Lösungsvorschlag zu den Hausaufgaben der 12. Übung

Hausaufgabe 1: 1+2+3 Punkte

Für ein r > 0 sei auf $B_r(0) \setminus \{0\}$ die Funktion f durch

$$f(z) = \sum_{n=0}^{\infty} a_n z^{-n}$$

definiert. (Darin sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ so gewählt, dass die Reihe in $B_r(0)\setminus\{0\}$ kompakt konvergiere.)

- i) Zeige: f ist holomorph und hat eine Singularität in 0.
- ii) Unter welcher Bedingung an die a_n hat f eine hebbare Singularität in 0?
- iii) Zeige: f hat eine wesentliche Singularität in 0 genau dann, wenn unendlich viele der a_n von null verschieden sind.

Lösung:

- i) z^n als Polynom und damit auch $\frac{1}{z^n}$ ist holomorph auf $B_r(0) \setminus \{0\}$, auch ein Vorfaktor a_n oder endliche Summenbildung ändert nichts daran. Dass der Limes einer kompakt konvergenten Folge holomorpher Funktionen holomorph ist, haben wir auf dem letzten Zettel gezeigt. (Blatt 11, PA 3)
- ii) Falls $a_n=0$ für $n\geq 1$. Dann nämlich ist $\lim_{z\to 0} f(z)=a_0$. Auch muss, wenn f holomorph in 0 fortsetzbar ist, $a_n=0$ für n>0 sein. Denn auch $z\mapsto z^kf(z)$ wäre holomorph und (für $1\leq k\in\mathbb{N}$) damit (für ein $\rho\in(0,r)$)

$$0 = 0^k f(0) = \frac{1}{2\pi i} \int_{\partial B_{\rho}(0)} z^k \frac{1}{z} \sum_{n=0}^{\infty} a_n z^{-n} = \sum_{n=0}^{\infty} \frac{1}{2\pi i} a_n \int_{\partial B_{\rho}(0)} \frac{1}{z^{n-k+1}} = a_k.$$

iii) Wenn nur endlich viele a_n von null verschieden sind (und darunter eines mit $n \ge 1$ ist), hat offenbar f einen Pol in 0. Wenn f in 0 eine hebbare Singularität hat, sind nur endlich viele der a_n (nämlich nur a_0) ungleich 0. Wenn f einen Pol in 0 hat, gilt nach Korollar 7.7, dass für ein $m \in \mathbb{N}$ und $a_0, \ldots, a_m \in \mathbb{C}$ die Funktion

$$z \mapsto f(z) - \sum_{n=0}^{m} a_n z^{-n} = \sum_{n=m+1}^{\infty} a_n z^{-n}$$

eine hebbare Singularität in 0 hat. Nach den Überlegungen aus ii) muss damit aber $a_n = 0$ für n > m gelten.

Hausaufgabe 2: 3+3 Punkte

Es seien $f_1(z) := \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!}$ und $f_2(z) := \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k-1}}{(2k+1)!}$. Bestimme für $j \in \{1,2\}$ jeweils das Gebiet $G_j \subset \mathbb{C}$ maximal, so dass $f_j : G_j \to \mathbb{C}$ holomorph ist. Stelle für $j \in \{1,2\}$ die Funktion f_j mit Hilfe der sin-Funktion dar und gib für die so erhaltene Funktion an, ob sie auf ganz \mathbb{C} holomorph fortsetzbar ist und von welchem Typ die

Singularität in $z_0 = 0$ ist.

Lösung

Es gilt $f_1(z) = \sum_{n=0}^{\infty} a_n z^n$ mit $a_{2k} := \frac{(-1)^k}{(2k+1)!}$ und $a_{2k+1} := 0$ für $k \in \mathbb{N}_0$. Also ist f_1 eine Potenzreihe und es gilt

$$0 \le \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{k \to \infty} \sqrt[2k]{|a_{2k}|} = \lim_{k \to \infty} \sqrt[2k]{\frac{1}{(2k+1)!}} \le \lim_{k \to \infty} \frac{1}{\sqrt[2k]{(2k)!}} = 0.$$

Daher hat die Potenzreihe $\sum_{n=0}^{\infty} a_n z^n$ den Konvergenzradius ∞ , so dass f_1 in ganz \mathbb{C} wohldefiniert und holomorph ist. Also gilt $G_1 = \mathbb{C}$.

