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1 Introduction

1 Introduction

In microbiological processes, it is common for organisms to interact with their environment
via positive chemotaxis, that is the tendency to move in the direction of the gradient of some
signal substance. This behavior has been documented as early as 1881 for Bacterium termo
and Spirillum tenue moving toward oxygen-producing plant cells [6].
In order to make such biological systems accessible to quantitative analysis and outline the
governing factors of structural evolution, at the beginning of the 1970s Keller and Segel pro-
posed a system resembling{

ut = ∇ · (D(u, v)∇u)−∇ · (S(u, v)∇v),

vt = ∆v + u− v,
(1.1)

see [11] and [12], to describe the behavior of slime mold aggregation and Escherichia coli as
outlined in [1], respectively. Herein, the bacteria concentration u = u(x, t) is subject not only
to chemotaxis toward a self-produced attractant with density v = v(x, t) but also to diffusion
in the form of Brownian motion. The expressions D(u, v) and S(u, v) represent the diffusive
and chemotactic sensitivity, respectively.
This system and variations thereof have various applications [9], including pattern formation
in bacterial colonies [31], tumor invasion processes [5] and embryogenesis [20].
In line with experimental observations, even the prototypical setting with D(u, v) ≡ 1 and
S(u, v) ≡ u considered in bounded domains with no-flux boundary conditions has been shown
to exhibit aggregation phenomena already, in their most extreme form represented by finite-
time blow-up. While solutions always exist globally in time and are bounded in the spatially
one-dimensional case [18], for two-dimensional balls, a critical mass phenomenon arises: For
all sufficiently regular and radially symmetric initial data u0 with total mass

∫
Ω

u0 < 8π, solu-

tions are global and bounded [17], whereas if
∫
Ω

u0 > 8π, finite-time blow-up is possible ([8],

[15]). For balls as domains in higher dimensions, initial data with arbitrary total mass leading
to blow-up can be constructed [25].
On account of the fact that in numerous biological applications, the chemo-attractant dissi-
pates much faster than the microbes move, by [10] we may consider the parabolic-elliptic
system given by ut = ∇ · (D(u, v)∇u)−∇ · (S(u, v)∇v), x ∈ Ω, t > 0,

0 = ∆v + u− µ, µ = 1
|Ω|

∫
Ω

u, x ∈ Ω, t > 0, (1.2)
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1 Introduction

in a bounded domain Ω ⊂ Rn as a relevant limit case of (1.1). Concerning global boundedness
and finite-time blow-up, the results are similar to the fully parabolic system (1.1) [16]. The
matter of deducing local existence in both systems in absense of degeneracies, particularly
for constant and linear sensitivities D and S, respectively, has for example been considered
in [3]. Therein, heat semigroup theory is employed in order to obtain a mild solution which
can be shown to have nice regularity properties in the interior ([13, III.12]) in turn. By means
of a fixed point argument, such results have been extended to possibly degenerate cases for
sufficiently regular D > 0 and S ≥ 0 dependent on u ([29]). Related systems for nutrient
taxis with D(u, v) ≡ uv and S(u, v) = Ψ(u)v with Ψ asymptotically growing quadratically
at most as well as such with D(u) and S(x, u, v) supposed to be not too singular in certain
ways have been investigated [28] and [30], respectively, and, utilizing approximations, have
been shown to possess global weak solutions.
In this thesis we shall consider a spatially dependent diffusion sensitivity generalized by the
prototype D(x) ≡ |x|β , x ∈ Ω, for β > 0. This leads to the problem

ut = ∇ · (|x|β∇u)−∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − µ+ u, µ := 1
|Ω|

∫
Ω

u, x ∈ Ω, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

posed in Ω = BR(0) ⊂ Rn, n ≥ 1, R > 0, fulfilling

u0 ∈ C0
rad(Ω) :=

{
φ ∈ C0(Ω)

∣∣∣ φ is radially symmetric
}

is nonnegative with u0 ̸≡ 0.

(1.4)

We shall remark that in the contexts we consider, actually µ = 1
|Ω|

∫
Ω

u0 will be proven to hold,

so that µ may be viewed as a constant.
This system can be interpreted as a prototype for describing biological applications where the
motility of a cell or bacteria population is impaired near the origin. For instance, we find this
to be the case when coagulation mechanisms are present. Their significance not just for struc-
tural healing but also in the context of immune responses for invertebrates has among others
been established in [19] and [23]. In mammals, the coagulation system was long thought to be
important exclusively for haemostasis. However, nowadays it is commonly recognized that co-
agulation contributes to the effective elimination of bacteria in those organisms as well [2]. In
fact, besides restricting the motility of bacteria, coagulation triggers the release of bradykinin
which interacts with macrophages to emit chemo-attractants supporting the immune response
[7]. Furthermore, fibrinogen releases fibrinopeptides, chemo-attractants to aid clotting [22].
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1 Introduction

Thus in this example already, there are multiple chemotactic dynamics at play wherein hetero-
geneous environments roughly as described in (1.3) might occur.
The mathematical analysis of (1.3) however is accompanied by notable difficulties. Calculat-
ing

∇ · (|x|β∇u) = |x|β∆u+ (∇|x|β) · ∇u

reveals that for one, we are dealing with a spatial diffusion degeneracy which in Keller-Segel
type systems appears to be without precedent in literature, and moreover, at least for β < 1

singular behavior of (∇|x|β)·∇u at x = 0 is to be expected. This already indicates that at least
generally, we should not assume to be able to obtain a classical solution of (1.3) in Ω× (0, T )

for some T > 0; instead, we either have to resort to weak solution concepts or at least omit
the spatial point x = 0. Our results feature the latter.

First we formulate a statement on local existence of classical solutions in (Ω \ {0})× (0, T0)

satisfying mass conservation.

Theorem 1.1. Let n ≥ 1, R > 0, Ω = BR(0) ⊂ Rn and β > 0, and write Ω0 := Ω\{0}.
Then for θ ∈ (0, 1) and u0 ∈ Cθ(Ω) complying with (1.4), there exists a radially sym-

metric classical solution (u,v) of (1.3) in the sense of De�nition 3.1 ful�llingu ∈ C0(Ω0 × [0, T0)) ∩ C2,1(Ω0 × (0, T0))

v ∈ C2,0(Ω0 × (0, T0))
(1.5)

for some T0 ∈ (0,∞]. This solution has the properties that u is nonnegative and satis�es

the mass conservation property, that is∫
Ω

u(·, t) =
∫
Ω

u0 =: m for all t ∈ (0, T0). (1.6)

The second theorem includes a result on local boundedness and uniqueness. In order to ac-
complish this, we need to presume much stronger conditions.

Theorem 1.2. Suppose the conditions of Theorem 1.1 hold, and let (u, v) denote the

classical solution to (1.3) established therein.

Assume that additionally u0 ∈ C1+θ(Ω) for some θ ∈ (0, 1) is radially decreasing and
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1 Introduction

has the properties that

u0 = 0 and ∇u0 · ν = 0 on ∂Ω (1.7)

as well as

|∇u0(x)| ≤ C0|x|n−1+θ (1.8)

for some C0 > 0, and either β ≤ 2− n or β ≥ 2.

Then for T0 > 0 as in Theorem 1.1 we have that

u ∈ C1,0(Ω0 × [0, T0)) is radially decreasing. (1.9)

Moreover, for some T ∗ ∈ (0, T0] and each T ∈ (0, T ∗), there exists C = C(T ) > 0 such

that

u(x, t) ≤ C for all (x, t) ∈ Ω0 × [0, T ]. (1.10)

If additionally n ≥ 2, there exists a unique solution (u, v) of (1.3) in Ω0×[0, T ∗) ful�llingu ∈ C0(Ω0 × [0, T ∗)) ∩ C2,1(Ω0 × (0, T ∗)),

v ∈ C2,0(Ω0 × (0, T ∗)),

which has the properties that
∫
Ω

v(·, t) = 0 for all t ∈ (0, T ∗) and

0 ≤ u ∈ L∞(Ω× (0, T )) and ∇v ∈ L∞(Ω× (0, T );Rn) (1.11)

for all T ∈ (0, T ∗).

We close with a result ruling out global bounded solutions for initial mass distributions con-
centrated adequately close to the origin.

Theorem 1.3. Let n ≥ 2, R > 0, Ω = BR(0) ⊂ Rn as well as β > 0, and assume u0

complies with (1.4).

Then for m :=
∫
Ω

u0 and each m0 ∈ (0,m], there exists r0 = r0(m0,m,R, β) > 0 such

that if ∫
Br0 (0)

u0 ≥ m0, (1.12)
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there is no global classical solution (u, v) of (1.3) ful�llingu ∈ C0(Ω0 × [0,∞)) ∩ C2,1(Ω0 × (0,∞))

v ∈ C2,0(Ω0 × (0,∞))
(1.13)

such that for each T ∈ (0,∞)

0 ≤ u ∈ L∞(Ω× (0, T )) and ∇v ∈ L∞(Ω× (0, T );Rn). (1.14)

Outline of arguments. The main idea is to transform the Keller-Segel type Neumann
boundary value problem to a Dirichlet problem for which we are able to obtain a local solu-
tion, see subsections 3.1.1, 3.1.2 and 3.1.3, and then retransform in order to acquire a solution
of (1.3) (subsection 3.1.5).
To that end, we first simplify (1.3) to (3.3) making use of the radial symmetry in Lemma 3.1.
Our goal then is to reduce (3.3) to the scalar parabolic Dirichlet boundary problem (3.20) for

the mass accumulation function w given by w(s, t) :=
∫ s

1
n

0
ρn−1u(ρ, t)dρ as introduced by

Jäger and Luckhaus to deduce blow-up in [10], which is done in Lemma 3.4. Since we do not
assume solutions to be defined on a compact space, however, this is not as straightforward as
usual; we shall need some subtle arguments to ensure that vr is of desired form and that mass
is conserved (Lemma 3.2 and 3.3).
By a fairly standard type of reasoning which has been sketched in [4] and [26, Lemma 3.2],
in subsection 3.1.2 we then construct a solution w to an incomplete version of this problem,
that is without regarding the boundary condition at s = 0. This is achieved utilizing solutions
to auxiliary non-degenerate problems which are uniformly bounded and satisfy an ordering
property, whereby monotone convergence and compactness arguments yield the aforemen-
tioned result.
In the following subsection, after collecting some simple properties of w (Lemma 3.11), by
another application of the comparison principle Lemma 2.3, for small times we construct su-
persolutions for w which are linear in s, that is

w(s, t) ≤ y(t) · s for s ∈ (0, Rn] and t ∈ (0, T ∗)

for some T ∗ > 0 and a function y ∈ C1([0, T ∗)). This entails that w indeed solves the
complete Dirichlet problem (3.20) in [0, Rn] × [0, T ∗) (Lemma 3.12). That is not sufficient
to infer that ws is bounded in (0, Rn) × (0, T ∗) though. To that end, we shall establish a
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monotonocity property of ws; and since ws increasing in s is not thus interesting with regard
to the dichotomy between blow-up and global boundedness, we opt for concavity of w.
Due to the left boundary however, solutions to the auxiliary problem from subsection 3.1.2
generally cannot be concave. Thus we need to introduce another similar auxiliary problem for
which we can indeed show that concavity is maintained over time under certain compatibility
conditions on the initial data (Lemma 3.18). We can also repeat the arguments from subsection
3.1.2 for this new type of approximation, yet not Lemma 3.12. Therefore, we need to establish
that the obtained limit functions from both auxiliary problems are actually the same. Under a
restriction for β, this is done in Lemma 3.17. That in hand, we are finally in position to show
boundedness of ws for a short timespan and thus, by means of our comparison principle, also
uniqueness in this time interval (Lemma 3.19, 3.13).
In subsection 3.1.5, we then retransform to obtain a local solution of (3.3) fulfilling the mass
conservation property (Lemma 3.21, 3.22). It is remarkable that the boundary condition for
w at Rn implies that wss(R

n, t) = 0 for all t > 0 as well (Lemma 3.20), thus entailing
the boundary condition for ur in (3.3). The results on uniqueness and local boundedness are
transfered as well.
In subsection 3.2, we are concerned with ruling out global boundedness for sufficiently large
β > 0 and properly concentrated initial data. The main idea here is to attach singular weights
to the mass accumulation function w and thus construct a generalized moment functional. This
functional is bounded, but shown to explode in finite time under the assumption that w solves
(3.20) globally with ws bounded locally time, implying that this cannot be the case.
The main theorems can then be obtained mainly by collecting previous results. One needs to
be cautious how the conditions imposed on the initial data of the original system (1.3) translate
to those in (3.20) though.
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2 Preliminaries

We first gather some key statements. Despite the Schauder estimates being standard theory,
not only for coherence of reading and notational convenience but also to clarify the intended
version, we explicitly formulate them here.

Consider – in wider generality than needed in this thesis – the parabolic Dirichlet boundary
value problem

ut = ∇ ·
(
a(x, t)∇u

)
+ b(x, t) · ∇u+ d(x, t)u+ f(x, t), x ∈ Ω, t ∈ (0, T ),

u = Φ(x, t), x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(2.1)

wherein a, d, f ∈ C0(Ω× [0, T ]), b ∈ C0(Ω× [0, T ];Rn), u0 ∈ L∞(Ω), Φ ∈ C0(∂Ω× [0, T ]),
T > 0 and Ω ⊂ Rn is a convex bounded domain with smooth boundary.

In the following passage, we formulate a collection of Schauder estimates. The proposed
conditions are not optimal, yet easier to verify than those given in [14] and [13].
It seems worth mentioning that the estimates for Hölder regularity of u itself (see [13, Theorem
V.1.1]) are instrumental in proving Lemma 3.5. We omit them here however, since in light of
ensuring continuity up to t = 0 in the original system we shall utilize a stronger form of
convergence than otherwise necessary in Lemma 3.9.
For a subtle line of argument, in Lemma 3.7 we also need the global version of

Lemma 2.1. Let T > 0 and θ ∈ (0, 1).

