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Abstract

The paper deals with positive solutions of the initial-boundary value problem for

ut = f(u)(∆u + λ1u) (⋆)

with zero Dirichlet data in a smoothly bounded domain Ω ⊂ R
n, n ≥ 1. Here

f ∈ C0([0,∞)) ∩ C1((0,∞)) is positive on (0,∞) with f(0) = 0, and λ1 is ex-
actly the first Dirichlet eigenvalue of −∆ in Ω. In this setting, (⋆) may possess
oscillating solutions in presence of a sufficiently strong degeneracy. More precisely,
writing H(s) :=

R s

1
dσ

f(σ)
, it is shown that if

R

0
sH(s)ds = −∞ then there ex-

ist global classical solutions of (⋆) satisfying lim supt→∞
‖u(·, t)‖L∞(Ω) = ∞ and

lim inft→∞ ‖u(·, t)‖L∞(Ω) = 0.

Under the additional structural assumption sf ′(s)
f(s)

≥ κ > 0, s > 0, this result can

be sharpened: If
R

0
sH(s)ds = −∞ then (⋆) has a global solution with its ω-limit

set being the ordered arc that consists of all nonnegative multiples of the principal
Laplacian eigenfunction. On the other hand, under the above additional assump-
tion the opposite condition

R

0
sH(s)ds > −∞ ensures that all solutions of (⋆) will

stabilize to a single equilibrium.
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1 Introduction

We consider nonnegative classical solutions of the problem











ut = f(u)(∆u + λ1u) in Ω × (0, T ),

u|∂Ω = 0,

u|t=0 = u0

(1.1)

in a smoothly bounded domain Ω ⊂ R
n, n ≥ 1, where λ1 > 0 denotes the first Dirich-

let eigenvalue of −∆ in Ω. The function f ∈ C0([0,∞)) ∩ C1((0,∞)) is assumed to be
positive in (0,∞) with f(0) = 0, whereby (1.1) degenerates near points where u is small.
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Equations of this type arise, for instance, in simplified models in electromagnetism, in dif-
ferential geometry and in population dynamics ([Lo], [An], [Al]), where usually f(u) = up

with some p ≥ 1. When 0 < p < 1, (1.1) can be transformed into the well-understood
porous medium equation vt = ∆vm + λ1v

m with m = 1
1−p

.

The main goal of this work is to show that (1.1), despite of its seemingly simple structure,
may exhibit an unexpectedly complex dynamics: Namely, we shall see that if the degen-
eracy is strong enough in a certain sense then (1.1) possesses global unbounded solutions
which oscillate in time with amplitude growing to infinity. It will furthermore turn out
that these solutions even may have an unbounded but ordered ω-limit set

ω(u0) := {w ∈ L2(Ω) | u(·, tk) → w in L2(Ω) for some tk → ∞}.

Before making these statements more precise, let us first recall some basically well-known
results on asymptotic behavior in second-order diffusion equations. It is in accordance
with the dissipative structure of such equations that, generically, their global-in-time
solutions prefer to stabilize, as time approaches inifinity, to either a single stationary
profile, or to ‘∞’ in a suitable topology. Moreover, in most reasonable situations such a
regular profile must belong to the set E of stationary solutions of (1.1), so that, generically,
one has that ω(u0) consists of at most one element of E .
A well-studied example is the corresponding Dirichlet problem for the semilinear equation
ut = ∆u + g(u) with sufficiently smooth g. As to this, it is known that all bounded
solutions stabilize if either n = 1 ([Ze], [Ma]), g is analytic ([Je]), or if Ω is a ball and u

is nonnegative ([HP]). Other sufficient criteria involve some a priori knowledge on E : For
instance, if E is a totally ordered set of functions then the Hopf boundary point lemma
enforces all bounded solutions to settle down to one of them ([Li]). More information on
this and related equations, including further references, can be found in [PS] and [Po].
In the more general equation ut = f(u)(∆u+ g(u)) with f ∈ C1(R), most of these results
continue to be valid under the extra assumption that f be bounded from below by a
positive constant. Even in the case when f is allowed to touch the value zero in the
sense described in the beginning, we have stabilization of all solutions of the resulting
degenerate problem, provided the initial data belong to W

1,2
0 (Ω), are positive in Ω and

E is known to be a discrete set ([Win5]). For degenerate equations of this type, however,
some technical devices, frequently serving as useful support in the treatment of semilinear
problems, are no longer available, for instance the Hopf boundary point lemma ([Win2]).
A posteriori, our results will show that these tools in fact appear to be inevitable for the
proof of stabilization.
In order to explain this and state our main results, let us note that the particular choice
of λ1 in (1.1) entails that the set E of nonnegative steady states of (1.1) is precisely given
by E = {αΘ | α ≥ 0}, where Θ denotes any positive principal Dirichlet eigenfunction of
−∆ in Ω. Therefore E forms a totally ordered set, but if f is sufficiently small near zero
then unlike the case f ≡ 1 this ordering property need not enforce solutions to select one
of the equilibria as a stabilization point. To be more precise, let us write

H(s) :=

∫ s

1

dσ

f(σ)
, s > 0,

and observe that H is bounded above on bounded subsets of (0,∞), while the strength
of the degeneracy in (1.1) is reflected in the possibly singular behavior of H near s = 0:
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The equation is weakly degenerate if H(0) > −∞, whereas the smaller f becomes near
zero, the stronger will be the tendency of H(s) towards −∞ as s → 0. In the present
context, the condition

∫

0

sH(s)ds = −∞ (1.2)

will mark a crucial borderline in respect of stabilization. Namely, the first of our main
results reads as follows.

