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Abstract. Over the past 50 years Karl Hofmann has
made major, wide-ranging contributions across the

spectrum in topological algebra:

compact semigroups, transformation groups, rings and
sheaves, continuous lattices and domain theory,

C∗-algebras, Lie semigroups, loops, divisible groups and
semigroups, the exponential function, compact groups,

and proLie groups.
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The Fifties

TOPOLOGICAL SEMIGROUPS
EMERGE

A topological semigroup consists of a semigroup S en-
dowed with a Hausdorff topology such that the multipli-
cation function

(s, t) 7→ st : S × S → S

is (jointly) continuous. The pioneering work in the study
of compact (topological) semigroups was carried out by
A. D. Wallace and his students and co-workers at
Tulane during the fifties. The accent in those early days
(reflecting Wallace’s mathematical interests) was on
semigroup connections with algebraic topology and the
topology of continua.

Semigroups appear more naturally
in a physical universe than in a ge-
ometric one...[They] might be re-
garded as exemplars of irreversible
actions.
A. D. Wallace
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TOPOLOGICAL GEOMETRY

Meanwhile, in Germany, a young mathematician by the
name of Karl H. Hofmann was seeking to apply topo-
logical algebra to topological geometry. There are natural
ways to assign coordinate fields and more general alge-
braic structures to geometric objects such as projective
planes. Hofmann’s early explorations into topological
geometry led to the consideration and characterization
of locally compact semigroups that were the union of a
group and a zero element, or more generally a group and
a compact boundary.

Topological Geometry At Work
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HOFMANN UNDERGOES
TRANSATLANTIC TRANSLATION

Hofmann’s semigroup investigations touched on work
of Mostert and Shields, two Tulane mathematicians,
who studied semigroups on manifolds.

The Tulane connection ripened through further contact
with Mostert and Wallace, eventually leading to
Hofmann’s moving to New Orleans and spending 20
years on the Tulane faculty until he returned to Germany
in the early 80’s.

Street Scene

New Orleans
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ONE-PARAMETER SEMIGROUPS

The additive semigroup of nonnegative reals, its one-point
compactification

([0,∞], +) ∼= ([1, 0], ·),

and the corresponding one-parameter semigroups (con-
tinuous homomorphic images) are basic to the theory of
topological semigroups (just as one-parameter groups are
in Lie and topological group theory).

The One-Parameter Semigroup Theorem.
(Mostert and Shields, 1957) Let S 6= S−1 be a
compact connected semigroup with identity 1 isolated in
the set of idempotents. Then there exists a one-parameter
semigroup starting at 1 and immediately leaving the group
of units H(1). If the only other idempotent is 0, then the
image runs all the way to 0.

Paul Mostert
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VARIATIONS ON HILBERT’S
FIFTH

In 1959 Hofmann independently made heavily overlap-
ping discoveries on the existence of one-parameter semi-
groups. This work in some sense extended work of Yam-

abe, Gleason, Hille and others on one-parameter
groups and semigroups, work that had arisen in connec-
tion with Hilbert’s Fifth Problem.

Hofmann went on to consider versions of Hilbert’s

Fifth Problem for loops and later for semigroups.
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THEORY OF THREADS SEWN UP

In the early theory a thread denoted a topological semi-
group with 1 defined on an interval. Besides the basic
example ([0,∞], +) ∼= ([1, 0], ·), there is also the “cal-
culator semigroup” constructed from [0,∞] with [M,∞]
identified to a single point called “overflow”:

for 0 ≤ a, b < M, a ⊕ b =

{

a + b, if a + b < M ,

overflow, otherwise.

A. H. Clifford, a pioneer algebraic semigrouper and Tu-
lane colleague, made major contributions to the following

Theorem. Any metric {1, 0}-thread (with endpoints 1
and 0) arises by deleting countably many pairwise dis-
joint open intervals of [0, 1], pasting a multiplicative copy
of one of the above two semigroups into each gap, and
multiplying by taking the minimum in all other cases.