For any M > 0 there exist η = η(M,T, θ) ∈ (0, 1) and C(M,T, θ) > 0 such that for any

choice of

a ∈ Cθ, θ
2 (Ω× [0, T ]), d, f ∈ C0(Ω× [0, T ]),

b ∈ C0(Ω× [0, T ];Rn), Φ ∈ C2+θ,1+ θ
2 (∂Ω× [0, T ])

as well as u0 ∈ C1+θ(Ω) with u0|∂Ω = Φ(·, 0) and

max
{

∥a∥
Cθ, θ2 (Ω×[0,T ])

, ∥b∥L∞(Ω×(0,T )), ∥d∥L∞(Ω×(0,T )),

∥f∥L∞(Ω×(0,T )), ∥Φ∥
C2+θ,1+ θ

2 (∂Ω×[0,T ])

}
≤ M (2.2)
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2 Preliminaries

and

∥u0∥C1+θ(Ω) ≤ M (2.3)

as well as

a ≥ 1

M
in Ω× (0, T ), (2.4)

the corresponding classical solution u ∈ C0(Ω× [0, T ))∩C2,1(Ω× (0, T )) of (2.1) lies in

C1+η, 1+η
2 (Ω× [0, T ]) and satis�es the inequality

∥u∥
C1+η,

1+η
2 (Ω×[0,T ])

≤ C(M,T, θ).

ii) Let Ω′ ⊂ Ω be relatively open in Ω. For any open Ω′′ ⊂ Ω′ with K = Ω′′ ⊂ Ω′ and

M > 0 there exist η = η(K,Ω′,M, T, θ) ∈ (0, 1) and C(K,Ω′,M, T, θ) > 0 such that if

for

a ∈ Cθ, θ
2 (Ω′ × [0, T ]), d, f ∈ C0(Ω′ × [0, T ]),

b ∈ C0(Ω′ × [0, T ];Rn), Φ ∈ C2+θ,1+ θ
2 (∂Ω× [0, T ]) (2.5)

and u0 ∈ L∞(Ω) ∩ C1+θ(Ω′) we have

max
{

∥a∥
Cθ, θ2 (Ω′×[0,T ])

, ∥b∥L∞(Ω′×(0,T )), ∥d∥L∞(Ω′×(0,T )),

∥f∥L∞(Ω′×(0,T )), ∥Φ∥
C2+θ,1+ θ

2 (∂Ω×[0,T ])

}
≤ M (2.6)

and

∥u0∥C1+θ(Ω′) ≤ M (2.7)

as well as

a ≥ 1

M
in Ω′ × (0, T ), (2.8)

and if additionally the classical solution u ∈ C0(Ω × [0, T )) ∩ C2,1(Ω × (0, T )) of (2.1)

has the property

∥u∥L∞(Ω×(0,T )) ≤ M (2.9)

then u ∈ C1+η, 1+η
2 (K × [0, T ]) with

∥u∥
C1+η,

1+η
2 (K×[0,T ])

≤ C(K,Ω′,M, T, θ).

8



2 Preliminaries

Proof. Confer [14, Theorem 1.1], [13, V.3,4].

We also note the following estimate, whereof a local version will be of use for us as well.

Lemma 2.2. Let T > 0 and θ ∈ (0, 1).

i) For any M > 0 there exist η = η(M,T, θ) ∈ (0, 1) and C(M,T, θ) > 0 such that for

any choice of

a ∈ C1+θ, 1+θ
2 (Ω× [0, T ]), d, f ∈ Cθ, θ

2 (Ω× [0, T ]),

b ∈ Cθ, θ
2 (Ω× [0, T ];Rn), Φ ∈ C2+θ,1+ θ

2 (∂Ω× [0, T ]) (2.10)

together with u0 ∈ C2+θ(Ω) with u0|∂Ω = Φ(·, 0) and

max
{
∥a∥

C1+θ, 1+θ
2 (Ω×[0,T ])

, ∥b∥
Cθ, θ2 (Ω×[0,T ])

, ∥d∥
Cθ, θ2 (Ω×[0,T ])

,

∥f∥
Cθ, θ2 (Ω×[0,T ])

, ∥Φ∥
C2+θ,1+ θ

2 (∂Ω×[0,T ])

}
≤ M (2.11)

and

∥u0∥C2+θ(Ω) ≤ M (2.12)

as well as

a ≥ 1

M
in Ω× (0, T ), (2.13)

then the corresponding classical solution u ∈ C0(Ω × [0, T )) ∩ C2,1(Ω × (0, T )) of (2.1)

lies in C2+η, 2+η
2 (Ω× [0, T ]) and satis�es

∥u∥
C2+η,1+

η
2 (Ω×[0,T ])

≤ C(M,T, θ),

if additionally u0 complies with the compatibility condition

∇ ·
(
a(·, 0)∇u0

)
+ b(·, 0) · ∇u0 + d(·, 0)u0 + f(·, 0) = Φt(·, 0) on ∂Ω. (2.14)

ii) Let Ω′ ⊂ Ω be relatively open in Ω. For any open Ω′′ ⊂ Ω′ with K = Ω′′ ⊂ Ω′, τ ∈
(0, T ) and M > 0 there exist η = η(K,Ω′,M, τ, T, θ) ∈ (0, 1) and C(K,Ω′,M, τ, T, θ) > 0

9
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such that if for

a ∈ C1+θ, 1+θ
2 (Ω′ × [τ, T ]), d, f ∈ Cθ, θ

2 (Ω′ × [τ, T ]), b ∈ Cθ, θ
2 (Ω′ × [τ, T ];Rn) (2.15)

and Φ ∈ C2+θ,1+ θ
2 (∂Ω× [0, T ]) we have

max
{

∥a∥
C1+θ, 1+θ

2 (Ω′×[τ,T ])
, ∥b∥

Cθ, θ2 (Ω′×[τ,T ])
, ∥d∥

Cθ, θ2 (Ω′×[τ,T ])
,

∥f∥
Cθ, θ2 (Ω′×[τ,T ])

, ∥Φ∥
C2+θ,1+ θ

2 (∂Ω×[0,T ])

}
≤ M (2.16)

as well as

a ≥ 1

M
in Ω′ × (0, T ), (2.17)

and if additionally the classical solution u ∈ C0(Ω × [0, T )) ∩ C2,1(Ω × (0, T )) of (2.1)

has the property (2.9), then u ∈ C2+η,1+ η
2 (K × [τ, T ]) with

∥u∥
C2+η,1+

η
2 (K×[τ,T ])

≤ C(K,Ω′,M, τ, T, θ)

holds true.

Proof. See [13, Theorem IV.5.2, VII.5,6].

Another important tool in the analysis of the transformed systems is a comparison principle.
Since we also need to be able to deal with diffusion degeneracy and considering that because
of the expression wws our differential equation is of semilinear type, the standard comparison
principles do not seem to apply. Also, for arguments as in [26], some information drawn from
standard results regarding the original Keller-Segel system is missing. Therefore, we prove a
comparison principle tailored to our specific cases:

Lemma 2.3. Let T > 0 and l, L ≥ 0 with l < L. Suppose that w and w belong to

C0([l, L]× [0, T ]) ∩ C2,1((l, L)× (0, T ]), and that additionally either

ws ∈ L∞((l, L)× (0, T )) or ws ∈ L∞((l, L)× (0, T )).

Moreover, for a, b, γ ≥ 0 and α, δ, c, d ∈ R

wt ≤ asαwss+bsγwws+csδws+dws and wt ≥ asαwss+bsγwws+csδws+dws (2.18)

10



2 Preliminaries

shall hold for all (s, t) ∈ (l, L)× (0, T ), as well as

w(s, 0) ≤ w(s, 0) for all s ∈ (l, L) (2.19)

and

w(l, t) ≤ w(l, t) and w(L, t) ≤ w(L, t) for all t ∈ (0, T ). (2.20)

Then

w(s, t) ≤ w(s, t) for all s ∈ [l, L] and t ∈ [0, T ). (2.21)

Proof. Since without loss of generality we may assume ws ∈ L∞((l, L) × (0, T )), we
can choose

κ := bLγ ∥ws∥L∞((l,L)×(0,T )) + 1. (2.22)

For arbitrary ε > 0, define z ∈ C0([l, L]× [0, T ]) ∩ C2,1((l, L)× (0, T ]) via

z(s, t) := w(s, t)− w(s, t) + εeκt.

Define
S := {t ∈ [0, T ] | z(s, t̃) > 0 ∀(s, t̃) ∈ [l, L]× [0, t]} ≠ ∅

due to (2.19), which along with z ∈ C0([l, L]× [0, T ]) also guarantees t0 := supS > 0.
If now t0 < T , then there exists s0 ∈ [l, L] such that z(s0, t0) = 0, and (2.20) asserts
that actually s0 ∈ (l, L). Therefore, at (s0, t0) not only

z = w − w + εeκt0 = 0 and zt ≤ 0

but also
zs = ws − ws = 0 and zss = wss − wss ≥ 0

hold. Combined with (2.18) and (2.22), this yields

0 ≥ zt(s0, t0) = wt − wt + κεeκt0

≥ asα(wss − wss) + bsγ(wws − wws) + (csδ + d)(ws − ws) + κεeκt0

= asα(wss − wss) + bsγws(w − w) + κεeκt0

≥ bsγws(w − w) + κεeκt0

= bsγws(−εeκt0) + κεeκt0

= (κ− bsγws)εe
κt0

≥ (κ− bLγws)εe
κt0

11
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≥ εeκt0

> 0,

a contradiction.
Thus necessarily t0 = T , which by taking ε ↘ 0 implies that indeed (2.21) holds true.

12
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3 Spatial dependence of di�usion sensitivity

3.1 Existence of solutions

We shall establish the existence of sufficiently smooth solutions to (1.3).

In the scenario at hand, that represents a particular challenge. Not only is the term |x|β not
differentiable at 0 for 0 < β ≤ 1, but moreover the coefficient of the Laplacian of u vanishes
at x = 0 for all β > 0, implying a diffusion degeneracy. Whereas examples of possible de-
generacies depending on u or even on u and v have for instance been discussed in [29], [27]
and [28], to the author’s knowledge no case of a spatially dependent diffusion degeneracy in
such systems with Neumann boundary conditions has yet been addressed in standard literature.

Our approach in principle relies on a strategy usually employed to detect blow-up in parabolic-
elliptic Keller-Segel type chemotaxis systems, introduced by Jäger and Luckhaus in [10]. In
the context of proving existence however, it is crucial to us that not only radial symmetry but
also mass is conserved for adequately regular solutions.

3.1.1 Transformation to a scalar Dirichlet problem

Radial symmetry is preserved by solutions to the system (1.3). Utilizing this, we first rewrite
(1.3) in radial coordinates.

Lemma 3.1. Suppose that n ≥ 1, R > 0, Ω = BR(0) ⊂ Rn, T > 0, Ω0 := Ω \ {0}, and
let u0 comply with (1.4). Then (u(x, t), v(x, t)) with (x, t) ∈ Ω0 × [0, T ) is such that{

u ∈ C0(Ω0 × [0, T )) ∩ C2,1(Ω0 × (0, T )),

v ∈ C2,0(Ω0 × (0, T )),
(3.1)

and solves (1.3) pointwise in Ω0 × [0, T ) if and only if, by writing r := |x|, the pair of

functions (u, v) = (u(r, t), v(r, t)) with{
u ∈ C0((0, R]× [0, T )) ∩ C2,1((0, R]× (0, T )),

v ∈ C2,0((0, R]× (0, T )),
(3.2)

13



3 Spatial dependence of di�usion sensitivity

ful�lls 
ut = 1

rn−1 (r
n−1+βur)r − 1

rn−1 (r
n−1uvr)r, r ∈ (0, R), t > 0,

0 = 1
rn−1 (r

n−1vr)r − µ+ u, r ∈ (0, R), t > 0,

ur = vr = 0, r = R, t > 0,

u(r, 0) = u0(r), r ∈ (0, R),

(3.3)

pointwise in (0, R]× [0, T ).

Proof. The transformation of the initial and the boundary conditions are obvious.
In order to verify the conversion of the differential equalities as well, note that with r(x) :=

|x| =
√

x2
1 + ...+ x2

n for i ∈ {1, ..., n} and x ∈ Ω \ {0},

∂r

∂xi

=
1

2
√

x2
1 + ...+ x2

n

· 2xi =
xi

r(x)
. (3.4)

Due to its radial symmetry, u only depends on |x| = r(x). Making use of this and (3.4), for
sake of conciseness abbreviating r = r(x), we compute

|x|β ∂u

∂xi

u(r) = rβ
∂u(r)

∂r
· ∂r

∂xi

= rβur(r) ·
xi

r

= ur(r) · rβ−1xi,

and thus

∇ ·
(
|x|β∇u

)
=

n∑
i=1

∂xi

(
rβ

∂u

∂xi

u(r)

)
=

n∑
i=1

∂xi

(
ur(r) · rβ−1xi

)
=

n∑
i=1

(
ur(r) · rβ−1 + urr(r) ·

xi

r
· rβ−1xi + ur(r) · (β − 1) · rβ−2xi

r
xi

)
=

n∑
i=1

(
ur(r) · rβ−1 + urr(r) · rβ−2x2

i + (β − 1)ur(r)r
β−3x2

i

)
= n · ur(r) · rβ−1 + urr(r) · rβ−2

( n∑
i=1

x2
i

)
+ (β − 1)ur(r)r

β−3

( n∑
i=1

x2
i

)
= n · ur(r) · rβ−1 + urr(r) · rβ−2r2 + (β − 1)ur(r)r

β−3r2

14



3 Spatial dependence of di�usion sensitivity

= n · ur(r) · rβ−1 + urr(r) · rβ + (β − 1)ur(r)r
β−1

= urr(r) · rβ + (n− 1 + β) · ur(r) · rβ−1

=
1

rn−1
(rn−1+βur(r))r. (3.5)

In an analogous fashion, one establishes that

∇ · (u(r)∇v(r)) =
1

rn−1
(rn−1u(r)vr(r))r (3.6)

and
∆v(r) =

1

rn−1
(rn−1vr(r))r. (3.7)

Combining (3.5) and (3.6) now indeed confirms the equivalence of the first differential equal-
ity in (1.3) and (3.3), respectively, whereas (3.7) implies that the same holds for the second
one, thereby completing the proof.

From here on further, we shall denote r := |x| and without risk of confusion write (u, v) =

(u(r, t), v(r, t)) in the context of (3.3).

De�nition 3.1. We call a pair of functions (u, v) satisfying (3.1) and solving (1.3)

pointwise in (Ω \ {0})× [0, T ) a classical solution of (1.3) in (Ω \ {0})× [0, T ).

Analogously, we name (u, v) with the property (3.2) solving (3.3) pointwise in (0, R] ×
[0, T ) a classical solution of (3.3) in (0, R]× [0, T ).

In order to deal with these solutions defined on a non-compact space, we shall focus on
bounded solutions.

Lemma 3.2. Suppose that n ≥ 1, R > 0, and let u0 comply with (1.4). Let (u, v) with

u ∈ L∞((0, R)× (0, T0)) be a classical solution of (3.3) in (0, R]× [0, T0).

If then

vr(r, t) =
1

rn−1

(
µrn

n
−

r∫
0

ρn−1u(ρ, t)dρ

)
for all (r, t) ∈ (0, R]× [0, T0), (3.8)

we have

|vr(r, t)| ≤ Cr for all (r, t) ∈ (0, R]× [0, T0) (3.9)

with C := 2
n
· ∥u∥L∞((0,R)×(0,T0))

, and hence in particular vr ∈ L∞((0, R)× (0, T0)).