• If (1.2) holds then (1.1) possesses a global positive classical solution u that oscillates
in the sense that

lim sup
t→∞

‖u(·, t)‖L∞(Ω) = ∞ and

lim inf
t→∞

‖u(·, t)‖L∞(Ω) = 0

(Lemma 3.8).

Under an additional structural assumption on f we can refine this statement and also
show that (1.2) is sharp:

• If (1.2) holds and sf ′(s)
f(s) ≥ κ > 0 for s > 0 then there exists u0 ∈ C0(Ω̄) admitting

a global positive classical solution u of (1.1) that has the ω-limit set

ω(u0) = {αΘ | α ≥ 0}

(Theorem 4.4).

• Conversely, if
∫

0 sH(s)ds > −∞ but still sf ′(s)
f(s) ≥ κ > 0 then all positive classical

solutions of (1.1) are global and bounded. Moreover, for any such solution there
exists a unique α ≥ 0 such that

u(·, t) → αΘ in L2(Ω) as t → ∞

(Theorem 4.5).

In the literature we could find only few results on the dynamics of (1.1) so far, basically
dealing with the case when f(u) = up with p > 0, and all of them concentrating on
the proof of statements which are positive in respect of stabilization: Summarizing these,
namely, we know that for such f all solutions are global in time and approach their ω-limit
set as t → ∞; moreover, ω(u0) ⊂ {αΘ | α ≥ 0} and if p < 3 then ω(u0) actually is a
singleton (see [Wie] and [Win3], for instance). On the other hand, if λ1 is substituted
by any number larger than λ1 then it is well-known that all positive solutions blow up
in finite time (cf. [FMcL] for the special case f(u) = u2), while the replacement by any
constant smaller than λ1 enforces all solutions to stabilize to zero asymptotically ([Wie]).

The core of our detection of oscillating solutions will be formed by an iterative construction
of suitable initial data. The idea of this procedure goes back to [PY], where nonstabilizing
solutions to the Cauchy problem in R

n for ut = ∆u+up were constructed in the parameter
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regime n ≥ 11, p ≥ (n−2)2−4n+8
√

n−1
(n−2)(n−10) ; a similar approach was used in the related work

[Win6] to find oscillating solutions for the linear degenerate equation which is obtained
when f(u) is replaced with a(x) in (1.1), where a is positive in Ω but vanishes in some
point on the boundary.
In the present framework this procedure will essentially rely on two ingredients: firstly,
appropriate global attractivity properties of the steady state w ≡ 0 and the ‘steady state’
∞, and secondly some particular result on continuous dependence of solutions to (1.1)
with respect to perturbations of the initial data. Both these ingredients will be provided
by Section 3.2 (for w ≡ 0) and Section 3.3 (for the attractivity of ∞), respectively, after
some basic preparatory material and a more convenient reformulation of (1.2) have been
given in Section 2 and Section 3.1. The main statements will be demonstrated in Section

3.4 and, for sf ′(s)
f(s) ≥ κ > 0, in Section 4.

2 Preliminaries

For the sake of definiteness, throughout the sequel we shall assume that the principal
Laplacian eigenfunction Θ is normalized in such a way that max

Ω
Θ = 1. Then it is a

well-known consequence of the smoothness of ∂Ω that there exist positive constants θ±
such that

θ−dist (x, ∂Ω) ≤ Θ(x) ≤ θ+dist (x, ∂Ω) for all x ∈ Ω. (2.1)

The following lemma can be proved by standard methods in the context of degenerate
equations of the present type (cf. [Win5], [Wie], [Win3] and the references therein, for
instance).

Lemma 2.1 Suppose u0 ∈ C0(Ω̄) is positive in Ω with u0|∂Ω = 0. Then there exists a
maximal existence time Tmax = Tmax(u) ≤ ∞ and a unique classical solution u of (1.1).
This solution can be obtained as the limit in C0

loc(Ω̄ × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)) of
the decreasing net of solutions uε, ε ց 0, of the non-degenerate problems











uεt = f(uε)(∆uε + λ1uε) in Ω × (0, Tmax(uε)),

uε|∂Ω = ε,

uε|t=0 = u0 + ε.

(2.2)

Moreover, if Tmax(u) < ∞ then ‖u(·, t)‖L∞(Ω) → ∞ as t ր Tmax(u).

Besides an approximation from above, it will be useful to know that u can as well be
approximated from below by ‘solutions’ with compactly supported initial data:

Lemma 2.2 Assuming that u0 is as in Lemma 2.1, let u−
η := lim

ε→0
u−

ηε denote the limit

of the solutions of (2.2) corresponding to the initial data u−
0η := (u0 − η)+. Then u−

η ∈

C0({u0 > η} × [0, Tmax(u))) ∩ C2,1({u0 > η} × (0, Tmax(u))), and we have u−
η ր u as

η ց 0, where u is the solution of (1.1).

