pseudo-invariant measure on
a commutative signed hypergroup is proved; this measure substitutes the Haar measure
and is characterized by some adjoint relation, which is weaker than the usual translation-
invariance. In the essential Section 4, partial characters and the associated twisted convo-
lutions are introduced, and the associated twisted signed hypergroups are investigated. In
Section 5, we study the dual space of signed quotient hypergroups. Section 6 is devoted to
signed quotient hypergroups on [0,∞[ related to the Gelfand pair

(
U (n, 1),U (n)

)
.

2 Heisenberg Groups and Laguerre Convolutions on [0,∞[

The (2n + 1)-dimensional Heisenberg group Hn := Cn × R carries the multiplication

(z, s) · (w, t) :=
(
z + w, s + t − Im〈z,w〉

)
,

where 〈. , .〉 is the usual Hermitian inner product on Cn. The unitary group U (n) acts on
Hn as group of automorphisms via (z, s) 7→ (uz, s), u ∈ U (n). The space Kn := HU (n)

n

of all U (n)-orbits in Hn can be identified with [0,∞[ × R in the obvious way and car-
ries a orbit hypergroup structure. Kn is also naturally isomorphic to the double coset hy-
pergroup

(
U (n) ∝ Hn

)
//U (n) where U (n) is regarded as a subgroup of the semidirect

product U (n) ∝ Hn (cf. [11, Theorem 8.3]).
(
U (n) ∝ Hn,Un

)
is a Gelfand pair (see e.g.,

Korányi [14]), and the space of all multiplicative symmetric functions in Cb(Kn) can be
identified with the space of all symmetric U (n)-spherical functions on U (n) ∝ Hn. The
dual K̂n decomposes into characters of two different kinds; see [1] and Ch. 1 of [8]:

(1) The characters of the first kind (coming from infinite-dimensional representations of
Hn) are parametrized by (R \ {0})× {0, 1, 2, . . .} and are given by

Λ(n−1)
k,µ (x, t) =

L(n−1)
k (|µ|x2)

L(n−1)
k (0)

e−|µ|x
2/2+iµt

(
µ ∈ R \ {0}, k = 0, 1, 2, . . .

)
(2.1)
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where L(α)
k is the k-th Laguerre polynomial of index α.

(2) Characters of the second kind arise from one-dimensional representations of Hn and
are parametrized by [0,∞[. They are given in terms of spherical Bessel function by

η(n−1)
τ (x, t) := jn−1(τx), where jα(x) := Γ(α + 1) ·

∞∑
n=0

(−1)n(x/2)2n

n!Γ(n + α + 1)
.(2.2)

In [12], Koornwinder gave a product formula for the Λ(n−1)
k,µ and discussed its group theo-

retical interpretation. As this formula remains valid for the η(n−1)
τ , it determines the hyper-

group convolution on Kn = [0,∞[× R. For n ≥ 2 we obtain

δ(x,s) ∗ δ(y,t)( f )

(2.3)

:=
n− 1

π

∫ 1

0

∫ 2π

0
f
(√

x2 + y2 + 2xyr cos θ, s + t + xyr sin θ
)
· r · (1− r2)n−2 dr dθ

for x, y ∈ [0,∞[, s, t ∈ R, f ∈ Cb(Kn). For n = 1, this degenerates to

δ(x,s) ∗ δ(y,t)( f ) :=
1

2π

∫ 2π

0
f
(√

x2 + y2 + 2xy cos θ, s + t + xy sin θ
)

dθ.(2.4)

These formulas show that G := {0} × R is a subgroup of Kn isomorphic to (R,+). The
quotient hypergroup Kn/G = {{k} ∗ G, k ∈ Kn} can be identified with [0,∞[ and carries
the convolution

δx ∗ δy( f ) :=
Γ(n)

Γ(n− 1/2)Γ(1/2)

∫ π

0
f
(√

x2 + y2 + 2xy cos θ
)
· sin2n−2 θ dθ.(2.5)

This is exactly the convolution of the Bessel-Kingman hypergroup of order n−1 on [0,∞[;
see [3]. The characters of this hypergroup are the modified Bessel functions x 7→ jn−1(tx)
with t ≥ 0. This is in good agreement with the following fact: If p : [0,∞[× R → [0,∞[
is the canonical projection, then the mapping p̂ : (Kn/G)∧ → K̂n, ρ 7→ ρ ◦ p estab-
lishes a homeomorphism between the dual space (Kn/G)∧ of Kn/G and the annihilator
A(K̂n,G) := {α ∈ K̂n : α|G = 1} of G in K̂n (see Theorem 2.5 of [27]).

On the other hand, (2.3) and (2.4) are closely connected with the Laguerre convolution;
in fact, Koornwinder (Eq. (3.4), (3.5) and (4.4) in [12]) observed that

Λ(n−1)
k,µ (x, s) · Λ(n−1)

k,µ (y, t) = (δ(x,s) ∗ δ(y,t))(Λ(n−1)
k,µ ) (x, y ≥ 0, s, t ∈ R)(2.6)

holds by using the product formula

L(n−1)
k (x2) · L(n−1)

k (y2) =

∫ x+y

|x−y|
L(n−1)

k (z2)d(δx ∗L δy)(z) (x, y ≥ 0)(2.7)
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for the Laguerre functions

L(n−1)
k (x) := e−x/2L(n−1)

k (x)/L(n−1)
k (0),

where

(δx ∗L δy)( f )

(2.8)

:=
Γ(n)

Γ(n− 1/2)Γ(1/2)

∫ π

0
f
(√

x2 + y2 + 2xy cos θ
)
· jn−3/2(xy sin θ) · sin2n−2 θ dθ.

Involving Poisson’s integral representation of Bessel functions, this can also be written as

(δx ∗L δy)( f )

=
n− 1

π

∫ 1

0

∫ 2π

0
f (
√

x2 + y2 + 2xyr cos θ)eixyr sin θ · r(1− r2)n−2 dr dθ.
(2.9)

The convolution generated by (2.8) is called the Laguerre convolution on [0,∞[ (see also
[9], [24]) and defines a signed hypergroup structure on [0,∞[ by [18], [19]. Notice that
the Laguerre convolution is quite similar to the convolution (2.5), and that the measure
x2n−1dx on [0,∞[, which is the Haar measure of the Bessel-Kingman hypergroup, also
serves as a substitute for Haar measure on the signed Laguerre hypergroup.

The Laguerre convolution has the following background: The function σ ∈ Cb(Kn) with
σ(x, t) := eit satisfies certain algebraic conditions (see Section 4.1) which ensure that

δx ∗σ δy := σ(x, 0) · σ(y, 0) · p
(
σ · (δ(x,0) ∗ δ(y,0))

)
∈ Mb

(
[0,∞[

)
(2.10)

(with p : [0,∞[ × R → [0,∞[ being the canonical projection) generates a convolution
structure on [0,∞[ which is just the signed Laguerre hypergroup. Moreover, (2.10) with
σ(x, t) := 1 is the Bessel-Kingman convolution (2.5). In Section 4 we introduce such
functions σ on arbitrary commutative hypergroups K with a closed subgroup G, and we
will see that (2.10) always leads to a signed hypergroup on K/G.

