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Abstract

We introduce systems of trigonometric polynomials which are orthogonal on the unit circle and arise from Jacobi
polynomials by a certain complexification. It is shown that the product formula of such a system, though containing
negative linearization coefficients, leads to a Banach algebra of measures on Z in a canonical way.
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1. Introduction

Let PP, n € Ny, denote the Jacobi polynomials of order (o, f), o, § > —1, and set

PeP(x)y 1
PPy ()

REP(x) = PEP ().

By a well-known result of Gasper [5], the coefficients g*#(n,m, k) in the product linearizations

n+m

k=|n—m|
are nonnegative if and only if («, f) € V,
V={(%p)cRa>p, aa+5)a+3)>(a~Ta-24)b},
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where a = o+ B+ 1, b = o — B. As a consequence, the system R*P n € Ny with (o, f) € V
induces the structure of a so-called polynomial hypergroup on Ny, characterized by the convolution
of point measures according to

n+m

5?1 * 5m - Z g(u’ﬁ)(na m:k) 51{ .

k=|n—m]|

This convolution has a unique bilinear, norm-continuous extension to M;,(Ny), the set of bounded
Borel measures on N, making My(N,) into a commutative Banach—*-algebra with involution u* =
T, p € My(Ny). For details see [6].

In this paper, we consider systems of trigonometric polynomials ¥, n € Z, where ¥ is a

certain complexification of the Jacobi polynomial R*#, generalizing Euler’s formula
e = cosnt +isinnt.

We prove that within a large range of parameters (o, f#), the product linearizations of such a “trigono-
metric Jacobi-system” lead to a convolution structure on Z which is not p051t1v1ty—preservmg, but
still makes M, (Z) into a commutative Banach-*-algebra.

2. Trigonometric Jacobi-systems

For o, > —1, let v*P denote the orthogonalization measure of the Jacobi polynomials R
on [—1,1], that is, dv®f(x) = (1 — x)*(1 + x)# dx. Further, set

~1
1

h(a,ﬂ)(n) — </ R;a,ﬁ)(x)Z dv(a,ﬁ)(x)> , neg No.
-1

According to formula (4.3.3) in [8],

Ky — (n:a>2.2n+oc+ﬂ+l T+ DI+ o+ f+1) @

2op Trtat DI+ p+1)

With v*# there corresponds a measure u®# on the unit circle T := {z€C: |z| = 1} in a canon-
ical way, namely

du=P(e") = L(1 — cost)*'*(1 + cos )17 dr.

Note that v(*# is just the image measure of u*# with respect to the mapping ¢ : T — [—1,1], ¢(e%)
= Cos .

~The trigonometric Jacobi-system (PP, .z is now defined as follows: For o, > —1 and z =
e’ €T, we set

P&P(z) = 1,
peh(z) = Rffl‘lﬁ)(cos t) + isgn (n)I&P sintR?Zr_liﬂ“)(cos 1) ifn#0,
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with
b (h“*h“*%hﬂ——l))‘” _ VA e BT D) 22
" hB(|n|) 2(x+1)

Note that ¥{“/(z) is a trigonometric polynomial of degree |n|, and that
veP@) = 1) =T @), (23)

If (o, B) is a fixed pair of parameters, we shall for shortness often drop the superscript (o, §)

and distinguish by a tilde those quantities having superscript (a + 1, § + 1). In particular, v :=
v(oc+1,ﬁ+l), E,, e Rfloc+1,ﬁ+1).
1

In the special case o = f = —3> we have
P2y = 27 forne Z.

So (Y{2-UDy ., is just the classical trigonometric basis of L*(T,dt), whose product formula
Z"2" = 7" corresponds to the usual addition on Z. In the general case the following holds:

Theorem 1. (a) The system (W&P),e; is an orthogonal basis of L*(T, u™P) with
/wa,ﬁ)?ﬁ:’ﬁ) dueP = gyt .5
T

where n*P(0) = KM (0) and n*P(n) = SHB)(|n|) for n +£ 0.
(b) PO pap kcionm B0 P for all nom e 7, with unique real coefficients h(:P, and
with

I(n,m) = {=n| = |ml,.., ~{ln| = |m|[} U {||n] ~ |m]],... |n| + m]}.