Remark. Since their initial data are not positive everywhere, the functions u−
η need not

be continuous outside {u0 > η} (cf. [BDalPU]); particularly, they might not be classical
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solutions of (1.1). However, in view of the nonuniqueness results for weak solutions given
in [LDalP], for instance, we avoid introducing any weak solution concept here, because it
will actually not be necessary.

Proof. By comparison, u−
ηε ≤ uε for all ε and hence Tmax(u−

η ) ≥ Tmax(u) and u−
η ≤ u.

Clearly, the u−
η are ordered and thus u−

η ր u− in Ω× [0, Tmax(u)) holds for some u− ≤ u.
For any ball B ⊂⊂ {u0 > η}, we have (u0 − η)+ ≥ c0ΘB in B for some c0 = c0(B) > 0,
where ΘB denotes the principal Laplacian eigenfunction in B with maxx∈B ΘB(x) =
1, corresponding to the eigenvalue λ1(B) > λ1. Writing c1 := ‖f‖L∞((0,c0)), y(t) :=
c0 exp(−(λ1(B) − λ1)c1t) and v(x, t) := y(t)ΘB(x), we then calculate

vt − f(v)(∆v + λ1v) = y′ΘB − f(yΘB)(−y · λ1(B)ΘB + λ1yΘB)

=
[

y′ + (λ1(B) − λ1)f(yΘB) · y
]

ΘB

≤
[

y′ + (λ1(B) − λ1)c1y
]

ΘB

= 0 in B × (0,∞).

Therefore, u−
ηε ≥ v in B × (0,∞) for all ε by the comparison principle, which together

with parabolic Schauder estimates shows that u−
η is positive and continuous in {u0 >

η}× [0, Tmax(u)) and contained in C2,1({u0 > η}× (0, Tmax(u))). Since u−
η increases as η

decreases, we consequently can once more invoke Schauder theory and a standard barrier
argument near t = 0 to conclude that u−

η → u− in C0
loc(Ω × [0, Tmax(u))) ∩ C

2,1
loc (Ω ×

(0, Tmax(u))). Now the barrier-type estimate 0 ≤ u−
η ≤ u ensures that u− is continuous

even up to ∂Ω, and that accordingly u− is a positive classical solution of (1.1). Thus, the
uniqueness statement in Lemma 2.1 asserts that u− ≡ u.

An elementary but nonetheless essential conservation property is provided by the following
lemma. As compared to the case f ≡ 1, it can be interpreted as a substitute for the
constancy of the first Fourier coefficient

∫

Ω
u(·, t)Θ in this linear equation.

Lemma 2.3 We have
∫

Ω

H(u(x, t))Θ(x)dx =

∫

Ω

H(u0(x))Θ(x)dx for all t ∈ (0, Tmax(u)), (2.3)

which is to be understood as an identity in R ∪ {−∞}.

Proof. We multiply (2.2) by Θ
f(uε) and integrate by parts to obtain

∫

Ω

H(uε(x, t))Θ(x)dx =

∫

Ω

H(u0(x) + ε)Θ(x)dx +

∫ t

0

∫

Ω

(∆uε + λ1uε)Θ

=

∫

Ω

H(u0(x) + ε)Θ(x)dx − ε

∫ t

0

∫

∂Ω

∂νΘ

=

∫

Ω

H(u0(x) + ε)Θ(x)dx − ε

∫ t

0

∫

Ω

∆Θ

=

∫

Ω

H(u0(x) + ε)Θ(x)dx + ελ1

∫

Ω

Θ(x)dx · t.
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Sicne uε ց u in Ω× [0, Tmax(u)) and H is increasing, the monotone convergence theorem
thus proves (2.3).

3 The case
∫

0 sH(s)ds = −∞

3.1 A reformulation of
∫

0
sH(s)ds = −∞

In order to establish a connection between the (non-)integrability of sH(s) and the quan-
tities involved in Lemma 2.3, it will be convenient to have a statement equivalent to
∫

0
sH(s)ds = −∞, but made up of integrals over Ω and involving Θ appropriately. In view

of (2.1), it is plausible to guess that such a statement might be that
∫

Ω H(Θ)Θdx = −∞.
That this in fact is true will become clear upon the following elementary lemma, which
we formulate in a way slightly more general than actually required here.

Lemma 3.1 Suppose G ⊂ R
n is a bounded domain with Lipschitz boundary and Ψ :

(0,∞) → R is continuous and nonnegative. Then we have
∫

G

Ψ(dist (x, ∂G))dx < ∞ if and only if

∫

0

Ψ(s)ds < ∞. (3.1)

Remark. At the cost of slightly more technical expense, results in a similar spirit can
be derived for arbitrary – not necessarily smooth – domains ([Dj]).