We finally mention that the Laguerre convolution is related to the twisted convolution

(F#G)(z) =

∫
Cn

F(w) · G(z − w) · e2πi·Im〈z,w〉 dw
(

F,G ∈ L1(Cn)
)

on L1(Cn) which comes from the convolution on the reduced Heisenberg group Hred
n :=

Hn/Γ, Γ = {(0, k), k ∈ Z}; see pp. 25–27 of [8]. The algebra
(
L1([0,∞[ , xn−1dx), ∗

)
associated with the signed Laguerre convolution (2.8) can be regarded as a commutative
Banach subalgebra of

(
L1(Cn), #

)
as follows: The Banach space

L1
U (n)(C

n) := { f ∈ L1(Cn) : f
(
u(z)
)
= f (z) almost everywhere for all u ∈ U (n)}

of all U (n)-invariant functions is closed under the convolution #, and the radial mapping(
L1

U (n)(C
n), #
)
−→
(
L1([0,∞[ , xn−1dx), ∗

)
, f 7−→ f̃ , f̃ (t) := cn · f (t, 0, . . . , 0)

is an isometric isomorphism of Banach algebras for some constant cn > 0 (see [25]).
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3 Basic Facts on Commutative Signed Hypergroups

In this section we recapitulate some facts on commutative signed hypergroups from
Rösler [18], [19]. We assume that the reader is familiar with usual hypergroups.

For a locally compact Hausdorff space X let MR
b (X) denote the subspace of real measures

from Mb(X), and w∗ the σ
(
Mb(X),C0(X)

)
-topology on Mb(X).

A commutative signed hypergroup is a triple (X,m, ω) consisting of a locally compact,
σ-compact Hausdorff space X, a distinguished positive Radon measure m ∈ M+(X) with
supp m = X and a commutative w∗-continuous mapping ω : X × X → MR

b (X), (x, y) 7→
δx ∗ δy , satisfying the following axioms:

(A1) For x ∈ X and f ∈ Cb(X), the translate Tx f : y 7→ δx ∗ δy( f ) again belongs to Cb(X).
Furthermore, for f ∈ Cc(X) and any compactum K ⊂ X, the set

⋃
x∈K supp(Tx f ) is

relatively compact in X.
(A2) ‖δx ∗ δy‖ ≤ C for all x, y ∈ X, where C > 0 is a constant.
(A3) The canonical continuation ∗ of ω to Mb(X), which is given by

µ ∗ ν( f ) :=

∫
X×X

δx ∗ δy( f ) d(µ⊗ ν)(x, y) for f ∈ C0(X),

is associative.
(A4) There exists a neutral element e ∈ X with δe ∗ δx = δx for all x ∈ X.
(A5) There exists an involutive homeomorphism − on X such that for all f , g ∈ Cc(X)

and x ∈ X the following adjoint relation holds:

∫
X

(Tx f )g dm =

∫
X

f (Tx̄g) dm.

Axiom (A5) implies that ē = e and (δx ∗ δy)− = δ ȳ ∗ δx̄ for all x, y ∈ X, where µ−(A) :=
µ(A−) for Borel measures µ on X and Borel sets A ⊆ X.

In view of (A5) we call the measure m a “pseudo-invariant” measure w.r.t. ∗ on X. It is
∗-invariant exactly if δx ∗ δy(X) = 1 for all x, y ∈ X. Just like the Haar measure of a com-
mutative hypergroup, the pseudo-invariant measure of a commutative signed hypergroup
is unique up to a multiplicative constant, see Theorem 3.1 below.

The algebra
(
Mb(X), ∗

)
becomes a commutative Banach-*-algebra with unit δe, the in-

volution µ 7→ µ∗ := µ−, and with the norm ‖µ‖′ := ‖Lµ‖, where Lµ(ν) := µ ∗ ν for
µ, ν ∈ Mb(X). L1(X,m) with the same multiplication and norm is a closed ∗-ideal in(
Mb(X), ∗, ‖.‖′

)
. The dual space

X̂ := {φ ∈ Cb(X) : φ 6≡ 0; δx ∗ δy(φ) = φ(x)φ(y) and φ(x̄) = φ(x) for all x, y ∈ X}

is locally compact w.r.t. the topology of compact-uniform convergence. The Fourier trans-
formation on Mb(X) and L1(X,m) is given by

̂ : Mb(X)→ Cb(X̂), µ̂(ϕ) :=

∫
X
ϕ(x) dµ(x),
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and f̂ := f̂ m ∈ C0(X̂). The mapping µ 7→ µ̂ on Mb(X) is injective. Finally, the pseudo-
invariant measure m admits a Plancherel measure π on X̂ which is determined uniquely by
the fact that the Fourier transformation becomes an L2-isometry; see [19].

Theorem 3.1 Let (X,m, ω) be a commutative signed hypergroup, and suppose that m′ ∈
M+(X) with supp m′ = X is also pseudo-invariant w.r.t. the same convolution and involution
on X. Then m′ = λm with a constant λ > 0.

Proof Take ϕ ∈ X̂, f ∈ Cc(X), and y ∈ X; then the adjoint relation for m′ yields

ϕ(y)

∫
X

f |ϕ|2 dm′ =

∫
X

( fϕ)(x)ϕ(y ∗ x̄) dm′(x) =

∫
X

( fϕ)(x ∗ y)ϕ(x) dm′(x).(3.1)

Now fix some g ∈ Cc(X) with
∫

X g|ϕ|2 dm = 1 and set λϕ :=
∫

X g|ϕ|2 dm′ ≥ 0.
As f and g have compact support, axiom (A1) implies that the function (x, y) 7→

g(y)( fϕ)(x ∗ y) belongs to Cc(X × X). (3.1) and the adjoint relation for m now lead to∫
X

f |ϕ|2 dm′ =

∫
X

g(y)|ϕ|2(y) dm(y) ·

∫
X

f |ϕ|2 dm′

=

∫
X

g(y)ϕ(y)

(∫
X

( fϕ)(x ∗ y)ϕ̄(x) dm′(x)

)
dm(y)

=

∫
X

(∫
X

(gϕ̄)(x̄ ∗ y)ϕ̄(x) dm′(x)

)
f (y)ϕ(y) dm(y).

The inner integral in this last expression equals ϕ̄(y)
∫

X g|ϕ|2 dm′ = λϕϕ̄(y); this results
from (3.1) with g and ϕ̄ instead of f and ϕ (note that (m′)− = m′ by commutativity of ∗.)
Hence

∫
X f |ϕ|2 dm′ = λϕ ·

∫
X f |ϕ|2 dm for all f ∈ Cc(X), and this implies

|ϕ|2 dm′ = λϕ|ϕ|
2 dm.(3.2)

But λϕ is independent of ϕ ∈ X̂: in fact, let ϕ, ψ ∈ X̂. As ϕ(e) = ψ(e) = 1, there is
an open neighbourhood U of e such that ϕ and ψ have no zeros on U . Hence, by (3.2),
m′|U = λϕm|U and m′|U = λψm|U , and thus λϕ = λψ . It follows that there is a λ ≥ 0 with
|ϕ|2m′ = λ|ϕ|2m for all ϕ ∈ X̂. By injectivity of the Fourier-Stieltjes transform on Mb(X),
X̂ separates points on X. Hence for any x ∈ X there is an open neighbourhood V of x and
a ϕ ∈ X̂ without zeros on V . Hence, m′|V = λ · m|V . As X is σ-compact and m′ has full
support, we get m′ = λm with λ > 0.

