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Abstract

The paper deals with the initial-boundary value problem for

ut = a(x)(∆u + λ1u) (⋆)

with zero Dirichlet data in a smoothly bounded domain Ω ⊂ R
n, n ≥ 1. Here a is

positive in Ω and Hölder continuous in Ω̄, and λ1 > 0 denotes the principal eigenvalue

of −∆ in Ω with Dirichlet data. It is shown that if
R

Ω

dist (x,∂Ω))2

a(x)
dx = ∞ then there

exist initial data in W
1,∞(Ω) such that the solution of (⋆) has an ordered ω-limit set

homeomorphic to a compact real interval. Under this condition, also unbounded ω-limit

sets occur. Conversely, if dist (x,∂Ω))2

a(x)
is integrable then any solution emanating from

initial data in W
1,∞(Ω) converge to some stationary solution of (⋆) as time approaches

infinity.
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1 Introduction

We consider the problem

ut = a(x)(∆u + λ1u) in Ω × (0,∞),

u|∂Ω = 0,

u|t=0 = u0

(1.1)

in a smooth bounded domain Ω ⊂ R
n, n ≥ 1, where a is a Hölder continuous function on Ω̄

that is positive in Ω. The initial data u0 are supposed to be continuous in Ω̄ and to vanish
on ∂Ω, and λ1 > 0 denotes the smallest eigenvalue of the Laplacian in Ω subject to Dirichlet
boundary conditions.
It appears to be a common feature of large classes of nonlinear parabolic equations that
bounded solutions stabilize. This means that bounded solutions converge to some time-
independent function in a suitable topology as t → ∞, where the most reasonable candidates
for such limit functions are the stationary (i.e. time-independent) solutions of the parabolic
problem. For instance, as to the semilinear generalization of (1.1) given by

ut = a(x)(∆u + g(x, u)), (1.2)
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it is well known that if a ≡ 1 then each bounded solution u approaches its ω-limit set

{w ∈ L2(Ω) | u(·, tk) → w in L2(Ω) for some tk → ∞}

as t → ∞. Moreover, ω(u0) is a compact and connected subset of the set E of solutions
w ∈ W

1,2
0 (Ω) of ∆w + g(x, w) = 0. Particularly, if E is known to be a singleton or merely a

discrete set then this entails that u converges, that is, it stabilizes, to some w ∈ E as t → ∞.
But the latter conclusion is also true in more complicated situations: If, for example, E is
arbitrarily large but ordered then it is a consequence of the Hopf boundary point lemma that
all bounded solutions stabilize (cf. [Li]). Also, it is known that bounded solutions converge
to a steady state if n = 1 ([Ze], [Ma]), if g is analytic (see [Si], [Je]), or if Ω is a ball, g = g(u)
and u is nonnegative ([HP]).
In any event, it seems that stabilization is at least a generic phenomenon in the sense that
it occurs for all u0 from an open dense subset of W 1,∞(Ω) ([Li], [ST]), or, allowing arbi-
trary u0, for ‘almost every’ g and ‘almost every’ Ω; for this and a more detailed discussion
including further references, consult [BP], [PS], [PR] and [Po2].
Most of these results can easily be extended to the case of a smooth function a 6≡ 1 which is
bounded below by a positive constant on Ω̄. Concerning more general equations (including
quasilinear and degenerate types or higher order equations), also most results in the liter-
ature concentrate on proving stabilization (see [Ar] and the references therein, [LP], [Wi],
[Je], and ???).
Accordingly, only few nonconvergent bounded solutions of problems related to (1.2) have
been found so far. Even in the case that g is allowed to depend on ∇u explicitly (which in
general destroys a certain energy-dissipating property of (1.2), cf. the consideration around
(2.11) below), it is not trivial to detect them; examples for this and more complex types of
behavior on some domains in R

n, n ≥ 2, are given in [Po1] (see also the references therein).
As to (1.2), on arbitrary domains in R

n, n ≥ 2, Poláčik and Simondon constructed nonlin-
earities g(x, u) ∈ C∞ such that (1.2) with a ≡ 1 has bounded nonstabilizing solutions ([PS];
see also [PR]). An example for g independent of x is given by Poláčik and Yanagida in [PY],
where various oscillating solutions are constructed for the Cauchy problem associated with

ut = ∆u + up in R
n × (0,∞), n ≥ 11, p ≥ (n−2)2−4n+8

√
n−1

(n−2)(n−10) . (1.3)

It is the main purpose of the present work to demonstrate that if a vanishes on some part
of the boundary then it may occur that (1.1) has some global solutions with nonstabilizing
large time behavior. To make this more precise, we observe that according to the choice of
λ1, the set E of equilibria of (1.1) is precisely the one-dimensional eigenspace {γΘ | γ ∈ R}
associated with the principal Laplacian eigenfunction Θ ≥ 0. Then our main results state
that if