Proof. Utilizing suitable local representations of ∂G, one can see that there exist
positive constants δ, c0 and c1 such that

c0(d2−d1) ≤
∣

∣

∣
{d1 < dist (x, ∂G) ≤ d2}

∣

∣

∣
≤ c1(d2−d1) whenever 0 < d1 < d2 ≤ δ, (3.2)

where we abbreviate {d1 < dist (x, ∂G) ≤ d2} := {x ∈ G | d1 < dist (x, ∂G) ≤ d2}.
Now for any η > 0, the interval [η, δ] can be equidistantly decomposed by setting dk :=
η + k · δ−η

N
, k = 0, ..., N , where N ∈ N. Choosing ξk ∈ [dk−1, dk] such that Ψ(ξk) =

max
s∈[dk−1,dk]

Ψ(s), we then have, using (3.2),

∫

{η<dist (x,∂G)≤δ}
Ψ(dist (x, ∂G))dx =

N
∑

k=1

∫

{dk−1<dist (x,∂G)≤dk}
Ψ(dist (x, ∂G))dx

≤
N

∑

k=1

∣

∣

∣
{dk−1 < dist (x, ∂G) ≤ dk}

∣

∣

∣
· Ψ(ξk)

≤ c1

N
∑

k=1

(dk − dk−1) · Ψ(ξk).

As N → ∞, the latter sum tends to
∫ δ

η
Ψ(s)ds. Thus, taking η → 0 shows that

∫

{dist (x,∂G)≤δ}
Ψ(dist (x, ∂G))dx ≤ c1

∫ δ

0

Ψ(s)ds. (3.3)

6



Similarly one can use the left estimate in (3.2) to derive
∫

{dist (x,∂G)≤δ}
Ψ(dist (x, ∂G))dx ≥ c0

∫ δ

0

Ψ(s)ds. (3.4)

Since x 7→ Ψ(dist (x, ∂G)) is continuous in {δ ≤ dist (x, ∂G) ≤ diamG}, (3.3) and (3.4)
prove (3.1).

Now we immediately have

Corollary 3.2 We have
∫

0

sH(s)ds > −∞ if and only if

∫

Ω

Θ · H(αΘ)dx > −∞ for all α > 0. (3.5)

Proof. Assume that
∫

0 sH(s)ds > −∞. Since H increases, we obtain from (2.1) that
∫

Ω

Θ · H(αΘ)dx ≥ αθ−

∫

Ω

dist(x, ∂Ω) · H(αθ−dist (x, ∂Ω))dx,

so that
∫

Ω
Θ·H(αΘ)dx > −∞ follows upon applying Lemma 3.1 to Ψ(s) := s·H−(αθ−s) ≡

s · max{−H(αθ−s), 0}. The opposite implication can be seen in quite the same way.

3.2 Compactly supported initial data

The main purpose of this section is to assert that solutions of (1.1) become appropriately
small after some time if their initial data are sufficiently close to some compactly supported
function. The important point here is that this holds true irrespective of the actual size
of the data (measured e.g. in L∞(Ω)).
Before going into the details, let us point out some arguments which let this surprising
property appear more plausible. Assume that u0 is smooth and has compact support
in Ω. Then earlier work indicates that if the degeneracy in (1.1) is strong enough (such
that H(0) = −∞, which is clearly implied by

∫

0 sH(s)ds = −∞), then the support of
u will be constant in time (see [LDalP], [Win4]). Now, secondly, u must be globally
bounded (because a suitably large multiple of Θ is a supersolution lying above u0), but
the constancy of the support entails that the only equilibrium that u can converge to is
w ≡ 0. Therefore u must decay asymptotically and, by continuous dependence, the same
should hold for positive data slightly differing from u0. Of course, these arguments are
based on a heuristic reasoning, so that the actual proof, though essentially pursuing the
same ideas, becomes more involved.
The following lemma on an auxiliary one-dimensional problem shall allow us to prove an
appropriate version of the mentioned support property in a self-contained way.

Lemma 3.3 Suppose H(0) = −∞, d > 0 and v0 ∈ C0([0, d]) is nonnegative and has
compact support in (0, d), and let A > 0. Then for each ε ∈ (0, 1), the problem















vεt = f(vε)(vεxx + A), x ∈ (0, d), t > 0,

vε(0, t) = vε(d, t) = ε, t > 0,

vε(x, 0) = v0(x) + ε, x ∈ (0, d),

(3.6)
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has a global bounded classical solution vε. Moreover, there exists ξ > 0 such that for all
T > 0 we have

vε → 0 uniformly in [0, ξ] × [0, T ] as ε → 0. (3.7)

Proof. Let e ∈ C2([0, d]) satisfy −exx = 1 in (0, d) and e(0) = e(d) = 0 (that is, we set

e(x) = d2

8 − 1
2 (x − d

2 )2) and choose B ≥ A such that v0 ≤ B · e in (0, d) which is possible
since v0 has compact support. It can then be seen upon straightforward comparison of
vε with v(x, t) := ε and v̄(x, t) := ε + Be(x) that

ε ≤ v(x, t) ≤ ε + Be(x) for all x ∈ (0, d)

holds as long as vε exists. Particularly, vε is global in time and bounded.
To see (3.7), we first note that in view of the comparison principle it is sufficient to prove
(3.7) in the case that v0 (and hence vε) be symmetric with respect to the center x = d

2

of the interval (0, d), and that v0 is nondecreasing for x ≤ d
2 , vanishing for x ≤ 2ξ with

some ξ ∈ (0, d
4 ).