15



3 Spatial dependence of di�usion sensitivity

Moreover, for n ≥ 2 the converse statement also holds true:

If n ≥ 2 and vr ∈ L∞((0, R)× (0, T0)), then necessarily (3.8).

Proof. Observe that vr defined as in (3.8) indeed complies with (3.3) since

(rn−1vr)r =

(
µrn

n
−

r∫
0

ρn−1u(ρ, t)dρ

)
r

= µrn−1 − rn−1u

and thus
0 =

1

rn−1
(rn−1vr)r − µ+ u,

as well as

vr(R, t) =
1

Rn−1

(
µRn

n
−

R∫
0

ρn−1u(ρ, t)dρ

)
= 0

due to

µ =
1

|BR(0)|

∫
BR(0)

u =
n

ωnRn
ωn

∫ R

0

ρn−1u(ρ, t)dρ =
n

Rn

∫ R

0

ρn−1u(ρ, t)dρ.

As a consequence of the boundedness of u in (0, R]× [0, T0), we now obtain that for (r, t) ∈
(0, R]× (0, T0)

|vr(r, t)| =
1

rn−1

∣∣∣∣µrnn −
r∫

0

ρn−1u(ρ, t)dρ

∣∣∣∣
=

1

rn−1

∣∣∣∣
r∫

0

ρn−1(µ− u(ρ, t))dρ

∣∣∣∣
≤ 1

rn−1

r∫
0

ρn−1 ∥µ− u∥L∞((0,R)×(0,T0))
dρ

≤ 1

rn−1

rn

n
∥µ− u∥L∞((0,R)×(0,T0))

≤ r

n
(∥µ∥L∞((0,R)×(0,T0))

+ ∥u∥L∞((0,R)×(0,T0))
)

≤ 2

n
∥u∥L∞((0,R)×(0,T0))

· r

= Cr
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3 Spatial dependence of di�usion sensitivity

with C := 2
n
· ∥u∥L∞((0,R)×(0,T0))

and therefore

∥vr∥L∞((0,R)×(0,T0))
≤ CR < ∞,

verifying the first part of the lemma.
If moreover n ≥ 2, then the second equation in (3.3) yields

(rn−1vr)r = rn−1µ+ rn−1u

and thus upon integration for r ∈ (0, R] and δ ∈ (0, r)

rn−1vr(r, t)− δn−1vr(δ, t) =
µrn

n
− µδn

n
−

r∫
δ

ρn−1u(ρ, t)dρ.

Since n− 1 > 0 and vr ∈ L∞((0, R)× (0, T0)), taking δ ↘ 0 results in

rn−1vr(r, t) =
µrn

n
−

r∫
0

ρn−1u(ρ, t)dρ,

which upon dividing both sides by rn−1 gives rise to (3.8).

Under a weak assumption on β, classical solutions to (3.3) conserve ∥u(·, t)∥L1((0,R)) for at
least as long as u is bounded and (3.8) holds. These additional conditions are necessary since
in contrast to usual settings our solution is not defined on a compact space.

Lemma 3.3. Suppose that n ≥ 1, R > 0, β > 2− n, and u0 ful�lls (1.4). Let (u, v) be

a classical solution of (3.3) in the sense of De�nition 3.1, and assume that additionally

0 ≤ u ∈ L∞((0, R)× (0, T0)) for some T0 ∈ (0, T ] (3.10)

as well as (3.8) holds. Then the mass conservation property∫ R

0

ρn−1u(ρ, t)dρ =

∫ R

0

ρn−1u0(ρ)dρ (3.11)

is valid for all t ∈ [0, T0).

Proof. Let (ζ(δ))δ∈(0,R
2
) be a family of cutoff functions such that for all δ ∈ (0, R

2
) we

17



3 Spatial dependence of di�usion sensitivity

have that ζ(δ) ∈ C∞([0, R]) satisfies
ζ(δ)(r) = 0, r ∈ [0, δ

2
],

0 ≤ ζ(δ)(r) ≤ 1, r ∈ ( δ
2
, δ),

ζ(δ)(r) = 1, r ∈ [δ, R],

(3.12)

as well as

0 ≤ ζ(δ)r (r) ≤ 4

δ
, r ∈

(
δ

2
, δ

)
, (3.13)

and for some C > 0 independent of δ

|ζ(δ)rr (r)| ≤
C

δ2
, r ∈

(
δ

2
, δ

)
. (3.14)

Since (3.12) guarantees that for all δ ∈ (0, R
2
) and t ∈ (0, T0) we have ζ(δ)ut(·, t) ∈ L1((0, R)),

using (3.3) we may compute

d

dt

∫ R

0

rn−1ζ(δ)udr =

∫ R

0

rn−1ζ(δ)utdr

=

∫ R

0

rn−1ζ(δ) · 1

rn−1
((rn−1+βur)r − (rn−1uvr)r)dr

=

∫ R

0

ζ(δ) · (rn−1+βur − rn−1uvr)rdr

= −
∫ R

0

ζ(δ)r · rn−1+βurdr +

∫ R

0

ζ(δ)r · rn−1uvrdr

=

∫ R

0

(ζ(δ)r · rn−1+β)rudr +

∫ R

0

ζ(δ)r · rn−1uvrdr (3.15)

via partial integration. Herein, abbreviating C0 := ∥u∥L∞((0,R)×(0,T0))
, we further estimate for

t ∈ (0, T0)∣∣∣∣ ∫ R

0

(ζ(δ)r · rn−1+β)rudr

∣∣∣∣ ≤ (n− 1 + β)

∫ δ

δ
2

|rn−2+βζ(δ)r u|+
∫ δ

δ
2

|rn−1+βζ(δ)rr u|

≤ (n− 1 + β)C0

∫ δ

δ
2

|rn−2+βζ(δ)r |+ C0

∫ δ

δ
2

|rn−1+βζ(δ)rr |

≤ (n− 1 + β)C0
4

δ

∫ δ

δ
2

δn−2+β + C0C · 1

δ2

∫ δ

δ
2

δn−1+β

= 2(n− 1 + β)C0δ
n−2+β + C0C · 1

2
δn−2+β, (3.16)
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3 Spatial dependence of di�usion sensitivity

by n− 2 + β > 0, also guaranteeing the right hand side converges towards 0 as we let δ ↘ 0.
Since due to (3.8), Lemma 3.2 ensures that for some C1 > 0

|vr(r, t)| ≤ C1r for all (r, t) ∈ (0, R]× (0, T0),

we deduce that ∣∣∣∣ ∫ R

0

ζ(δ)r · rn−1uvrdr

∣∣∣∣ ≤ C0C1

∫ R

0

ζ(δ)r · rndr

≤ C0C1
4

δ

∫ δ

0

rndr

= C0C1
4

δ

δn+1

n

=
4C0C1

n
· δn

δ↘0−→ 0, (3.17)

since n ≥ 1. For T ∈ (0, T0), integrating (3.15) over (0, T ) now yields∫ R

0

rn−1ζ(δ)u(r, T )dr −
∫ R

0

rn−1ζ(δ)u0(r)dr =

∫ T

0

∫ R

0

(ζ(δ)r · rn−1+β)rudrdt

+

∫ T

0

∫ R

0

ζ(δ)r · rn−1uvrdrdt.

By (3.16), (3.17) and monotone as well as dominated convergence, letting δ ↘ 0 this results
in ∫ R

0

rn−1u(r, T )dr −
∫ R

0

rn−1u0(r)dr = 0,

verifying (3.11).

Of major importance to our further analysis is the transformation of (3.3) to a Dirichlet prob-
lem.

Lemma 3.4. Suppose n ≥ 1, R > 0, β > 2− n, and u0 ful�lls (1.4), and let (u, v) be a

solution to (3.3) in the sense of Lemma 3.1 for which (3.8) and (3.10) hold for T0 = T .

We introduce the mass accumulation function

w(s, t) :=

s
1
n∫

0

ρn−1u(ρ, t)dρ, s = rn ∈ [0, Rn], t ∈ [0, T ). (3.18)
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3 Spatial dependence of di�usion sensitivity

Then w ∈ C0([0, Rn]×[0, T ))∩C2,1((0, Rn]×(0, T )), and for all s ∈ (0, Rn) and t ∈ (0, T ),

its spatial derivatives are given by

ws(s, t) =
1

n
· u(s

1
n , t) and wss(s, t) =

1

n2
· s

1
n
−1ur(s

1
n , t). (3.19)

Furthermore, w solves the Dirichlet problem
wt = n2s2−

2
n
+ β

nwss + nwws − µsws, s ∈ (0, Rn), t ∈ (0, T ),

w(0, t) = 0, w(Rn, t) = m
ωn
, t ∈ (0, T ),

w(s, 0) = w0(s), s ∈ (0, Rn),

(3.20)

with m :=
∫
Ω

u0, µ = nm
ωnRn and

w0(s) :=

∫ s
1
n

0

ρn−1u0(ρ)dρ, s ∈ [0, Rn]. (3.21)

Proof. The proof is inspired by [24, p.264].
The derivatives with respect to s are obtained via straightforward calculation.
Considering that (3.8) is equivalent to

rn−1vr(r, t) =
µrn

n
−

r∫
0

ρn−1u(ρ, t)dρ,

employing the first equation in (3.3) and recalling s = rn, we may calculate

wt(s, t) =

s
1
n∫

0

ρn−1ut(ρ, t)dρ

=

s
1
n∫

0

(ρn−1+βur(ρ, t))rdρ−
s
1
n∫

0

(ρn−1u(ρ, t)vr(ρ, t))rdρ

= s1−
1
n
+ β

nur(s
1
n , t)− s

n−1
n u(s

1
n , t)vr(s

1
n , t)

= n2s2−
2
n
+ β

nwss(s, t)− u(s
1
n , t)s

n−1
n vr(s

1
n , t)

= n2s2−
2
n
+ β

nwss(s, t)− u(s
1
n , t)

(
µs

n
−

s
1
n∫

0

ρn−1u(ρ, t)dρ

)
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= n2s2−
2
n
+ β

nwss(s, t)− nws(s, t)

(
µs

n
− w(s, t)

)
= n2s2−

2
n
+ β

nwss(s, t) + nw(s, t)ws(s, t)− µws(s, t)s

for (s, t) ∈ (0, Rn)× (0, T ), thus verifying the differential equality in (3.20).
Due to

w(Rn, t) =

R∫
0

ρn−1u(ρ, t)dρ =

∫ R

0

ρn−1u0(ρ)dρ =
1

ωn

∫
Ω

u0(x)dx =
m

ωn

for t ∈ [0, T ), the boundary condition at s = Rn is a simple consequence of Lemma 3.3.
The Lebesgue integrability of u induced by (3.10) on the other hand immediately confirms
w(0, t) = 0 for all t ∈ [0, T ).
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3.1.2 An auxiliary problem

By Lemma 3.4, under the mild assumption that β > 2 − n, every bounded nonnegative clas-
sical solution of (3.3) satisfying (3.8) implies the existence of a classical solution to (3.20).
Thus, in search of solutions to the former, it appears sensible to study the latter system.
Regarding similar systems emerging from the basic parabolic-elliptic Keller-Segel model in
two dimensions, proofs for the existence of corresponding solutions have been sketched in
[26] and [4]. Those serve as an orientation for our approach.

As (3.20) still contains a diffusion degeneracy, questions regarding its solvability are not cov-
ered by standard theory. Therefore, we resort to non-degenerate „approximating“ problems.

Here and in the following, we always let m > 0, which can be interpreted as the total mass in
the original system as in Lemma 3.4.

Lemma 3.5. Let n ≥ 1, R > 0, µ = nm
ωnRn , β > 0 and w0 ∈ C1([0, Rn]) be such that

w0(0) = 0, w0(R
n) =

m

ωn

as well as w0s ≥ 0. (3.22)

For ε ∈ (0, Rn), de�ne w0ε ∈ C1([ε, Rn]) via

w0ε(s) := w0

(Rn(s− ε)

Rn − ε

)
, s ∈ [ε, Rn]. (3.23)

Then the system
wεt = n2s2−

2
n
+ β

nwεss + nwεwεs − µswεs, s ∈ (ε, Rn), t > 0,

wε(ε, t) = 0, wε(R
n, t) = m

ωn
, t > 0,

wε(s, 0) = w0ε(s), s ∈ (ε, Rn),

(3.24)

possesses a unique global classical solution wε ∈ C0([ε, Rn] × [0,∞)) ∩ C2,1([ε, Rn] ×
(0,∞)).

Proof. By (3.22) and (3.23), it is ensured that

w0ε(ε) = w0(0) = 0 and w0ε(R
n) = w0(R

n) =
m

ωn

.

Thus, by standard theory (cf. [13, V.6]), (3.24) indeed admits a unique global classical solu-
tion as claimed.
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Further information regarding these solutions becomes accessible by means of Lemma 2.3,
first enabling us to derive basic bounds for our approximating solutions wε.

Lemma 3.6. Let n ≥ 1, R > 0, µ = nm
ωnRn , β > 0 and w0 ∈ C1([0, Rn]) be as in (3.22),

and w0ε ∈ C1([ε, Rn]) shall be de�ned as in (3.23).

Then the global classical solution wε ∈ C0([ε, Rn] × [0,∞)) ∩ C2,1([ε, Rn] × (0,∞)) of

(3.24) can be estimated by

0 ≤ wε(s, t) ≤
m

ωn

for all (s, t) ∈ [ε, Rn]× [0,∞). (3.25)

Proof. Let T > 0 be abritrary. With a = n2, α = 2 − 2
n
+ β

n
, b = n, γ = 0, c = −µ,

d = 0 and δ = 1 we have

wεt = asαwεss + bsγwεwεs + csδwεs + dwεs

in (ε, Rn)× (0, T ). Defining w ≡ 0 ∈ C0([ε, Rn]× [0,∞)) ∩ C2,1([ε, Rn]× (0,∞)), we get
that

wt = 0 = asαwss + bsγwws + csδws + dws

for all (s, t) ∈ (ε, Rn)× (0, T ), as well as

w(s, 0) = 0 ≤ w0ε(s) = wε(s, 0) forall s ∈ [ε, Rn]

due to w0ε(0) = 0 and w0εs = w0s

(
Rn(s−ε)
Rn−ε

)
· Rn

Rn−ε
≥ 0.

Moreover, at the spatial boundary

w(ε, t) = 0 = wε(ε, t) and w(Rn, t) = 0 ≤ m

ωn

= wε(R
n, t) for all t ∈ (0, T )

hold, and obviously ws ≡ 0 is bounded.
Therefore, we may invoke Lemma 2.3 to conclude that

0 = w(s, t) ≤ wε(s, t) for all s ∈ [ε, Rn] and t ∈ [0, T ).

