Gruppenübungen für Woche 5

Aufgabe G1: Die Schwingungsgleichung.

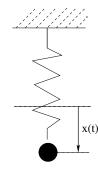
Ein Körper der Masse m=1 hängt an einer vertikal schwingenden Feder (Federkonstante k>0, Dämpfungskonstante $d\geq 0$). Mit x(t) bezeichnen wir die Auslenkung der Feder zur Zeit t aus der Ruhelage. Sie genügt der Schwingungsgleichung

$$\ddot{x} + 2d\dot{x} + kx = 0.$$

Berechnen Sie die allgemeine reelle Lösung in den drei möglichen Fällen

- (a) $d^2 < k$ (schwache Dämpfung), setze $\omega := \sqrt{k d^2}$
- (b) $d^2 > k$ (starke Dämpfung)
- (c) $d^2 = k$ (kritische Dämpfung).

Welches qualitative Verhalten zeigt die Lösung jeweils?



Hausübungen

Aufgabe H1: (4 Punkte)

(a) Gegeben sei die lineare DGL

$$x^{(n)} + a_{n-1}x^{(n-1)} + \ldots + a_0x = ce^{\mu t}$$

mit konstanten Koeffizienten $a_i \in \mathbb{C}$ und $c \in \mathbb{C}$. Zeigen Sie: Ist μ keine Nullstelle des charakteristischen Polynoms P, so hat diese DGL eine partikuläre Lösung der Form $x_p(t) = de^{\mu t}$, $d \in \mathbb{C}$. Geben Sie d an.

(b) Bestimmen Sie die Lösung des AWP

$$\ddot{x} - \ddot{x} + \dot{x} - x = e^{2t}; \quad x(0) = \frac{1}{5}, \ \dot{x}(0) = 0, \ \ddot{x}(0) = 2.$$

Aufgabe H2: (5 Punkte) D'Alembert-Reduktion.

1. Sei x_1 eine nichttriviale Lösung der linearen DGL

$$\ddot{x} + a(t)\dot{x} + b(t)x = 0$$

Zeigen Sie, dass diese DGL durch den Ansatz $x(t) = x_1(t)z(t)$ auf eine lineare DGL 1. Ordnung reduziert wird.

2. Die Funktion $x_1(t) = t$ ist Lösung der Differentialgleichung

$$(1 - t^2)\ddot{x} + 2t\dot{x} - 2x = 0.$$

Bestimmen Sie durch Reduktion eine zweite Lösung x im Intervall (0,1) und zeigen Sie, dass x und x_1 ein Fundamentalsystem bilden.

Bemerkung: Auf dieselbe Art kann man eine lineare DGL n-ter Ordnung auf eine solche der Ordnung n-1 reduzieren.

Bitte wenden!

Aufgabe H3: (2 Punkte) Sei *X* eine unendliche Menge. Beweisen Sie, dass durch

$$\tau := \{\emptyset\} \cup \{X \setminus A : A \subset X \text{ endlich}\}\$$

eine Topologie auf *X* definiert ist.

Aufgabe H4: (5 Punkte) Beweisen Sie:

- (a) Sind A, B zusammenhängende Teilmengen eines topologischen Raums X mit $A \cap B \neq \emptyset$, so ist auch $A \cup B$ zusammenhängend.
- (b) Jeder wegzusammenhängende topologische Raum X ist auch zusammenhängend.

Aufgabe H5: (Zusatzaufgabe, 5 Extrapunkte) Beweisen Sie, dass die Menge

$$X = \left\{ \left(x, \sin \frac{1}{x} \right) : x > 0 \right\} \cup \left\{ (0, 0) \right\} \subset \mathbb{R}^2$$

(mit der von \mathbb{R}^2 induzierten Topologie) zwar zusammenhängend, aber nicht wegzusammenhängend ist.

Die **Modulklausur** (Scheinklausur für altes Lehramt) zur Reellen Analysis wird voraussichtlich am **Mittwoch, den 2. März 2016** stattfinden. Genauere Informationen folgen noch.

Abgabetermin der Hausübungen: Freitag, den 20.11.2015, 9:00, im roten Kasten Nr. 18 auf D1, oder direkt vor der Vorlesung.