Once more from the comparison principle we gain that the vε are ordered and

vε ց v in [0, d] × [0,∞) as ε ց 0 (3.8)

holds with a nonnegative limit function v. Clearly, for all t > 0, v(·, t) is nondecreasing
for x ≤ d

2 . Our goal is to show that

v(ξ, t) = 0 for all t > 0; (3.9)

once this has been proved, we will know that v ≡ 0 in [0, ξ] × [0,∞), whereupon Dini’s
theorem will turn the monotone convergence in (3.8) into locally uniform convergence as
claimed by (3.7).
Assuming (3.9) is false, we can find t0 > 0 and δ > 0 such that

v(x, t0) ≥ δ for all x ∈ (ξ, 2ξ). (3.10)

We then fix a nonnegative nontrivial ϕ ∈ C∞
0 ((ξ, 2ξ)) and multiply (3.6) by ϕ(x)

f(vε) . We

then obtain after integrating by parts

∫ d

0

[

H(vε(x, t0)) − H(v0(x) + ε)
]

· ϕ(x)dx =

∫ t0

0

∫ d

0

(vεxx + A)ϕdxdt

=

∫ t0

0

∫ d

0

(vεϕxx + Aϕ)dxdt

≤ c1 for all ε ∈ (0, 1) (3.11)

with a constant c1 = c1(t0, ϕ) independent of ε. On the other hand, since v0 ≡ 0 on
suppϕ and H is increasing, we infer from (3.10) that

∫ d

0

[

H(vε(x, t0)) − H(v0(x) + ε)
]

· ϕ(x)dx ≥

∫ d

0

[

H(δ) − H(ε)
]

· ϕ(x)dx

→ +∞ as ε → 0,

8



because H(ε) → −∞ as ε → 0 and ϕ was nontrivial. This contradiction with (3.11)
establishes (3.9) and thereby completes the proof.

As a consequence, if supp u0 ⊂⊂ Ω then the limit of the solutions uε of (2.2) has its
support contained in some subset different from all of Ω̄. We believe that this subset
actually coincides with suppu0, but we do not need this here.

Lemma 3.4 Assume that H(0) = −∞. Suppose u0 ∈ C0(Ω̄) is nonnegative and has
compact support in Ω, and let uε denote the solution of (2.2). Then we have Tmax(uε) ր
∞ as ε ց 0, and there exists a nonempty open subset G of Ω such that for all T > 0 we
have

uε → 0 uniformly in Ḡ × [0, T ] as ε → 0. (3.12)

Proof. The hypothesis particularly entails that u0 ≤ ũ0 := cΘ holds in Ω with some
c > 0. By comparison, the solution ũ emanating from ũ0 lies below cΘ as long as it exists,
whence ũ must be global. Therefore Tmax(ũε) ր ∞ as ε ց 0, which implies that the
same is true for Tmax(uε), because uε ≤ ũε by the maximum principle.
As a consequence, for all T > 0 there exist MT > 0 and εT > 0 such that

uε ≤ MT in Ω × (0, T ) for all ε < εT . (3.13)

Since Ω̄ is compact, after an appropriate affine change of variables we may assume that
0 ∈ ∂Ω and that Ω is contained in the half-space {x = (x1, x

′) ∈ R
n | x1 ∈ (0, d)},

where d := diamΩ. Due to the support property of u0 it is then possible to pick some
nonnegative v0 ∈ C∞

0 ((0, d)) such that

u0(x) ≤ v0(x1) for all x = (x1, x
′) ∈ Ω. (3.14)

For ε ∈ (0, 1), we now let vε = vε(x1, t) denote the solution of the one-dimensional
problem















vεt = f(vε)(vεx1x1 + λ1MT ), x1 ∈ (0, d), t > 0,

vε(0, t) = vε(d, t) = ε, t > 0,

vε(x1, 0) = v0(x1) + ε, x1 ∈ (0, d).

According to Lemma 3.3, such a solution exists globally and satisfies

vε → 0 uniformly in [0, ξ] × [0, T ] as ε → 0 (3.15)

with some ξ > 0. But in view of (3.13) and (3.14), the comparison principle ensures that

uε(x, t) ≤ vε(x1, t) for all (x1, x
′) ∈ Ω̄, t ∈ [0, T ].

Combined with (3.15) this yields (3.12) upon the selection G := {(x1, x
′) ∈ Ω | x1 ∈

(0, ξ)}.

Using the support property in the above formulation, we are now able to take the final
two steps of our heuristic approach at the same time, namely convergence to zero for
compactly supported initial data, and the continuous dependence argument.
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Lemma 3.5 Suppose H(0) = −∞ and u0 ∈ C0(Ω̄) is nonnegative and has compact
support in Ω. Then for all δ > 0 there exist T > 0 and ν > 0 such that if ũ0 ∈ C0(Ω̄) is
positive in Ω and vanishes on ∂Ω then

‖ũ0 − u0‖L∞(Ω) ≤ ν implies Tmax(ũ0) > T and ‖ũ(·, T )‖L∞(Ω) < δ (3.16)

for the solution ũ of (1.1) with ũ|t=0 = ũ0.