Since T > 0 was arbitrary, the inequality actually holds in [ε, Rn]× [0,∞), as desired.
The upper bound can be confirmed analogously.
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In the former proof, we made critical use of the first spatial derivatives of the sub- respectively
supersolution being bounded. In order to be able to compare solutions wε to (3.24) for dif-
ferent ε ∈ (0, Rn) with each other however, we need to establish that wεs is bounded locally
in time. To that end, we require the initial data to be slightly more regular than imposed in
Lemma 3.5.

Lemma 3.7. Suppose the conditions of Lemma 3.5 are met, and that additionally there

exists θ ∈ (0, 1) such that

w0 ∈ C1+θ([0, Rn]). (3.26)

Then for any T ∈ (0,∞), the solution of (3.24) satis�es

wε ∈ C1+η, 1+η
2 ([ε, Rn]× [0, T ]) (3.27)

for some η = η(θ, T, ε) ∈ (0, 1). In particular,

wεs ∈ L∞((ε, Rn)× (0, T )) for all T ∈ (0,∞). (3.28)

Proof. Let T > 0. With Ω := (ε, Rn) ⊂ R,

Φ : {ε, Rn} × [0, T ] → R, Φ(ε, t) = 0, Φ(Rn, t) =
m

ωn

as well as
a : [ε, Rn]× [0, T ] → R, a(s, t) = n2s2−

2
n
+ β

n (3.29)

along with

b : [ε, Rn]× [0, T ] → R, b(s, t) = nwε(s, t)− µs− n2

(
2− 2

n
+

β

n

)
s1−

2
n
+ β

n (3.30)

and d ≡ f ≡ 0, the system (3.24) can be rewritten in terms of (2.1).
Note that Lemma 3.5 ensures that wε ∈ C0([ε, Rn]× [0, T ]), thus allowing us to regard (3.24)
as a linear problem here and guaranteeing that b is in the desired regularity class. Therefore,
(2.2) is fulfilled.
By (3.23) and (3.26), we have that

w0ε ∈ C1+θ([ε,Rn]),

securing (2.3), and as already outlined in the context of Lemma 3.5, w0ε is compatible at the
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boundary.
Furthermore, there is no diffusion degeneracy because of

a(s, t) ≥ n2ε2−
2
n
+ β

n > 0 for all (s, t) ∈ [ε, Rn]× [0, T ],

warranting that (2.4) must be true for some M(ε) > 0.
Hence we may employ Lemma 2.1 to infer that there exists η ∈ (0, 1) such that (3.27) holds.
This however implies that wεs ∈ C0([ε, Rn]× [0, T ]), whereby we conclude (3.28).
This puts us in position to prove

Lemma 3.8. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and w0 ∈ C1+θ([0, Rn]) be

as in (3.22).

For εi ∈ (0, Rn), i ∈ {1, 2}, with ε2 ≤ ε1 de�ne w0εi ∈ C1+θ([ε, Rn]) via

w0εi(s) := w0

(Rn(s− εi)

Rn − εi

)
, s ∈ [εi, R

n]. (3.31)

Then for i ∈ {1, 2}, the corresponding classical solutions wεi ∈ C0([εi, R
n] × [0,∞)) ∩

C2,1([εi, R
n]× (0,∞)) of

wεit = n2s2−
2
n
+ β

nwεiss + nwεiwεis − µswεis, s ∈ (εi, R
n), t > 0,

wεi(εi, t) = 0, wεi(R
n, t) = m

ωn
, t > 0,

wεi(s, 0) = w0εi(s), s ∈ (εi, R
n),

(3.32)

satisfy the ordering property

wε1(s, t) ≤ wε2(s, t) for all (s, t) ∈ [ε1, R
n]× [0,∞). (3.33)

Proof. For each T > 0, we obviously have

wε1t ≤ n2s2−
2
n
+ β

nwε1ss+nwε1wε1s−µswε1s and wε2t ≥ n2s2−
2
n
+ β

nwε2ss+nwε2wε2s−µswε2s

in (ε1, R
n) × (0, T ), as outlined in the proof of Lemma 3.6 these inequalities being of type

(2.18).
Furthermore, ε2 ≤ ε1 implies that Rn(s−ε2)

Rn−ε2
≥ Rn(s−ε1)

Rn−ε1
and thus combined with w0s ≥ 0

w0ε2(s) = w0

(Rn(s− ε2)

Rn − ε2

)
≥ w0

(Rn(s− ε1)

Rn − ε1

)
= w0ε1(s)
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3 Spatial dependence of di�usion sensitivity

for all s ∈ (ε1, R
n). Moreover, due to (3.25)

wε2(ε1, t) ≥ 0 = wε1(ε1, t) for all t ∈ (0, T ),

whereas the inequality at the right boundary trivially holds with equality.
Lastly, since the conditions of Lemma 3.7 are met, wε2s is bounded, and consequently we may
invoke Lemma 2.3 to conclude (3.33).

Now we can obtain a solution to – albeit yet an incomplete version of – the degenerate problem
formulated in (3.20):

Lemma 3.9. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).

Moreover, for arbitrary s0 ∈ (0, Rn) and ε ∈ (0, s0) we de�ne w0ε ∈ C1+θ([ε, Rn]) via

(3.23).

Denoting wε ∈ C0([ε, Rn]× [0,∞))∩C2,1([ε, Rn]× (0,∞)) as the corresponding solution

to (3.24), we have

wε ↗ ws0 for ε ↘ 0 (3.34)

pointwise in [s0, R
n] × [0,∞) for some limit function ws0 ∈ C1, 1

2 ([s0, R
n] × [0,∞)) ∩

C2,1([s0, R
n]× (0,∞)). Moreover,

wε → ws0 in C
1, 1

2
loc ([s0, R

n]× [0,∞)) and wε → ws0 in C2,1
loc ([s0, R

n]× (0,∞)).

(3.35)

Thus, letting s0 ↘ 0, we acquire a function w ∈ C1, 1
2 ((0, Rn] × [0,∞)) ∩ C2,1((0, Rn] ×

(0,∞)) which solves the incomplete Dirichlet problem
wt = n2s2−

2
n
+ β

nwss + nwws − µsws, s ∈ (0, Rn), t > 0,

w(Rn, t) = m
ωn
, t > 0,

w(s, 0) = w0(s), s ∈ (0, Rn).

(3.36)

Proof. By Lemma 3.8 and Lemma 3.6, (wε)ε∈(0,s0) is monotonically increasing as ε ↘ 0

and bounded from above, whereby via monotone convergence we may indeed conclude (3.34).
Now let ε ∈ (0, s0

2
) and T ∈ (0,∞). With designations as in the proof of Lemma 3.7 (see

especially (3.29) and (3.30)) and Ω′ := ( s0
2
, Rn], K := [s0, R

n] in the context of Lemma
2.1 (ii) we can easily see that due to s0

2
> 0 the function a is in the desired regularity class,

and Lemma 3.5 guarantees the same for b, so that (2.5) holds. Lemma 3.6 also ensures that
∥b∥L∞(Ω×(0,T )) does not depend on ε; therefore the constant M in (2.6) is determined solely
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3 Spatial dependence of di�usion sensitivity

by s0. By the chain rule and∣∣∣∣Rn(s− ε)

Rn − ε
− Rn(t− ε)

Rn − ε

∣∣∣∣ = Rn

Rn − ε
|s− t| ≤ Rn

Rn − s0
2

|s− t|

for ε ∈ (0, s0
2
) and s, t ∈ [0, Rn], the quantity ∥w0ε∥C1+θ(Ω′) is also bounded independently of

ε. Moreover,
a ≥ n2s

2− 2
n
+ β

n
0 in [s0, R

n]× [0, T ]

and thus the lower bound in (2.8) does not depend on ε as well.
By means of Lemma 2.1, we infer the existence of η ∈ (0, 1) and C1 > 0, dependent on s0

and T but independent of ε, such that for all ε ∈ (0, s0
2
) the classical solution wε of (3.24) is

in C1+η, 1+η
2 ([s0, R

n]× [0, T ]) with

∥wε∥
C1+η,

1+η
2 ([s0,Rn]×[0,T ])

≤ C1. (3.37)

Consequently, the Arzelà-Ascoli theorem yields

wε → ws0 in C1, 1
2 ([s0, R

n]× [0, T ]). (3.38)

Now let τ > 0. By (3.37), in particular we established that there is a uniform bound for
∥wε∥

Cθ, θ2 (Ω′×[τ,T ])
with respect to ε, thus verifying that (2.15) and (2.16) hold with M inde-

pendent of ε.
Just as above, (2.17) and (2.9) are valid with no dependence on ε as well, and therefore

∥wε∥C2+η,1+
η
2 ([s0,Rn]×[τ,T ])

≤ C2 (3.39)

with η ∈ (0, 1) and C2 > 0 depending on s0, τ and T but not on ε. Hence, applying Arzelà-
Ascoli’s theorem results in

wε → ws0 in C2,1([s0, R
n]× [τ, T ]), (3.40)

together with (3.37) confirming (3.35).
Combining the first equation in (3.24) and (3.40), we easily see that ws0 ∈ C2,1([s0, R

n] ×
(0,∞)) and

ws0t = n2s2−
2
n
+ β

nws0ss + nws0ws0s − µsws0s (3.41)

in [s0, R
n] × [τ, T ], and letting τ ↘ 0 and T ↗ ∞, we certify that this differential equality

actually holds in [s0, R
n]× (0,∞).

The boundary condition at s = Rn is merely a result of wε(R
n, t) = m

ωn
and the pointwise

27
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convergence, whereas
ws0(s, 0) = w0(s)

for s ∈ [s0, R
n) and ws0 ∈ C1, 1

2 ([s0, R
n]× [0,∞)) readily follow from (3.38) and

w0ε → w0 in C1([s0, R
n]).

By letting s0 ↘ 0, thus defining w : (0, Rn]× [0,∞) → R via w(s, t) := w s
2
(s, t), this results

in (3.36).

3.1.3 Properties of w

In the previous subsection, we constructed a global-in-time solution to the incomplete Dirich-
let problem (3.36). In the following, we establish that in fact the function w from Lemma
3.9 solves (3.20) for some T ∗ > 0, and we gather some information about ws, in light of it
essentially representing u in our original problem (1.3).

First we verify that the first spatial derivatives of our approximating solutions wε are nonneg-
ative.

Lemma 3.10. Let n ≥ 1, R > 0, µ = nm
ωnRn , θ ∈ (0, 1), β > 0 and w0 ∈ C1+θ([0, Rn])

be as in (3.22) and w0ε ∈ C1+θ([ε, Rn]) be de�ned as in (3.23) for ε ∈ (0, Rn).

Then the global classical solution wε ∈ C1, 1
2 ([ε, Rn] × [0,∞)) ∩ C2,1([ε, Rn] × (0,∞)) of

(3.24) has the property that

wεs(s, t) ≥ 0 for all (s, t) ∈ [ε, Rn]× [0,∞). (3.42)

Proof. By standard theory, we actually have that

wεs ∈ C0([ε, Rn]× [0,∞)) ∩ C2,1((ε, Rn)× (0,∞)). (3.43)

On account of that and the first equation in (3.24), z := wεs fulfills

zt = n2s2−
2
n
+ β

n zss + n2

(
2− 2

n
+

β

n

)
s1−

2
n
+ β

n zs + nwεzs + nz2 − µszs − µz (3.44)

in (ε, Rn)× (0,∞). For fixed δ > 0, define φ ∈ C2,1((ε, Rn)× (0,∞)) via

φ(s, t) := z(s, t) + δet.
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3 Spatial dependence of di�usion sensitivity

For T > 0 we set

S := {t ∈ [0, T ) | φ(s, t̃) > 0 ∀(s, t̃) ∈ [ε, Rn]× [0, t]}.

Then S is not empty due to

φ(s, 0) = w0εs(s) + δ ≥ δ > 0,

which along with φ ∈ C0([ε, Rn]× [0, T )) also guarantees t0 := supS > 0.
If now t0 < T , then there exists s0 ∈ [ε, Rn] such that φ(s0, t0) = 0.
However, as for all t ≥ 0 we have

wε(ε, t) = 0 and wε(R
n, t) =

m

ωn

and Lemma 3.6 ensures that 0 ≤ wε ≤ m
ωn

, we can conclude that wεs(ε, t) ≥ 0 and wεs(R
n, t) ≥

0 and consequently, s0 ∈ (ε, Rn).
Therefore, at (s0, t0) not only

φ = z + δet0 = 0 and φt ≤ 0

but also
φs = zs = 0 and φss = zss ≥ 0

hold. Combined with (3.44), this yields

0 ≥ φt(s0, t0) = zt + δet0

= n2s
2− 2

n
+ β

n
0 zss + n2

(
2− 2

n
+

β

n

)
s
1− 2

n
+ β

n
0 zs + nwεzs + nz2 − µs0zs − µz + δet0

= n2s
2− 2

n
+ β

n
0 zss + nz2 + µδet0 + δet0

≥ (1 + µ)δet0

> 0,

a contradiction.
Thus necessarily t0 = T , which by taking δ ↘ 0 implies that indeed (3.42) holds true, since
T > 0 has been chosen arbitrarily.

Now we can easily transfer some estimates for our approximating solutions to w, thereby also
establishing that w can be extended to s = 0 in a natural way:
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Lemma 3.11. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).

Then w ∈ C1, 1
2 ((0, Rn] × [0,∞)) ∩ C2,1((0, Rn] × (0,∞)) constructed in Lemma 3.9 is

bounded by

0 ≤ w(s, t) ≤ m

ωn

for all (s, t) ∈ (0, Rn]× [0,∞) (3.45)

and for its �rst spatial derivative

ws(s, t) ≥ 0 for all (s, t) ∈ (0, Rn]× [0,∞) (3.46)

holds. Thus, for �xed t ≥ 0 we may continuously extend w(·, t) to s = 0 via

w(0, t) := lim
s↘0

w(s, t) ≥ 0. (3.47)

Proof. The estimate (3.45) is a direct consequence of Lemma 3.6 and the pointwise
convergence (3.34), whereas (3.46) results from (3.42) and the convergence in C

1, 1
2

loc ((0, R
n]×

[0,∞)) established in (3.35).
Since thereby it is guaranteed that w is bounded from below by 0, and for any fixed t ≥ 0 the
function w(s, t) monotonically decreases as s decreases,

lim
s↘0

w(s, t) ≥ 0

is well-defined and thus defines a continuous extension of w(·, t) to s = 0.

Without risk of confusion, from here on we regard w as incorporating this extension.
Note that w is continuous at (0, t) with respect to the spatial variable s for fixed time t, yet not
necessarily continuous in spacetime. As results in related systems, such as [4, Theorem 3.1]
or [21, Lemma 3.4], suggest, in this general framework this is probably not always the case
globally in time. For small times however we can establish

Lemma 3.12. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).

