Lösungsideen zu den Präsenzaufgaben der 9. Hilbertraummethoden-Übung

Präsenzaufgabe 1:

Beweise das folgende Kriterium dafür, dass eine Teilmenge von $(L^p, \|\cdot\|_{L^p})$ relativ kompakt ist: Sei $1 \le p < \infty$. Dann ist $\mathcal{F} \subset L^p(\mathbb{R})$ relativkompakt genau dann, wenn

- i) F beschränkt ist,
- ii) $\sup_{f \in \mathcal{F}} \int_{\mathbb{R} \setminus [-R,R]} |f(x)|^p dx \to 0$ für $R \to \infty$,
- iii) $\sup_{f \in \mathcal{F}} \int |f(x) f(x+h)|^p dx \to 0$ für $h \to 0$. ("gleichgradige Stetigkeit im p-ten Mittel")
- a) Zeige zunächst die Eigenschaft ii) für einzelne Funktionen aus L^p (also ohne sup).
- b) Zeige auch iii) für einzelne Funktionen. Beginne dabei mit dem Fall "charakteristische Funktion eines beschränkten Intervalls" und approximiere allgemeine L^p -Funktionen durch einfache Funktionen (Treppenfunktionen).
- c) Überdecke \mathcal{F} mit endlich vielen Kugeln vom Radius ε . Warum ist das möglich?
- d) Nutze die Mittelpunkte f_i der Kugeln und a) für jedes einzelne f_i , um ii) gleichmäßig für beliebiges $f \in \mathcal{F}$ zu zeigen.
- e) Verfahre ebenso für iii).
- · Zur Rückrichtung. Definiere für $f \in L^p(\mathbb{R})$ die "Steklov-Mittelung" durch $(S_r(f))(x) = \frac{1}{r} \int_0^r f(x+s) \, ds$.
- f) Zeige durch geschickte Anwendung der Hölderschen Ungleichung, dass $||S_r(f)||_{L^{\infty}(\mathbb{R})} \leq r^{\frac{1}{p}} ||f||_{L^p(\mathbb{R})}$.
- g) Zeige ebenso, dass für alle $x \in \mathbb{R}$ die Abschätzung

$$|(S_r f)(x) - (S_r f)(x+h)| \le r^{-\frac{1}{p}} ||f - f_h||_p$$

gilt.

h) Zeige darüberhinaus, dass

$$||f - S_r f||_p \le \sup_{0 \le h \le r} ||f - f_h||_p$$

- . Schätze dazu den Betrag $|(f S_r f)(x)|$ wieder mit der Hölderschen Ungleichung ab, integriere dann über \mathbb{R} und nutze abschließend den Satz von Fubini.
- i) Begründe die folgenden drei Aussagen:
 - · Es genügt, zu zeigen, dass eine Überdeckung von $\mathcal F$ mit 3ε -Kugeln existiert.
 - · Es gibt ein $\overline{R} > 0$, sodass $||f||_{L^p(\mathbb{R}\setminus [-R,R])} < \varepsilon$ für alle $f \in \mathcal{F}$ und alle $R > \overline{R}$.
 - · Es gibt ein r > 0, sodass

$$||f - S_r f||_{L^p(\mathbb{R})} \le \sup_{0 \le h \le r} ||f - f_h|| < \varepsilon$$

für alle $f \in \mathcal{F}, \forall |h| < r$.

- j) Zeige: Die Menge $\mathcal{M} = \{ S_r f|_{[-2R,2R]}; f \in \mathcal{F} \}$ ist eine relativkompakte Teilmenge von C([-2R,2R]).
- k) \mathcal{M} lässt sich von endlich vielen Kugeln mit Radius $\frac{\varepsilon}{4R^{\frac{1}{p}}}$ und Mittelpunkten g_i überdecken. (Warum?) Definiere $f_i \in L^p(\mathbb{R})$ so, dass f_i auf [-2R, 2R] mit g_i übereinstimmt. (Wähle für die letzten beiden Schritte nun R geeignet.)

l) Zeige abschließend, dass für jedes $f \in \mathcal{F}$ eines der f_i existiert mit $||f - f_i||_p \le 3\varepsilon$ und vollende den Beweis des Satzes

Lösung:

- a) Satz von Lebesgue für $|f|^p \chi_{[-N,N]}$ mit $|f|^p$ als Majorante.
- b) Für $\chi_{[a,b]}$ klar, Treppenfunktionen liegen dicht in L^p , Rest: siehe Aufgabenstellung.
- c) \mathcal{F} ist nach Voraussetzung relativkompakt und daher totalbeschränkt/präkompakt, lässt sich also mit einem ε -Netz überdecken.
- d) Sei $\varepsilon > 0$ vorgegeben. Zu jedem f_i gibt es ein R_i mit $\int_{\mathbb{R}\setminus [-r,r]} |f(x)|^p dx < \varepsilon^p$ für alle $r > R_i$. R sei das Maximum dieser (endlich vielen) R_i . Zu $f \in \mathcal{F}$ gibt es ein f_i im Abstand (p-Norm) kleiner ε . Nun ist $\|\cdot\|_{L^p(\mathbb{R}\setminus [-r,r]}f \le \|f_i f\|_{L^p(\mathbb{R})} + \|\cdot\|_{L^p(\mathbb{R}\setminus [-r,r]}f \le \varepsilon + \varepsilon = 2\varepsilon$ für alle r > R, also ii) gezeigt.
- e) Analoge Argumentation. $f_h = f(\cdot + h)$. Dann $||f f_h||_p \le ||f f_i|| + ||f_i (f_i)_h|| + ||(f_i)_h f_h|| \le 2||f f_i|| + ||f_i (f_i)_h||$, erster Summand klein durch Kugeln aus c), der zweite durch b) für die endlich vielen Kugelmittelpunkte. (Danach das δ aus der Konvergenzdefinition als Minimum der δ_i wählen.)
- f) Hier und im Folgenden sei q stets so gewählt, dass $\frac{1}{p} + \frac{1}{q} = 1$. $S_r f(x) = \frac{1}{r} \int_0^r f(x+s) \, \mathrm{d}s \leq \frac{1}{r} \int_0^r 1 |f(x+s)| \leq \frac{1}{r} \left(\int_0^r 1 \right)^{\frac{1}{q}} \left(\int_0^r f \right)^{\frac{1}{p}} \leq r^{-1+\frac{1}{q}} \|f\|_{L^p(\mathbb{R})}.$ Diese Abschätzung gilt in jedem Punkt und damit erst recht für das Supremum.
- g) $|(S_r f)(x) (S_r f)(x+h)| = \left|\frac{1}{r} \int_0^r f(x+s) ds \frac{1}{r} \int_0^r f(x+h+s) ds\right| = \left|\frac{1}{r} \int_0^r |f(x+s) f(x+h+s)| ds$. Die Ungleichung folgt mit genau derselben Abschätzung wie in f).

h)
$$|(f - S_r f)(x)| = |\frac{1}{r} \int_0^r f(x) - f(x+s) \, ds| \le r^{-\frac{1}{p}} \left(\int_0^r |f(x) - f(x+s)|^p \, ds \right)^{\frac{1}{p}}$$
. Also
$$\int_{\mathbb{R}} |f - S_r f|^p \, dx \le \int_{\mathbb{R}} \frac{1}{r} \int_0^r |f(x) - f(x+s)|^p \, ds \, dx = \frac{1}{r} \int_0^r \int_{\mathbb{R}} |f(x) - f(x+s)|^p \, dx \, ds = \frac{1}{r} \int_0^r \|f - f_s\|^p \, ds \le \frac{r}{r} \sup_{0 \le s \le r} \|f - f_s\|$$

- i) · In metrischen Räumen ist Relativkompaktheit äquivalent zu Präkompaktheit.
 - · Das ist ii).
 - · Das ist iii).
- j) Arzela-Ascoli. [-2R, 2R] ist kompakt. Die Menge $S_r\mathcal{F}$ (r wie im letzten Punkt) ist punktweise beschränkt nach f) und i) und gleichgradig stetig mit g) und ii).
- k) Überdeckung mit den Kugeln möglich, da nach j) relativkompakt: $(S_r \mathcal{F})|_{[T2R,2R]} \subset \bigcup_{i=1}^m B(g_i, \frac{\varepsilon}{4R}^{\frac{1}{p}})$, zu f gibt es also ein i mit $|S_r f(x) g_i(x)| \leq (4R)^{-\frac{1}{p}} \varepsilon$ auf [-2R, 2R]. f_i sei g_i auf [-2R, 2R], null sonst. $R = \overline{R}$ ist eine gute Wahl.
- l) Zu f sei i gewählt wie in k)

$$\begin{split} \|f-f_i\| &\leq \|\|f-f_i\| \leq \|\|f-f_i\|_{L^p([-2\overline{R},2\overline{R}]} + \|f-g_i\|_{L^p([-2\overline{R},2\overline{R}]} \\ &\leq \varepsilon + \|f-g_i\|_{L^p([-2\overline{R},2\overline{R}]} \\ &\leq \varepsilon + \|f-S_r f\|_{L^p([-2\overline{R},2\overline{R}]} + \|S_r f-g_i\|_{L^p([-2\overline{R},2\overline{R}]} \\ &\leq \varepsilon + \varepsilon + \|S_r f-g_i\|_{L^p([-2\overline{R},2\overline{R}]} \\ &\leq 3\varepsilon \end{split}$$

(Einsetzen der Definition von f_i , ii), Dreiecksungleichung, iii) und die letzte Abschätzung aus k).) Damit ist \mathcal{F} enthalten in jeweils endlich vielen 3ε -Kugeln, also prä- und daher relativkompakt.