THE PLASMONIC EIGENVALUE PROBLEM AND THE DIRICHLET-TO-NEUMANN OPERATOR ON MANIFOLDS WITH FIBERED CUSPS

ELMAR SCHROHE; LEIBNIZ UNIVERSITY HANNOVER

Abstract. A plasmon of a bounded domain $\Omega \subseteq \mathbb{R}^n$ is a nontrivial harmonic function on $\mathbb{R}^n \setminus \partial \Omega$ that is continuous at $\partial \Omega$ and whose interior and exterior normal derivative at $\partial \Omega$ have a constant ratio. This ratio is called a plasmonic eigenvalue of Ω . It is indeed an eigenvalue of $N_+^{-1}N_-$, where N_\pm denote the exterior and interior Dirichlet-to-Neumann operators.

Motivated by the case of two touching convex domains in \mathbb{R}^n , we consider this problem on a manifold with fibered cusp singularities. In a first step we show that the Calderòn projector for elliptic operators in this setting is a matrix of ϕ -pseudodifferential operators in the sense of Mazzeo and Melrose. From this we derive that also the Dirichlet-to-Neumann operator is a first order ϕ -pseudodifferential operator. This gives us a precise understanding of the behavior of its Schwartz kernel near the boundary.

Finally we study the spectrum of the Dirichlet-to-Neumann operator on manifolds with fibered cusp singularities.

Joint work with Karsten Fritzsch and Daniel Grieser.