Then there is a T ∗ > 0 and y : [0, T ∗) → R such that with w as in Lemma 3.9

w(s, t) ≤ y(t) · s for all (s, t) ∈ (0, Rn]× [0, T ∗). (3.48)
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In consequence, we obtain that

w ∈ C0([0, Rn]× [0, T ∗)) with w(0, t) = 0 for all t ∈ [0, T ∗). (3.49)

If additionally

w0s(s) ≤
µ

n
for all s ∈ (0, Rn), (3.50)

then T ∗ = ∞.

Proof. Once more, we resort to a comparison argument utilizing the approximating solu-
tions wε.
Define

y0 := max

{
∥w0s∥L∞((0,Rn)),

µ

n

}
, (3.51)

and let y ∈ C1([0, T ∗)) denote the solution to the ODE system{
y′(t) = ny2(t)− µy(t), t > 0,

y(0) = y0,
(3.52)

extended up to its maximal time of existence T ∗ := T y
max > 0.

Based thereupon, for ε ∈ (0, Rn) and arbitrary T ∈ (0, T ∗), set

w(s, t) := y(t) · s, (s, t) ∈ [ε, Rn]× [0, T ]. (3.53)

Then we have

wt − n2s2−
2
n
− β

nwss − nwws + µsws = yt · s− ny2 · s+ µy · s
= (ny2 − µy) · s− (ny2 − µy) · s
= 0 (3.54)

in (ε, Rn)× (0, T ). Furthermore, by (3.22), (3.23) and (3.51) we deduce that for s ∈ (ε, Rn)

wε(s, 0) = w0ε(s) ≤ w0(s)

= w0(0)︸ ︷︷ ︸
=0

+

∫ s

0

w0s(ρ)dρ

≤ ∥w0s∥L∞((0,Rn)) · s
≤ y0 · s
= w(s, 0). (3.55)
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By means of a simple ODE comparison argument, we can see that y(t) ≥ µ
n
≥ 0 for all t ≥ 0.

Therefore, the required inequalities at the lateral boundary are easily confirmed via

wε(0, t) = 0 ≤ y(t) · ε = w(ε, t) (3.56)

and
wε(R

n, t) =
m

ωn

=
µ

n
·Rn ≤ y(t) ·Rn = w(Rn, t) (3.57)

for t ∈ (0, T ).
Thus combining (3.54), (3.55), (3.56) and (3.57), an application of Lemma 2.3 yields

wε(s, t) ≤ w(s, t) = y(t) · s for all (s, t) ∈ [ε, Rn]× [0, T ],

and by taking T ↗ T ∗ this inequality holds in [ε, Rn] × [0, T ∗). Since the right hand side is
independent of ε and ε ∈ (0, Rn) has been chosen arbitrarily, via the pointwise convergence
(3.34) this results in (3.48).
Now for t ∈ [0, T ∗), let (sk, tk) ⊂ (0, Rn] × [0, T ∗) be a sequence such that (sk, tk) → (0, t)

for k → ∞.
Then there exists k0 ∈ N with the property that for all k ≥ k0 we have tk ≤ t+T ∗

2
. Utilizing

this and (3.48), we get that for k ≥ k0

w(sk, tk) ≤ y(tk) · sk ≤
t+ T ∗

2
· sk → 0

for k → ∞, which together with the nonnegativity of w establishes its continuity in {0} ×
[0, T ∗) and (3.49).

If (3.50) holds, then obviously y ≡ µ
n

and therefore T ∗ = ∞.

Note that Lemma 3.12 implies that w solves (3.20) in [0, Rn]× [0, T ∗).
The case (3.50) though contains linear functions w0 (in terms of the original system (1.3) con-
stant initial data u0) at most and thus is not very interesting.

The information on the boundary s = 0 on hand now allows for a statement on uniqueness of
the function constructed in Lemma 3.9 as a solution to (3.20), as long as its spatial derivative
is bounded.

Lemma 3.13. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).
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For the function w de�ned in Lemma 3.9, let T > 0 be such that w ∈ C0([0, Rn]× [0, T ))

with

w(0, t) = 0 for all t ∈ (0, T ), (3.58)

and furthermore assume ws is bounded in (0, Rn)× [0, T ).

Then w is the unique solution of (3.20) in C0([0, Rn]× [0, T )) ∩ C2,1((0, Rn]× (0, T )).

Proof. By (3.36) and (3.58), w is a classical solution of (3.20) in [0, Rn]× [0, T ).
Combined with the boundedness of ws, via Lemma 2.3 we may immediately infer unique-
ness.

3.1.4 Local boundedness of ws

The linear supersolution of w established in Lemma 3.12 alone is not sufficient to deduce that
the spatial derivative ws is bounded in (0, Rn) × (0, T ∗). In order to be able to draw this
conclusion, we will ensure that w is concave. To that end, we introduce another auxiliary
problem.

Lemma 3.14. Let n ≥ 1, R > 0, µ = nm
ωnRn , β > 0, θ ∈ (0, 1) and w0 ∈ C1+θ([0, Rn])

be as in (3.22). For ε ∈ (0, Rn), de�ne w0ε ∈ C1+θ([ε, Rn]) via (3.23).

Then the system
w̃εt = n2s2−

2
n
+ β

n w̃εss + nw̃εw̃εs − µ(s− ε)w̃εs, s ∈ (ε, Rn), t > 0,

w̃ε(ε, t) = 0, w̃ε(R
n, t) = m

ωn
, t > 0,

w̃ε(s, 0) = w0ε(s), s ∈ (ε, Rn),

(3.59)

possesses a unique global classical solution w̃ε ∈ C1, 1
2 ([ε, Rn] × [0,∞)) ∩ C2,1([ε, Rn] ×

(0,∞)).

Furthermore, we have

0 ≤ w̃ε(s, t) ≤
m

ωn

for all (s, t) ∈ [ε, Rn]× [0,∞), (3.60)

and w̃εs ∈ C0([ε, Rn]× [0,∞)) is nonnegative, i.e.

w̃εs(s, t) ≥ 0 for all (s, t) ∈ [ε, Rn]× [0,∞). (3.61)

Proof. As in Lemma 3.5, by standard theory there is a unique solution w̃ε ∈ C0([ε, Rn]×
[0,∞)) ∩ C2,1([ε, Rn] × (0,∞)) to (3.59). Due to w0ε ∈ C1+θ([ε, Rn]), by means of the
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Schauder estimate Lemma 2.1 we may furthermore establish that even w̃ε ∈ C1, 1
2 ([ε, Rn] ×

[0,∞)) and that therefore w̃εs ∈ C0([ε, Rn]× [0,∞)), just as it has been illustrated in Lemma
3.7.
The lower and bound for w̃ε in (3.60) are direct consequences of the comparison principle
Lemma 2.3, as was in Lemma 3.6, this time with d = µε.
Lastly, (3.61) can be confirmed completely analogously to Lemma 3.10.

Indeed, these solutions also converge as ε ↘ 0.

Lemma 3.15. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).

Moreover, for s0 ∈ (0, Rn) and ε ∈ (0, s0) we de�ne w0ε ∈ C1+θ([ε, Rn]) via (3.23).

Denoting w̃ε ∈ C0([ε, Rn]× [0,∞))∩C2,1([ε, Rn]× (0,∞)) as the corresponding solution

to (3.59), for each s0 ∈ (0, Rn) there exists w̃s0 ∈ C1, 1
2 ([s0, R

n]× [0,∞))∩C2,1([s0, R
n]×

(0,∞)) such that

w̃ε → w̃s0 in C
1, 1

2
loc ([s0, R

n]× [0,∞)) for ε ↘ 0 (3.62)

and

w̃ε → w̃s0 in C2,1
loc ([s0, R

n]× (0,∞)) for ε ↘ 0. (3.63)

By taking s0 ↘ 0, we thus obtain a function w̃ ∈ C1, 1
2 ((0, Rn]× [0,∞)) ∩ C2,1((0, Rn]×

(0,∞)) with the properties (3.62) and (3.63).

Proof. Just as in Lemma 3.8, we can easily establish the ordering property

w̃ε′(s, t) ≤ w̃ε(s, t) for all (s, t) ∈ [s0, R
n]× [0,∞)

for 0 < ε ≤ ε′ < s0, whereby combined with the boundedness (3.60), monotone convergence
implies the existence of w̃s0 : [s0, R

n]× [0,∞) → R such that

w̃ε ↗ w̃s0

pointwise.
Now let ε ∈ (0, s0

2
) and T ∈ (0,∞). Just as in Lemma 3.9, all prerequisites of Lemma 2.1

are satisfied. Therefore, we infer the existence of η ∈ (0, 1) and C1 > 0, dependent on s0 and
T but independent of ε, such that for all ε ∈ (0, s0

2
) the classical solution w̃ε of (3.59) is in
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C1+η, 1+η
2 ([s0, R

n]× [0, T ]) with

∥w̃ε∥
C1+η,

1+η
2 ([s0,Rn]×[0,T ])

≤ C1. (3.64)

Consequently, the Arzelà-Ascoli theorem yields

w̃ε → w̃s0 in C1, 1
2 ([s0, R

n]× [0, T ]). (3.65)

This confirms (3.62).
For τ > 0, we similarly see that by Lemma 2.2 (ii)

∥w̃ε∥C2+η,1+
η
2 ([s0,Rn]×[τ,T ])

≤ C2 (3.66)

with η ∈ (0, 1) and C2 > 0 depending on s0, τ and T but not on ε and hence, again applying
Arzelà-Ascoli’s theorem results in

w̃ε → w̃s0 in C2,1([s0, R
n]× [τ, T ]), (3.67)

warranting (3.63).

We could furthermore establish that w̃ solves (3.36), but this is irrelevant for our means. At
this point, we cannot conclude w̃ = w either way, since in order to employ our comparison
theorem, we would need to establish boundedness of w̃s and ws.

We can however at least establish an inequality between solution wε and w̃ε for (3.24) and
(3.59), respectively, for fixed ε ∈ (0, Rn), which will be vital in the Lemma afterwards.

Lemma 3.16. Let n ≥ 1, R > 0, µ = nm
ωnRn , β > 0, θ ∈ (0, 1) and w0 ∈ C1+θ([0, Rn])

be as in (3.22). For ε ∈ (0, Rn), de�ne w0ε ∈ C1+θ([ε, Rn]) via (3.23).

Then the respective solutions wε and w̃ε of (3.24) and (3.59) satisfy the inequality

wε(s, t) ≤ w̃ε(s, t) for all (s, t) ∈ [ε, Rn]× [0,∞). (3.68)

Proof. For each T > 0, we have

wεt = n2s2−
2
n
+ β

nwεss + nwεwεs − µswεs
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3 Spatial dependence of di�usion sensitivity

and, due to (3.61),

w̃εt = n2s2−
2
n
+ β

n w̃εss + nw̃εw̃εs − µsw̃εs + µεw̃εs

≥ n2s2−
2
n
+ β

n w̃εss + nw̃εw̃εs − µsw̃εs

in (ε, Rn)× (0, T ). By definition, wε = w̃ε at the spatial boundary and at t = 0.
Since moreover wεs is bounded in (ε, Rn) × (0, T ), our comparison principle Lemma 2.3
warrants that

wε(s, t) ≤ w̃ε(s, t) for all (s, t) ∈ [ε, Rn]× [0, T ),

which letting T ↗ ∞ verifies (3.68).

We may now show that indeed w̃ = w.

Lemma 3.17. Let n ≥ 1, R > 0, µ = nm
ωnRn , β > 0, θ ∈ (0, 1) and w0 ∈ C1+θ([0, Rn])

be as in (3.22). For ε ∈ (0, Rn), de�ne w0ε ∈ C1+θ([ε, Rn]) via (3.23).

Then if either β ≤ 2− n or β ≥ 2, for each s0 ∈ (0, Rn) and ε ∈ (0, s0) we have that for

the respective solutions wε and w̃ε of (3.24) and (3.59)

w̃ε − wε → 0 in C0
loc([0,∞), L1((s0, R

n))) for ε ↘ 0. (3.69)

Thereby, for w̃ and w as in Lemma 3.15 and Lemma 3.9, respectively,

w̃(s, t) = w(s, t) for all (s, t) ∈ (0, Rn]× [0,∞). (3.70)

Proof. Note that by means of Lemma 3.16,

|w̃ε(s, t)− wε(s, t)| = w̃ε(s, t)− wε(s, t) for all (s, t) ∈ [ε, Rn]× [0,∞).

Using (3.24) and (3.59), abbreviating γ := 2− 2
n
+ β

n
we calculate that for t > 0∫ Rn

ε

(w̃ε(s, t)− wε(s, t))ds =

∫ t

0

∫ Rn

ε

(w̃εt(s, τ)− wεt(s, τ))dsdτ

= n2

∫ t

0

∫ Rn

ε

sγ(w̃εss − wεss)dsdτ

+ n

∫ t

0

∫ Rn

ε

(w̃εw̃εs − wεwεs)dsdτ

− µ

∫ t

0

∫ Rn

ε

s(w̃εs − wεs)dsdτ + µε

∫ t

0

∫ Rn

ε

w̃εsdsdτ. (3.71)
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3 Spatial dependence of di�usion sensitivity

Herein for τ ∈ (0, t), due to the boundary conditions,

n

∫ Rn

ε

(w̃εw̃εs − wεwεs)ds =
n

2

∫ Rn

ε

(w̃2
ε − w2

ε)sds

=
n

2
(w̃2

ε(R
n, τ)− w2

ε(R
n, τ)− w̃2

ε(ε, τ) + w2
ε(ε, τ))

= 0 (3.72)

as well as

−µ

∫ Rn

ε

s(w̃εs − wεs)ds = µ

∫ Rn

ε

(w̃ε − wε)ds (3.73)

via partial integration, and

µε

∫ Rn

ε

w̃εsds = µεw̃ε(R
n, τ) =

µm

ωn

ε. (3.74)

In order to deal with the first summand, observe that due to (3.68) and w̃ε(R
n, τ) = wε(R

n, τ)

necessarily
w̃εs(R

n, τ) ≤ wεs(R
n, τ) for all τ > 0,

and similarly
w̃εs(ε, τ) ≥ wεs(ε, τ) for all τ > 0.