A. H. Clifford
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The Sixties

NEW WAYS OF “WINDING
DOWN”

Let φ : R
+ → G be a continuous homomorphism (a one-

parameter semigroup) onto a dense subset of a topological
group G. Then one can create a compact semigroup S
consisting of a one-parameter semigroup winding densely
on the group G, which is the minimal ideal of S as follows:

1. Form the product semigroup T := [0,∞] × G.

2. Define a one-parameter semigroup σ : R
+ → T by

σ(t) =
(

t, φ(t)
)

.

3. Form the semigroup

S := σ(R+) ∪ ({∞} × G) = σ(R+).

T σ(R+) S

8



More elaborate winding semigroups may be manufac-
tured by replacing [0,∞] by K × [0,∞], where K is a
compact group.
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A PATH THROUGH THE
WILDERNESS

The notion of a compact semigroup proved too diverse for
any comprehensive theory to emerge. But a remarkable
achievement of the sixties was a structure theorem by
Hofmann and Mostert for irreducible (that is, min-
imal) compact connected subsemigroups stretching from
one end of the semigroup, the identity 1, to the other
end, the minimal ideal M . After their work, such sub-
semigroups provided a known path through an uncharted
jungle.

Theorem. Let T be an irreducible compact connected
subsemigroup stretching from 1 to M of a compact semi-
group S. Then

1. T is abelian;

2. T meets the group of units only in {1};

3. T/H is a {0, 1}-thread, where H denotes the congru-
ence relation of mutual divisibilty;

4. T can be constructed by an appropriate, concretely
given “chaining” procedure of winding semigroups that
generalizes the construction of {0, 1}-threads.
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An irreducible semigroup T together with T/H, a thread
with idempotents all integers together with ±∞.
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WHAT NEEDS TO BE FIXED?

The proof of the irreducibilty theorem (the centerpiece
of Elements of Compact Semigroups, 1966) required
extensive semigroup machinery plus a major new fixed-
point theorem from the theory of compact connected trans-
formation groups giving sufficient conditions for a com-
pact, connected group action on a compact acyclic space
to have an acyclic set of fixed-points. Hofmann and
Mostert were assisted with the latter by insights of
Armand Borel, who visited at Tulane during the pe-
riod they were working on this theorem and the book.

One big problem remained (and remains) open:
The Centralizer Conjecture. Can the irreducible
semigroup T be chosen in the centralizer of the (neces-
sarily compact) group of units H(1)?
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HOFMANN ENCOUNTERS UPS
AND DAUNS

In 1968 Hofmann published with Tulane colleague John

Dauns an AMS Memoir on representations of rings by
sections of sheaves and bundles over the spectrum. Here
the celebrated Dauns-Hofmann Theorem appeared,
so dubbed by Dixmier, who was visiting Tulane at the
time.

The Dauns-Hofmann Theorem. Let A be a C∗-
algebra, x ∈ A, and f a bounded continuous scalar func-
tion on Prim(A), the space of primitive ideals endowed
with the Jacobson topology. Then there exists a unique
fx ∈ A such that

fx ≡ f(P )x mod P for all P ∈ Prim(A).
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The Seventies

A SEARCH FOR ORDER

The lack of a comprehensive general theory led topologi-
cal semigroupers to focus on important special classes. A
hundred miles up the Mississippi from Tulane, a young
researcher at Louisiana State University was busily study-
ing compact semilattices, commutative semigroups in
which every element is idempotent. These carry a natural
(partial) order

s ≤ t ⇔ st = s;

this order provides an alternative characterization of semi-
lattices as partially ordered sets in which any two ele-
ments have a greatest lower bound (their semigroup prod-
uct). Compactness forces “lower completeness,” every
nonempty subset has a greatest lower bound.

Investigations by Lawson uncovered a tractible class
of compact semilattices, namely those which had a basis
of neighborhoods at each point which were subsemilat-
tices. Standard examples, such as the space of non-empty
compact subsets of a compact space equipped with the
Vietoris topology and the operation of union, possessed
this property.