Proof. (a) We use the announced abbreviations, As p is symmetric, i.e.,

Ammm=£mmm

for every continuous function J on T, one obtains that

1 1 _
/ lp,,?m d/,LI/ Rl"lRiml dv + sgn(nm) lnlm/ R]n]—1R|m|—-1 dv
s ~1 -1

1+ sgn(nm) 5
- W In].lm| -

This is the orthogonality of the ¥, , n € Z. Their completeness in L*(T, 1) is clear, because the vector
space J of trigonometric polynomials is dense in LX(T, ) with respect to ||- 2. and {¥, .k € 7}
is a maximal linearly independent subset of 7.
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(b) In view of (a) we can write

P = S b With By = 70 / v, @, T, du.
el < nl+{m| T

By (2.3) and the symmetry of it is clear that the A, . are real. Finally, the identities
k) k)

A S A A
n,m,k n,—k,—m 11:(m) m,—k,—n 7'C(}’Z)

show that Ay m = O if |m| > |k +|n| or |n| > |k + |m|. O

3. The convolution structure on Z associated with a trigonometric Jacobi-system

Following the construction of polynomial hypergroups, we intend to derive a convolution structure
on Z from the product linearizations of the ¥{*# by setting

Oy * Op 1= Z WP s, mmeZ. (3.1)

n,m,k
kel(n,m)

However, contrary to the case of Jacobi polynomials with order (., B) € V, definition (3.1) cannot
lead to (nontrivial) hypergroup structures; the reason is that there always occur negative coeflicients
h;“,f)k unless (¢, ) = (—1,—3), which is the group case. Indeed, for «, § > —1, a short calculation
yields that

. o, 3 T
2 = ¢*P (1D = == Do), (3.2)
where ag, by, Zo are the constants in
1 1 ~
ROy = —(—bo),  RFV@) = =G~ bo).
o dy
Employing explicit formulas for the coefficients in (3.2) (see e.g. [6, 3(a)]), one obtains

BB p—a

=17 2+ D)o+ f+4)

Thus hﬁ“lﬁ)_l < 0 if « > B, and for the case & = f > —1, the assertion follows from the identity
Wy, = K M2 which will be proved in Lemma 3. All other parameters (%, f) # (—3,—3) do not
belong to ¥, but for (o, f) & V there obviously occur negative coefficients nB

n,mk*

Theorem 2. If == — %, then there exists a constant C = C(o, B), such that

B
S Wehl<c  forallnmeZ.

n,m,k
kel(n,m)
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This theorem is the main result of our paper and will be proved in Section 4. It assures that
within the cited range of parameters, the convolution of point measures as defined in (3.1) extends
uniquely to a norm-continuous convolution on M,(Z), the space of bounded Borel measures on Z:

Corollary. Suppose a=pz= — 1 and let the convolution x of point measures on 7 be defined

according to (3.1). Then the following hold:

(a) * extends uniquely to a bilinear convolution x : My(Z) x My(Z) — My(Z) which is continuous
with respect to the total variation norm ||-||.

(b) (My(Z),*) is a commutative Banach-*-algebra with unit &, the involution o*{(n)} :=
o{(—n)} and the norm ||c||' = ||L,|, where for ¢ € M\(Z), L, is the multiplication operator
on My(Z) defined by L,(t) := 0 * 1.

Proof. (a) The existence of a bilinear, ||-||-continuous extension of * to M,(Z) is a consequence of
Theorem 2; its uniqueness results from the ||-||-denseness of M(Z) = {0 € My(Z): |supp(c)| < oo}
in My(Z).

(b) Commutativity and associativity of * are clear by the definition of the convolution of point
measures and the norm-continuity of *. Hence (My(Z),*) is a commutative normed algebra with
unit dp, and ||-||" is the canonical norm which makes it into a Banach algebra. It remains to show
that * is an involution on this Banach algebra. First, we have to check that (¢ * 7)* = ¢* % t* for
all o, 7 € M,(Z). Again it is sufficient to consider point measures, and indeed, as the 4, ,; are real,
we have

(5n *5m)* = . Z hn,m,ké——k = Z h—n,—m,kék = 5:; *5;:[

k€l(n,m) kel(n,m)

Moreover, if o € My(Z), then

Lol = sup llo* x || = sup [jo**|| = [[L[.
il <1 Il <1
Hence * is an isometry with respect to ||-||'. O

Remark. In fact, the convolution defined by (3.1) provides a special example of a class of con-
volution structures on Z associated with orthogonal trigonometric systems on the unit circle. These
structures can be studied within the axiomatic frame of so-called signed hypergroups, which have re-
cently been introduced in [7]. The investigation of this more general setting, in particular concerning
the spectra of the involved Banach algebras, is the subject of a subsequent paper.