Therefore, integrating by parts yields

n2

∫ Rn

ε

sγ(w̃εss − wεss)ds = [n2sγ(w̃εs(s, τ)− wεs(s, τ)]
s=Rn

s=ε − n2γ

∫ Rn

ε

sγ−1(w̃εs − wεs)ds

≤ −n2γ

∫ Rn

ε

sγ−1(w̃εs − wεs)ds

= [−n2γsγ−1(w̃ε(s, τ)− wε(s, τ))]
s=Rn

s=ε

+ n2γ(γ − 1)

∫ Rn

ε

sγ−2(w̃ε − wε)ds

= n2γ(γ − 1)

∫ Rn

ε

sγ−2(w̃ε − wε)ds. (3.75)

If now β ≤ 2 − n, then γ − 1 = 2 − 2
n
+ β

n
− 1 ≤ 0 and thus we could estimate this term

against 0. This case is analogous to the other one which we are gonna follow.
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3 Spatial dependence of di�usion sensitivity

If on the other hand β ≥ 2, we have γ − 2 = β
n
− 2

n
≥ 0 and thus

n2γ(γ − 1)

∫ Rn

ε

sγ−2(w̃ε − wε)ds ≤ n2γ(γ − 1)Rn(γ−2)

∫ Rn

ε

(w̃ε − wε)ds.

So defining y ∈ C1([0,∞)) via y(t) :=
∫ Rn

ε
(w̃ε(s, t) − wε(s, t))ds, by (3.71) – (3.75) we

obtain that

y(t) ≤ µm

ωn

ε · t+
∫ t

0

(µ+ n2γ(γ − 1)Rn(γ−2))y(τ)dτ

Hence by means of Grönwall’s inequality, we may deduce that with b := µ+n2γ(γ−1)Rn(γ−2)

y(t) ≤ µm

ωn

εt · ebt

and therefore, since y(t) ≥ 0 for all t ≥ 0, indeed

y → 0 in C0
loc([0,∞)) for ε ↘ 0,

confirming (3.69).
Since however

w̃ε → w̃s0 in C0
loc([s0, R

n]× [0,∞)) for ε ↘ 0

and
wε → ws0 in C0

loc([s0, R
n]× [0,∞)) for ε ↘ 0,

these limits also hold in C0
loc([0,∞), L1((s0, R

n))). Thus however, due to (3.69), w̃s0 = ws0 in
C0([0,∞), L1((s0, R

n))). In view of the fact that both w̃s0 and ws0 lie in C0([s0, R
n]×[0,∞)),

this equality is pointwise in [s0, R
n]× [0,∞).

Letting s0 ↘ 0, this confirms (3.70).

We impose stricter requirements on the initial data to ensure w(·, t) is concave.

Lemma 3.18. Let n ≥ 1, R > 0, µ = nm
ωnRn , θ ∈ (0, 1), β > 0 and w0 ∈ C2+θ([0, Rn])

be as in (3.22) with

w0ss(s) ≤ 0, s ∈ (0, Rn), (3.76)

as well as

w0ss(0) = 0, w0s(R
n) = 0 and w0ss(R

n) = 0. (3.77)

Let w̃ denote the function de�ned in Lemma 3.15. Then w̃ ∈ C2,1((0, Rn]× [0,∞)), and

w̃ss(s, t) ≤ 0 for all (s, t) ∈ (0, Rn)× [0,∞). (3.78)
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Proof. We shall proceed similarly as in Lemma 3.7 and Lemma 3.10.
For ε ∈ (0, Rn), let w0ε ∈ C2+θ([ε, Rn]) be defined as in (3.23), and let w̃ε ∈ C1, 1

2 ([ε, Rn] ×
[0,∞)) ∩ C2,1([ε, Rn]× (0,∞)) be the solution of (3.59).
By standard theory, moreover

w̃εss ∈ C2,1((ε, Rn)× (0,∞)). (3.79)

With designations as in the proof of Lemma 3.7 with slightly modified b (add +µε there), we
may easily confirm that for any T > 0 we have a ∈ C1+ θ

2
, 1+θ

2 ((ε, Rn) × [0, T ]) and, since
w̃ε ∈ C1, 1

2 ([ε, Rn]× [0, T ]), also b ∈ Cθ, θ
2 ((ε, Rn)× [0, T ]).

With that on hand, we may easily confirm (2.10) and the existence of M = M(ε) > 0 such
that (2.11) and (2.13) hold for Ω := (ε, Rn). Furthermore, the regularity imposed on the initial
data enables us to conclude (2.12).
Additionally, by (3.77) we may infer that

w0εss(ε) = 0, w0εs(R
n) = 0 and w0εss(R

n) = 0

and thus
n2ε2−

2
n
+ β

n w̃0εss(ε) + nw̃0ε(ε)w̃0εs(ε)− µ(ε− ε)w̃0εs(ε) = 0

as well as

n2Rn(2− 2
n
+ β

n
)w̃0εss(R

n) + nw̃0ε(R
n)w̃0εs(R

n)− µ(Rn − ε)w̃0εs(R
n) = 0,

asserting (2.14).
Therefore, by means of Lemma 2.2 (i) this entails that we can find η = η(M,T, θ) ∈ (0, 1)

and C(M,T, θ) > 0 such that w̃ε ∈ C2+η,1+ η
2 ([ε, Rn]× [0, T ]) with

∥w̃ε∥C2+η,1+
η
2 ([ε,Rn]×[0,T ])

≤ C.

As in Lemma 3.9, for fixed s0 ∈ (0, Rn) we may deduce that w̃ ∈ C2,1([s0, R
n] × [0, T ]) by

Arzelá-Ascoli’s theorem, since M can be be selected dependent on s0 but independent of ε for
an estimate of ∥w̃ε∥C2+η,1+

η
2 ([s0,Rn]×[0,T ])

, by taking s0 ↘ 0 and T ↗ ∞ resulting in

w̃ ∈ C2,1((0, Rn]× [0,∞)).
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Going back to w̃ε, we get that in particular

w̃ε ∈ C2,1([ε, Rn]× [0,∞)), (3.80)

since T > 0 was chosen arbitrarily. Now, on account of (3.79) and the first equation in (3.59),
z := w̃εss fulfills

zt = n2s2−
2
n
+ β

n zss + 2n2

(
2− 2

n
+ β

n

)
s1−

2
n
+ β

n zs + 3nw̃εsz + nw̃εzs

−µszs + µεzs − 2µz + n2

(
2− 2

n
+ β

n

)(
1− 2

n
+ β

n

)
s−

2
n
+ β

n z (3.81)

in (ε, Rn)× (0,∞). For fixed δ > 0 and

κ := 3n∥w̃εs∥L∞((ε,Rn)×(0,T )) + n2(2 + β)(1 + β)max{ε−
2
n
+ β

n , Rn(− 2
n
+ β

n
)}+ 1,

define φ ∈ C2,1((ε, Rn)× (0,∞)) via

φ(s, t) := z(s, t)− δeκt.

For T > 0 we set

S := {t ∈ [0, T ) | φ(s, t̃) < 0 ∀(s, t̃) ∈ [ε, Rn]× [0, t]}.

Then S is not empty due to

φ(s, 0) = w0εss(s)− δ ≤ −δ < 0. (3.82)

Due to (3.80), we have φ ∈ C0([ε, Rn] × [0, T ]), so that (3.82) moreover guarantees t0 :=

supS > 0.
If now t0 < T , then there exists s0 ∈ [ε, Rn] such that φ(s0, t0) = 0.
Since for all t > 0 however w̃ε(ε, t) = 0 and thus also w̃εt(ε, t) = 0,

w̃εss(ε, t) =
1

n2ε2−
2
n
+ β

n

(
w̃εt(ε, t)− nw̃ε(ε, t)w̃εs(ε, t) + µ(ε− ε)w̃εs(ε, t)

)
= 0

and due to w̃ε(R
n, t) = m

ωn
, w̃εt(R

n, t) = 0 and w̃εs(R
n, t) ≥ 0

w̃εss(R
n, t) =

1

n2Rn(2− 2
n
+ β

n
)

(
w̃εt(R

n, t)− nw̃ε(R
n, t)w̃εs(R

n, t) + µ(Rn − ε)w̃εs(R
n, t)

)
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=
1

n2Rn(2− 2
n
+ β

n
)

((
µRn − nm

ωn

)
w̃εs(R

n, t)− µεw̃εs(R
n, t)

)
= − 1

n2Rn(2− 2
n
+ β

n
)
µεw̃εs(R

n, t)

≤ 0

for all t > 0, we can conclude that s0 ∈ (ε, Rn).
Therefore, at (s0, t0) not only

φ = z − δeκt0 = 0 and φt ≥ 0

but also
φs = zs = 0 and φss = zss ≤ 0

hold. Combined with (3.81), this yields that at (s0, t0)

0 ≤ φt

= zt − δκeκt0

= n2s
2− 2

n
+ β

n
0 zss + 2n2

(
2− 2

n
+

β

n

)
s
1− 2

n
+ β

n
0 zs + 3nw̃εsz + nw̃εzs

−µs0zs + µεzs − 2µz + n2

(
2− 2

n
+

β

n

)(
1− 2

n
+

β

n

)
s
− 2

n
+ β

n
0 z − δκeκt0

= n2s
2− 2

n
+ β

n
0 zss + 3nw̃εsz − 2µz + n2

(
2− 2

n
+

β

n

)(
1− 2

n
+

β

n

)
s
− 2

n
+ β

n
0 z − δκeκt0

= n2s
2− 2

n
+ β

n
0 zss +

(
3nw̃εs − 2µ+ n2

(
2− 2

n
+

β

n

)(
1− 2

n
+

β

n

)
s
− 2

n
+ β

n
0 − κ

)
δeκt0

≤ δeκt0
(
3nw̃εs − 2µ+ n2

(
2− 2

n
+

β

n

)(
1− 2

n
+

β

n

)
s
− 2

n
+ β

n
0 − κ

)
≤ δeκt0

(
3n∥w̃εs∥L∞((ε,Rn)×(0,T )) + n2(2 + β)(1 + β)s

− 2
n
+ β

n
0 − κ

)
≤ −δeκt0

< 0,

a contradiction.
Thus necessarily t0 = T , which by taking δ ↘ 0 implies that

w̃εss(s, t) ≤ 0 for all (s, t) ∈ (ε, Rn)× [0,∞), (3.83)

since T > 0 has been chosen arbitrarily.
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By (3.83), (3.63) and the definition of w̃, we may now readily infer (3.78).

Lemma 3.19. Let n ≥ 1, R > 0, µ = nm
ωnRn , θ ∈ (0, 1), β > 0 and w0 ∈ C2+θ([0, Rn])

be as in (3.22) with (3.76) as well as (3.77).

Let w denote the global solution to (3.36) from Lemma 3.9. If either

β ≤ 2− n or β ≥ 2, (3.84)

then w ∈ C2,1((0, Rn]× [0,∞)) and

wss(s, t) ≤ 0 for all (s, t) ∈ (0, Rn)× [0,∞). (3.85)

Moreover, with T ∗ > 0 as in Lemma 3.12 we have that for each T ∈ (0, T ∗) there exists

C = C(T ) such that

ws(s, t) ≤ C for all (s, t) ∈ (0, Rn]× [0, T ]. (3.86)

Proof. Since the conditions of Lemma 3.19 are met, the function w̃ defined in Lemma
3.15 lies in C2,1((0, Rn]× [0,∞)) and fulfills

w̃ss(s, t) ≤ 0 for all (s, t) ∈ (0, Rn)× [0,∞).

Due to the restriction (3.84) on β though, by Lemma 3.17 we have that w = w̃ and thus (3.85)
holds.
Now let 0 < T < T ∗. Lemma 3.12 ensures that

w(s, t) ≤ C · s for all (s, t) ∈ (0, Rn]× [0, T ] (3.87)

for some C = C(T ) > 0. Assume there exists (s0, t0) ∈ (0, Rn] × [0, T ] with the property
that ws(s0, t0) > C. Then via (3.49) the fundamental theorem of calculus asserts

w(s0, t0) = w(0, t0) +

∫ s0

0

ws(s, t0)ds

=

∫ s0

0

ws(s, t0)ds

≥
∫ s0

0

ws(s0, t0)ds

> Cs0,
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as (3.85) implies that ws(·, t0) is monotonically decreasing. This however contradicts (3.87),
whereby we infer that (3.86) must hold true.
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3.1.5 Retransformation to Keller-Segel type system

With a local-in-time solution of (3.20) on hand, we may now obtain a solution to our original
problem (1.3), or rather to its counterpart (3.3) in radial coordinates.
As a preparation, we first denote

Lemma 3.20. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).

Then w as in Lemma 3.9 satis�es

wss(R
n, t) = 0 ∀t > 0. (3.88)

Proof. Since w ∈ C2,1((0, Rn]× (0,∞)) and

wt = n2s2−
2
n
+ β

nwss + nwws − µsws

in (0, Rn)× (0,∞), for any t > 0 we necessarily have

wt(R
n, t) = n2Rn(2− 2

n
+ β

n
)wss(R

n, t) + nw(Rn, t)ws(R
n, t)− µRnws(R

n, t).

Due to w(Rn, t) = m
ωn

= µRn

n
for all t > 0 and thus also wt(R

n, t) = 0 in (0,∞), this yields

0 = n2Rn(2− 2
n
+ β

n
)wss(R

n, t) + ws(R
n, t) ·

(
n
µRn

n
− µRn

)
︸ ︷︷ ︸

=0

,

and therefore (3.88).

Now we can establish

Lemma 3.21. Let n ≥ 1, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and suppose w0 ∈

C1+θ([0, Rn]) is as in (3.22).

Furthermore, we choose T0 > 0 maximally such that the function

w ∈ C1, 1
2 ((0, Rn]× [0,∞)) ∩ C2,1((0, Rn]× (0,∞))

constructed in Lemma 3.9 with the extension as in Lemma 3.11 is in C0([0, Rn]× [0, T0))

with

w(0, t) = 0 for all t ∈ (0, T0). (3.89)
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Then for u0 ∈ Cθ([0, R]) de�ned via

u0(r) = n · w0s(r
n), r ∈ [0, R],

the pair of functions u ∈ C0((0, R]× [0, T0)) ∩ C2,1((0, R]× (0, T0)) given by

u(r, t) = n · ws(r
n, t), (3.90)

and v ∈ C2,0((0, R]× (0, T0)) ful�lling

vr(r, t) =
1

rn−1

(
µrn

n
−

r∫
0

ρn−1u(ρ, t)dρ

)
, (r, t) ∈ (0, R]× (0, T0), (3.91)

for all t ∈ (0, T0) solves
ut = 1

rn−1 (r
n−1+βur)r − 1

rn−1 (r
n−1uvr)r, r ∈ (0, R), t > 0,

0 = 1
rn−1 (r

n−1vr)r − µ+ u, r ∈ (0, R), t > 0,

ur = vr = 0, r = R, t > 0,

u(r, 0) = u0(r), r ∈ (0, R),

(3.92)

classically in (0, R]× [0, T0).