Meanwhile,....
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SCOTT ORDERS COMPUTER
SCIENCE

Dana Scott at Oxford realized that many structures
and operations of computer science have interesting order-
theoretic interpretation. He discoved a class of lower com-
plete semilattices, later called Scott domains, in which
each element was the directed supremum of elements “com-
pactly” below it. These turned out to be admirably suited
for modeling the lambda-calculus, denotational semantics
of programming languages, and a variety of basic concepts
in theoretical computer science. For his ground breaking
work he was awarded the Turing Prize.
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TOPOLOGICAL ALGEBRA VISITS
“SCOTT”LAND

In a 1976 paper of major consequence, Hofmann and
Stralka (implicitly) proved:

Theorem. Given a compact topological semilattice S
with a neighborhood basis of subsemilattices, then as a
partially ordered set S is a Scott domain. Conversely, a
Scott domain admits a unique topology (which may be
defined directly from the order) making it into a com-
pact semilattice (with a neighborhood basis of subsemi-
lattices).

This remarkable convergence from diverse investiga-
tions to the same mathematical structure gave impetus to
a far-reaching joint collaboration that resulted in the de-
velopment of a mature theory of continuous lattices, semi-
lattices, and domains, which was set down in A Com-
pendium of Continuous Lattices, 1980, with no less then
six authors, Gierz, Keimel, Hofmann, Lawson,

Mislove, and Scott, three from Darmstadt.
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A STRANGE, NEW WORLD

In “Scott”land the topological algebraists found them-
selves in a strange, new world. In Scott’s topology, spaces
were no longer Hausdorff, only T0. But even here signif-
icant work was done, such as the Hofmann-Mislove

Theorem, which characterized compact sets in terms of
Scott-open filters in the open-set lattice.

Spaces could satisfy strange “domain equations,” such
as being homeomorphic to their own function spaces, so
that one could apply an element resp. function to itself.
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TRANSITION

As the next decade rolled around, like Dorothy in Oz,
or Alice in Wonderland, it was time to click the magic
red slippers together, get a little recovery time, and then
return to a more normal world.

Coming Up: Lie Meets Wallace,
Lie Theory and Semigroups
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The Eighties

IT’S AN (INFINITESIMALLY)
SMALL WORLD AFTER ALL

One reason for the huge success of the classical Lie the-
ory of groups is the capability that often exists to pull
back nonlinear problems at the group level to problems
at the Lie algebra (or infinitesimal) level which can be at-
tacked by the tools of linear algebra. Indeed one typically
tries to reinterpret the problem at the Cartan subalgebra
level and use the elementary geometry of roots and their
transformations (via the finite Weyl group).

A significant theme in the work of Hofmann has
been the effort to extend this program to larger classes
of algebraic structures. In particular, he, Hilgert and
Lawson (together with several of Hofmann’s talented
graduate students) pioneered an extensive Lie theory of
semigroups in the eighties, in which one studied those
those subsemigroups of Lie groups that were “infinitesi-
mally generated,” i.e., could be recovered from their (sub)-
tangent sets at the identity in the Lie algebra.
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Actually (as gradually emerged) such a program had
been launched in the fifties by Charles Loewner,
who is most famous for his work on the Bieberbach con-
jecture, and re-emerged independently in the eighties in
the work of G. Ol’shanskĭi (with an eye toward appli-
cations in representation theory) and in the work of V.

Jurjevic and I. Kupka in geometric control theory.

Theorem Given a closed (local) subsemigroup S of a
Lie group G, there is a naturally associated tangent ob-
ject in the Lie algebra of G which is a special type of
closed convex cone called a Lie wedge (the appropriate
analog of the Lie subalgebra corresponding to an analytic
subgroup). Conversely given any Lie wedge, there is a
corresponding local semigroup in the Lie group infinites-
imally generated by the Lie wedge.

Unlike the Lie group case, there is not a global variant
of this theorem, i.e., no third fundamental theorem of
Lie. A major problem in the theory has been the effort
to understand those Lie wedges for which there exists a
corresponding (global) semigroup.
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A POSITIVE OUTLOOK

The Lie theory of semigroups has introduced a significant
new aspect into the Lie group theory, namely an appro-
priate notion of “positivity.” At the group level the semi-
groups may be thought of as the set of positive elements,
and the tangent cone is the set of infinitesimal positive
elements. There is an associated notion of ordered homo-
geneous spaces. The development of the theory has ne-
cessitated new tools such as convex analysis, the theory of
causal structures (drawn from physics), and methods of
geometric control theory (where one has notions of evolu-
tion in positive time) in addition to the classical methods
of Lie theory. Applications were found in various areas
such as representation theory and harmonic analysis.