∫

Ω

(dist (x, ∂Ω))2

a(x)
dx = ∞ (1.4)

then

• for any −∞ < α < β < ∞, there exists u0 ∈ W 1,∞(Ω) with αΘ ≤ u0 ≤ βΘ, and
such that the solution of (1.1) is global and bounded and its ω-limit set is given by
ω(u0) = {γΘ | γ ∈ [α, β]} (Theorem 4.3);
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Under assumption (1.4), even unbounded ω-limit sets are possible, just as in the case of
problem (1.3). Namely,

• given any α ∈ R and p < ∞, one can find initial data u0 ∈ W 1,p(Ω) with the property
that the solution of (1.1) is global and unbounded but has a nontrivial ω-limit set
ω(u0) = {γΘ | γ ∈ [α,∞)} (Corollary 4.4);

• for each p < ∞ there exists a global unbounded solution of (1.1), emanating from
some u0 ∈ W 1,p(Ω), which is such that

max
x∈Ω̄

u(x, t+k ) → ∞ and

min
x∈Ω̄

u(x, t−k ) → −∞

along suitable sequences t±k → ∞ (Corollary 4.5).

In fact, (1.4) is sharp in respect of stabilization in the sense that

• if
∫

Ω
(dist (x,∂Ω))2

a(x) dx < ∞ then any solution emanating from initial data in W 1,∞(Ω)

converges to some multiple of Θ in L2(Ω) as t → ∞ (Lemma 3.1).

In other words, a degeneracy of (1.1), even if occuring only at one single point on the
boundary, may destroy the mentioned convergence results, regardless of the choice of Ω and
the space dimension n. This particularly means – let us emphasize this – that neither the
restriction to space dimension one, nor to analytic a, nor to positive solutions can enforce
stabilization, despite of the fact that (1.1) is a linear problem, and even though E is strictly
ordered due to the positivity of Θ.

2 Well-posedness of the problem and a basic property

of ω-limit sets

Throughout the rest of the paper we assume that

a ∈ Cµ(Ω̄) for some µ > 0 and a(x) > 0 for all x ∈ Ω (2.1)

as well as
u0 ∈ C0(Ω̄) and u0|∂Ω = 0. (2.2)

Moreover, for later reference let us normalize Θ in any convenient way, for instance by the
requirement ‖Θ‖L∞(Ω) = 1. Then there exist positive constants θ± such that

θ−dist (x, ∂Ω) ≤ Θ(x) ≤ θ+dist (x, ∂Ω) (2.3)

holds for all x ∈ Ω.
In both the construction and the further examination of solutions of (1.1) it will be useful to
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consider suitable regularizations of (1.1) that remove the possibly existing degeneracy. For
definiteness, let us utilize

uεt = aε(x)(∆uε + λ1uε) in Ω × (0,∞),

uε|∂Ω = 0,

uε|t=0 = u0 (2.4)

for this purpose, where aε(x) := a(x) + ε. By classical linear parabolic Schauder theory
([LSU]), these problems have unique global solutions uε for each ε > 0. Taking ε → 0, one
can see that (1.1) is well-posed in the following sense.

Lemma 2.1 If a and u0 satisfy (2.1) and (2.2) then (1.1) possesses a unique global classical
solution u ∈ C0(Ω̄ × [0,∞)) ∩ C2,1(Ω × (0,∞)). This solution can be obtained as the limit
in C0

loc(Ω̄ × [0,∞)) ∩ C
2,1
loc (Ω × (0,∞)) of the solutions uε of (2.4) as ε → 0.

Morevoer, for all T > 0 and δ > 0 there exists ν > 0 such that for all ũ0 satisfying (2.2),

‖ũ0 − u0‖L∞(Ω) ≤ ν implies ‖ũ(·, t) − u(·, t)‖L∞(Ω) ≤ δ ∀ t ∈ [0, T ] (2.5)

when ũ denotes the solution of (1.1) with initial data ũ0.