4. Proof of the main theorem

We stick close to the proof of the corresponding fact for Jacobi polynomials given in [2]. It was
shown there that the linearization coeificients of the R%*# satisfy

n+m

> 1g*Pm k)| = 0(1)

k=|n—m|
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uniformly in n,m € Ny, provided a == — % The basic idea is an asymptotic reduction of integrals
involving triple products of Jacobi polynomials to integrals which involve triple products of Bessel
functions and can be evaluated explicitly.

We start with two auxiliary results; the first one is a straightforward analogue to Gegenbauer’s
formula for ultraspherical polynomials:

Lemma 3. Let oo > —1. Then:
() P2y = $2)  forallze€ T andn € 7.

RE=VD i =21,
) K =1 Y
o 0 else.
Proof. (i) follows immediately from the identities (3.13) and (3.14) in [1] between the Jacobi
polynomials R{»~1/2) and the ultraspherical polynomials R>®.
(ii) results from (i) by comparing the linearizations of P&~ Y&=12) and of Poo® P:®, O

n

Lemma 4. Let 6 > 0 be a fixed constant. For n,m,k € Ny set N=n+0o,M =m+06,K =k +6
and let

A(n,m k) = 1\ /(M + N +K)YM +N —K)K +M - NYK +N — M)

denote the area of the triangle with sides N,M,K. Then for « > —1L, the estimate
n+m
> k- A(mm kY = O m™)
k=|n—m|

holds uniformly in n,m € N.

1

Proof. We may assume that n>m. Furthermore, in case o>

A(n,m, k) < %nm and 20— 1>=0.
For the proof in the remaining case || < 3, it is convenient to set / := k —n+m and L :=
[+ 0 =K — N + M. With these notations,

A(n,m, k) = (N—I—%)( - g)g(N——M—i—%) =: dn,m, 1),

the statement is obvious, because

as well as
n+m
S(n,m) = (nm)™> > k- A(n,m, k)"
k=n—m

2m om
= (”m)_zaZé < 8(m,m, 1TV ()72 Y (5 +n— m)  8(n,m, [y12,

=0 1=0 2

Hence the following estimation holds:
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S(n, m) = O((NM)*Z(x ‘an g‘ (N (M - {;_) <§)2> “—1/2>

1=0

w05 5= (w(or-£) 4(v-n- ) )

I=0

= O<(NM)—u—1/2§ <§)2“<1 B ;M)aﬂﬂ)
+O<M—“-1/zzzm (g)«-m(l B E%)a—m)

=0
2m 2a a—1/2 2m x—1/2 a—1/2
1 L L 1 L L
“0(227\2(%) (1‘2717) >+O<Zﬁ7<§zz) (1~ 27) )

Both sums in this last expression may be interpreted as Riemannian sums for certain beta-integrals,
namely

lim i”’: ! (L)Z“(l - mL—>“hl/2 = /lxz"‘(l —x)" 2 dx < o0;
mereo £ 207 \ 201 ) T, ’

2m 1 L 06—1/2 L !X—I/Z 1 1/2 1/2 dx
i — | = - . = VA = x)* .
i ] <2M) (1 2M> /0 * =) =
This implies that S(n, m) = O(1) uniformly in n,m € N. O

Proof of Theorem 2. We start with a series of reductions: '

1. The assertion is clearly true for the “Chebyshev-system” (P(-1/2-12) 5 Z), so it can be
assumed without loss of generality that o > —1. In view of Lemma 3, we can further assume that
B > —3 as well.

2. It suffices to consider the case In| = |m|>1. Moreover, summations over 7 (n, m) can be replaced
by summations over 1(n, m) \ {0}; this is because (a, ) € ¥ and hence

A1)

’h}(:’fz,()l — 49(“».3)(7’1,”, O) = 4 W < 4 (n & N)

3. Suppose [n], |m|, k| >1. Leaving again the superscripts, we can write

h(lk])

1 o - ~
P = T(/IRlanlmllel dv £ lmlk/1R|n|R1m;~1R|k|—1 dv

1 _ N I _ _ B
+ l,,lk/ lel R|n,_1 R|k|_1 dv -+ lnlm/] le' anl—l R[m[—l dV) ,
-1 -
with +-distribution depending on the signs of n,m, k. For abbreviation, set