4 Partial Characters and Signed Quotient Hypergroups

Let G be a closed subgroup of a commutative hypergroup K. Then, by Theorem 4.1 of [21],
the space K/G = {{x} ∗ G, x ∈ K} of left cosets of G in K, equipped with the quotient
topology, is a commutative hypergroup with convolution

δxG ∗ δyG =

∫
K
δzG d(δx ∗ δy)(z);



102 Margit Rösler and Michael Voit

the trivial coset G ∈ K/G is the neutral element and the involution is (xG)− = x̄G. We now
introduce a principle to construct further convolution structures on K/G via deformations
by so-called partial characters.

Definition 4.1 A function σ ∈ Cb(K) is called a partial character of K with respect to G,
for short: of (K,G), if for all x ∈ K and g ∈ G,

|σ(x)| = 1, σ(x̄) = σ(x) and σ(xg) = σ(x) · σ(g).

(As usual, xg is defined as the unique element of K with δx ∗ δg = δxg .)

Remarks 4.2

(1) The restriction σ|G of a partial character σ of (K,G) is a character of G.
(2) The partial characters of (K,G) form a group w.r.t. the multiplication of functions.
(3) In most cases |α| 6≡ 1 for characters α of K. Hence, characters of K will usually fail to

be partial characters of (K,G). However, if α ∈ K̂ is a character of K with α(x) 6= 0
for all x ∈ K, then obviously σ := α/|α| is a partial character of (K,G).

(4) We shall show in Remark 4.21 that under certain restrictions on K and G, each char-
acter of G can be extended to a partial character of (K,G).

The canonical surjective and open projection p : K → K/G induces a surjective, w∗-
continuous projection Mb(K) → Mb(K/G), which is also denoted by p. We shall write ẋ
for the coset xG, x ∈ K.

Lemma 4.3 Let σ be a partial character of (K,G). Then the mapping

ωσ : K/G× K/G −→ Mb(K/G),

(ẋ, ẏ) 7−→ δẋ ∗σ δ ẏ := σ(x) · σ(y) · p
(
σ(δx ∗ δy)

)
is well-defined and w∗-continuous. Moreover, the total variations satisfy

|δẋ ∗σ δ ẏ| ≤ δẋ ∗ δ ẏ (x, y ∈ K).(4.1)

Proof First note that for x, y ∈ K and g ∈ G we can write

δxg ∗ δy = δx ∗ δy ∗ δg =

∫
K

(δw ∗ δg) d(δx ∗ δy)(w) =

∫
K
δwg d(δx ∗ δy)(w).

It follows that for any f ∈ Cb(K/G),

σ(g)

∫
K

(
( f ◦ p)σ

)
d(δxg ∗ δy) = σ(g)

∫
K

(
( f ◦ p)σ

)
(wg) d(δx ∗ δy)(w)

=

∫
K

(
( f ◦ p)σ

)
d(δx ∗ δy).
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Hence σ(g)p
(
σ(δxg ∗ δy)

)
= p
(
σ(δx ∗ δy)

)
for x, y ∈ K, g ∈ G, and ∗σ is well-defined.

To check that c : K/G × K/G → Mb(K/G), (x, y) 7→ δx ∗σ δy is w∗-continuous, use the
commutative diagram

K/G× K/G
c

−−−−→ Mb(K/G)

p×p

x xp

K × K
c̃

−−−−→ Mb(K)

where c̃(x, y) := σ(x)σ(y) · σ · (δx ∗ δy). As c̃ and p are continuous, and as p × p is open,
it follows that c is continuous. To obtain inequality (4.1), recall that |σ| ≡ 1 and hence
|δẋ ∗σ δ ẏ| = |p

(
σ(δx ∗ δy)

)
| ≤ p(δx ∗ δy). This completes the proof.

As ωσ is w∗-continuous, its canonical continuation

p(µ) ∗σ p(ν) :=

∫
K/G×K/G

(δẋ ∗σ δ ẏ) d
(

p(µ)⊗ p(ν)
)

is a well-defined bilinear mapping on Mb(K/G)×Mb(K/G). In fact, we have

Lemma 4.4 The canonical continuation ∗σ of ωσ is given by

p(µ) ∗σ p(ν) = p
(
σ(σ̄µ ∗ σ̄ν)

)
, µ, ν ∈ Mb(K).(4.2)

With this convolution, Mb(K/G) becomes a commutative Banach-∗-algebra with

‖ρ ∗σ τ‖ ≤ ‖ρ‖ · ‖τ‖ for all ρ, τ ∈ Mb(K/G).

Its neutral element is the point measure δė = δG, and its involution is given by p(µ)˜ := p(µ∗),
where .∗ is the involution on (Mb(K), ∗). In particular,

pσ :
(
Mb(K), ∗

)
−→
(
Mb(K/G), ∗σ

)
, µ 7→ p(σµ)

establishes a homomorphism of Banach-∗-algebras.

Proof Eq. (4.2) is proved by a straightforward calculation: if f ∈ Cc(K/G), then

p(µ) ∗σ p(ν)( f ) =

∫
K/G×K/G

f (ẋ ∗σ ẏ) d
(

p(µ)⊗ p(ν)
)
(ẋ, ẏ)

=

∫
K×K

f
(

p(x) ∗σ p(y)
)

d(µ⊗ ν)(x, y)

=

∫
K

(
( f ◦ p)σ

)
(z) d(σ̄µ ∗ σ̄ν)(z).

Commutativity of ∗σ is clear, and associativity follows from

(
p(µ) ∗σ p(ν)

)
∗σ p(ρ) = p

(
σ(σ̄µ ∗ σ̄ν)

)
∗σ p(ρ) = p

(
σ
(
σσ̄(σ̄µ ∗ σ̄ν) ∗ σ̄ρ

))
= p
(
σ(σ̄µ ∗ σ̄ν ∗ σ̄ρ)

)
.
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The estimation of the total variation norms is clear by (4.1); moreover, δė is the neutral
element, as δė ∗σ δẋ = σ(x)p(σδx) = δẋ for x ∈ K. The mapping ˜ on

(
Mb(K/G), ∗σ

)
is

well-defined, because for f ∈ Cb(K/G) and µ ∈ Mb(K),∫
K

( f ◦ p) dµ∗ =

∫
K

( f ◦ p)(x̄) dµ̄(x) =

∫
K/G

f−(ẋ) dp(µ)(ẋ),

where f− ∈ Cb(K/G) is given by f−(ẋ) = f ( ˙̄x). So if p(µ) = p(ν), then p(µ∗) = p(ν∗).
Moreover, we have for µ, ν ∈ Mb(K) that

(
p(µ) ∗σ p(ν)

)
˜ = p

(
σ(σ̄µ ∗ σ̄ν)

)
˜ = p

(
σ(σ̄ν ∗ σ̄µ)∗

)
= p
(
σ(σ̄ν∗ ∗ σ̄µ∗)

)
= p(ν∗) ∗σ p(µ∗) = p(ν)˜ ∗σ p(µ)˜.

This shows that ˜ is in fact an involution on
(
Mb(K/G), ∗σ

)
.