Proof. The proof uses a series of rather well-known arguments and thus in some places
we confine ourselves to an outline.
First of all, since a is positive in Ω, the classical maximum principle ensures uniqueness of
solutions in the indicated class.
Next, it follows upon comparison with spatially homogeneous functions that

|uε(x, t)| ≤ ‖u0‖L∞(Ω) · e
λ1‖aε‖L∞(Ω)t in Ω × (0,∞). (2.6)

Hence, parabolic Schauder theory in combination with the Arzelà-Ascoli theorem implies
that uε → u in C2,1(K×[τ, T ]) holds for all 0 < τ < T < ∞ and any compact K ⊂⊂ Ω along
some sequence ε = εj → 0, which entails that u solves ut = a(x)(∆u + λ1u) in Ω × (0,∞)
classically.
In order to obtain that the convergence uε → u actually takes place in C0

loc(Ω̄ × [0,∞)), it
is now sufficient to prove that for each T > 0 and µ > 0 there exist K ⊂⊂ Ω and τ > 0 such
that for all ε ∈ (0, 1) we have

|uε(x, t)| ≤ µ in (Ω \ K) × (0, T ) (2.7)

and
|uε(x, t) − u0(x)| ≤ µ in K × (0, τ). (2.8)

To see (2.7), we fix η ∈ (0, 1) small such that 2ηeγT ≤ µ holds with γ := λ1 · sup
ε∈(0,1)

‖aε‖L∞(Ω).

Then, since u0|∂Ω = 0, there exists cη > 0 such that u0(x) ≤ η + cηΘ(x) in Ω. As v(x, t) :=
eγt · (η + cηΘ(x)) satisfies

vt − aε(x)(∆v + λ1v) = γeγt(η + cηΘ) − aε(x)eγt(−cηλ1Θ + λ1η + cηλ1Θ)

≥ γeγt − λ1ηaε(x)eγt

≥ 0 in Ω × (0, T ),
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it follows from the maximum principle that |uε| ≤ v in Ω × (0, T ). Particularly, defining K

to be the set where cηΘ(x) ≥ η, we end up with (2.7).
The proof of (2.8) now easily follows upon comparing uε, for fixed x0 ∈ K, from above and
below with the barrier functions

v±(x, t) := u0(x0) ± (µ
2 + c1|x − x0|

2 + c2t) in Ω × (0, τ),

where c1 and c2 are large and τ > 0 is small, all these numbers depending on µ and K only.
As a consequence, u is a classical solution of (1.1) and hence, by uniqueness, uε → u holds
along the entire net ε → 0.
Finally, the continuous dependence property (2.5) can be proved along the same lines upon
performing minor modifications to (2.6)-(2.8).

By adapting the standard Lyapunov procedure to the present case, we obtain that the ω-
limit set of any solution, either bounded or unbounded, can only consist of steady states of
(1.1).

Lemma 2.2 Assume that, besides (2.2), u0 belongs to W 1,2(Ω), and that there exists tk →
∞ such that

‖u(·, tk)‖L2(Ω) ≤ M ∀ k ∈ N (2.9)

holds with some M > 0. Then (u(·, tk))k∈N is precompact with respect to the strong topology
in L2(Ω) and

⋂

k0∈N

(u(·, tk))k≥k0 ⊂ {γθ | γ ∈ R}, (2.10)

where the closure is taken in L2(Ω).

Proof. We multiply (2.4) by uεt

aε
to see upon integrating by parts that

∫ tk

0

∫

Ω

u2
εt

aε(x)
+

1

2

∫

Ω

|∇uε(·, tk)|2 −
λ1

2

∫

Ω

u2
ε(·, tk) =

1

2

∫

Ω

|∇u0|
2 −

λ1

2

∫

Ω

u2
0. (2.11)

Due to (2.9) and the assumption that u0 ∈ W 1,2(Ω), this gives

∫ tk

0

∫

Ω

u2
εt

aε(x)
+

1

2

∫

Ω

|∇uε(·, tk)|2 ≤
1

2

∫

Ω

|∇u0|
2 +

λ1M
2

2
=: C

for all k ∈ N. Thus, since aε ≤ ‖a‖L∞(Ω) + ε,

∫ ∞

0

∫

Ω

u2
t ≤ C0‖a‖L∞(Ω) (2.12)

and
∫

Ω

|∇u(·, tk)|2 ≤ C0 for all k ∈ N (2.13)

by Fatou’s lemma, for instance. Now (2.13) ensures the claimed L2(Ω)-precompactness,
whereas (2.10) will follow from an argumentation similar to that presented in [Ar] for the

5



porous medium equation (cf. also [Wi]): From (2.12) we particularly gain
∫ 1

0

∫

Ω

∣

∣

∣
u(x, tk + τ) − u(x, tk)

∣

∣

∣

2

dxdτ =

∫ 1

0

∫

Ω

∣

∣

∣

∫ tk+τ

tk

ut(x, s)ds
∣

∣

∣

2

dxdτ

≤

∫ 1

0

τ

∫

Ω

∫ tk+1

tk

u2
t (x, s)dsdxdτ

≤
1

2

∫ ∞

tk

∫

Ω

u2
t → 0 as k → ∞.

