Grundlagen Binomialkoeffizienten und Binomialsatz

Sina Ober-Blöbaum

Mathematik für Chemiker

1. Grundlagen

1.6 Binomialkoeffizienten und Binomialsatz

Erinnerung: Binomische Formeln

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)(a-b) = a^{2} - b^{2}$$

$$(a+b)^{3} = (a+b)(a+b)^{2} = a(a^{2} + 2ab + b^{2}) + b(a^{2} + 2ab + b^{2})$$

$$= a^{3} + 2a^{2}b + ab^{2} + a^{2}b + 2ab^{2} + b^{3}$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

Wir definieren

$$n! = 1 \cdot 2 \cdot \cdots \cdot n, \quad n \in \mathbb{N}, \qquad 0! = 1$$

n! wird "n-Fakultät" gelesen.

Beispiel 1.33

$$0! = 1! = 2! = 3! = 4! = 5! =$$

Es gilt (n+1)! = n!(n+1) für alle $n \in \mathbb{N}_0$.

Produktnotation: Für $n \in \mathbb{N}$ und $a_1, \ldots, a_n \in \mathbb{R}$ schreiben wir

$$\prod_{k=1}^n a_k := a_1 \cdot a_2 \cdot \cdots \cdot a_n.$$

Damit ist
$$n! = \prod_{k=1}^{n} k$$
.

Sina Ober-Blöbaum

Mathematik für Chemiker

1. Grundlagen

1.6 Binomialkoeffizienten und Binomialsatz

Binomialkoeffizienten

Definition 1.34

Für $n, k \in \mathbb{N}_0$ mit $k \le n$ heißt die Zahl

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Binomialkoeffizient "n über k".

Beispiel 1.35

$$\binom{4}{2} =$$

$$\binom{14}{12} =$$

$$\binom{10}{0} =$$

Rechenregeln für Binomialkoeffizienten

Es seien $n, k \in \mathbb{N}_0$ mt $k \le n$. Dann gelten:

Sina Ober-Blöbaum

Mathematik für Chemiker

1. Grundlagen

1.6 Binomialkoeffizienten und Binomialsatz

Pascalsches Dreieck

Wie lauten die Koeffizienten nach Ausmultiplikation des Produktes $(a + b)^n$?

$$(a+b)^0 = 1$$
 1 1 $(a+b)^1 = a+b$ 1 1 $(a+b)^2 = a^2 + 2ab + b^2$ 1 2 1 \vdots 1 3 3 1 \vdots 1 4 6 4 1

Die Einträge im Pascalschen Dreieck entstehen als Summe der unmittelbar darüberstehenden Nachbarn. Der k-te Eintrag in Zeile n ist $\binom{n}{k}$.

Der Binomialsatz

Satz 1.36 (Binomialsatz)

Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}_0$ gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Beispiel 1.37

$$(x+2)^4 =$$

Sina Ober-Blöbaum

Mathematik für Chemiker

1. Grundlagen

1.6 Binomialkoeffizienten und Binomialsatz

Anhang: Beweis des Binomialsatzes

Es seien $a, b \in \mathbb{R}$. Wir verwenden vollständige Induktion über $n \in \mathbb{N}_0$.

$$A(n): \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

Induktionsanfang n=0: $(a+b)^0=1=a^0b^0$, d.h. A(0) ist wahr. Induktionsschritt: Es sei $n\in\mathbb{N}_0$. Für dieses n gelte A(n).

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
$$= \sum_{k=0}^n \binom{n}{k} a^{n-k+1} b^k + \sum_{k=0}^n \binom{n}{k} a^{n-k} b^{k+1}.$$

In der zweiten Summe setzen wir j = k + 1 und erhalten

$$=\sum_{k=0}^{n} \binom{n}{k} a^{n-k+1} b^k + \sum_{j=1}^{n+1} \binom{n}{j-1} a^{n-(j-1)} b^j.$$

Sina Ober-Blöbaum

Mathematik für Chemiker

Anhang: Beweis des Binomialsatzes (Fortsetzung)

In der zweiten Summe schreiben wir wieder k für j und fassen zusammen:

$$(a+b)^{n+1} = \binom{n}{0} a^{n+1} b^0 + \sum_{k=1}^n \left[\binom{n}{k} + \binom{n}{k-1} \right] a^{n-k+1} b^k + \binom{n}{n} a^0 b^{n+1}$$

$$= a^{n+1} + \sum_{k=1}^n \binom{n+1}{k} a^{n-k+1} b^k + b^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^k.$$

Sina Ober-Blöbaum

Mathematik für Chemiker