Lösungsvorschlag zu den Präsenzaufgaben der 12. Übung

Präsenzaufgabe 1:

Es seien $G \subset \mathbb{C}$ ein Gebiet, $f: G \to \mathbb{C}$ holomorph, $z_0 \in G$ eine Nullstelle von f und $m \in \mathbb{N}$. Zeige, dass die beiden folgenden Aussagen äquivalent sind:

- (i) Die Ordnung der Nullstelle z_0 von f ist m.
- (ii) Es gibt eine holomorphe Funktion $g: G \to \mathbb{C}$ mit $g(z_0) \neq 0$ und $f(z) = (z z_0)^m g(z)$ für alle $z \in G$.

Lösung:

"(i) \Rightarrow (ii)": Es sei m die Ordnung der Nullstelle z_0 von f. Nach Definition 6.6 gilt dann $f^{(k)}(z_0) = 0$ für alle $k \in \{0, 1, \ldots, m-1\}$ und $f^{(m)}(z_0) = 0$. Da G offen ist, gibt es R > 0 mit $B_R(z_0) \subset G$. Somit gilt nach Satz 6.2 $f(z) = \sum_{k=0}^{\infty} a_k(z-z_0)^k$ für $z \in B_R(z_0)$ mit $a_k := \frac{f^{(k)}(z_0)}{k!}$ für $k \in \mathbb{N}_0$. Es folgt also $a_k = 0$ für $k \in \{0, \ldots, m-1\}$ und $a_m \neq 0$. Daher gilt

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k = \sum_{k=m}^{\infty} a_k (z - z_0)^k = (z - z_0)^m \sum_{k=m}^{\infty} a_k (z - z_0)^{k-m}$$

$$= (z - z_0)^m \sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k \quad \text{für alle } z \in B_R(z_0).$$
(1)

Wegen $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ für $z \in B_R(z_0)$ ist der Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ mindestens R. Da außerdem $\limsup_{k \to \infty} \sqrt[k]{|a_k|} = \limsup_{k \to \infty} \sqrt[k]{|a_{k+m}|}$ gilt, ist der Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} a_{k+m} (z-z_0)^k$ ebenfalls mindestens R, so dass auch diese Potenzreihe in $B_R(z_0)$ holomorph ist. Definiert man nun $g: G \to \mathbb{C}$ durch

$$g(z) := \begin{cases} \sum_{k=0}^{\infty} a_{k+m} (z - z_0)^k, & \text{falls } z \in B_R(z_0), \\ \frac{f(z)}{(z - z_0)^m}, & \text{falls } z \in G \setminus B_R(z_0), \end{cases}$$

so ist g wohldefiniert und holomorph in $B_R(z_0)$. Wegen (1) gilt weiter $g(z) = \frac{f(z)}{(z-z_0)^m}$ für alle $z \in G \setminus \{z_0\}$. Da f holomorph in G ist und $\frac{1}{(z-z_0)^m}$ holomorph in $\mathbb{C} \setminus \{z_0\}$ ist, ist somit g auch holomorph in $G \setminus \{z_0\}$. Da g auch holomorph in $B_R(z_0)$ ist, ist somit g in jedem $z \in G$ komplex differenzierbar und damit holomorph in G. Weiter gilt $g(z_0) = \sum_{k=0}^{\infty} a_{k+m}(z_0-z_0)^k = a_n \neq 0$. Wegen (1) und der Definition von g gilt $f(z) = (z-z_0)^m g(z)$ für alle $z \in B_R(z_0)$ und für alle $z \in G \setminus B_R(z_0)$, also für alle $z \in G$. Somit gilt (ii).

"(ii) \Rightarrow (i)": Es sei $g: G \to \mathbb{C}$ eine holomorphe Funktion mit $g(z_0) \neq 0$ und $f(z) = (z - z_0)^m g(z)$ für alle $z \in G$. Dann gilt für $k \in \{1, ..., m\}$ nach der Leibniz-Regel

$$f^{(k)}(z) = \sum_{j=0}^{k} {k \choose j} \left(\frac{d^j}{dz^j} (z - z_0)^m \right) \cdot g^{(k-j)}(z)$$

$$= \sum_{j=0}^{k} {k \choose j} \cdot m \cdot (m-1) \cdot \dots \cdot (m-j+1) \cdot (z - z_0)^{m-j} \cdot g^{(k-j)}(z).$$

Also gilt für $k \in \{1, \dots, m-1\}$

$$f^{(k)}(z_0) = \sum_{j=0}^{k} {k \choose j} \cdot m \cdot (m-1) \cdot \dots \cdot (m-j+1) \cdot 0^{m-j} \cdot g^{(k-j)}(z_0) = 0$$

sowie

$$f^{(m)}(z_0) = \sum_{j=0}^{m} {m \choose j} \cdot m \cdot (m-1) \cdot \dots \cdot (m-j+1) \cdot 0^{m-j} \cdot g^{(m-j)}(z_0)$$

$$= m! \cdot 1 \cdot g(z_0) + \sum_{j=0}^{m-1} {m \choose j} \cdot m \cdot (m-1) \cdot \dots \cdot (m-j+1) \cdot 0^{m-j} \cdot g^{(m-j)}(z_0)$$

$$= m! \cdot g(z_0) + 0 = m! \cdot g(z_0) \neq 0.$$

Somit folgt $m = \min\{k \in \mathbb{N} \mid f^{(k)}(z_0) \neq 0\}$, so dass nach Definition 6.6 die Ordnung der Nullstelle z_0 von f gleich m ist und (i) gilt.