Proof. In order to prove the lemma it will be sufficient to show that, given δ > 0,
there exist T > 0 and ε0 > 0 such that the solution uε0 of (2.2) exists at least up to T

and satisfies
‖uε0(·, T )‖L∞(Ω) < δ. (3.17)

In fact, if this is true then for all ũ0 ∈ C0(Ω̄) such that ũ0|∂Ω = 0 and 0 < ũ0 ≤ u0 + ε0

2 ,
we can use comparison to conclude ũε ≤ uε0 in Ω × [0, T ] for all ε < ε0

2 and therefore
(3.16) holds with ν = ε0

2 .
Since u0 has compact support, Lemma 3.4 says that Tmax(uε) → ∞ as ε → 0, and
provides an open set G ⊂ Ω such that (3.12) holds. Let us pick some smooth subdomain
Ω̃ ⊂ Ω such that Ω̃ 6= Ω and Ω \ G is contained in Ω̃. Then (3.12) entails that for all
T > 0,

uε → 0 uniformly in (Ω \ Ω̃) × [0, T ] as ε → 0 (3.18)

and moreover, as ∂Ω̃ ⊂ ∂Ω ∪ G and uε ≡ ε on ∂Ω, that

uε → 0 uniformly in ∂Ω̃ × [0, T ] as ε → 0 (3.19)

holds for any fixed T > 0 as well.
Consider the elliptic problem

{

−∆w − λ1w = 1 in Ω̃,

w|∂Ω̃ = 1.
(3.20)

From the strict monotonicity of the principal Laplacian eigenvalue with respect to the
domain it follows that the first eigenvalue λ̃1 of −∆ in Ω̃ is larger than λ1 and hence
(3.20) has a unique solution w that satisfies 1 ≤ w(x) ≤ M for all x ∈ Ω̃ with some
constant M . Therefore the number

y0 := sup
ε∈(0,1)

∥

∥

∥

u0 + ε

w

∥

∥

∥

L∞(Ω)
(3.21)

is finite. Thus, introducing a nondecreasing locally Lipschitz continuous minorant f0 of
f on [0, y0] by

f0(s) := min
σ∈[s,y0]

f(σ), s ∈ [0, y0],

the initial-value problem

{

y′(t) = − 1
M

f0(y)y, t > 0,

y(0) = y0,
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has a unique decreasing solution. Since f0 is positive on (0, y0], this solution converges
to zero as t → ∞, so that, given δ > 0, we can find T > 0 such that y(T ) ≤ δ

4M
. By

continuous dependence, there hence exists η ∈ (0, δ
2 ) such that the solution yη of

{

y′
η(t) = − 1

M
f0(yη)(yη − λ1η), t > 0,

yη(0) = y0,
(3.22)

decreases to λ1η as t → ∞ and satisfies

yη(T ) ≤
δ

2M
. (3.23)

Now according to (3.18) and (3.19) let us fix ε0 ∈ (0, 1) small such that

uε0(·, T ) ≤ δ in Ω \ Ω̃ and uε0 ≤ η on ∂Ω̃ × [0, T ]. (3.24)

Then the function

ū(x, t) := η + yη(t) · w(x), x ∈ Ω̃, t ∈ [0, T ],

majorizes uε0 initially because of (3.21), while on ∂Ω̃ × [0, T ] we have ū ≥ η ≥ uε0 by
(3.24). From (3.20) and (3.22) we furthermore obtain

ūt − f(ū)(∆ū + λ1ū) = y′
ηw − f(ū)

[

yη(∆w + λ1w) + λ1η
]

= y′
ηw + f(ū)(yη − λ1η)

≥ y′
ηM + f0(yη)(yη − λ1η)

= 0 in Ω̃ × (0, T ),

where we have used the monotonicity properties of yη and f0 and the fact that ū ≥ yη.

Altogether, the comparison principle entails ū ≥ uε0 in Ω̃ × [0, T ] and particularly

uε0(x, T ) ≤ ū(x, T ) ≤ η +
δ

2M
· M ≤ δ for all x ∈ Ω̃.

Recalling the first inequality in (3.24), we end up with (3.17).

3.3 Initial data that are large near ∂Ω

We proceed to demonstrate, by quite a different method, a similar attractivity property
of ∞. As in the previous section, it is essentially the behavior of u0 near the boundary
that makes up the following sufficient condition for u to be unbounded.

Lemma 3.6 Suppose that
∫

0
sH(s)ds = −∞. Then for all u0 ∈ C0(Ω̄) that are positive

in Ω, vanish on ∂Ω and satisfy
∫

Ω

H(u0) · Θdx > −∞, (3.25)

the corresponding solution u of (1.1) is unbounded; that is,

lim sup
t→Tmax(u)

‖u(·, t)‖L∞(Ω) = ∞. (3.26)
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Proof. Let us assume on the contrary that u be bounded (and hence global), say,
u ≤ M in Ω × (0,∞). We then may modify the source term in (1.1) as follows: Let
g ∈ C1(R) be nondecreasing and such that

λ1 · min{s, M} ≤ g(s) ≤ λ1 · min{s, 2M} for all s ∈ R.