Hence, if w is any element of the set on the left-hand side of (2.10), that is, if u(·, tkj
) → w

in L2(Ω) for some subsequence tkj
→ ∞, we also have

∫ 1

0

∫

Ω

∣

∣

∣
u(x, tkj

+ τ) − w(x)
∣

∣

∣

2

dxdτ → 0 as j → ∞. (2.14)

Let us fix ζ ∈ C∞
0 ((0, 1)) with

∫ 1

0 ζ(τ)dτ = 1 and let ϕ ∈ C∞
0 (Ω) be arbitrary. Then

multiplying (1.1) by ζ(t−tk)ϕ(x)
a(x) and integrating yields

0 =

∫ tkj
+1

tkj

∫

Ω

ζ′(t − tkj
)u(x, t)

ϕ(x)

a(x)
dxdt +

∫ tkj
+1

tkj

∫

Ω

ζ(t − tkj
)u(x, t)∆ϕ(x)dxdt

+λ1

∫ tkj
+1

tkj

∫

Ω

ζ(t − tkj
)u(x, t)ϕ(x)dxdt

=

∫ 1

0

∫

Ω

ζ′(τ)u(x, tkj
+ τ)

ϕ(x)

a(x)
dxdτ +

∫ 1

0

∫

Ω

ζ(τ)u(x, tkj
+ τ)∆ϕ(x)dxdτ

+λ1

∫ 1

0

∫

Ω

ζ(τ)u(x, tkj
+ τ)ϕ(x)dxdτ.

According to (2.14) we may take j → ∞ here to achieve

0 =

∫ 1

0

∫

Ω

ζ′(τ)w(x)
ϕ(x)

a(x)
dxdτ +

∫ 1

0

∫

Ω

ζ(τ)w(x)∆ϕ(x)dxdτ

+λ1

∫ 1

0

∫

Ω

ζ(τ)w(x)ϕ(x)dxdτ

=

∫

Ω

w(∆ϕ + λ1ϕ)

in view of the properties of ζ. Therefore w, belonging to W
1,2
0 (Ω) due to (2.13), is a weak

solution of −∆w = λ1w in Ω. By simplicity of λ1, w must coincide with some multiple of
Θ.

3 The case
∫

Ω
(dist (x,∂Ω))2

a(x)
dx < ∞

Let us first make sure that if the degeneracy is sufficiently weak then all solutions emanating
from Lipschitz continuous initial data stabilize.
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Lemma 3.1 Suppose that
∫

Ω
(dist (x,∂Ω))2

a(x) dx < ∞. Then for any u0 ∈ W 1,∞(Ω) vanishing

on ∂Ω, the solution u of (1.1) satisfies

u(·, t) → αΘ in L2(Ω) as t → ∞, (3.1)

where α is given by

α =

∫

Ω
Θ(x)u0(x)

a(x) dx
∫

Ω
Θ2(x)
a(x)

. (3.2)

Remark. Due to (2.3), the assumption
∫

Ω
(dist (x,∂Ω))2

a(x) dx < ∞ is equivalent to the re-

quirement
∫

Ω
Θ2(x)
a(x) dx < ∞.

Proof. Since u0 ∈ W 1,∞(Ω) and u0|∂Ω = 0, there exists c > 0 such that |u0(x)| ≤
c dist (x, ∂Ω), so that, by (2.3),

|u0(x)| ≤
c

θ−
Θ(x) for all x ∈ Ω. (3.3)

Thus the comparison principle implies |uε(x, t)| ≤ c
θ−

Θ(x) in Ω × (0,∞), whence u is

bounded. Therefore Lemma 2.2 says that its ω-limit set is not empty and consists of mul-

tiples of Θ only. To see that this set actually is a singleton, we multiply (2.4) by Θ(x)
aε(x) and

integrate to obtain
∫

Ω

Θ(x)

aε(x)
uε(x, t)dx −

∫

Ω

Θ(x)

aε(x)
u0(x)dx =

∫ t

0

∫

Ω

(∆uε + λ1uε) · Θ

=

∫ t

0

∫

Ω

uε · (∆Θ + λ1Θ)

= 0.

From (3.3) we gain the uniform majorization

∣

∣

∣

Θ(x)

aε(x)
uε(x, t)

∣

∣

∣
≤

c

θ−

Θ2(x)

a(x)
for all t ≥ 0 and ε > 0.

Therefore our assumption
∫

Ω
Θ2(x)
a(x) dx < ∞ together with the dominated convergence theo-

rem implies that in the limit ε → 0
∫

Ω

Θ(x)

a(x)
u(x, t)dx =

∫

Ω

Θ(x)

a(x)
u0(x)dx for all t > 0.