Weiter gilt $f_2(z) = \frac{f_1(z)}{z}$ für $z \in \mathbb{C} \setminus \{0\}$, so dass aus dem gerade gezeigten folgt, dass f_2 auf $\mathbb{C} \setminus \{0\}$ wohldefiniert und holomorph ist. Wegen $f_1(0) = a_0 = \frac{(-1)^0}{1!} = 1$ gilt

$$|f_2(z)| = |f_1(z)| \cdot \frac{1}{|z|} \to |f_1(0)| \cdot \infty = \infty \qquad \text{für } z \to 0 \, (z \neq 0).$$

Somit hat f_2 in $z_0 = 0$ einen Pol und ist daher nicht zu einer holomorphen Funktion auf ganz \mathbb{C} fortsetzbar. Also gilt $G_2 = \mathbb{C} \setminus \{0\}$.

Nach Definition 3.10 gilt $\sin(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$ für $z \in \mathbb{C}$. Somit gilt

$$f_1(z) = \frac{\sin(z)}{z}$$
 und $f_2(z) = \frac{\sin(z)}{z^2}$ für $z \in \mathbb{C} \setminus \{0\}$.

Da f_1 holomorph in $\mathbb C$ ist, ist die Funktion $f:\mathbb C\setminus\{0\}\to\mathbb C$, $f(z):=\frac{\sin(z)}{z}$ für $z\in\mathbb C\setminus\{0\}$ durch die Definition $f(0):=f_1(0)=1$ auf $\mathbb C$ holomorph fortsetzbar. Da f_1 holomorph in $\mathbb C$ ist, ist f in $B_1(0)\setminus\{0\}$ beschränkt und hat somit eine hebbare Singularität in $z_0=0$.

Die Funktion $f_2(z) = \frac{\sin(z)}{z^2}$ hat wie oben gezeigt einen Pol in $z_0 = 0$ und ist daher nicht holomorph fortsetzbar auf \mathbb{C} . Weiter gilt $f_2(z) = z^{-1} \cdot f_1(z)$ für $z \in \mathbb{C} \setminus \{0\}$. Da f_1 holomorph in \mathbb{C} ist und $f_1(0) = 1 \neq 0$ gilt, hat somit $f_2(z) = \frac{\sin(z)}{z^2}$ in $z_0 = 0$ einen Pol der Ordnung 1 nach Definition 7.8.

Hausaufgabe 3: 6 Punkte

Es seien $G \subset \mathbb{C}$ ein Gebiet, $f: G \to \mathbb{C}$ holomorph mit $f \not\equiv 0$, $z_0 \in G$ eine Nullstelle von f und $m \in \mathbb{N}$. Zeige, dass es r > 0 gibt, so dass $\frac{1}{f}$ holomorph in $B_r(z_0) \setminus \{z_0\}$ ist, und beweise, dass die beiden folgenden Aussagen äquivalent sind:

- (i) f hat in z_0 eine Nullstelle der Ordnung m.
- (ii) $\frac{1}{t}$ hat in z_0 einen Pol der Ordnung m.

Lösung:

Da G offen ist mit $z_0 \in G$, gibt es R > 0 mit $\overline{B_R(z_0)} \subset G$. Da $\overline{B_R(z_0)}$ kompakt ist und $f \not\equiv 0$ gilt, hat f nach dem Identitätssatz endliche viele Nullstellen in $\overline{B_R(z_0)}$. Sind z_0, \ldots, z_n für ein $m \in \mathbb{N}_0$ diese Nullstellen von f in $\overline{B_R(z_0)}$, so ist z_0 die einzige Nullstelle von f in $B_r(z_0)$ für

$$r := \begin{cases} R, & \text{falls } m = 0, \\ \frac{1}{2} \cdot \min\{|z_k - z_0| \mid k \in \{1, \dots, m\}\}, & \text{falls } m \in \mathbb{N}, \end{cases}$$

wobei mit dieser Definition r > 0 und $B_r(z_0) \subset B_R(z_0) \subset G$ gilt. Daher ist f holomorph in $B_r(z_0) \setminus \{z_0\}$ und hat in diesem Gebiet keine Nullstelle, so dass auch $\frac{1}{f}$ holomorph in $B_r(z_0) \setminus \{z_0\}$ ist.

Wir zeigen nun die Äquivalenz der Aussagen (i) und (ii).