Remark 4.5 If σ ≡ 1 is trivial, then ∗σ is just the convolution on the quotient hypergroup
K/G. Generally however, it cannot even be expected that all the measures δẋ ∗σ δ ẏ are
real-valued. In order to obtain a signed hypergroup structure from ∗σ on K/G, we have to
assume this as an additional requirement. Notice in this context that

δẋ ∗σ δ ẏ ∈ MR
b (K/G)⇐⇒ (δẋ ∗σ δ ẏ)− = δ ˙̄y ∗σ δ ˙̄x. for x, y ∈ K(4.3)

This is clear from the following two identities for any real f ∈ Cc(K/G):

(δẋ ∗σ δ ẏ)−( f ) = σ(x)σ(y)

∫
K

f ( ˙̄z)σ(z) d(δx ∗ δy)(z),

as well as

(δ ˙̄x ∗σ δ ˙̄y)( f ) = σ(x̄)σ(ȳ)

∫
K

f (ż)σ(z) d(δx̄ ∗ δ ȳ)(z) = σ(x)σ(y)

∫
K

f ( ˙̄z)σ(z) d(δx ∗ δy)(z).

The proof of the following main theorem will be divided into several parts.

Theorem 4.6 Let G be a closed subgroup of a second countable commutative hypergroup
K, and let mK/G denote the Haar measure of the quotient hypergroup K/G. If σ is a par-
tial character of (K,G) such that all the convolution products δẋ ∗σ δ ẏ are real-valued, then
(K/G,mK/G, ∗σ) is a commutative signed hypergroup with the same neutral element and in-
volution as for the usual quotient hypergroup K/G. Moreover,

G = ė ∈ supp(δẋ ∗σ δ ẏ) ⇐⇒ x̄G = yG for all x, y ∈ K.(4.4)

As an immediate consequence of the equivalence (4.3), we have

Corollary 4.7 If in the situation of Theorem 4.6 the quotient hypergroup K/G is hermitian,
i.e., if the identity mapping is the involution on K/G, then (K/G,mK/G, ∗σ) is a hermitian
signed hypergroup for each partial character σ of (K,G).
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In our Laguerre-example of Section 2, σ(x, t) := eit is a partial character of Kn
∼==

[0,∞[ × R w.r.t. the closed subgroup G = {0} × R. The quotient hypergroup Kn/G ∼==
[0,∞[ is the hermitian Bessel-Kingman hypergroup of order n− 1, and the signed hyper-
group on [0,∞[ associated with σ is just the signed Laguerre hypergroup.

Remark 4.8 Suppose that σ, τ ∈ Cb(K) are partial characters of (K,G) with σ|G = τ |G.
Then the function σ/τ provides a partial character of (K,G) which is constant on G-cosets.
Therefore, as the projection p is open, there exists a unique ρ ∈ Cb(K/G) with |ρ| = 1 and
such that σ/τ = ρ ◦ p. A short calculation shows that

ρ(¯̇x) = ρ(ẋ) and δẋ ∗σ δ ẏ = ρ(ẋ)ρ(ẏ) · ρ(δẋ ∗τ δ ẏ) for x, y ∈ K.

Hence, Φ :
(
Mb(K/G), ∗τ

)
−→
(
Mb(K/G), ∗σ

)
, µ 7→ ρµ is an isomorphism of Banach-∗-

algebras. Summing up, partial characters σ, τ with σ|G = τ |G lead to signed hypergroups
which are isomorphic in a canonical way.

Proof of Theorem 4.6 As p : K → K/G is a continuous open surjection, K/G is second
countable and σ-compact. Except axiom (A5), all properties of a commutative signed hy-
pergroup are covered by the foregoing lemmata. In particular, (A1) follows from (4.1) and
the corresponding properties of the quotient hypergroup K/G. The proof of the adjoint
relation (A5) requires some preparation and is postponed to the end of this section. To
check (4.4), notice that (4.4) is naturally satisfied for the quotient hypergroup convolution
∗1 on K/G. In the general case, the implication “⇒” now follows from (4.1). The reverse
implication follows from “⇒” together with Corollary 2.7 in [19].

We now turn to the proof of the adjoint relation. The central idea is to involve the
adjoint relation for K via a Weil formula for subgroups in [10]. Let mK and mG be the Haar
measures of K and G respectively. For f ∈ Cc(K) define the orbit mean

TG f (ẋ) :=

∫
G

f (xr) dmG(r) with TG f ∈ Cc(K/G).

It is well-defined since the integral on the right is constant on G-cosets. Proposition 1 of
Hermann [10] says that the functional f 7→

∫
K/G TG f dmK/G establishes a non-trivial Haar

measure on K. By uniqueness of mK , we thus have

Lemma 4.9 The Haar measures mK , mK/G and mG can be normalized such that∫
K

f (x) dmK (x) =

∫
K/G

TG f (ẋ) dmK/G(ẋ) for all f ∈ Cc(K).

The proof of the adjoint relation also needs that the canonical projection p : K → K/G
admits a Borel cross section (see p. 102 of [15] or Ch. 1 of [16]):

4.10 There exists a Borel function φ : K/G→ K with p ◦ ϕ = idK/G such that φ
(

p(F)
)

is
a relatively compact Borel set in K for each compactum F ⊂ K.

We now use the following lemma to reduce the general situation to the special case

Hx := {y ∈ G : xy = x} = {e} for all x ∈ K.(4.5)
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Lemma 4.11 Let σ be a partial character of (K,G) with σ|H ≡ 1 for some closed subgroup
H of G. Then for the quotient hypergroup K/H with its closed subgroup G/H, the following
hold:

(i) σH : K/H → C, σH(xH) := σ(x) for x ∈ K establishes a well-defined partial character
on (K/H,G/H).

(ii) If we identify (K/H)/(G/H) and K/G in the obvious way as topological spaces, then the
convolution structures (K/G, ∗σ) and

(
(K/H)/(G/H), ∗σH

)
are equal.

Proof Part (i) is clear. For (ii), consider the canonical projections p : K → K/G, q : K →
K/H and r : K/H → (K/H)/(G/H) = K/G. The quotient hypergroup convolution yields
that for x, y ∈ K,

δxG ∗σH δyG = σH(xH) · σH(yH) · r
(
σH(δxH ∗ δyH)

)
= σ(x) · σ(y) · r

(
σH · q(δx ∗ δy)

)
= σ(x) · σ(y) · r

(
q
(
σ(δx ∗ δy)

))
= σ(x) · σ(y) · p

(
σ(δx ∗ δy)

)
= δxG ∗σ δyG.

Hence, ∗σ = ∗σH as claimed.

Reduction 4.12 For each x ∈ K the set Hx = {y ∈ G : xy = x} is a compact subgroup of G
(see Proposition 6.1 of [29]). Let H be the closed subgroup of G generated by all Hx. If σ is a
partial character of (K,G), then σ|Hx ≡ 1 holds for all x ∈ K and thus σ|H ≡ 1. According
to Lemma 4.11, the convolution structures (K/G, ∗σ) and

(
(K/H)/(G/H), ∗σH

)
are iso-

morphic. As condition (4.5) holds for the subgroup G/H of K/H, and as both convolution
structures have the same measures as candidates for the pseudo-invariant measure, we may
assume from now on that (4.5) holds. Fixing a Borel cross section φ as in 4.10, we thus
obtain

Lemma 4.13

(i) Each x ∈ K can be written as x = ϕ(ẋ) · rx with a unique rx ∈ G.
(ii) The mapping T : K → G, T(x) := rx is a well-defined Borel mapping on K.