Now suppose α ∈ R is such that u(·, tk) → αΘ in L2(Ω) along some sequence tk → ∞.
Passing to a subsequence, we may assume that this convergence is also pointwise a.e. in Ω
and hence repeating the above argument in taking tk → ∞ yields

∫

Ω

Θ(x)

a(x)
· αΘ(x)dx =

∫

Ω

Θ(x)

a(x)
u0(x)dx.

This means that α is uniquely determined by (3.2).
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4 The case
∫

Ω
(dist (x,∂Ω))2

a(x)
dx = ∞

A key ingredient in the proof of our main results is the following lemma. It states that
under codition (1.4), any signed perturbation from a steady state that initially is compactly
supported will not change the large time behavior, no matter how large this perturbation is
at t = 0. A similar global attractivity property of steady states is shared by the equilibria
of 1.3; in [PY] this discovery also is the starting point for the construction of oscillating
solutions.

Lemma 4.1 Suppose that
∫

Ω
(dist (x,∂Ω))2

a(x) dx = ∞, and assume that

u0 = αΘ + ϕ

with some α ∈ R and ϕ ∈ W 1,2(Ω) ∩ C0(Ω̄) such that

ϕ has compact support in Ω and

either ϕ ≥ 0 in Ω or ϕ ≤ 0 in Ω.

Then the solution u of (1.1) fulfils

u(·, t) → αΘ in L2(Ω) as t → ∞. (4.1)

Proof. Since ũ± := ±(u − αΘ) also solves (1.1) by linearity, it is sufficient to consider
the case α = 0 and ϕ ≥ 0 only.

Starting with the same strategy as in the proof of Lemma 3.1, we first use Θ(x)
aε(x) as a test

function in (2.4) to gain the conservation property

∫

Ω

Θ(x)

aε(x)
uε(x, t)dx =

∫

Ω

Θ(x)

aε(x)
u0(x)dx for all t > 0.

Since the right-hand side tends to the finite number
∫

Ω
Θ(x)
a(x) ϕ(x)dx as ε → 0, it follows from

Fatou’s lemma that
∫

Ω

Θ(x)

a(x)
u(x, t)dx remains uniformly bounded for all t > 0. (4.2)

Next, we multiply (2.4) by uε(x,t)
aε(x) and use the Poincaré inequality to obtain the dissipation

property

1

2

∫

Ω

u2
ε(x, t)

aε(x)
dx −

1

2

∫

Ω

ϕ2(x)

aε(x)
dx = −

∫ t

0

∫

Ω

|∇uε|
2 + λ1

∫ t

0

∫

Ω

u2
ε

≤ 0 for all t > 0.

Again by Fatou’s lemma, we deduce from this that

∫

Ω

u2(x, t)dx ≤ ‖a‖L∞(Ω)

∫

Ω

u2(x, t)

a(x)
dx ≤ ‖a‖L∞(Ω)

∫

Ω

ϕ2(x)

a(x)
dx for all t > 0.
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This allows us to apply Lemma 2.2 to conclude that the whole semi-orbit {u(·, t) | t > 0}
is precompact in L2(Ω), and that each member of the ω-limit set is a multiple of Θ. But it
is impossible that u(·, tk) → βΘ in L2(Ω) occurs for some β > 0 and tk → ∞: In this case,
namely, for a subsequence we would have u(·, tkj

) → βΘ also a.e. in Ω and hence, once more
due to Fatou’s lemma, could conclude from (4.2) that

∫

Ω

Θ(x)

a(x)
· βΘ(x)dx < ∞.

In light of (2.3), this would contradict the hypothesis
∫

Ω
(dist (x,∂Ω))2

a(x) dx = ∞, whence in fact

(4.1) must hold.

We now follow an idea originally used in [PY] to construct nonstabilizing solutions of (1.3)
and repeatedly apply the last lemma with suitable ϕ to obtain initial distributions leading
to large ω-limit sets. The construction is somewhat more involved than in [PY], because we
treat the bounded and the unbounded case at the same time.

Lemma 4.2 Assume that
∫

Ω
(dist (x,∂Ω)2

a(x) dx = ∞. Let (αk)k∈N be a nondecreasing and

(βk)k∈N be an increasing sequence of real numbers such that α1 < β1. Then for all p ∈ [2,∞)
there exists u0 ∈ W 1,p(Ω) ∩ C0(Ω̄) vanishing on ∂Ω and a sequence of times tk → ∞ such
that the solution u of (1.1) satisfies

{

‖u(·, tk) − αkΘ‖L2(Ω) ≤
1
k

if k is odd and

‖u(·, tk) − βkΘ‖L2(Ω) ≤
1
k

if k is even.
(4.3)

Moreover, u0 can be chosen in such a way that

αΘ ≤ u0 ≤ βΘ in Ω (4.4)

holds with α := lim
k→∞

αk ≥ −∞ and β := lim
k→∞

βk ≤ +∞, and if both αk ≡ α and βk ≡ β for

all k then it is possible to achieve u0 ∈ W 1,∞(Ω).