The new theory found ample documen-
tation in two comprehensive works: Lie
Groups, Convex Cones, and Semigroups
by Hilgert, Hofmann, and Lawson

(1989) and Lie Semigroups and Their Ap-
plications by Hilgert and Neeb (1993).
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The Nineties

HOFMANN LOOPS BACK

Loops, nonassociative groups, sometimes turn up as the
coordinatizing algebraic structures in topological geome-
try and had been considered by Hofmann in the the late
50s and early 60s. He returned to this subject in the early
90s with Karl Strambach. Hofmann’s work in this
area has been far-ranging, including analogies with topo-
logical and Lie group theory, local and global theory, and
an examination of the corresponding version of Hilbert’s
fifth problem.

Hofmann and Strambach showed that the tangent
space L(G) at the identity e of a (local) Lie loop carries
two operations, a binary commutator bracket and a tri-
linear associator bracket linked by what they called the
Akivis identity. This tangent algebra L(G) then forms
an Akivis algebra, and if G is a Lie group,
the Akivis identity reduces to the classical
Jacobi identity. These considerations were
tied to differential geometry by associating
with a Lie loop G two left canonical connec-
tions, which coincide if G is a Lie group.
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FINDING ONE’S ROOTS

A subsemigroup of a Lie group is called divisible if given
g ∈ S and n ∈ N, there exists an n-th root h ∈ S (i.e.,
hn = g). Repeated random taking of roots can display
rather unsystematic behavior, as even examples in the
complex plane can demonstrate, and trying to take them
in an orderly way in a Lie group proved something of a
nightmare. However in a lengthy detailed study (yet an-
other AMS Memoir) Hofmann and Wolfgang Rup-

pert showed that divisibility in Lie semigroups implies

(i) local divisibility (and in the local setting root extrac-
tion is uniquely determined),
(ii) all elements lie on one-parameter semigroups and
hence in the image of the exponential
mapping,
(iii) these semigroups can essentially be
classified from their Lie tangent wedges,
called semialgebras, and
(iv) the only simple Lie algebra contain-
ing a generating semialgebra is sl(2, R).
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HOFMANN REPORTS
EXPONENTIAL RESEARCH

GROWTH

Many considerations involved in the divisibility problem
required detailed information about the exponential func-
tion (dubbed “Hofmann’s favorite function” by stu-
dents) from a Lie algebra to a Lie group. This research
has naturally led to important new general insights and
results concerning the exponential function of a Lie group.
In particular, one now has an almost complete under-
standing of those Lie groups for which the exponential
function is surjective or has dense image.
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HOFMANN REGROUPS∗

In the 60s Hofmann published an Introduction to Com-
pact Groups I,II in the Tulane Notes and later began
a 30-year research collaboration on the topic with Sid

Morris around 1977. This project moved to the front
burner of the stove in the 90s, resulting in the 858 page
tome The Structure of Compact Groups (a far from
compact book). SCG appeared in 1998 and in a revised
version in 2006.

The aim of SCG was to present the structure of com-
pact groups without unnecessary assumptions. The ap-
proach was not that of analysis (Hofmann had lectured
and written on “analytic groups without analysis”), but,
not suprisingly, through the development of a Lie theory
for compact groups. The power of this general Lie the-
oretic approach is then demonstrated by obtaining in a
systematic way not only the known structure results of
compact groups, but also new and extended results along
the way.

∗ Thanks to Sid Morris for generous help with this section
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THE BIG FOUR

The postscript to Chapter 9 of SCG recaps four principal
structure theorems for compact groups that appear in
that chapter.

(I) The Levi-Mal’cev Theorem. A connected com-
pact group is nearly a direct product of its connected
center and the commutator subgroup.