Namely, u actually staisfies ut = f(u)(∆u + g(u)) in Ω × (0,∞) and hence

u ≤ ũε in Ω × (0,∞) (3.27)

holds for all the solutions ũε, ε ∈ (0, 1), of the problems














ũεt = f(ũε)(∆ũε + g(ũε)) in Ω × (0,∞),

ũε|∂Ω = ε,

ũε|t=0 = u0 + ε.

(3.28)

Clearly, since g is bounded from above, ũε is global in time and satisfies

ε ≤ ũε(x, t) ≤ ‖u0 + ε‖L∞(Ω) + 2Me(x) in Ω × (0,∞) (3.29)

by comparison, where −∆e = 1 in Ω with e|∂Ω = 0. Indeed, the time-independent
functions on the left and on the right of (3.29) can easily be checked to be a sub- and a
supersolution of (3.28), respectively.
Hence, each ũε is a bounded solution of the quasilinear uniformly parabolic problem (3.28).
Therefore, standard energy arguments (cf. [Win5] for a version adapted to problems of this
type) together with parabolic Schauder theory ensure that {ũε(·, t) | t ≥ 1} is relatively
compact in C2(Ω̄), and that the ω-limit set of ũε is contained in the set of steady states
of (3.28). Particularly, this means that for all ε ∈ (0, 1) we can find some tε > 0 such that

‖ũε(·, tε) − wε‖L∞(Ω) ≤ ε, (3.30)

where wε ∈ C2(Ω̄) is a positive classical solution of
{

∆wε + g(wε) = 0 in Ω,

wε|∂Ω = ε.

Again due to the boundedness of g from above (or also by (3.29)), these wε are bounded
in L∞(Ω), uniformly with respect to ε. Therefore elliptic Schauder theory guarantees
that wε → w holds in C2(Ω̄). In particular, w is in C1(Ω̄) and thus satisfies

w(x) ≤ cΘ(x) for all x ∈ Ω (3.31)

with some c > 0. Now from Lemma 2.3, (3.27) and (3.30) we infer that
∫

Ω

H(u0) · Θdx =

∫

Ω

H(u(x, tε)) · Θ(x)dx

≤

∫

Ω

H(ũε(x, tε)) · Θ(x)dx

≤

∫

Ω

H(wε(x) + ε) · Θ(x)dx.
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Hence, an application of Fatou’s lemma shows that
∫

Ω

H(w) · Θdx ≥

∫

Ω

H(u0) · Θdx.

In view of (3.31), this leads to the conclusion
∫

Ω

H(cΘ) · Θdx ≥

∫

Ω

H(u0) · Θdx,

which is absurd, however, because of (3.25) and the assumption on H . Therefore u must
be unbounded.

Combining this with the continuous dependence statements implicitly contained in Lemma
2.1 and Lemma 2.2, we obtain the following analogue of Lemma 3.5.

Corollary 3.7 Assume that
∫

0 sH(s)ds = −∞, and that u0 ∈ C0(Ω̄) is positive in Ω
with u0|∂Ω = 0 and

∫

Ω

H(u0)Θdx > −∞.

Then for all M > 0 there exist ν > 0 and T > 0 such that if ũ0 ∈ C0(Ω̄) is positive in Ω
and vanishes on ∂Ω then

‖ũ0 − u0‖L∞(Ω) ≤ ν implies Tmax(ũ) > T and ‖ũ(·, T )‖L∞(Ω) ≥ M, (3.32)

where ũ denotes the solution of (1.1) emanating from ũ0.

Proof. Given M > 0, according to Lemma 3.6 we can pick T > 0 and x0 ∈ Ω such
that u(x0, T ) = ‖u(·, T )‖L∞(Ω) ≥ M + 1. In view of Lemma 2.1 and Lemma 2.2, there
exist ε0 > 0 and η0 > 0 such that Tmax(uε0) > T and u−

η0
(x0, T ) ≥ u(x0, T ) − 1. Thus,

whenever ‖u0− ũ0‖L∞(Ω) ≤ ν := min{ε0, η0}, we have u−
η0

≤ ũ0 ≤ u0 + ε0 in Ω and hence
the comparison principle entails Tmax(ũ) > T and

‖ũ(·, T )‖L∞(Ω) ≥ ũ(x0, T ) ≥ u−
η0

(x0, T ) ≥ u(x0, T ) − 1 ≥ M,

as claimed.

3.4 Oscillating solutions

We are now ready to construct oscillating solutions in the case
∫

0
sH(s)ds = −∞. The

proof of the following lemma parallels that of Lemma 4.2 in [Win6] in some parts, but
since essential adaptations are necessary, we find it convenient to repeat all steps here.