Proof. The idea is to define u0 as the limit of an inductively defined seuqnece of initial
data u0k lying between αkΘ and βkΘ. Here, in a small neighborhood of ∂Ω, u0k shall
coincide with αkΘ if k is odd, and with βkΘ if k is even, so that Lemma 4.1 will yield that
the corresponding solutions uk of (1.1) become close to αkΘ and βkΘ, respectively, at some
large but finite tk. The continuous dependence property asserted in Lemma 2.1 then enables
us to slightly modify u0k near ∂Ω without a significant effect at tk.
To make this more precise, we fix a cut-off function ζ ∈ C∞([0,∞)) such that ζ(s) = 1
for s ≤ 1

2 , ζ(s) = 0 for s ≥ 1 and −4 ≤ ζ′(s) ≤ 0 for s ≥ 0. For each δ > 0, set

ζδ(x) := ζ(dist (x,∂Ω)
δ

) for x ∈ Ω̄. Evidently, ζδ(x) = 1 if dist (x, ∂Ω) ≤ δ
2 and ζδ(x) = 0 if

dist (x, ∂Ω) ≥ δ. Moreover, since x 7→ dist (x, ∂Ω) has Lipschitz constant 1, we have

|∇ζδ(x)| ≤ 4
δ
· χ{ δ

2≤dist (x,∂Ω)≤δ}(x) for a.e. x ∈ Ω. (4.5)

To simplify notation, from now on we may assume – expanding the sequneces if necessary –
that

αk = αk−1 whenever k is even and βk = βk−1 for all odd k. (4.6)
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The rest of the proof will be organized in three steps.

Step 1: Initiation of the recursion.
We let

u01(x) := α1Θ(x), x ∈ Ω̄ (4.7)

and fix an rabitrary t1 > 1. Then, since α1Θ is a stationary solution of (1.1), Lemma 2.1
states that there exists ν1 > 0 such that for ũ0 satisfying (2.2),

‖ũ0 − u0‖L∞(Ω) ≤ ν1 implies ‖ũ(·, t1) − α1Θ‖L2(Ω) ≤ 1

when ũ denotes the solution of (1.1) with ũ|t=0 = ũ0. Observe that if we choose δ1 > diamΩ
then ζδ1 ≡ 1 and (4.7) can trivially be rewritten in the form

u01 = β1Θ − (β1 − α1)ζδ1Θ.

Generalizing, let us assume that for some k ≥ 2 and all j ∈ {1, ..., k − 1} we have already
defined u0j, δj , νj and tj with the follwing properties:

δj <
δj−1

2
, 2 ≤ j < k, (4.8)

νj <
νj−1

2j−1
, 2 ≤ j < k, (4.9)

tj > j, 1 ≤ j < k, (4.10)

u0j = β1Θ +

j
∑

i=1

(−1)i(βi − αi)ζδi
Θ, 1 ≤ j < k, , (4.11)

‖u0j − u0,j−1‖L∞(Ω) ≤
νj−1

2
, 2 ≤ j < k, (4.12)

‖∇u0j −∇u0,j−1‖Lp(Ω) ≤
1

2j
, 2 ≤ j < k, (4.13)

and, for 1 ≤ j < k,

‖ũ0 − u0j‖L∞(Ω) ≤ νj implies

{

‖ũ(·, tj) − αjΘ‖L2(Ω) ≤
1
j

if j is odd,

‖ũ(·, tj) − βjΘ‖L2(Ω) ≤
1
j

if j is even,
(4.14)

where ũ0 satisfies (2.2) and ũ is the corresponding solution of (1.1).
Observe that (4.8) and (4.11) imply that

u0j ≡

{

βjΘ on supp ζδj
if j < k and j is even,

αjΘ on supp ζδj
if j < k and j is odd,

so that (4.11) can be written in the recursive form

u0j =



























u0,j−1 + ζδj
(βjΘ − αjΘ) ≡ u0,j−1 + ζδj

(βjΘ − u0,j−1)

≡ (1 − ζδj
)u0,j−1 + ζδj

· βjΘ if j < k is even,

u0,j−1 − ζδj
(βjΘ − αjΘ) ≡ u0,j−1 + ζδj

(αjΘ − u0,j−1)

≡ (1 − ζδj
)u0,j−1 + ζδj

· αjΘ if j < k is odd.