"(i) \Rightarrow (ii)": f habe in z_0 eine Nullstelle der Ordnung m. Dann gibt es nach PA1 eine holomorphe Funktion $g:G\to\mathbb{C}$ mit $g(z_0)\neq 0$ und $f(z)=(z-z_0)^mg(z)$ für $z\in G$. Da f in $B_r(z_0)\setminus\{z_0\}$ keine Nullstelle hat, gilt $g(z)\neq 0$ für alle $z\in B_r(z_0)$. Daher ist $h:=\frac{1}{g}$ holomorph in $B_r(z_0)$ mit $h(z_0)\neq 0$ und $(\frac{1}{f})(z)=(z-z_0)^{-m}\cdot h(z)$ für alle $z\in B_r(z_0)\setminus\{z_0\}$. Ist $\frac{1}{f}$ in einem Gebiet $(\tilde{G}\setminus\{z_0\})\subset G$ mit $B_r(z_0)\subset \tilde{G}$ holomorph, so ist die Funktion

$$\tilde{h}(z) := \begin{cases} h(z), & \text{falls } z \in B_r(z_0), \\ \frac{(z-z_0)^m}{f(z)}, & \text{falls } z \in \tilde{G} \setminus B_r(z_0), \end{cases}$$

holomorph in \tilde{G} . Denn wegen $\tilde{h}=h$ in $B_r(z_0)$ ist \tilde{h} holomorph in $B_r(z_0)$ und außerdem ist die Funktion $\frac{(z-z_0)^m}{f(z)}$ holomorph in $\tilde{G}\setminus\{z_0\}$ und stimmt in diesem Gebiet mit \tilde{h} überein. Somit ist \tilde{h} in jedem $z\in\tilde{G}$ komplex differenzierbar und damit holomorph in \tilde{G} . Weiter gilt $\tilde{h}(z_0)=h(z_0)\neq 0$ und $(\frac{1}{f})(z)=(z-z_0)^{-m}\cdot \tilde{h}(z)$ für alle $z\in\tilde{G}\setminus\{z_0\}$. Nach Definition 7.8 hat somit $\frac{1}{f}$ in z_0 einen Pol der Ordnung m.

"(ii) \Rightarrow (i)": $\frac{1}{f}$ habe in z_0 einen Pol der Ordnung m. Dann gibt es nach Definition 7.8 eine holomorphe Funktion $h: B_r(z_0) \to \mathbb{C}$ mit $h(z_0) \neq 0$ und $(\frac{1}{f})(z) = (z-z_0)^{-m} \cdot h(z)$ für alle $z \in B_r(z_0) \setminus \{z_0\}$. Insbesondere gilt dann $h(z) \neq 0$ für alle $z \in B_r(z_0)$. Somit ist die Funktion $g:=\frac{1}{h}$ holomorph in $B_r(z_0)$ mit $g(z_0) \neq 0$ und $f(z) = (z-z_0)^m \cdot g(z)$ für alle $z \in B_r(z_0) \setminus \{z_0\}$. Wegen $f(z_0) = 0$ und $m \in \mathbb{N}$ gilt dann $f(z) = (z-z_0)^m \cdot g(z)$ für alle $z \in B_r(z_0)$. Weiter ist die Funktion

$$\tilde{g}(z) := \begin{cases} g(z), & \text{falls } z \in B_r(z_0), \\ \frac{f(z)}{(z-z_0)^m}, & \text{falls } z \in G \setminus B_r(z_0), \end{cases}$$

holomorph in G. Denn wegen $\tilde{g}=g$ in $B_r(z_0)$ ist \tilde{g} holomorph in $B_r(z_0)$ und außerdem ist die Funktion $\frac{f(z)}{(z-z_0)^m}$ holomorph in $G\setminus\{z_0\}$ und stimmt in diesem Gebiet mit \tilde{g} überein. Somit ist \tilde{g} in jedem $z\in G$ komplex differenzierbar und damit holomorph in G. Weiter gilt $\tilde{g}(z_0)=g(z_0)\neq 0$ und $f(z)=(z-z_0)^m\cdot \tilde{g}(z)$ für alle $z\in G$. Somit hat f in z_0 eine Nullstelle der Ordnung m.

Hausaufgabe 4: 12 Punkte

Untersuche jeweils, von welchem Typ die Singularität von f in z_0 ist. Gib, falls eine hebbare Singularität vorliegt, eine Fortsetzung \tilde{f} von f an, die in einer Umgebung von z_0 holomorph ist. Bestimme, falls ein Pol vorliegt, die Ordnung des Pols von f in z_0 .

