3. Übung zur Vorlesung "Evolutionsgleichungen" im WS 2016/17

Präsenzaufgabe 1:

Es seien $\varphi \in C^2(\mathbb{R})$ und $\psi \in C^1(\mathbb{R})$ gegeben.

i) Finde eine Lösung $u \in C^2(\mathbb{R}^2)$ der eindimensionalen Wellengleichung

$$u_{tt}(x,t) - u_{xx}(x,t) = 0$$
 für alle $(x,t) \in \mathbb{R}^2$,

die den Anfangsbedingungen

$$u(x,0) = \varphi(x), \quad u_t(x,0) = \psi(x), \quad x \in \mathbb{R},$$

genügt.

- ii) Zeige: Die in (i) gefundene Lösung u ist eindeutig.
- iii) Seien zusätzlich $\varphi', \psi \in L^2(\mathbb{R})$ sowie für alle $t \in \mathbb{R}$ die "Energie der Welle u zum Zeitpunkt t" gegeben durch

$$E(t) := \frac{1}{2} \int_{\mathbb{R}} (|u_t(x,t)|^2 + |u_x(x,t)|^2) \, dx.$$

Zeige mithilfe von (i), dass E konstant gleich

$$E(0) = \frac{1}{2} \int_{\mathbb{D}} (|\varphi'(x)|^2 + |\psi(x)|^2) dx$$

ist.

- iv) Gegeben seien nun ein fester Punkt $(\xi, \tau) \in \mathbb{R}^2$ und zwei weitere Funktionen $\widetilde{\varphi} \in C^2(\mathbb{R})$ und $\widetilde{\psi} \in C^1(\mathbb{R})$ sowie eine Lösung \widetilde{u} der Wellengleichung, die den Anfangsbedingungen $\widetilde{u}(x,0) = \widetilde{\varphi}(x)$, $u_t(x,0) = \widetilde{\psi}(x)$, $x \in \mathbb{R}$, genügt. In welchen Punkten sollten φ mit $\widetilde{\varphi}$ und $\widetilde{\psi}$ mit ψ übereinstimmen, damit $u(\xi,\tau) = \widetilde{u}(\xi,\tau)$ gilt?
- v) Welches $u \in C^2(\mathbb{R}^2)$ löst die Wellengleichung für die Anfangsbedingungen

$$u(x,0) = e^{-x^2}, \quad u_t(x,0) = (1+x^2)^{-1}$$
?

Präsenzaufgabe 2:

Es seien $u_0 \in C^2(\mathbb{R})$ und $u_{0t} \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})$ mit

$$\int_{-\infty}^{\infty} u_{0t}(x)dx = 0$$

und

$$u_0(x) \to -2$$
 für $x \to -\infty$ sowie $u_0(x) \to 8$ für $x \to +\infty$.

Beschreibe das Langzeitverhalten der Lösung u = u(x,t) von (\star) für festes $x \in \mathbb{R}$.

Präsenzaufgabe 3:

Zeige, dass für jedes $v\in C^0(\mathbb{R}^3)$ die Funktion $[0,\infty)\ni r\mapsto \int_{B_r(0)}v$ mit

$$\frac{d}{dr} \int_{B_r(0)} v = \int_{\partial B_r(0)} v \qquad \text{für alle } r \ge 0$$

differenzierbar ist. Ist diese Abbildung sogar stetig differenzierbar?

Hausaufgabe 1:

Es seien $u_0 \in C^2(\mathbb{R}) \cap L^1(\mathbb{R})$ und $u_{0t} \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})$ so, dass

$$\int_{-\infty}^{\infty} u_{0t}(x)dx = 0$$

ist. Zeige, dass es dann zu jedem $x \in \mathbb{R}$ eine Folge $(t_k)_{k \in \mathbb{N}} \subset [0, \infty)$ mit $t_k \to \infty$ für $k \to \infty$ gibt derart, dass die Lösung u von

$$\begin{cases} u_{tt} = u_{xx}, & x \in \mathbb{R}, \ t > 0, \\ u(x,0) = u_0(x), & x \in \mathbb{R}, \\ u_t(x,0) = u_{0t}(x), & x \in \mathbb{R}, \end{cases}$$
 (*)

die Eigenschaft

$$u(x,t_k) \to 0$$
 für $k \to \infty$

hat.

Hausaufgabe 2:

Für $v \in C^0(\mathbb{R}^3), x \in \mathbb{R}^3$ und r > 0 sei

$$S(v,x,r) := \frac{1}{|\partial B_r(x)|} \int_{\partial B_r(x)} v(y) dy.$$

- a) Zeige, dass für jedes $v \in C^0(\mathbb{R}^3)$ und alle $x \in \mathbb{R}^3$ gilt $S(v, x, r) \to v(x)$ für $r \searrow 0$.
- b) Sei $v \in C^k(\mathbb{R}^3)$ für ein $k \in \mathbb{N}$. Beweise, dass dann für jedes $\alpha \in \mathbb{N}_0^3$ mit $|\alpha| \leq k$ und alle $j \in \{1,...,k\}$ die partiellen Ableitungen $D_x^{\alpha}S$ und $(\frac{\partial}{\partial r})^jS$ existieren.
- c) Zeige, dass im Fall $v \in C^1(\mathbb{R}^3)$ gilt

$$S_r(v, x, r) \to 0$$
 für $r \searrow 0$.

Schließe, dass für jedes solche v und alle $x \in \mathbb{R}^3$ die Funktion $(0, \infty) \ni r \mapsto S(v, x, r)$ zu einer bzgl. r = 0 symmetrischen, auf ganz \mathbb{R} stetig differenzierbaren Funktion fortgesetzt werden kann.

Hausaufgabe 3:

i) Sei $u \in C^2([0,\pi] \times \mathbb{R})$ eine Lösung der Wellengleichung

$$u_{tt}(x,t) - u_{xx}(x,t) = 0, \qquad (x,t) \in (0,\pi) \times \mathbb{R},$$

die den Randbedingungen

$$u(0,t) = u(\pi,t) = 0, \qquad t \in \mathbb{R},$$

genügt. Zeige, dass auch hier die Energie

$$E \colon \mathbb{R} \to [0, \infty), \quad t \mapsto E(t) := \frac{1}{2} \int_{(0, \pi)} (|u_t(x, t)|^2 + |u_x(t, x)|^2) \, dx$$

der Welle u konstant ist.

ii) Wir wollen nun die Differenzierbarkeitsvoraussetzungen an \boldsymbol{u} zu

$$u \in C^2((0,\pi) \times \mathbb{R}) \cap C^1([0,\pi] \times \mathbb{R})$$

abschwächen. Zeige, dass die Energie auch unter diesen abgeschwächten Voraussetzungen konstant ist. (Tipp: Betrachte $E_{\varepsilon}(t) := \frac{1}{2} \int_{(\varepsilon, \pi - \varepsilon)} (|u_t|^2 + |u_x|^2)$ mit $\varepsilon \searrow 0$.)