(4.15)
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From this and (4.6) it can easily be seen by induction that

αjΘ ≤ u0j ≤ βjΘ, 1 ≤ j < k. (4.16)

Step 2: Continuation of the recursion – the inductive step.
We proceed to define u0k, δk, νk and tk such that (4.8)–(4.14) continue to hold up to j = k.

To initiate this next step, we fix δk <
δk−1

2 such that

(βk − αk) · θ+δk ≤
νk−1

2
(4.17)

and

(4θ+ + ‖∇Θ‖L∞(Ω)) · (βk − αk) · |Ω \ Ωδk
|
1
p ≤

1

2k
(4.18)

hold, where θ+ is the constant from (2.3) and Ωδ := {x ∈ Ω | dist (x, ∂Ω) > δ}. Now we
define through (4.11) for j = k, that is, we set

u0k := β1Θ +

k
∑

i=1

(−1)i(βi − αi)ζδi
Θ.

Then (4.15) and (4.16), now also valid for j = k, say that

u0k =







βkΘ − (1 − ζδk
)(βkΘ − u0,k−1) =: βkΘ − ϕk if k is even,

αkΘ − (1 − ζδk
)(αkΘ − u0,k−1) =: αkΘ + ϕk if k is odd,

and that ϕk is nonnegative. Therefore Lemma 4.1 asserts that if, for instance, k is even
then the solution uk of (1.1) with uk|t=0 = u0k converges to βkΘ as t → ∞ and particularly
satisfies

‖uk(·, tk) − βkΘ‖L2(Ω) ≤
1

2k
(4.19)

for some tk > k. Hence, according to Lemma 2.1, if we pick νk <
νk−1

2k−1 small enough then
for any ũ0 compatible with (2.2),

‖ũ0 − u0k‖L∞(Ω) ≤ νk implies ‖ũ(·, tk) − uk(·, tk)‖L2(Ω) ≤
1

2k
.

In conjunction with (4.19) and a similar reasoning for odd k this shows that (4.14) continues
to hold for j = k.
To check (4.12) up to j = k, we use (4.15), (2.3) and (4.17) in estimating

‖u0k − u0,k−1‖L∞(Ω) = ‖ζδk
(βkΘ − αkΘ)‖L∞(Ω)

≤ (βk − αk)‖Θ‖L∞(Ω\Ωδk
)

≤ (βk − αk) · θ+δk

≤
νk−1

2
.
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Finally, from (4.15), (2.3), (4.5) and (4.18) we gain

‖∇u0k −∇u0,k−1‖Lp(Ω) ≤ (βk − αk)‖Θ∇ζδk
‖Lp(Ω\Ωδk

) + (βk − αk)‖ζδk
∇Θ‖Lp(Ω\Ωδk

)

≤ (βk − αk) · θ+δk ·
4

δk

· |Ω \ Ωδk
|
1
p

+(βk − αk) · ‖∇Θ‖L∞(Ω) · |Ω \ Ωδk
|
1
p

≤
1

2k
,

which asserts (4.13) up to j = k.

Step 3. Limit process.
As a result of (4.12) and (4.9), for 1 ≤ k < k′ < ∞ we have

‖u0k − u0k′‖L∞(Ω) ≤
k′

∑

i=k+1

‖u0i − u0,i−1‖L∞(Ω)

≤
k′

∑

i=k+1

νi−1

2

= 1
2

(

νk +
k′

∑

i=k+2

νi−1

)

≤ 1
2

(

νk +
k′

∑

i=k+2

νi−2

2i−2

)

≤ νk

2

(

1 +
k′

∑

i=k+2

1
2i−2

)

≤ νk

2

(

1 +
∞
∑

l=1

1
2l

)

= νk,

which proves that the u0k form a Cauchy sequence in C0(Ω̄). Taking now k′ → ∞ here
shows that for its limit u0 we have ‖u0 − u0k‖L∞(Ω) ≤ νk for all k ∈ N. Hence, by (4.14),
the solution u of (1.1) emanating from u0 satisfies (4.3).
Moreover, (4.16) proves (4.4), and the inclusion u0 ∈ W 1,p(Ω) is a consequence of (4.13),
the triangle inequality in Lp(Ω) and the finiteness of

∑∞
k=1

1
2k .