Proof (i) follows from (4.5). For (ii) notice that by (i) together with Lemma 4.1 of [11], the
statements x = ϕ(ẋ)r and {r} = G ∩

(
{x} ∗ {ϕ(ẋ)}

)
are equivalent. As the convolution of

sets is a continuous mapping on the space of all compacta in K w.r.t. the Michael topology
(see [11]), and as this topology agrees on the subspace of all sets with exactly one element
with the topology on K, it follows that T is a Borel mapping.

Finally, we recall the following variant of Følner’s condition for amenable locally com-
pact groups (see Theorem 4.16 of Paterson [17]).

4.14 The σ-compact abelian group G admits a sequence (Gn)n≥0 of compact nonvoid

subsets with Gn ⊂ Gn+1, G =
⋃

n≥0

◦
Gn and limn→∞mG(Gn \xGn)/mG(Gn) = 0 uniformly

in x on compact subsets of G.
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Fix these sets Gn ⊂ G from now on and denote the characteristic function of a set W by
1W . Let σ be a partial character of (K,G). By Lemma 4.13, the functions

σn(x) := σ(x) · 1Gn (rx), n ∈ N

are well-defined Borel functions on K. For f ∈ Cb(K/G) we define fσ ∈ Cb(K) and
bounded Borel functions fσn on K by

fσ(x) := f (ẋ) · σ(x), fσn (x) := f (ẋ) · σn(x).

Now suppose that f ∈ Cb(K/G) has compact support. Then unless G is compact, fσ need
not even be integrable w.r.t. mK . On the other hand, we have:

Lemma 4.15 If f ∈ Cc(K/G), then fσn ∈ L1(K,mK ).

Proof The Weil formula 4.9 yields that∫
K
| f (ẋ)σn(x)| dmK (x) =

∫
K/G

∫
G
| f (ẋ)σn

(
ϕ(ẋ)r

)
| dmG(r) dmK/G(ẋ)

=

∫
K/G
| f | dmK/G ·

∫
Gn

|σ| dmG <∞.

Lemma 4.16 For µ ∈ Mb(K) and f ∈ Cc(K/G) set

In( f , µ) :=
1

mG(Gn)

∫
Gn

µ ∗ δr( fσn ) · σ(r) dmG(r), n ∈ N.

Then limn→∞ In( f , µ) = µ( fσ).

Proof First consider the point measures µ = δx, x ∈ K. For r ∈ G, we write

fσn (xr)σ(r) = f (ẋ)σ(x) · 1Gn

(
T(xr)

)
= fσ(x) · 1Gn (rxr) = fσ(x) · 1r−1

x Gn
(r),

where the identity T(xr) = T(x)r has been used. It follows that

In( f , δx) =
mG(r−1

x Gn ∩ Gn)

mG(Gn)
· fσ(x).

Hence, by condition 4.14,

lim
n→∞

In( f , δx) = fσ(x).(4.6)

For general µ ∈ Mb(K) we use Fubini’s theorem to obtain

In( f , µ) =
1

mG(Gn)

∫
Gn

(∫
K
δx ∗ δr( fσn ) dµ(x)

)
σ(r) dmG(r) =

∫
K

In( f , δx) dµ(x).
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Using (4.6) and |In( f , δx)| ≤ ‖ f ‖∞ for all x ∈ K, we may now apply the dominated
convergence theorem to the integral on the righthand side. This completes the proof.

Lemma 4.17 Let the Haar mesures mK , mK/G, mG be related as in Lemma 4.9. Then for
f , g ∈ Cc(K/G) and x ∈ K, the functions fσn , gσn ∈ L1(K) satisfy

lim
n→∞

1

mG(Gn)

∫
K

fσn (x ∗ y)gσn (y) dmK(y) = σ(x)

∫
K/G

f (ẋ ∗σ ẏ)g(ẏ) dmK/G(ẏ).

Proof Lemma 4.9 implies that for all n ∈ N

1

mG(Gn)

∫
K

fσn (x ∗ y)gσn (y) dmK (y)

=

∫
K/G

1

mG(Gn)

∫
G

fσn

(
x ∗ φ(ẏ)r

)
· gσ̄n

(
φ(ẏ)r

)
dmG(r) dmK/G(ẏ)

=

∫
K/G

In( f , δx ∗ δφ( ẏ))g(ẏ)σ
(
ϕ(ẏ)
)

dmK/G(ẏ),

where the integrand on the righthand side is bounded by ‖ f ‖∞‖g‖∞ for all n. Further,

lim
n→∞

In( f , δx ∗ δφ( ẏ)) = fσ
(
x ∗ φ(ẏ)

)
= σ(x)σ

(
φ(ẏ)
)
· f (ẋ ∗σ ẏ) (y ∈ K)

by Lemma 4.16. The dominated convergence theorem now yields the assertion.

4.18 Proof of the adjoint relation for (K/G,mK/G, ∗σ) Interchanging f and g, and taking
x̄ and σ̄ instead of x and σ in Lemma 4.17, we obtain

lim
n→∞

1

mG(Gn)

∫
K

fσn (y)gσ̄n (x̄ ∗ y) dmK(y) = σ(x)

∫
K/G

f (ẏ)g( ˙̄x ∗σ̄ ẏ) dmK/G(ẏ).

But as the measures δẋ ∗σ δ ẏ = σ(x)σ(y)p
(
σ(δx ∗ δy)

)
are real-valued by the assumption of

our theorem, the convolutions ∗σ̄ and ∗σ coincide. The adjoint relation for the hypergroup
(K, ∗) now implies that

σ(x)

∫
K/G

f (ẋ ∗σ ẏ)g(ẏ) dmK/G(ẏ) = lim
n→∞

1

mG(Gn)

∫
K

fσn (x ∗ y)gσn (y) dmK (y)

= lim
n→∞

1

mG(Gn)

∫
K

fσn (y)gσn (x̄ ∗ y) dmK (y)

= σ(x)

∫
K/G

f (ẏ)g( ˙̄x ∗σ ẏ) dmK/G(ẏ).

This yields the adjoint relation for (K/G,mK/G, ∗σ) as claimed. The proof of Theorem 4.6
is now complete.
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Remark 4.19

(1) An inspection of the proof of Theorem 4.6 shows that except for commutativity of
(K/G, ∗σ), its assertions remain true for all second countable hypergroups K which
admit a Haar measure, and for all amenable closed normal subgroups G of K.

(2) If G is a compact subgroup, then the adjoint relation can be checked directly. More-
over, the convolution algebra

(
Mb(K/G), ∗σ

)
can be regarded as a subalgebra of(

Mb(K/G), ∗
)

by the following result:

Proposition 4.20 Let G be a compact subgroup of a second countable commutative hyper-
group K with normalized Haar measure mG. Let σ be a partial character of (K,G). Then
Mb(K|σG) := {µ ∈ Mb(K) : σ̄mG ∗ µ = µ} is a Banach-∗-subalgebra of Mb(K), and

pσ : Mb(K|σG)→
(
Mb(K/G), ∗σ

)
, µ 7→ p(σµ)

is an isometric isomorphism of Banach-∗-algebras. Finally, mK/G := p(mG) is “the” pseudo-
invariant measure of (K/G, ∗σ).