1 -~ g o~
I(n,m,k) = /1Rlnf R,m,_1R|k|_~1 dv.
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With this notation,

h(|k|)
‘hn,m,kl <%g(lnl9‘m|:lkl)+ "‘%‘D(lmlkll(nsmak)‘ + lnlku(manak)I + lnlmll(k:nam)l)

For a further reduction, the following relations between Jacobi polynomials of order («, f) and
(a+ 1,8 + 1) are employed; see formulas (4.10.1) and (4.21.7) in [8]:

Ri(x) = 2(o+ 1) I Rpi(x),

%(U — (1) R () = 20+ D( = 01+ ) Ry(x).

Integration by parts thus yields
I(m n k)= ——:-1-'-— /1 R|n|(x)—£1~(R|m|(x)§|k‘_1(x)(1 —x)a—}'l(l —{—x)ﬁ“)dx
7 200+ 12 J dx '
lz 1 - ™ _ 1 1
7 /_IRIn! Rimj-1 Ry dv + ﬁ/glRlanlmllel d.
Hence

A
Lnn.0] < 2 Wm0 -+ prgers oo I D,

The same estimation, with k and m interchanged, holds for |I(k,n,m)). Recalhng that l,<1, and
1, <21, for |m|<|n| and k € I(n, m), we obtain

e me| < 2 g(|nl, ml, 1K) + 20(|k]) Lkl (n, m, K).

The g(n,m, k) being nonnegative, it remains to show that, for n=m,

n+m

S h) / Ry Rt Reca 65| = 0OQ1). 4.1

k=n-—m, k0

4. For the proof of (4.1), we essentially follow the exposition of Askey and Wainger [2]. First,
we turn over to the classical normalization of the Jacobi polynomials,

n-+a
PP = ( i >R§f”’>, n € No.

According to the asymptotic relations

n

(" + “) —O(*), 1, =O(n), h(n)= O
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(the latter two are easily obtained from the explicit formulas (2.1) and (2.2)), it is sufficient to
estimate

n+tm

Z k2zx+1(knm)—oc
k=n—m, k0
7 ¢ 20+3 ¢ 2p+3
x / PP (cos t) Pt P (cos 1) PEH P (cos 1) (Sin 5) (cos 5) de|.
0

Moreover, the symmetry relation P{A(—x) = (—1)"P$9(x) (see [8, (4.1.3)]) reduces our assertion
to the proof of

n+m
koc+l

k=n—m, k0

t

72 £ 2443 2643
X / PP (cost) PP (cos £) PET P (cos ) (sin 5.) <cos —) dt| = O(n*m*)
0

2

4.2)

for arbitrary ¢, f > —% (not necessarily o> f).
The tool for replacing the Jacobi polynomials in (4.2) by terms involving Bessel functions is the
following version of Hilb’s formula, see [2]:

¢ at+1/2 ¢ B+1/2 N~ 1 7
(sin ~) (cos 5) PP (cost) = ntot+l) J(Nt) + R®P)(n, 1)

2 n! 2
oc+ﬁ+l>
— ).

(oc,ﬁ>—1,n€l\|,N:=n+

Here J, is the Bessel function of order «, and for 0 < t<3n/4, the error term R*P(n,t) is given
by '

O(tn™?) for all ¢, | 4.3
Koy = [0 D 4
O n*) if nt<C, (4.4)

with an arbitrary fixed constant C > 0.
Furthermore, the following estimates of Bessel functions will be involved:

ux)] <4x* for 0 <x <1, (4.5)
V)] < 4x™? forx >0, ax — L. (4.6)
Weset N:=n+6, M :=m+0d, K :=k+35, with § = («+ f+1)/2. Then according to Hilb’s

formula above, we can write

200+3 2B+3
(sin 5) <cos 5) PP (cos t) PEF I (cos 1) PEE D cos 1)

£\ 12 £\ —B-12 372
= Cone(sing)  (eos3) " (5) RO LM (D) + i),
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where »
N™I'(n+oa+1) .M‘““‘F(m+oc+ 1) KTk +oa+1)
n! (m— 1! k-1

and the error term S, ,, x(¢) can be estimated in a first step as follows:

Cn,m,k =

[Snmi ()] <AL (LN a (KO RO D (m — 1,1)
W (NE) s (MO RO = 1,0)] + ¢ g (KO o a(ME) R, 1)
+ V1 WNE) REFFD (i — 1,2) RETVFHD(k — 1,1))
 VE s (M) REP i, ) RO — 1,1)
+ V1 o1 (Kt) %P, 1) REHHHD(m — 1,1))
+ [RP(n, 1) REFSFD (e — 1,0) REFHDom — 1,1 ),

with a constant 4 independent of n,m,k and ¢ € [0,7/2]. Once it is shown that

n-t+m

n/2
I= % /0 1S, k(O] df = O(*m®), (4.7)

k==n—m, k0

it remains to estimate the sum

n-+m /2 ¢ —a—1/2 ‘ —f~1/2
Z ke / 32 < sin 5) <cos 5) o T (Nt) Ty (M) T (K2t) dt| (4.8)
k=n—m 0 .

We are going to carry out the proof of (4.7) in one step. For this, we set I := I, + I,, where
in I, the range of integration is [0,1/m] and in I, the range of integration is [1/m,7/2]. In I, we
use the estimates (4.4) and (4.5) respectively for the terms containing m, as well as (4.3) and (4.6)
respectively for the terms containing # and k. It follows that

n+m 1/m ¥ .
Il — O( Z (km)oc+l// (n~1/2k——1/2t3 +n_1/2k_3/2t2 +k—1/2n~3/2t2
R——— 0 . _
B AR N ) S v_{_ a2 n—3/2k'3/2ts)dt>
nim t/m
P O< Z (km)oc—l-l . (nk)—l/Zm—Z/O 1- dt) —_ O(nocma~—1) — O(n"‘m“).

k=n—m,k7#0
In I,, the estimates (4.3) and (4.6) lead to

L=0 f et [ (L2 L 1Y Gy e
2= 0 : nm k)

k=n—m, k7#0 m

+ (;71;5 + len" 4 —k}n—> (nmik)™'2 3 4 (nmk)™>? t'““/z) df)

n/2
= O<n“m‘1/2/ t”““/zdt) = O(n*m™V(C +m* 32 + Oy3pInm)) = O(n"m*).
1/m
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Thus (4.7) is proved. The next step is a further reduction of the sum (4.8). This runs exactly in the
same way as it was carried out in [2] for the case of three Bessel functions of the same order; we
shall therefore restrict ourselves to a sketch of the important steps.

First, the term (sin (t/2))"°‘”1/2(cos (t/2))_/3 2 has to be replaced by t~%"'2, For this, write
(sin (£/2)) ™" (cos (1/2)) "7 = (5/2)™* "2 G(¢), where G : [0,7/2] — R is continuous with
1 — G(t) = O(#?). As in [2, p. 29f], it is then checked that

n+m

Z kot+1

k=n—m

/ n/ztl““(l = G(1))JoNt) i1 (M) o1 (Kt)d2| = O(n"m®).
0

It remains to estimate S(0,7/2), where for 0,7 € R, U oo, S(0,7) is defined by

n+m

S(o, ) = > kY

k=n—m

/ tl"“Ja(Nt)JMH(Mt)JaH(Kt)dt‘ .

This in turn is achieved by splitting up the range of integration: we show that
(a) S(m/2,00) = O(n"m"),
(b) S(0,00) = O(n*m*).
1

The proof of (a) is the same as in [2, p. 30f]; hereby the condition & > ~—3 is of decisive

importance. The proof of (b), however, affords some additional argumentation: For o > —% the
integral

J(n,m k) := / t T (N T (M), (K2 dt
0
is a generalization of the Weber—Schatheitlin integral, whose explicit evaluation is known [4, 8.11.34].
As n —m<k<n+m and therefore [N — M| < K < N + M, it is given by

_ (MK)ac—l
~ V2mNe

where ¢ = (1/(2MK))(M* +K* — N*) and P, is the associated Legendre function of order 1 —«
and degree o + % According to formulas 3.8.(17) and 3.6.1.(14) in [3],

—o1/2

r (oc + %)

With A(n,m, k) defined as in Lemma 4, we can write
(MK)*(1 - 6°) = 4 A(n,m, k).

It follows that

J(n,m, k) (1 — ey~ AP2 (6,

1/2— — 1/2)+1 2—1/4
Plio) = PLE P o) = o - (1 — g2y P14

201 G
\/ﬁF(oc + %) (NMK )

As |o| < 1, Lemma 4 now assures that (b) is satisfied, and thus the proof of the theorem is
finished. O

J(n,m k) = A(n,m, kYL
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