Moreover, with T ∗ as in Lemma 3.12,

T0 ≥ T ∗ > 0. (3.93)

Proof. First we observe that vr determined as in (3.91) is well-defined since because of
(3.89), for (r, t) ∈ (0, R]× (0, T0) we can ensure that

r∫
0

ρn−1u(ρ, t)dρ = n

r∫
0

ρn−1ws(ρ
n, t)dρ

= n

rn∫
0

s
n−1
n ws(s, t) ·

1

n
s

1
n
−1ds

=

∫ rn

0

ws(s, t)ds

= w(rn, t)− w(0, t)

= w(rn, t) (3.94)

45



3 Spatial dependence of di�usion sensitivity

by substituting s = ρn. Now vr indeed complies with the second equation in (3.92) since

(rn−1vr)r =

(
µrn

n
−

r∫
0

ρn−1u(ρ, t)dρ

)
r

= µrn−1 − rn−1u

and thus
0 =

1

rn−1
(rn−1vr)r − µ+ u

in (0, R)× (0, T0). Employing (3.94), µ = nm
ωnRn and w(Rn, t) = m

ωn
, we confirm the boundary

condition

vr(R, t) =
1

Rn−1

(
µRn

n
−

R∫
0

ρn−1u(ρ, t)dρ

)
=

1

Rn−1

(
µRn

n
− m

ωn

)
= 0

is satisfied in (0, T0). Calculating

ur(r, t) = n2wss(r
n, t) · rn−1 for (r, t) ∈ (0, R]× (0, T0) (3.95)

and employing (3.88) also immediately yields

ur(R, t) = 0 for all (r, t) ∈ (0, R]× (0, T0),

verifying the boundary condition for ur as well.
Note that via interior Schauder estimates and (3.43), ws ∈ C2,1((0, Rn)×(0, T0)). With (3.95)
on hand, writing s = rn we may now also infer

ut(r, t) = nwst(s, t)

= n

(
n2s2−

2
n
+ β

nwss + nw(s, t)ws(s, t)− µsws(s, t)

)
s

= n

(
n2s2−

2
n
+ β

nwss − nws(s, t)

(
µs

n
− w(s, t)

))
s

= n

(
n2s2−

2
n
+ β

nwss − u(s
1
n , t)

(
µs

n
−

s
1
n∫

0

ρn−1u(ρ, t)dρ

))
s

= n

(
n2s2−

2
n
+ β

nwss − u(s
1
n , t)s

n−1
n vr(s

1
n , t)

)
s

= n

(
s1−

1
n
+ β

nur(s
1
n , t)− s

n−1
n u(s

1
n , t)vr(s

1
n , t)

)
s
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= n

( s
1
n∫

0

(ρn−1+βur(ρ, t))rdρ−
s
1
n∫

0

(ρn−1u(ρ, t)vr(ρ, t))rdρ

)
s

= n

( s
1
n∫

0

(ρn−1+βur(ρ, t))r − (ρn−1u(ρ, t)vr(ρ, t))rdρ

)
s

= rn−1

(
(rn−1+βur(r, t))r − (rn−1u(r, t)vr(r, t))r

)
in (0, R) × (0, T0), thus verifying the first equation in (3.92). The initial condition transfers
from (3.36) because w ∈ C1, 1

2 ((0, R]× [0, T0)).
Lastly, (3.49) entails (3.93).

Let us now gather some additional properties of this solution (u, v).

Lemma 3.22. Assume the conditions of Lemma 3.21 and let (u, v) denote the solution

to (3.92) in (0, R]× [0, T0) de�ned therein.

Then u is nonnegative, and furthermore the total mass is conserved, that is∫ R

0

ρn−1u(ρ, t)dρ =

∫ R

0

ρn−1u0(ρ)dρ (3.96)

for all t ∈ (0, T0).

Proof.

The nonnegativity of u directy follows via its definition (3.90) and the nonnegativity of ws

ensured in Lemma 3.11.
On the other hand, (3.96) emerges from∫ R

0

ρn−1u(ρ, t)dρ = w(Rn, t) =
m

ωn

= w0(R
n) =

∫ R

0

ρn−1u0(ρ)dρ,

for t ∈ (0, T0), wherein w is as in Lemma 3.9.

Combining multiple results of this section, we are moreover able to formulate a proposition
regarding uniqueness of solutions to (3.92).

Lemma 3.23. Let n ≥ 2, R > 0, θ ∈ (0, 1), µ = nm
ωnRn , β > 0 and u0 ∈ Cθ([0, R]).
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Then for T > 0 there is at most one solution (u, v) of (3.92) in (0, R]× [0, T ) withu ∈ C0((0, R]× [0, T )) ∩ C2,1((0, R]× (0, T )),

v ∈ C2,0((0, R]× (0, T )),

which has the properties that
∫ R

0
v(r, t)dr = 0 for all t ∈ (0, T ) and

0 ≤ u ∈ L∞((0, R)× (0, T )) and vr ∈ L∞((0, R)× (0, T )). (3.97)

Proof. Note that n ≥ 2 implies that β > 0 ≥ 2 − n. Therefore, if also (3.97) holds, the
requirements of Lemma 3.2 and Lemma 3.4 are met and thus the existence of a solution of
(3.92) implies the existence of a solution w ∈ C0([0, Rn] × [0, T )) ∩ C2,1((0, Rn] × (0, T ))

of (3.20) with w0 ∈ C1+θ([0, Rn]), in which ws ∈ C0([0, Rn] × [0, T )) is nonnegative and
bounded.
Then Lemma 3.13 however warrants that w is the unique classical solution of (3.20). Via the
fundamental theorem of calculus, we can also easily infer that then

w(s, t) = w(0, t)︸ ︷︷ ︸
=0

+

∫ s

0

ws(ρ, t)dρ ≤ ∥ws∥L∞((0,Rn)×(0,T ) · s,

providing a pendant to (3.48), although we technically do not need it since we do not demand
vr to be extendable to r = 0.
Lemma 3.21 then guarantees the existence of a solution (u, v) of (3.92) in the sense specified
above.
In conclusion, solutions of (3.92) satisfying the conditions of this lemma correspond with so-
lutions of (3.20), thus transfering their uniqueness.

We remark that actually u0 ∈ C0([0, R]) is sufficient for Lemma 3.23 to hold, since bounded
ws ∈ C0((0, Rn]× [0, T )) is sufficient for all relevant arguments in the subsections 3.1.3 and
3.1.5.

Sharpening the conditions in accordance with subsection 3.1.4 enables us to acquire additional
properties, most prominently local-in-time boundedness of u in (0, R]× [0, T ∗).

Lemma 3.24. Suppose the conditions of Lemma 3.19 hold, and let (u, v) denote the

solution of (3.92) constructed in Lemma 3.21.
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Then this solution has the additional properties that u ∈ C1,0((0, R]× [0, T0)) and

ur(r, t) ≤ 0 for all (r, t) ∈ (0, R]× [0, T0). (3.98)

Moreover, for T ∗ > 0 as in Lemma 3.12 and each T ∈ (0, T ∗), there exists C = C(T ) > 0

such that

u(r, t) ≤ C for all (r, t) ∈ (0, R]× [0, T ]. (3.99)

Proof. One only needs to adapt the results of Lemma 3.19.
The first spatial derivative of u is given by

ur(r, t) = n2wss(r
n, t) · rn−1 for (r, t) ∈ (0, R]× (0, T0).

Therefore the claimed regularity follows from w ∈ C2,1((0, Rn]× [0, T0), whereas (3.98) is a
consequence of (3.85).
Lastly, as u(r, t) = n · ws(r

n, t) for (r, t) ∈ (0, R]× (0, T0), (3.86) translates to (3.99).

49



3 Spatial dependence of di�usion sensitivity

3.2 Ruling out global boundedness in (1.3) for su�ciently

concentrated initial data

In usual settings of the Keller-Segel system and its variants, the occurence of blow-up at a
finite time T < ∞ corresponds with the maximal time of existence Tmax equaling T . Since
our classical solution concept however does not require u to be defined continuously on a
compact space, it is well possible that for a domain Ω ⊂ Rn

lim sup
t↗T

∥u(·, t)∥L∞(Ω) = ∞

but u ∈ C0(Ω× [0, T0))∩C2,1(Ω× (0, T0)) for some T0 > T . Moreover considering we have
no extensibility criterion at hand, we restrict ourselves to ruling out the existence of global
bounded solutions under certain circumstances.
As in [26, Lemma 3.3], we may establish that given a condition corresponding to the initial
mass in the corresponding original system (1.3) being sufficiently concentrated, there is no
global solution of (3.20) for which ws is bounded locally in time in (0, Rn)× (0,∞).

Lemma 3.25. Let n ≥ 1, β > max{0, 2−n}, R > 0, m0 > 0 and m ≥ m0. There exists

s0 = s0(m0,m,R, β) ∈ (0, Rn) such that if w0 ∈ C1([0, Rn]), µ = nm
ωnRn , and furthermore

w0(s0) ≥
m0

ωn

, (3.100)

then there is no global classical solution

w ∈ C0([0, Rn]× [0,∞)) ∩ C2,1((0, Rn]× (0,∞))

of (3.20) with the property that for each T > 0

ws ∈ L∞((0, Rn)× (0, T )). (3.101)

Proof. Due to β > 2− n, it is possible to fix γ ∈ (0, 1) with the property that

γ ≤ 1− 2

n
+

β

n
. (3.102)

We abbreviate

c1 :=

8

(
2− 2

n
+ β

n
− γ

)2

n3

3− 4
n
+ 2β

n
− γ

, c2 :=
2n

(3− γ)ω2
n

and
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c3 :=
3

4ωn

·
( 1

1− γ
− 1

2− γ

)
. (3.103)

Observe that β > 2− n implies that 2− 4
n
+ 2β

n
> 0.

Therefore, given R > 0, m0 > 0 and m > 0 we can fix s0 = s0(m0,m,R) ∈ (0, R
n

2
) such

that s1 := 2s0 satisfies

s
2− 4

n
+ 2β

n
1 ≤ (1− γ)c23

nc1
m2

0 (3.104)

and

s21 ≤
(1− γ)c23

nc2
· m

2
0R

2n

m2
, (3.105)

and henceforth we assume that w ∈ C0([0, Rn]× [0,∞))∩C2,1((0, Rn]× (0,∞)) is a global
classical solution of (3.20) satisfying (3.101). For δ ∈ (0, s1

2
), we then use (3.20) to compute

d

dt

s1∫
δ

s−γ(s1 − s)w(s, t)ds

= n2

s1∫
δ

s2−
2
n
+ β

n
−γ(s1 − s)wss(s, t)ds+

n

2

s1∫
δ

s−γ(s1 − s)(w2)s(s, t)ds

−µ

s1∫
δ

s1−γ(s1 − s)ws(s, t)ds

= −n2

(
2− 2

n
+

β

n
− γ

) s1∫
δ

s1−
2
n
+ β

n
−γ(s1 − s)ws(s, t)ds+ n2

s1∫
δ

s2−
2
n
+ β

n
−γws(s, t)ds

−n2δ2−
2
n
+ β

n
−γ(s1 − δ)ws(δ, t) +

n

2
· γ

∫ s1

δ

s−γ−1(s1 − s)w2(s, t)ds

+
n

2

s1∫
δ

s−γw2(s, t)ds− n

2
δ−γ(s1 − δ)w2(δ, t)

+µ(1− γ)

s1∫
δ

s−γ(s1 − s)w(s, t)ds− µ

s1∫
δ

s1−γw(s, t)ds+ µδ1−γ(s1 − δ)w(δ, t)

= n2

(
2− 2

n
+

β

n
− γ

)(
1− 2

n
+

β

n
− γ

) s1∫
δ

s−
2
n
+ β

n
−γw(s, t)ds

−2n2

(
2− 2

n
+

β

n
− γ

) s1∫
δ

s1−
2
n
+ β

n
−γw(s, t)ds+

n

2
· γ

∫ s1

δ

s−γ−1(s1 − s)w2(s, t)ds
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+
n

2

s1∫
δ

s−γw2(s, t)ds+ µ(1− γ)

s1∫
δ

s−γ(s1 − s)w(s, t)ds− µ

s1∫
δ

s1−γw(s, t)ds

+n2

(
2− 2

n
+

β

n
− γ

)
δ1−

2
n
+ β

n
−γ(s1 − δ)w(δ, t)− n2δ2−

2
n
+ β

n
−γ(s1 − δ)ws(δ, t)

+n2s
2− 2

n
+ β

n
−γ

1 w(s1, t)− n2δ2−
2
n
+ β

n
−γw(δ, t)

−n

2
δ−γ(s1 − δ)w2(δ, t) + µδ1−γ(s1 − δ)w(δ, t) for all t > 0

with µ = nm
ωnRn . Note that due to (3.102), the first summand in the last equality is nonnegative.

Neglecting some other nonnegative summands as well and integrating in time shows that∫ s1

δ

s−γ(s1 − s)w(s, t)ds ≥
∫ s1

δ

s−γ(s1 − s)w0(s)ds

−2n2

(
2− 2

n
+

β

n
− γ

)∫ t

0

∫ s1

δ

s1−
2
n
+ β

n
−γw(s, τ)dsdτ

+
n

2

∫ t

0

∫ s1

δ

s−γw2(s, τ)dsdτ − µ

∫ t

0

∫ s1

δ

s1−γw(s, τ)dsdτ

−n2δ2−
2
n
+ β

n
−γ(s1 − δ)

∫ t

0

ws(δ, τ)dτ

−n2δ2−
2
n
+ β

n
−γ

∫ t

0

w(δ, τ)dτ

−n

2
δ−γ(s1 − δ)

∫ t

0

w2(δ, τ)dτ for all t > 0. (3.106)

Here since we assume w(0, t) = 0 for all t ≥ 0 and boundedness of ws in (0, Rn)× (0, t), we
may infer that sup(s,τ)∈(0,Rn)×(0,t)

w(s,τ)
s

is finite, and therefore

n2δ2−
2
n
+ β

n
−γ(s1 − δ)

∫ t

0

ws(δ, τ)dτ + n2δ2−
2
n
+ β

n
−γ

∫ t

0

w(δ, τ)dτ

+
n

2
δ−γ(s1 − δ)

∫ t

0

w2(δ, τ)dτ → 0 as δ ↘ 0,

whence on several applications of the monotone convergence theorem we infer from (3.106)
that y(t) :=

∫ s1
0

s−γ(s1 − s)w(s, t)ds, t ≥ 0, satisfies

y(t) ≥ y(0)− 2n2

(
2− 2

n
+

β

n
− γ

)∫ t

0

∫ s1

0

s1−
2
n
+ β

n
−γw(s, τ)dsdτ

+
n

2

∫ t

0

∫ s1

0

s−γw2(s, τ)dsdτ − µ

∫ t

0

∫ s1

0

s1−γw(s, τ)dsdτ for all t > 0.
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By Young’s inequality,

2n2

(
2− 2

n
+

β

n
− γ

)∫ s1

0

s1−
2
n
+ β

n
−γw(s, τ)ds

≤ n

8

∫ s1

0

s−γw2(s, τ)ds+ 8

(
2− 2

n
+

β

n
− γ

)2

n3

∫ s1

0

s2−
4
n
+ 2β

n
−γds

=
n

8

∫ s1

0

s−γw2(s, τ)ds+ c1s
3− 4

n
+ 2β

n
−γ

1 for all τ > 0

and

µ

∫ s1

0

s1−γw(s, τ)ds ≤ n

8

∫ s1

0

s−γw2(s, τ)ds+
2µ2

n

∫ s1

0

s2−γds

=
n

8

∫ s1

0

s−γw2(s, τ)ds+ c2
m2

R2n
s3−γ
1 for all τ > 0

as well as

y(τ) ≤
{∫ s1

0

s−γw2(s, τ)ds

} 1
2

·
{∫ s1

0

s−γ(s1 − s)2ds

} 1
2

≤
{∫ s1

0

s−γw2(s, τ)ds

} 1
2

·
{
s21

∫ s1

0

s−γds

} 1
2

=

{∫ s1

0

s−γw2(s, τ)ds

} 1
2

·
{ 1

1− γ
s3−γ
1

} 1
2

for all τ > 0

by the Cauchy-Schwarz inequality. This entails that

y(t) ≥ y(0)+
4(1− γ)

n
sγ−3
1

∫ t

0

y2(τ)dτ −
{
c1s

3− 4
n
+ 2β

n
−γ

1 + c2
m2

R2n
s3−γ
1

}
· t for all t > 0.

