12. Übung zur Funktionentheorie im SS 2014

Präsenzaufgabe 1:

Es seien $G \subset \mathbb{C}$ ein Gebiet, $f: G \to \mathbb{C}$ holomorph, $z_0 \in G$ eine Nullstelle von f und $m \in \mathbb{N}$. Zeige, dass die beiden folgenden Aussagen äquivalent sind:

- (i) Die Ordnung der Nullstelle z_0 von f ist m.
- (ii) Es gibt eine holomorphe Funktion $g: G \to \mathbb{C}$ mit $g(z_0) \neq 0$ und $f(z) = (z z_0)^m g(z)$ für alle $z \in G$.

Präsenzaufgabe 2:

Untersuche jeweils, von welchem Typ die Singularität von f in z_0 ist. Gib, falls eine hebbare Singularität vorliegt, eine Fortsetzung f von f an, die in einer Umgebung von z_0 holomorph ist. Bestimme, falls ein Pol vorliegt, die Ordnung des Pols von f in z_0 .

a)
$$f(z) := \frac{3i}{(z-i)(z+2)^2}, \ z_0 := i,$$
 b) $f(z) := \frac{3i}{(z-i)(z+2)^2}, \ z_0 := -2,$
c) $f(z) := \frac{1-z}{\log z}, \ z_0 := 1,$ d) $f(z) := \sin(\frac{1}{z}), \ z_0 := 0,$

b)
$$f(z) := \frac{3i}{(z-i)(z+2)^2}, \ z_0 := -2.$$

c)
$$f(z) := \frac{1-z}{\log z}, \ z_0 := 1,$$

d)
$$f(z) := \sin(\frac{1}{z}), z_0 := 0,$$

$$e)$$
 $f(z) := \frac{e^z}{z^2}, z_0 := 0.$

Präsenzaufgabe 3:

Zeige: Eine (isolierte) Singularität z_0 ist genau dann ein Pol der Ordnung m von f, wenn r > 0, $C_1 > 0$ und $C_2 > 0$ existieren, sodass

$$C_1|z-z_0|^{-m} \le |f(z)| \le C_2|z-z_0|^{-m}$$

gilt.

Hausübungen

Abgabe: 8.7.2014, 5:55 Uhr

Hausaufgabe 1:

1+2+3 Punkte

Für ein r > 0 sei auf $B_r(0) \setminus \{0\}$ die Funktion f durch

$$f(z) = \sum_{n=0}^{\infty} a_n z^{-n}$$

definiert. (Darin sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ so gewählt, dass die Reihe in $B_r(0)\setminus\{0\}$ kompakt konvergiere.)

- i) Zeige: f ist holomorph und hat eine Singularität in 0.
- ii) Unter welcher Bedingung an die a_n hat f eine hebbare Singularität in 0?
- iii) Zeige: f hat eine wesentliche Singularität in 0 genau dann, wenn unendlich viele der a_n von null verschieden sind.

Hausaufgabe 2: 3+3 Punkte

Es seien $f_1(z) := \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!}$ und $f_2(z) := \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k-1}}{(2k+1)!}$. Bestimme für $j \in \{1,2\}$ jeweils das Gebiet $G_j \subset \mathbb{C}$ maximal, so dass $f_j : G_j \to \mathbb{C}$ holomorph ist. Stelle für $j \in \{1,2\}$ die Funktion f_j mit Hilfe der sin-Funktion dar und gib für die so erhaltene Funktion an, ob sie auf ganz \mathbb{C} holomorph fortsetzbar ist und von welchem Typ die Singularität in $z_0 = 0$ ist.

Hausaufgabe 3: 6 Punkte

Es seien $G \subset \mathbb{C}$ ein Gebiet, $f: G \to \mathbb{C}$ holomorph mit $f \not\equiv 0$, $z_0 \in G$ eine Nullstelle von f und $m \in \mathbb{N}$. Zeige, dass es r > 0 gibt, so dass $\frac{1}{f}$ holomorph in $B_r(z_0) \setminus \{z_0\}$ ist, und beweise, dass die beiden folgenden Aussagen äquivalent sind:

- (i) f hat in z_0 eine Nullstelle der Ordnung m.
- (ii) $\frac{1}{f}$ hat in z_0 einen Pol der Ordnung m.

Hausaufgabe 4: 12 Punkte

Untersuche jeweils, von welchem Typ die Singularität von f in z_0 ist. Gib, falls eine hebbare Singularität vorliegt, eine Fortsetzung \tilde{f} von f an, die in einer Umgebung von z_0 holomorph ist. Bestimme, falls ein Pol vorliegt, die Ordnung des Pols von f in z_0 .

(a)
$$f(z) := \frac{e^{iz} - 1}{5z}, z_0 := 0,$$

(b)
$$f(z) := e^{\frac{1}{z^2}}, z_0 := 0,$$

(c)
$$f(z) := \frac{4}{\sin^3(z)}, z_0 := \pi,$$

(d)
$$f(z) := \frac{\cos(\frac{z}{2})}{\sin^2(z)}, z_0 := -\pi,$$

(e)
$$f(z) := \frac{z^2+1}{e^z-1}, z_0 := 0,$$

(f)
$$f(z) := z^2 \cdot \cos(\frac{1}{z}), z_0 := 0.$$

Hausaufgabe 5: 4 Punkte

f habe in 0 einen Pol. Zeige: Die durch

$$g(z) = \frac{zf'(z)}{f(z)}$$

definierte Funktion hat in 0 eine hebbare Singularität.

Hausaufgabe 6: 3 Punkte

Seien $f,g\colon D\to\mathbb{C}$ holomorphe Funktionen, die in $z_0\in D$ eine Nullstelle derselben Ordnung m haben. Zeige: Dann hat $h:=\frac{f}{g}$ eine hebbare Singularität in z_0 und es gilt

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)}.$$