(II) The Maximal Pro-torus Theorem. A con-
nected compact group has maximal pro-tori which are
all conjugate, and the center is their intersection. Each
maximal pro-torus is a maximal abelian subgroup.

(III) The Borel-Scheerer-Hofmann Theorem. The
commutator of a connected compact group is (topologi-
cally and algebraically) a semidirect factor.

(IV) The Dong Hoon Lee Supplement Theorem.
A compact group G contains a totally disconnected com-
pact subgroup D such that G = G0D and G0 ∩ D is
normal in G and central in G0.
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THE LITTLEST OUTLAW

Lie theoretic arguments now and then employ inductive
arguments on Lie algebra dimension by eliminating a
“smallest criminal” or “littlest outlaw.” Here is Hof-

mann in hot pursuit of the “littlest outlaw” (or is it the
infamous “Mexican bandito”?).

Sheriff Hofmann

27



WANTED: DEAD OR ALIVE

The Mexican Bandit
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BEYOND LOCALLY COMPACT
GROUPS

Combining the work of Iwasawa and Yamabe from the
first half of the 20th century, one can reduce the struc-
ture theory of connected locally compact groups to that
of compact groups and Lie groups. But is there a well-
behaved category that contains all these objects, and is
there a systematic way to study and obtain their struc-
ture? In their book The Lie Theory of Connected Pro-
Lie Groups, 2007, Hofmann and Morris propose the
category of pro-Lie groups.

The Hofmann-Morris Company
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PRO-LIE GROUPS

A pro-Lie group can be defined in any of the following
equivalent ways:

(1) A projective limit of finite dimensional Lie groups.

(2) A complete group G for which every identity neigh-
borhood contains a normal subgroup N such that
G/N is a Lie group.

(3) A group that is (isomorphic to) a closed subgroup of
a product of finite dimensional Lie groups.

Favorable Properties: The category of pro-Lie groups
is closed under all limits, particularly all products, in the
category of topological groups and under passing to closed
subgroups. It is not closed under quotient groups, but
these have completions that are again pro-Lie.
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THE LIE THEORY OF PRO-LIE
GROUPS

Every pro-Lie group has a Lie algebra and an exponential
function whose image generates (algebraically) a dense
subgroup of the identity component. The Lie algebra is
an analogue of a pro-Lie group, called a pro-Lie algebra.
Basic familiar properties such as existence of a radical
and a Levi-Mal’cev theorem carry over.

The Lie algebra functor preserves limits and quotients,
and its left adjoint provides a functorial version of Lie’s
Third Theorem.

One uses Lie theoretic methods to derive structure the-
orems for pro-Lie groups.

Sample Theorem. Each connected pro-Lie group con-
tains maximal compact connected subgroups , which are
all conjugate under inner automorphisms.
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FOOTNOTES

(1) Hofmann’s sketches of A. D. Wallace, Paul Mostert,

and A. H. Clifford appear in “An interview with Karl Hof-

mann on the occasion of his seventieth birthday,” Semigroup

Forum 65(3), 317-328. Supplementary information to that pre-

sented here can be found there.

(2) Hofmann’s drawings of a semigroup consisting of a wind on a

torus and of an irreducible semigroup consisting of chained wind-

ing semigroups appear in K. H. Hofmann and P. Mostert,

Elements of Compact Semigroups, Charles Merrill, 1966.

(3) The posters on topological planes, Hilbert’s Fifth Problem, topolo-

gies on lattices, and Lie and Wallace were selections from re-

productions of Hofmann’s weekly colloquium posters for the

Mathematics Department at the Technical University, Darm-

stadt. These appeared in a selection of these posters, Poster

Cartoons 1983-1998, published in 1998 by the TU Darmstadt

University Press.

(4) Hofmann’s New Orleans street scence appeared as: Cover of

the AMS Notices, October 2006, an issue publicizing the national

meeting of the AMS in New Orleans in January, 2007.

(5) Thanks to Sid Morris for pictures of Sheriff Hofmann and the

Hofmann-Morris Company and Karl Hofmann for a scan

of his drawing of the Mexican Bandit (Karl’s original (1986) is

property of Al Stralka).
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