Proof As σ̄|G is a character of the compact commutative group G, it follows that σ̄mG ∗
σ̄mG = σ̄mG and (σ̄mG)∗ = σ̄mG. Hence, Mb(K|σG) is a Banach-∗-subalgebra of Mb(K).
Moreover, by Lemma 4.4, pσ is a homomorphism of Banach-∗-algebras. As |σ| = 1 on K, it
follows that pσ|Mb(K|σG) is an isometric isomorphism of Banach spaces. The final statement
follows from Theorem 4.6 and the fact that p(mG) is the Haar measure of the quotient
hypergroup K/G; cf. Theorem 2.5(3) of Voit [27].

Remark 4.21

(1) Assume that in the setting of Theorem 4.6 the canonical projection p : K → K/G
admits a continuous cross-section φ : K/G → K with φ(ė) = e and φ( ˙̄x) = φ(ẋ) for
x ∈ K. An inspection of the proof of Lemma 4.13 shows that in this case the mapping
T is actually continuous. If α ∈ Ĝ is any character of G, then σ(x) := α

(
T(x)
)

clearly
establishes a partial character of (K,G) with σ|G = α.

(2) Consider a more concrete setting: Suppose that K is homeomorphic to a direct product
K̃ × G where K̃ is a commutative hypergroup and G a closed subgroup of K. Let
p2 : K → G, (x, g) 7→ g be the projection onto the second component. Then for any
α ∈ Ĝ, the function σ := α ◦ p2 is a partial character of (K,G). This situation is
satisfied for our Laguerre example of Section 2 with K ' [0,∞[ × R, K̃ as Bessel-
Kingman hypergroup, and G being the group (R,+). Our partial character σ(x, t) =
eit comes from the group character α(t) = eit just as described above.

5 The Dual Space

In this section we describe the dual spaces of the signed hypergroups (K/G, ∗σ) in terms
of the partial characters σ and the dual space of K. Again, we use the canonical projection
p : K → K/G and the notation fσ := ( f ◦ p) · σ for f ∈ Cb(K/G).
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Definition 5.1 Let G be a closed subgroup of a commutative hypergroup K. For each
character σ ∈ Ĝ we define the σ-annihilator of G in K by

A(K̂,G, σ) := {α ∈ K̂ : α|G = σ}.

For σ = 1 we obtain the usual annihilator discussed in [3], [27]. The following theorem
generalizes known results for quotients of commutative hypergroups (see [27]).

Theorem 5.2 Let G be a closed subgroup of a second countable commutative hypergroup
K and let σ be a partial character of (K,G) such that (K/G, ∗σ) is a signed hypergroup. If
(K/G)∧σ denotes the dual space of (K/G, ∗σ), then the mapping

p̂σ : (K/G)∧σ → A(K̂,G, σ|G), p̂σ(ρ)(x) := ρ(ẋ)σ(x) = ρσ(x)

is a homeomorphism.

Proof By the definition of ∗σ , any ρ ∈ (K/G)∧σ satisfies ρσ ∈ K̂ and ρσ|G = σ|G.
Moreover, p̂σ is injective and continuous. To check that p̂σ is surjective, take α ∈ K̂
with α|G = σ|G. Then α/σ is constant on G-cosets. Hence, as p is open, there exists
ρ ∈ Cb(K/G) with ρ ◦ p = α/σ, and it is easily checked that ρ ∈ (K/G)∧σ . As α = p̂σ(ρ),
the surjectivity is clear. It remains to show that p̂σ is open, i.e., that for all ρ0 ∈ (K/G)∧σ ,
ε > 0, and each compactum M ⊂ K/G the set R := {p̂σ(ρ) : ρ ∈ (K/G)∧σ ; |ρ − ρ0| < ε
on M} is open in A(K̂,G, σ|G). Since p : K → K/G is open and continuous, we find a
compactum L ⊂ K such that p(L) = M. As |σ| = 1, it follows that

R = {γ ∈ A(K̂,G, σ|G) : |γ − pσ(ρ0)| < ε on L}

is open in A(K̂,G, σ|G) as claimed.

Proposition 5.3 Assume that G is compact in the setting of Theorem 5.2. Then A(K̂,G, σ|G)
is open in K̂. Moreover, if πK is the Plancherel measure on K̂ associated with the Haar measure
mK on K, and if mK/G is the pseudo-invariant measure on (K/G, ∗σ), as in 4.20, then the
Plancherel measure πσK/G on (K/G)∧σ associated with mK/G satisfies

p̂σ(πσK/G) = π|A(K̂,G,σ|G).(5.1)

Proof We abbreviate A := A(K̂,G, σ|G) and fix some δ ∈ ]0, 1[. Then

P := {φ ∈ K̂ : |φ(x)− σ(x)| < δ for all x ∈ G}

is open in K̂ with A ⊆ P. Moreover, as G is a compact abelian group with φ|G, σ|G ∈ Ĝ,
we obtain P = A. To check (5.1), we prove that p̂−1

σ (πK |A) is the Plancherel measure on
(K/G)∧σ associated with mK/G. Denote the Fourier transformations on K and (K/G, ∗σ)
by ∧ and ∧σ respectively, and fix f ∈ Cc(K/G). Then fσ ∈ Cc(K). Moreover, Theorem 5.2
says that φσ ∈ K̂ for φ ∈ (K/G)∧σ , and

f ∧σ (φσ) =

∫
K
σ(x) f (ẋ) · σ(x)φ(ẋ) dmK(x) =

∫
K/G

f (ẋ)φ(ẏ) dmK/G(ẏ) = f̂ σ(φ).(5.2)
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Now let α ∈ K̂ with α|G /∈ A. By the Weil formula 4.9, with a suitable normalization of
mK/G,

f ∧σ (α) =

∫
K

fσ(x)ᾱ(x) dmK (x) =

∫
K/G

TG( fσᾱ)(ẋ) dmK/G(ẋ).

But for the orbit mean TG( fσᾱ), we obtain

TG( fσᾱ)(ẋ) =

∫
G

( fσᾱ)(xr) dmG(r) = f (ẋ)σ(x)α(x)

∫
G
σ(r)α(r) dmG(r) = 0,(5.3)

since characters on the compact group G are orthogonal w.r.t. mG. Formulas (5.2), (5.3)
and the Plancherel formula on K [11, Theorem 7.3] thus lead to∫

K/G
| f |2 dmK/G =

∫
K
| f ◦ p|2 dmK =

∫
K
| fσ|

2 dmK =

∫
K̂
| f ∧σ |

2 dπK =

∫
A
| f ∧σ |

2 dπK

=

∫
A
| f̂ σ|2 d

(
p̂−1
σ (πK |A)

)
.

Since this is true for all f ∈ Cc(K/G), and since this formula determines the Plancherel
measure uniquely (see [19]), the proof of Proposition 4.3 is complete.