- (a) $f(z) := \frac{e^{iz} 1}{5z}, z_0 := 0,$
- (b) $f(z) := e^{\frac{1}{z^2}}, z_0 := 0,$
- (c) $f(z) := \frac{4}{\sin^3(z)}, z_0 := \pi,$
- (d) $f(z) := \frac{\cos(\frac{z}{2})}{\sin^2(z)}, z_0 := -\pi,$
- (e) $f(z) := \frac{z^2+1}{e^z-1}, z_0 := 0,$
- (f) $f(z) := z^2 \cdot \cos(\frac{1}{z}), z_0 := 0.$

Lösung:

(a) Mit $g(z) := e^{iz}$ für $z \in \mathbb{C}$ ist g holomorph in \mathbb{C} . Daher gilt

$$\lim_{z \to 0, z \neq 0} f(z) \quad = \quad \frac{1}{5} \cdot \lim_{z \to 0, z \neq 0} \frac{g(z) - g(0)}{z} = \frac{1}{5} \cdot g'(0) = \frac{1}{5} i \cdot e^{i \cdot 0} = \frac{i}{5}.$$

Somit ist f durch

$$\tilde{f}(z) := \begin{cases} \frac{i}{5}, & \text{falls } z = 0, \\ f(z), & \text{falls } z \in \mathbb{C} \setminus \{0\}, \end{cases}$$

stetig auf \mathbb{C} fortsetzbar, da f in $\mathbb{C} \setminus \{0\}$ holomorph und daher auch stetig ist. Somit ist \tilde{f} in $\overline{B_1(0)}$ als stetige Funktion beschränkt. Insbesondere ist daher f in $B_1(0) \setminus \{0\}$ beschränkt und hat daher in $z_0 = 0$ eine hebbare Singularität. Daher hat f nach Satz 7.5 eine eindeutige holomorphe Fortsetzung auf \mathbb{C} . Diese Fortsetzung muss insbesondere stetig in \mathbb{C} sein und daher mit \tilde{f} übereinstimmen. Also ist \tilde{f} die holomorphe Fortsetzung von f auf \mathbb{C} .

(b) f ist holomorph in $\mathbb{C} \setminus \{0\}$ und es gilt

$$f(x) = e^{\frac{1}{x^2}} \to +\infty \qquad \text{für } x \in \mathbb{R} \setminus \{0\}, \, x \to 0.$$

Somit ist f unbeschränkt in $B_r(0) \setminus \{0\}$ für jedes r > 0 und hat daher keine hebbare Singularität in $z_0 = 0$. Weiter gilt

$$f(iy) = e^{-\frac{1}{y^2}} \to 0 \qquad \text{für } y \in \mathbb{R} \setminus \{0\}, \, y \to 0.$$

Daher gilt $|f(z)| \not\to \infty$ für $z \to 0$, so dass f auch keinen Pol in z_0 hat. Somit hat f eine wesentliche Singularität in $z_0 = 0$.

(c) Es sei $g(z) := \sin^3(z)$ für $z \in \mathbb{C}$. Dann ist g eine ganze Funktion und es gilt für $z \in \mathbb{C}$

$$g'(z) = 3\sin^2(z)\cos(z), g''(z) = 6\sin(z)\cos^2(z) - 3\sin^3(z),$$

$$g'''(z) = 6\cos^3(z) - 12\sin^2(z)\cos(z) - 9\sin^2(z)\cos(z)$$

$$= 6\cos^3(z) - 21\sin^2(z)\cos(z).$$

Wegen $\sin(\pi) = 0$ und $\cos(\pi) = -1$ folgt daher $g(\pi) = 0$, $g'(\pi) = 0$, $g''(\pi) = 0$ und $g'''(\pi) = -6 \neq 0$. Somit hat $g(z) = \sin^3(z)$ nach Definition 6.6 in $z_0 = \pi$ eine Nullstelle der Ordnung 3. Nach Aufgabe 3 hat somit $\frac{1}{\sin^3(z)}$ einen Pol der Ordnung 3 in $z_0 = \pi$. Dann hat auch $f(z) = \frac{4}{\sin^3(z)}$ einen Pol der Ordnung 3 in $z_0 = \pi$, da ein konstanter Faktor den Typ der Singularität nicht verändert. (Nach Definition 7.8 gibt es eine in $B_{\pi}(\pi)$ holomorphe Funktion h mit $h(z_0) \neq 0$ und $\frac{1}{\sin^3(z)} = (z - \pi)^{-3}h(z)$ für $z \in B_{\pi}(\pi) \setminus \{\pi\}$. Dann ist aber auch $\tilde{h} := 4h$ holomorph in $B_{\pi}(\pi)$ und erfüllt $\tilde{h}(z_0) \neq 0$ und $f(z) = (z - \pi)^{-3}\tilde{h}(z)$ für $z \in B_{\pi}(\pi) \setminus \{\pi\}$, so dass f einen Pol der Ordnung 3 in π hat.)

