13. Übung zur Vorlesung "Hilbertraummethoden" im SS 2015

Präsenzaufgabe 1:

Es sei X ein normierter Raum und $(x_j)_j \subset X, x \in X$ mit $x_j \to x$ in X. Zeige, dass dann auch $x_j \rightharpoonup x$.

Präsenzaufgabe 2:

Es sei X ein normierter Raum und $(x_n)_{n\in\mathbb{N}}\subset X$ eine beschränkte Folge und $x\in X$. Zeige: Ist $M\subset X^*$ eine dichte Teilmenge des Dualraums von X und gilt für jedes $y\in M$

$$\langle y, x_n \rangle \to \langle y, x \rangle$$
 für $n \to \infty$,

so gilt $x_n \rightharpoonup x$ in X.

Präsenzaufgabe 3:

Untersuche die durch

$$u_n(x) := \sqrt{n}e^{-nx}$$

sowie die durch

$$v_n(x) = ne^{-2nx}$$

definierte Funktionenfolgen in $L^2((0,1))$ auf Beschränktheit, punktweise Konvergenz, Konvergenz im Sinne der Norm und schwache Konvergenz.

Präsenzaufgabe 4:

Es sei $u_n \rightharpoonup u$ und $v_n \rightharpoonup v$ in $L^2(\Omega)$.

Beweise oder widerlege, dass dann $\langle u_n, v_n \rangle \to \langle u, v \rangle$.

Präsenzaufgabe 5:

Zeige: In endlichdimensionalen normierten Räumen sind starke und schwache Konvergenz äquivalent.

Hausübungen

Abgabe: 8. Juli 2015, zu Beginn der Übung

Hausaufgabe 1:

Zu $n \in \mathbb{N}$ sei $u_n : (0,1) \to \mathbb{R}$ definiert durch

i.)
$$u_n(x) = \sin(n\pi x)$$
, ii.) $u_n(x) = \sin(n/x)$, iii.) $u_n(x) = \sin(1/nx)$.

Untersuche die vorgelegten Funktionenfolgen auf schwache Konvergenz in $L^2(0,1)$.

Hausaufgabe 2:

Es sei $\Omega \subset \mathbb{R}^n$ offen und $(u_j)_j \subset W_0^{1,2}(\Omega)$ und $u \in W_0^{1,2}(\Omega)$ mit $u_j \rightharpoonup u$ in $W_0^{1,2}(\Omega)$ für $j \to \infty$. Beweise: Dann gilt $\nabla u_j \rightharpoonup \nabla u$ in $L^2(\Omega)$.

Hausaufgabe 3:

Gegeben sei durch

$$x_n = (\underbrace{\frac{1}{\ln(1+n)}, \dots, \frac{1}{\ln(1+n)}}, 0, 0, 0, \dots), \qquad n \in \mathbb{N}$$
n+1 Stellen

eine Folge in ℓ^2 . Zeige: Diese Folge strebt komponentenweise, aber nicht schwach gegen 0.

Hausaufgabe 4:

Betrachte die Folge der e_n (von Übungsblatt 1) und untersuche sie auf schwache Konvergenz in

a) ℓ^1

b) $\ell^{\frac{3}{2}}$.

Hausaufgabe 5:

Es sei X ein normierter Raum und $A: X \to X$ eine stetige lineare Abbildung.

Zeige: Dann folgt aus $x_j \rightharpoonup x$, dass auch $Ax_j \rightharpoonup Ax$. Kann man auf die Voraussetzung der Linearität von A verzichten?

Hausaufgabe 6:

Eine Menge $M \subset X$ in einem Hilbertraum X heiße "schwach abgeschlossen"¹, wenn für alle $x \in X$, die schwacher Grenzwert einer Folge $(x_j)_j \subset M$ sind, bereits $x \in M$ gilt.

Welche der folgenden Implikationen gilt/gelten? (Gib je einen Beweis oder ein Gegenbeispiel an.):

M schwach abgeschlossen $\implies M$ abgeschlossen (d.h. "stark" abgeschlossen, also im Sinne der Norm-Topologie) M abgeschlossen $\implies M$ schwach abgeschlossen.

 $^{^1\}mathrm{Pr\ddot{a}ziser}$ wäre: schwach Folgen-abgeschlossen.