Präsenzaufgabe 2:

Untersuche jeweils, von welchem Typ die Singularität von f in z_0 ist. Gib, falls eine hebbare Singularität vorliegt, eine Fortsetzung f von f an, die in einer Umgebung von z_0 holomorph ist. Bestimme, falls ein Pol vorliegt, die Ordnung des Pols von f in z_0 .

a)
$$f(z) := \frac{3i}{(z-i)(z+2)^2}, z_0 := i,$$

a)
$$f(z) := \frac{3i}{(z-i)(z+2)^2}, \ z_0 := i,$$
 b) $f(z) := \frac{3i}{(z-i)(z+2)^2}, \ z_0 := -2,$

c)
$$f(z) := \frac{1-z}{\log z}, \ z_0 := 1,$$

d)
$$f(z) := \sin(\frac{1}{z}), z_0 := 0,$$

$$e)$$
 $f(z) := \frac{e^z}{z^2}, z_0 := 0.$

Lösung:

a) Pol, da

$$\lim_{z \to i} |\frac{3i}{(z-i)(z+2)^2}| = \lim_{z \to i} \frac{3}{5} \frac{1}{|z-i|} = \infty,$$

und zwar mit Ordnung 1, denn

$$\lim_{z \to i} (z - i)^1 f(z) = \frac{3i}{(2+i)^2} \neq 0$$

existiert.

b) Pol der Ordnung 2, siehe PA3.

Für a) und b) und die Darstellung aus Cor. 7.7 als $f - \sum a_n (z - z_0)^{-n}$ kann man auch eine Partialbruchzerlegung (nötige Terme: $\frac{1}{z-i}$, $\frac{1}{(z+2)^2}$ und $\frac{1}{z+2}$) durchführen und es hieran ablesen. Argumentation mit Hausaufgabe 3 ist auch gut möglich.

c) hebbar.

$$\widetilde{f}(z) = \begin{cases} \frac{1-z}{\log z}, & z \neq 1 \\ -1, & z = 1 \end{cases}.$$

(Denn $\lim_{z\to 1} \frac{1-z}{\log z} = -\lim_{z\to 1} \frac{1-z}{\log 1 - \log z} = 1.$)

d) Wesentlich.

$$\lim_{z \to 0} \sin \frac{1}{z}$$

existiert nicht und zugleich gilt auch nicht

$$\lim_{z \to 0} |\sin(\frac{1}{z})| = \infty,$$

wie man (jeweils) an

$$\lim_{n\to\infty} f(\frac{1}{\pi n}) = 0, \qquad \lim_{n\to\infty} f(\frac{1}{2\pi n + \frac{\pi}{2}}) = 1$$

sieht.

e) Pol der Ordnung 2:

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n-2} = \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} \frac{1}{(n+2)!} z^n;$$

offenbar hat $f - (\frac{1}{z} + \frac{1}{z^2}$ eine hebbare Singularität, sodass der Pol nach 7.7 bzw. 7.8 Ordnung 2 hat.

Präsenzaufgabe 3:

Zeige: Eine (isolierte) Singularität z_0 ist genau dann ein Pol der Ordnung m von f, wenn r > 0, $C_1 > 0$ und $C_2 > 0$ existieren, sodass

$$C_1|z-z_0|^{-m} \le |f(z)| \le C_2|z-z_0|^{-m}$$

gilt.

Lösung:

 z_0 sei Pol der Ordnung m, d.h. es gebe g, sodass

$$f(z) = (z - z_0)^m g(z),$$

wobei g holomorph und $g(z_0) \neq 0$. Sei r so gewählt (möglich aus Stetigkeitsgründen), dass

$$M_2 > |g(z)| > M_1$$

auf $B_r(z_0)$. Fertig.

Gilt umgekehrt die Ungleichung, so ist $(z-z_0)^m f(z)$ beschränkt und holomorph auf $B_r(z_0) \setminus \{z_0\}$, also nach Satz 7.5 die Singularität in z_0 von $(z-z_0)^m f(z)$ hebbar (und wegen der anderen Richtung der Abschätzung auch von null verschieden); die Ordnung des Pols ist gemäß 7.7 bzw. 7.8 also m.