(d) Es seien $g(z) := \cos(\frac{z}{2})$ und $h(z) := \sin^2(z)$ für $z \in \mathbb{C}$. Dann sind g und h ganze Funktionen und es gilt für $z \in \mathbb{C}$

$$g'(z) = -\frac{1}{2}\sin\left(\frac{z}{2}\right),$$

$$h'(z) = 2\sin(z)\cos(z), \quad h''(z) = 2\cos^2(z) - 2\sin^2(z).$$

Wegen $\cos(-\frac{\pi}{2})=0=\sin(-\pi)$ und $\sin(-\frac{\pi}{2})=-1=\cos(-\pi)$ gilt also $g(-\pi)=0,\ g'(-\pi)=\frac{1}{2}\neq 0$ sowie $h(-\pi)=0,\ h'(-\pi)=0$ und $h''(-\pi)=2\neq 0$. Daher hat nach Definition 6.6 g eine Nullstelle der Ordnung 1 und h eine Nullstelle der Ordnung 2 in $z_0=-\pi$. Also gibt es nach PA1 auf $\mathbb C$ holomorphe Funktionen k und l mit $k(z_0)\neq 0,\ l(z_0)\neq 0$ sowie $g(z)=(z-z_0)k(z)$ und $h(z)=(z-z_0)^2l(z)$ für $z\in\mathbb C$. Wegen $\sin(z)\neq 0$ für $z\in B_\pi(-\pi)\setminus\{-\pi\}$ gilt somit $l(z)\neq 0$ für $z\in B_\pi(-\pi)$, so dass $m:=\frac{k}{l}$ holomorph in $B_\pi(-\pi)$ ist. Weiter gilt $m(z_0)=\frac{k(z_0)}{l(z_0)}\neq 0$ sowie

$$f(z) = \frac{g(z)}{h(z)} = \frac{(z - z_0)k(z)}{(z - z_0)^2 l(z)} = (z - z_0)^{-1} m(z) \qquad \text{für } z \in B_{\pi}(-\pi) \setminus \{\pi\}.$$

Daher hat f nach Definition 7.8 einen Pol der Ordnung 1 in $z_0 = -\pi$.

(e) Mit $g(z) := e^z - 1$ für $z \in \mathbb{C}$ ist g eine ganze Funktion mit $g'(z) = e^z$ für $z \in \mathbb{C}$. Somit gilt g(0) = 0 und $g'(0) = 1 \neq 0$, so dass g nach Definition 6.6 eine Nullstelle der Ordnung 1 in $z_0 = 0$ hat. Nach Aufgabe 3 hat $\frac{1}{g}$ somit einen Pol der Ordnung 1. Wegen Definition 7.8 und $g(z) \neq 0$ für $z \in B_{2\pi}(0) \setminus \{0\}$ gibt es also eine in $B_{2\pi}(0)$ holomorphe Funktion h mit $h(0) \neq 0$ und $\frac{1}{g(z)} = z^{-1}h(z)$ für $z \in B_{2\pi}(0) \setminus \{0\}$. Dann ist $k(z) := (z^2 + 1) \cdot h(z)$ holomorph in $B_{2\pi}(0)$ mit $k(0) = 1 \cdot h(0) \neq 0$ und

$$f(z) = \frac{z^2 + 1}{a(z)} = z^{-1} \cdot k(z)$$
 für $z \in B_{2\pi}(0) \setminus \{0\}.$

Daher hat f nach Definition 7.8 einen Pol der Ordnung 1 in $z_0 = 0$.