Finally, if αk ≡ α and βk ≡ β then from (4.11) we gain

‖∇u0k‖L∞(Ω) ≤ β ‖∇Θ‖L∞(Ω) + (β − α)

k
∑

i=1

‖∇ζδi
· Θ‖L∞(Ω)

+(β − α)
∥

∥

∥

k
∑

i=1

(−1)iζδi

∥

∥

∥

L∞(Ω)
· ‖∇Θ‖L∞(Ω). (4.20)

The first and the third term on the right are bounded independently of k, because ζδi
is

nonincreasing with i and thus 0 ≥
k
∑

i=1

(−1)iζδi
≥ −1. As to the second term, we use that
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by construction the gradients ∇ζδi
have mutually disjoint supports; that is, recalling (4.5),

(4.8) and (2.3) we find

k
∑

i=1

‖∇ζδi
· Θ‖L∞(Ω) ≤

k
∑

i=1

4

δi

· θ+δi · |Ω δi
2

\ Ωδi
|

≤ 4θ+ · |Ω|.

Accordingly, (4.20) shows that in this case we have u0 ∈ W 1,∞(Ω).

Now the main results actually are corollaries of this lemma.

Theorem 4.3 Suppose α and β are real numbers such that α < β. Then there exists
u0 ∈ W 1,∞(Ω) vanishing on ∂Ω such that the ω-limit set of the solution (1.1) is given by

ω(u0) = {γΘ | γ ∈ [α, β]}.

Proof. Applying Lemma 4.2 to αk ≡ α and βk ≡ β, we obtain u0 ∈ W 1,∞(Ω) with

αΘ ≤ u0 ≤ βΘ in Ω, (4.21)

and such that ω(u0) contains αΘ and βΘ. Since the solution u of (1.1) is continuous, ω(u0)
is connected and thus {γΘ | γ ∈ [α, β]} ⊂ ω(u0). By (4.21), also the opposite inclusion
holds.

Corollary 4.4 Let α ∈ R. Then for all p ∈ [2,∞) there exists u0 ∈ W 1,p(Ω) ∩ C0(Ω̄) with
u0|∂Ω = 0 such that the solution of (1.1) is unbounded and

ω(u0) = {γΘ | γ ∈ [α,∞)}.

Proof. We set αk ≡ α and βk := α + k in Lemma 4.2 to obtain a function u0 from the
indicated class, fulfilling

u0 ≥ αΘ in Ω, (4.22)

and such that ω(u0) contains αΘ. Since, by (4.3),

‖u(·, tk) − αΘ‖L2(Ω) ≤
1
k

if k is odd, and

‖u(·, tk) − αΘ‖L2(Ω) ≥ k‖Θ‖L2(Ω)−‖(u(·, tk) − αΘ)−kΘ‖L2(Ω) ≥ k‖Θ‖L2(Ω)− 1 if k is even,

we infer from the continuity of the solution u of (1.1) that for each β > α and m ∈ N large
enough one can find t̃m ∈ (t2m, t2m1) such that

‖u(·, t̃m) − αΘ‖L2(Ω) = ‖(β − α)Θ‖L2(Ω). (4.23)

Thus, Lemma 2.2 (which is still applicable since u0 ∈ W 1,2(Ω)) entails that

⋂

m0∈N

(u(·, t̃m))m≥m0 ⊂ {γΘ | γ ∈ R}.
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By (4.23), however, the only conceivable accumulation point of u(·, t̃m) − αΘ is (β − α)Θ,
from which we conclude

u(·, t̃m) → βΘ as m → ∞.

We thus have proved {γΘ | γ ∈ [α,∞)} ⊂ ω(u0). In view of (4.22) and, again, Lemma 2.2,
this completes the proof.

Corollary 4.5 For any p < ∞ one can find u0 ∈ W 1,p(Ω) ∩C0(Ω̄), vanishing on ∂Ω, such
that the solution u of (1.1) satisfies

max
x∈Ω̄

u(x, t+k ) → ∞ and

min
x∈Ω̄

u(x, t−k ) → −∞

as k → ∞ for suitable sequences t±k → ∞.

Proof. The claim immediately follows upon an application of Lemma 4.2 to αk := −k

and βk := k.

Remark. Unfortunately, it does not result from Corollary 4.5 that the solution con-
structed there has its ω-limit set equal to the entire steady state set {γΘ | γ ∈ R}, and we
have to leave open here wheter the latter can be achieved for appropriate initial data. In
fact, this seems to be hardly achievable by our construction, which, invoking Lemma 4.1 in
each recursion step, essentially relied on the fact that the compactly supported difference of
u0k to some multiple of Θ had one sign throughout Ω.
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[BP] Brunovský, P., Poláčik, P.: The Morse-Smale structure of a generic reaction-
diffusion equation in higher space dimension. J. Differential Equations 135, 129-181
(1997)
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[Po2] Poláčik, P.: Some common asymptotic properties of semilinear parabolic, hyperbolic
and elliptic equations. Math. Bohem. 127 (2), 301-310 (2002)
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