Remark 5.4 Proposition 5.3 can be used to compute the Plancherel measure πK for some
commutative hypergroups K from the known Plancherel measures of the signed hyper-
groups (K/G, ∗σ). For this, assume that G is compact and that the conditions of Re-
mark 4.21(1) are satisfied; then for anyα ∈ Ĝ, the function σα := α◦T is a partial character
of (K,G) with σα|G = α. Now take any φ ∈ K̂. Then α := φ|G ∈ Ĝ, and σα = α ◦ T is
a partial character of (K,G) with σα|G = α = φ|G. Hence, K̂ =

⋃
α∈Ĝ A(K̂,G, α), where

A(K̂,G, α) ∼== (K/G)∧σα . As K is σ-compact, πK is obtained by σ-additivity from its re-
strictions to the open and closed subsets A(K̂,G, α), i.e., from the Plancherel measures on
the signed hypergroup duals (K/G)∧σα .

An example is given by a modification of the construction in Section 2, based on the
reduced Heisenberg group Hred

n instead of Hn. Then the orbit hypergroup (Hred
n )U (n) can be

identified with [0,∞[× T and has G := {0} × T as a compact subgroup.

6 Signed Hypergroups Related to the Gelfand Pair
(
U (n, 1),U (n)

)
For n ∈ N, consider the Gelfand pair (G,H) :=

(
U (n, 1),U (n)

)
. Following Flensted-

Jensen [6], we study the following further Gelfand pair (G̃1, H̃1): Let G̃ be the universal
covering group of G and π1 : G̃ → G the covering homomorphism; let Q be the central,
discrete subgroup of G̃ given by Q := π−1

1 (e) ∩ π−1
1 (H)o; here the subscript o assigns

the connected component of e. Now let G̃1 be the covering group G̃1 := G̃/Q of G, and
H̃1 := π−1(H)o, where π : G̃1 → G, xQ 7→ π1(x) is the covering homomorphism. Then
H̃1 is isomorphic to H. According to Theorem 1.3 of [6], the double coset hypergroup
K := G̃1//H̃1 can be identified with [0,∞[× R. To describe the hypergroup convolution
on K, consider the double coset hypergroup L := G//H. By Theorem 1.1 in [6], L can be
identified with [0,∞[× T, and hence with Z := {z ∈ C : |z| ≥ 1} via

[0,∞[× T→ Z, (x, eiθ) 7→ cosh x · eiθ.
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If α := n− 1 > 0, then by Trimèche [26] the associated convolution on Z is given by

δz1 ∗ δz2 =
α

π

∫
{|z|≤1}

δ
z1z2+
√
|z1|2−1

√
|z2|2−1·z

· (1− |z|2)α−1 dm(z)(6.1)

with dm(z) = dx dy for z = x + i y ∈ C. For n = 1, (6.1) degenerates to

δz1 ∗ δz2 =
1

2π

∫ 2π

0
δ

z1z2+
√
|z1|2−1

√
|z2|2−1·z

dz.(6.2)

To see the precise relation between K and L, consider the central subgroup W := π−1(e)
of G̃1. It is naturally isomorphic to the closed subgroup W H̃1//H̃1 of K. Hence, by an
obvious extension of the isomorphism theorem for double coset hypergroups in [11],

K/(W H̃1//H̃1) ∼== G̃1//W H̃1 ∼== (G̃1/W )//(W H̃1/W ) ∼== L.

Transferring the hypergroup structure from K to [0,∞[ × R as above, W corresponds to
the discrete subgroup {0} × 2πZ of [0,∞[× R, cf. Lemma 1.2(ii) in [6].

To obtain the convolution on K from that on L, denote by ln the branch of the logarithm
on C− := C \ {x ∈ R : x ≤ 0} with ln(1) = 0, and set arg(z) := −i · ln z

|z| ∈ ]−π, π[ for
z ∈ C−. Now take x1, x2 ≥ 0, r ∈ [0, 1], andΨ ∈ [0, 2π]. Then

Re(ch x1 ch x2 + sh x1 sh x2reiΨ) > 0.

For α > 0, Eq. (6.1) leads to the convolution

f
(
(x1, θ1) ∗ (x2, θ2)

)
=
α

π

∫ 1

0

∫ 2π

0
f
(
arch |ch x1 ch x2ei(θ1+θ2) + reiΨ sh x1 sh x2|,

θ1 + θ2 + arg(ch x1 ch x2 + reiΨ sh x1 sh x2)
)
r(1− r2)α−1 dr dΨ

(6.3)

on K for f ∈ Cb([0,∞[× R). (Note that the support of δ(x1,θ1) ∗ δ(x2,θ2) is contained in the
strip [0,∞[×]θ1 + θ2 − π, θ1 + θ2 + π[ by continuity of the convolution w.r.t. the Michael
topology.) In the same way, (6.2) leads for α = 0 to the convolution

f
(
(x1, θ1) ∗ (x2, θ2)

)
=

1

2π

∫ 2π

0
f
(
arch |ch x1 ch x2ei(θ1+θ2) + reiΨ sh x1 sh x2|,

θ1 + θ2 + arg(ch x1 ch x2 + reiΨ sh x1 sh x2)
)

dΨ.

(6.4)

The identity of K is the point (0, 0), the involution is (x, θ)− = (x,−θ) and the Haar
measure is given by

dmK(x, θ) = 22(α+1)(sh x)2α+1 ch x dx dθ.

We next turn to the dual space of K. For this, we introduce the functions

φλ,µ(x, θ) := eiλθ(ch x)λφ(α,λ)
µ (x) (α = n− 1, λ, µ ∈ C)

on K whereφ(α,λ)
µ is the Jacobi function of index (α, λ) as studied, for instance, by Flensted-

Jensen and Koornwinder [7], [13]. In view of the symmetry φ(α,λ)
µ = φ(α,λ)

−µ , it suffices to

consider µ ∈ C with Reµ + Imµ ≥ 0. The following theorem describes the dual space K̂
of K in terms of the two-variable Jacobi functions φλ,µ:



Partial Characters and Signed Quotient Hypergroups 113

Theorem 6.1

(1) The space of all non-trivial multiplicative continuous functions on K is given by

X(K) := { f ∈ C(K) : f 6≡ 0, f (x ∗ y) = f (x) f (y) for all x, y ∈ K} = {φλ,µ : λ, µ ∈ C}.

(2) φλ,µ ∈ X(K) is symmetric (i.e., φλ,µ(x,−θ) = φλ,µ(x, θ) for all (x, θ) ∈ K) if and only
if λ ∈ R and µ ∈ [0,∞[ ∪ i [0,∞[.

(3) K̂ = {φλ,µ : λ ∈ R, µ ∈ [0,∞[ ∪ i[0, α + 1]} ∪ {φλ,µ : (λ, µ) =
(
±(α + 1 + 2k +

η), iη
)
, k ∈ N0, η ∈ [0,∞[}.

(4) The support of the Plancherel measure π on K̂ is given by

suppπ = {φλ,µ : λ ∈ R, µ ∈ [0,∞[}

∪ {φλ,µ : (λ, µ) =
(
±(α + 1 + 2k + η), iη

)
, k ∈ N0, η ∈ [0,∞[}.