(3.107)

Now since (3.100) along with our selections of s0 and c3 guarantees that

y(0) ≥ m0

ωn

·
∫ s1

s1
2

s−γ(s1 − s)ds

=
m0

ωn

·
(

1

1− γ
s1

(
s1−γ
1 −

(
s1
2

)1−γ)
− 1

2− γ

(
s2−γ
1 −

(
s1
2

)2−γ))
=

m0

ωn

·
(

3

4(1− γ)
s2−γ
1 − 3

4(2− γ)
s2−γ
1

)
= c3m0s

2−γ
1
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and that hence, by (3.104) and (3.105),

c1s
3− 4

n
+ 2β

n
−γ

1 + c2
m2

R2n s
3−γ
1

2(1−γ)
n

sγ−3
1 y2(0)

≤ nc1
2(1− γ)c23m

2
0

s
2− 4

n
+ 2β

n
1 +

nc2m
2

2(1− γ)c23m
2
0R

2n
s21 ≤

1

2
+

1

2
= 1,

it follows that there exists T > 0 such that the problem y′(t) = 4(1−γ)
n

sγ−3
1 y2(t)−

{
c1s

3− 4
n
+ 2β

n
−γ

1 + c2
m2

R2n s
3−γ
1

}
, t ∈ (0, T ),

y(0) = y(0),

admits a solution y ∈ C1([0, T )) fulfilling y(t) ↗ +∞ as t ↗ T . But an ODE comparison
argument based on (3.107) ensures that y(t) ≥ y(t) for all t ∈ (0, T ), which is incompatible
with our hypothesis that w is a global classical solution of (3.20) for which the first spatial
derivative ws is bounded locally in time.
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3.3 Proof of main results

We shall now give proof to theorems 1.1 – 1.3.

The first two main theorems are obtained by utilizing the results from subsection 3.1.5 and
transfering them to (1.3). Theorem 1.1 can essentially be deduced from Lemma 3.21 and
Lemma 3.22.

Proof of Theorem 1.1. Let m :=
∫
Ω

u0. We shall write ũ0 ∈ Cθ([0, R]), due to the radial

symmetry of u0 well-defined via

ũ0(|x|) = u0(x) for x ∈ Ω. (3.108)

Then w0 : [0, R
n] → R defined by

w0(s) =

∫ s
1
n

0

ρn−1ũ0dρ for s ∈ [0, Rn] (3.109)

is in C1+ θ
n ([0, Rn]) and satisfies

n · w0s(r
n) = ũ0(r) (3.110)

for r ∈ [0, R] as well as

w0(0) = 0, w0(R
n) =

m

ωn

and w0s(s) ≥ 0, s ∈ [0, Rn],

and thus with µ := nm
ωnRn , Lemma 3.21 guarantees the existence of T0 > 0 and a pair of

functions ũ ∈ C0((0, R]× [0, T0)) ∩ C2,1((0, R]× (0, T0)),

ṽ ∈ C2,0((0, R]× (0, T0)),
(3.111)

such that (ũ, ṽ) solves (3.92) classically. Moreover, Lemma 3.22 asserts that ũ is nonnegative
and fulfills ∫ R

0

ρn−1ũ(ρ, t)dρ =

∫ R

0

ρn−1ũ0(ρ)dρ (3.112)

for all t ∈ (0, T0). Defining u : Ω0 × [0, T0) → R via

u(x, t) = ũ(|x|, t) for (x, t) ∈ Ω0 × [0, T0) (3.113)
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and v : Ω0 × (0, T0) → R by

v(x, t) = ṽ(|x|, t) for (x, t) ∈ Ω0 × (0, T0), (3.114)

this entails that (1.5) holds, u is nonnegative and by (3.112)

1

|Ω|

∫
Ω

u(·, t) = n

ωnRn
ωn

∫ R

0

ρn−1ũ(ρ, t)dρ

=
n

Rn

∫ R

0

ρn−1ũ(ρ, t)dρ

=
n

Rn

∫ R

0

ρn−1ũ0(ρ)dρ

=
n

Rn

1

ωn

∫
Ω

u0(x)dx

=
nm

Rnωn

= µ (3.115)

for t ∈ (0, T0). Therefore, (ũ, ṽ) solves (3.3) classically in the sense of Definition 3.1, and
hence by Lemma 3.1 we may infer that (u, v) is a classical solution of (1.3). Considering

|Ω| = ωnR
n

n
,

(3.115) also contains (1.6).

For the second theorem, the key lemmata are 3.24 and 3.23.

Proof of Theorem 1.2. Define ũ0 ∈ C1+θ((0, R]) the same way as in (3.108). Then w0 as
in (3.109) is in C2+ θ

n ((0, Rn]) and satisfies (3.110) as well as

ũ0r(r) = n2w0ss(r
n) · rn−1 for r ∈ (0, R].

Since u0 is radially decreasing and therefore ũ0r ≤ 0 in (0, R], this implies

w0ss(s) ≤ 0 for all s ∈ (0, Rn]. (3.116)
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Moreover, (1.7) entails

w0s(R
n) = 0 and w0ss(R

n) = 0. (3.117)

Furthermore, due to |∇u0(x)| = |ũ0r(r)| with r = |x| for x ∈ Ω, (1.8) results in

|w0ss(r
n)| =

∣∣∣∣ 1n2
r1−nũ0r(r)

∣∣∣∣
≤ C0

n2
rθ

r→0−→ 0,

warranting that w0 ∈ C2+ θ
n ([0, Rn]) with

w0ss(0) = 0. (3.118)

Together with
β ≤ 2− n or β ≥ 2,

(3.116), (3.117) and (3.118) certify that the conditions of Lemma 3.19 are fulfilled, and thus
Lemma 3.24 warrants that ũ ∈ C1,0((0, R]× [0, T0)) with

ũr(r, t) ≤ 0 for all (r, t) ∈ (0, R]× [0, T0), (3.119)

and that moreover there exists T ∗ ∈ (0, T0] such that for T ∈ (0, T ∗)

ũ(r, t) ≤ C for all (r, t) ∈ (0, R]× [0, T ] (3.120)

with some C = C(T ) > 0. This however implies that for the solution (u, v) of (1.3) from
Theorem 1.1, (1.9) and (1.10) are valid.
By the definition of ṽr in (3.91) and (3.120), we may infer that furthermore

|ṽr(r, t)| =
∣∣∣∣ 1

rn−1

(
µrn

n
−

r∫
0

ρn−1ũ(ρ, t)dρ

)∣∣∣∣
≤ 1

rn−1
· µr

n

n
+ C(T )

1

rn−1

r∫
0

ρn−1dρ

=
µr

n
+ C(T )

r

n
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for T ∈ (0, T ∗) and (r, t) ∈ (0, R]× (0, T ), warranting

ṽr ∈ L∞((0, R)× (0, T )) (3.121)

for all T ∈ (0, T ∗). This also entails that
∫ R

0
ṽ(r, t)dr is well-defined in (0, T ∗), and thus

allows us to uniquely determine ṽ ∈ C2,0((0, R]× (0, T ∗)) by demanding∫ R

0

ṽ(r, t)dr = 0.

If now additionally n ≥ 2, then by (3.120), (3.121) and nonnegativity of ũ, Lemma 3.23
ensures that (ũ, ṽ) is the unique solution of (3.92) in (0, R]×[0, T ∗) satisfying these properties.
By Lemma 3.1 and

|∇v(x, t)| = |ṽr(|x|, t)| for (x, t) ∈ Ω× (0, T ∗)

though, this means that the corresponding pair of functions (u, v) gained via (3.113) and
(3.114) is indeed the unique solution of (1.3) in Ω0 × [0, T ∗) fulfillingu ∈ C0(Ω0 × [0, T ∗)) ∩ C2,1(Ω0 × (0, T ∗)),

v ∈ C2,0(Ω0 × (0, T ∗)),

which has the properties that
∫
Ω

v(·, t) = 0 for all t ∈ (0, T ∗) and

0 ≤ u ∈ L∞(Ω× (0, T )) and ∇v ∈ L∞(Ω× (0, T );Rn)

for all T ∈ (0, T ∗).

The result on ruling out global boundedness is established by means of subsection 3.1.1 and
Lemma 3.25.

Proof of Theorem 1.3. Let n ≥ 2, R > 0, Ω = BR(0) ⊂ Rn, β > 0 and u0 ∈ C0(Ω)

complying with (1.4). Then, with designations as in (3.108) and (3.109), ũ0 ∈ C0([0, R]).

Furthermore, suppose u0 is such that with m =
∫
Ω

u0, m0 ∈ (0,m] and r0 = s
1
n
0 for s0 =

s0(m0,m,R, β) ∈ (0, Rn) as in Lemma 3.25, we have that (1.12) holds.
Assume there was a global classical solution to (1.3) satisfying (1.14) for all T > 0 and (1.13).
Then Lemma 3.1 would guarantee that there exists a pair of functions (ũ, ṽ) corresponding to
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(u, v) via (3.113) and (3.114) which has the property that{
ũ ∈ C0((0, R]× [0,∞)) ∩ C2,1((0, R]× (0,∞)),

ṽ ∈ C2,0((0, R]× (0,∞)),

and solves (3.3) for the initial condition ũ(·, 0) = ũ0. Moreover, since |∇v(x, t)| = |ṽr(|x|, t)|
for all (x, t) ∈ Ω0 × (0,∞), (1.14) entails that for each T > 0

0 ≤ ũ ∈ L∞((0, R)× (0, T )) and ṽr ∈ L∞((0, R)× (0, T )). (3.122)

As n ≥ 2, Lemma 3.2 now ensures that ṽr is as in (3.8), whereby in turn we may infer that the
requirements of Lemma 3.4 are met, since n ≥ 2 also implies that β > 0 ≥ 2− n.
Therefore, w : [0, Rn]× [0,∞) → R defined via

w(s, t) :=

s
1
n∫

0

ρn−1ũ(ρ, t)dρ, s = rn ∈ [0, Rn], t ∈ [0,∞),

is in C0([0, Rn] × [0, T )) ∩ C2,1((0, Rn] × (0, T )) and solves (3.20) in [0, Rn] × [0,∞) for
w0 ∈ C1([0, Rn]) given by

w0(s) =

∫ s
1
n

0

ρn−1ũ0(ρ)dρ, s ∈ [0, Rn].

Furthermore,

ws(s, t) =
1

n
· ũ(s

1
n , t) for all (s, t) ∈ (0, Rn)× (0,∞)

combined with (3.122) entails that for each T > 0

ws ∈ L∞((0, Rn)× (0, T )).

Thus a global classical solution of (3.20) exists, and its first spatial derivative is bounded
locally in time. Since however for s0 ∈ (0, Rn) as above by (1.12),

w0(s0) =

∫ s
1
n
0

0

ρn−1ũ0(ρ)dρ

=
1

ωn

∫
B

s
1
n
0

(0)

u0
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=
1

ωn

∫
Br0 (0)

u0

≥ m0

ωn

,

this is inconsistent with Lemma 3.25, thus ruling out the existence of a global classical solution
to (1.3) satisfying (1.14) and (1.13) under the given premises.
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4 Discussion of results

We shall further evaluate our results in the context of Keller-Segel systems and assess their
supposed optimality with regards to their requirements. Also, we shall give some prospect of
what, in addition to the established results, might be obtainable or would be desirable.
Theorem 1.1 should be nearly optimal. One might allow some range of negative values for
β as well in dimensions n > 2, yet this was not an aim here. It seems however that for our
technique, Hölder continuity of u0 is indispensable. We do recognize that in Lemma 3.7,
boundedness of wεs might be achieved without additionally demanding w0 ∈ C1+θ([0, Rn]),
for example by means of [13, Theorem VI.3.2]. Then however, in Lemma 3.9 we would not
receive continuity of ws up to t = 0.
Establishing boundedness for ws in some some time intervall has represented a particular chal-
lenge. In similar systems, this has been accomplished by drawing from results for Keller-Segel
systems. Without such, an argumentation via concavity seems appropriate. This however re-
quires compatibility conditions for w0 which translate to relatively strong constraints on the
initial data in (1.3). Although the restriction on β should not be optimal as well, it already
seems like quite an achievement to have any result of this manner at all in view of the ad-hoc
character of Lemma 3.17.
The established uniqueness class on the other hand appears to be very natural regarding that
(1.3) places demands on ∇v but not v itself.
Theorem 1.3 can be interpreted as an indication of blow-up. However, yet lacking an extensi-
bility criterion, we omit this term. The range of β in which this is possible for arbitrary initial
mass though is not too surprising. That is due to the fact that there exists an interesting kind
of duality to prototypical Keller-Segel systems becoming evident via the transformation to the
scalar problem (3.20). The influence of β herein may be viewed as a distortion of the exponent
in s2−

2
n
+ β

nwss, otherwise the sole decisive influence of the dimension n in regards to the oc-
curence of blow-up. For β = 0, it is known that n = 2 and thus 2− 2

2
= 1 is critical. Therefore,

it seems reasonable to suppose that 2− 2
n
+ β

n
= 1 which is equivalent to β = 2− n assumes

this role. Of course, without a complementary result on global boundedness for β < 2 − n,
this is not confirmed to be the case.
Moreover, it might be possible to establish that the constructed function w is the smallest non-
negative solution of (3.36). This would then further strengthen the result in Theorem 1.3 as
well.
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