(f) f ist holomorph in $\mathbb{C} \setminus \{0\}$ und es gilt

$$|f(x)| = x^2 \cdot \left| \cos \left(\frac{1}{x} \right) \right| \le x^2 \cdot 1 = x^2 \to 0 \qquad \text{für } x \in \mathbb{R} \setminus \{0\}, \, x \to 0.$$

Somit gilt $|f(z)| \not\to \infty$ für $z \to 0$, so dass f keinen Pol in $z_0 = 0$ hat. Weiter gilt für $y \in (0,1) \subset \mathbb{R}$ mit Proposition 3.11

$$|f(iy)| = \left| -y^2 \cdot \frac{1}{2} \left(e^{i \cdot \frac{1}{iy}} + e^{-i \cdot \frac{1}{iy}} \right) \right| = \frac{y^2}{2} \cdot \left| e^{\frac{1}{y}} + e^{-\frac{1}{y}} \right| = \frac{1}{2} \cdot \left(\frac{1}{y} \right)^{-2} \cdot \left(e^{\frac{1}{y}} + e^{-\frac{1}{y}} \right).$$

Wegen $\frac{1}{y} \to +\infty$ für $y \searrow 0$ folgt

$$|f(iy)| \to \infty$$
 für $y \in (0,1), y \searrow 0$.

Daher ist f unbeschränkt in $B_1(0) \setminus \{0\}$ und hat somit in $z_0 = 0$ keine hebbare Singularität. Nach Definition 7.3 hat f somit eine wesentliche Singularität in $z_0 = 0$.

Hausaufgabe 5: 4 Punkte

f habe in 0 einen Pol. Zeige: Die durch

$$g(z) = \frac{zf'(z)}{f(z)}$$

definierte Funktion hat in 0 eine hebbare Singularität.

Lösung:

Da f einen Pol in 0 hat, gibt es nach Corollar 7.7 ein minimales $m \in \mathbb{N}$ und eine holomorphe Funktion h mit $f(z) = z^{-m}h(z)$ und $h(z) = \sum_{n=0}^{\infty} a_n z^n$. (Dabei sichert die Minimalität von m, dass $a_0 \neq 0$; andernfalls wähle $\tilde{h}(z) = \frac{h(z)}{z}$.)

Damit ist

$$\lim_{z \to 0} \frac{zf'(z)}{f(z)} = \lim_{z \to 0} \frac{z(-mz^{-m-1}h(z) + z^{-m}h'(z))}{z^{-m}h(z)} = -m + \lim_{z \to 0} \frac{zh'(z)}{h(z)}$$
$$= m + \lim_{z \to 0} \frac{\sum_{n=0}^{\infty} na_n z^n}{\sum_{n=0}^{\infty} a_n z^n} = m,$$

also g stetig (und damit holomorph) in 0 fortsetzbar; die Singularität ist daher hebbar.

Hausaufgabe 6: 3 Punkte

Seien $f, g: D \to \mathbb{C}$ holomorphe Funktionen, die in $z_0 \in D$ eine Nullstelle derselben Ordnung m haben. Zeige: Dann hat $h:=\frac{f}{g}$ eine hebbare Singularität in z_0 und es gilt

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)}.$$

Lösung:

Es ist nach Definition der Nullstellenordnung, wegen Satz 6.2 und nach Voraussetzung

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=m}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = (z - z_0)^m \sum_{n=0}^{\infty} \frac{f^{(m+n)}(z_0)}{(m+n)!} (z - z_0)^n$$

sowie

$$g(z) = (z - z_0)^m \sum_{n=0}^{\infty} \frac{g^{(m+n)}(z_0)}{(m+n)!} (z - z_0)^n,$$

wobe
i $f^{(m)}(z_0) \neq 0 \neq g^{(m)}(z_0).$ Damit folgt

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{(z - z_0)^m \sum_{n=0}^{\infty} \frac{f^{(m+n)}(z_0)}{(m+n)!} (z - z_0)^n}{(z - z_0)^m \sum_{n=0}^{\infty} \frac{g^{(m+n)}(z_0)}{(m+n)!} (z - z_0)^n}$$

$$= \lim_{z \to z_0} \frac{\sum_{n=0}^{\infty} \frac{f^{(m+n)}(z_0)}{(m+n)!} (z - z_0)^n}{\sum_{n=0}^{\infty} \frac{g^{(m+n)}(z_0)}{(m+n)!} (z - z_0)^n}$$

$$= \frac{f^{(m)}(z_0)}{\frac{g^{(m)}(z_0)}{m!}}$$

$$= \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)}.$$