Proof (1) By Theorem 2.1 of [6], the φλ,µ with λ, µ ∈ C are exactly the C∞-spherical
functions of the Gelfand pair (G̃1, H̃1), i.e., these functions are multiplicative on K. For the
converse, we have to check X(K) ⊂ C∞(K). For this, take φ ∈ X(K) and f ∈ C∞c (K) with∫

K φ̄ f dmK = 1. Then, by the definition of the convolution on K, the function x 7→ f (ξ̄∗x),
with ξ ∈ K fixed, belongs to C∞c (K). Moreover,

φ(x) = φ ∗ f (x) =

∫
K
φ(ξ) f (ξ̄ ∗ x) dmK (ξ).

Hence φ ∈ C∞(K), and the proof of (1) is finished.
(2) is clear as φ(α,λ)

µ is real-valued for real arguments if and only if µ ∈ R ∪ iR. (This

follows from from the hypergeometric differential equation satisfied by φ(α,λ)
µ .)

(3) follows from the asymptotic behaviour of the functions φλ,µ; see Eq. (2.6) of [6].
(4) is a consequence of the Plancherel formula associated with the functions φλ,µ (see

Theorem 2.5 of [6] or Theorem V.2 of [26]) and the fact that the Plancherel measure is
determined uniquely by the Plancherel formula.

(6.3) and (6.4) show that G = {0} × R is a closed subgroup of the hypergroup K ∼==
[0,∞[ × R. Thus, by Remark 4.21, for every λ ∈ R the function σλ(x, θ) := eiλθ de-
fines a partial character of (K,G). The convolution on the quotient hypergroup K/G is
immediately seen from (6.3) and (6.4) respectively; for α = n− 1 > 0, it is given by

δx ∗ δy =
2α

π

∫ 1

0

∫ π

0
δarch |Λ(x,y;r,Ψ)|r(1− r2)α−1 dr dΨ

for x, y ≥ 0, where
Λ(x, y; r,Ψ) := ch x ch y + reiΨ sh x sh y.

The identity of K/G ∼== [0,∞[ is 0, the involution is the identity mapping and the Haar
measure is given by

dmK/G(x) = 22(α+1)(sh x)2α+1 ch x dx.
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Thus (K/G, ∗) is just the Jacobi hypergroup of index (α, 0) on [0,∞[, see Section 7.2
of [13] or [7]. (Note that in several formulas of [13], arcosh(. . . ) is missing in the ar-
gument of the integrand.) By Corollary 4.7, each partial character σλ, λ ∈ R, leads to a
hermitian signed hypergroup convolution ∗(α,λ) on K/G. The following theorem summa-
rizes properties of these signed quotient hypergroups. As the convolutions induced by σλ
and σ−λ coincide (see 4.18), we restrict attention to the case λ ≥ 0.

Theorem 6.2

(1) For α = n− 1 > 0, the convolution on the signed hypergroup Xα
λ := (K/G, ∗(α,λ)) with

λ ≥ 0 is given by

δx ∗(α,λ) δy =
2α

π

∫ 1

0

∫ π

0
δarch |Λ(x,y;r,Ψ)| cos

(
λ argΛ(x, y; r,Ψ)

)
r(1− r2)α−1 dr dΨ

(6.5)

for x, y ≥ 0. In the case α = 0, it degenerates to

δx ∗(0,λ) δy =
1

π

∫ π

0
δarch |Λ(x,y;1,Ψ)| cos

(
λ argΛ(x, y; 1,Ψ)

)
dΨ.(6.6)

Neutral element, involution and pseudo-invariant measure are the same as for the quo-
tient hypergroup (K/G, ∗) = Xα

0 .
(2) The dual space X̂α

λ of Xα
λ is given by

X̂α
λ = {Ψ

(α,λ)
µ ,Ψ(α,λ)

µ (x) := (ch x)λφ(α,λ)
µ (x) | µ ∈ Iαλ}, with

Iαλ = [0,∞[ ∪ i[0, α + 1] ∪ {−i(α + 1 + 2k− λ) : k ∈ N0 and k ≤ (−α− 1 + λ)/2}.

Proof (1) By the definition of signed quotient hypergroup convolutions, we have for f ∈
Cb([0,∞[) and x, y ≥ 0 that (δx ∗(α,λ) δy)( f ) = (δ(x,0) ∗ δ(y,0))( fλ); here ∗ denotes the
convolution on K and fλ ∈ Cb(K) is given by fλ(x, θ) = f (x)eiλθ . Using (6.3) and (6.4)
respectively, we obtain (6.5) and (6.6). The rest is clear by Theorem 4.6.

(2) follows from A(K̂,G, σλ|G) = {φν,µ ∈ K̂ : ν = λ} and Theorems 5.2 and 6.1(3).

Remark 6.3 Eq. (6.5) on Xα
λ with α = n − 1 > 0 can be written in “kernel form” via a

substitution according to [7]; more precisely, if

(r,Ψ) 7→ (u, χ) ∈ [0,∞)× [0, π]; eiχ ch u = ch x ch y + reiΨ sh x sh y = Λ(x, y; r,Ψ),

then,

δx ∗(α,λ) δy =

∫ ∞
0

δuKα
λ (x, y, u) dmK/G(u),(6.7)

where the kernel Kα
λ is given by

Kα
λ (x, y, u) =

α

22α+1π
·

1

(sh x sh y sh u)2α
·

∫ π

0

[
Fx,y,u(χ)

]α−1

+
cos(λχ) dχ,
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with
Fx,y,u(χ) = 1− (ch x)2 − (ch y)2 − (ch u)2 + 2 ch x ch y ch u cosχ;

here (x)+ := x for x > 0 and (x)+ := 0 for x ≤ 0.
For α ≥ β > −1/2, the Jacobi functions φ(α,β)

µ on [0,∞[ have a well-known positive
product formula (formulas (7.11) to (7.13) in [13]), which determines the Jacobi hyper-
group of order (α, β) on [0,∞[; see also Section 3.5 of [3]. On the other hand, the convo-
lution formulas on Xα

λ lead immediately to new product formulas for the Jacobi functions
φ(α,λ)
µ ; in case α > 0 we obtain from (6.7) that

φ(α,λ)
µ (x)φ(α,λ)

µ (y) =
22(α+1)

(ch x)λ(ch y)λ

∫ ∞
0

φ(α,λ)
µ (u)Kα

λ (x, y, u)(sh u)2α+1(ch u)λ+1 du.

(6.8)

In contrast to Koornwinder’s product formula (7.11) of [13] for the φ(α,λ)
µ ,which cannot be

extended to (α, λ) withλ > α, this formula is valid for all λ ≥ 0. In the case α ≥ λ ≥ 0, it
may be interpreted in the sense that the Jacobi hypergroup of order (α, λ) is obtained from
the signed hypergroup Xα

λ by a deformation similar to the hypergroup renormalizations by
positive semicharacters studied in Voit [28]. In fact, if ◦(α,λ) denotes the convolution on the
Jacobi hypergroup of order (α, λ), then

δx ◦(α,λ) δy =
1

(ch x)λ(ch y)λ

∫ ∞
0

δu(ch u)λ d(δx ∗(α,λ) δy)(u).

This in turn reveals that for α ≥ λ ≥ 0 the convolution on Xα
λ is positivity-preserving.

However, (4.1) shows that unlessλ = 0, the convolution ∗(α,λ) is not probability-preserving
and therefore is not a hypergroup convolution. This is in accordance with the fact that the
function x 7→ (ch x)λ is not multiplicative on Xα

λ for λ 6= 0.
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