Lemma 3.8 Suppose
∫

0 sH(s)ds = −∞. Then there is a function u0 ∈ C0(Ω̄) which is
positive in Ω and vanishes on ∂Ω such that the solution u of (1.1) is global in time and
has the following property: There exists a sequence (tk)k∈N ⊂ (0,∞) with tk → ∞ as
k → ∞ and

{

‖u(·, tk)‖L∞(Ω) ≥ k if k is odd,

‖u(·, tk)‖L∞(Ω) ≤
1
k

if k is even.
(3.33)
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Proof. As a technical preliminary, let us fix a nonincreasing ζ ∈ C∞([0,∞)) such that

ζ ≡ 1 in [0, 1
2 ] and ζ ≡ 0 on [1,∞). For δ > 0 and x ∈ Ω̄ we set ζδ(x) := ζ(dist (x,∂Ω)

δ
).

Then ζδ ∈ W 1,∞(Ω) and supp ζδ ⊂ Ω̄ \ Ωδ, where Ωδ := {x ∈ Ω | dist (x, ∂Ω) > δ}.
These cut-off functions will be used in the following iteration procedure in which a se-
quence of initial data u0k is constructed, the limit of which will be u0. The basic idea
in each step is to modify u0,k−1 in a small neighborhood of ∂Ω in such a way that the
corresponding solutions eventually either become unbounded or small.
More precisely, we claim that there exist sequences of positive numbers δk, νk and tk and
initial data u0k, k ∈ N, such that

δk <
δk−1

2
, k ≥ 2, (3.34)

νk <
νk−1

2k−1
, k ≥ 2, (3.35)

u0k ∈ C0(Ω̄), u0k > 0 in Ω, u0k|∂Ω = 0, k ≥ 1, (3.36)

u0k ≡ u0,k−1 in Ωδk
, k ≥ 2, (3.37)

‖u0k − u0,k−1‖L∞(Ω) ≤
νk−1

2
, k ≥ 2, (3.38)

and such that for all k ≥ 1,

‖ũ0 − u0k‖L∞(Ω) ≤ νk implies

Tmax(ũ) > tk and

{

‖ũ(·, tk)‖L∞(Ω) ≥ k if k is odd,

‖ũ(·, tk)‖L∞(Ω) ≤
1
k

if k is even,
(3.39)

whenever ũ0 ∈ C0(Ω̄) is positive in Ω, vanishing on ∂Ω, and ũ denotes the corresponding
solution of (1.1) in Ω × (0, Tmax(ũ)).
To initiate the recursive definition of these objects, we fix any ϕ ∈ C0(Ω̄) such that ϕ > 0
in Ω, ϕ|∂Ω = 0 and ϕ is large near ∂Ω in the sense that

∫

Ω

H(ϕ) · Θ > −∞.

Setting

u01 := ϕ,

we then infer from Corollary 3.7 that there exist ν1 > 0 and t1 > 0 such that

‖ũ0 − u01‖L∞(Ω) ≤ ν1 implies Tmax(ũ) > t1 and ‖ũ(·, t1)‖L∞(Ω) ≥ 1

for ũ0 and ũ as above. Thus, (3.36) and (3.39) hold for k = 1. The first step is completed
by fixing any positive number δ1.
Next, assume that δj , νj , tj and u0j have already been defined for 1 ≤ j < k and some
k ≥ 2, and that (3.34)-(3.39) hold up to j = k − 1.
If k is even, we continue as follows: Since u0,k−1|∂Ω = 0 and k ≥ 2, we can pick a positive

δk <
δk−1

2 such that

‖u0,k−1‖L∞(Ω\Ωδk
) ≤

(1

2
−

1

2k

)

νk−1 (3.40)
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and define an auxiliary function û0k by

û0k := (1 − ζδk
)u0,k−1. (3.41)

Then û0k ∈ C0(Ω̄) has compact support in Ω, so that Lemma 3.5 provides some positive
tk and

νk <
νk−1

2k−1
(3.42)

such that whenever ũ0 ∈ C0(Ω̄) is positive in Ω with ũ0|∂Ω = 0,

‖ũ0 − û0k‖L∞(Ω) ≤ 2νk implies Tmax(ũ) > tk and ‖ũ(·, tk)‖L∞(Ω) ≤
1

k
(3.43)

for the corresponding solution ũ of (1.1).
In order to achieve interior positivity of u0k, we finally let

u0k := û0k +
νk

2
ζδk

Θ. (3.44)

Then (3.34)-(3.37) are clearly satisfied, whereas (3.40), (3.41), (3.44) and (3.42) imply

‖u0k − u0,k−1‖L∞(Ω) ≤ ‖u0k − û0k‖L∞(Ω) + ‖û0k − u0,k−1‖L∞(Ω)

≤
νk

2
+ ‖ζδk

u0,k−1‖L∞(Ω\Ωδk
)

≤
νk

2
+

(1

2
−

1

2k

)

νk−1

≤
νk−1

2
,

which gives (3.38). Moreover, (3.39) results from (3.43), because if ‖ũ0 − u0k‖L∞(Ω) ≤ νk

then ‖ũ0 − û0k‖L∞(Ω) ≤
3
2νk < 2νk by (3.44).

On the other hand, if k is odd then we choose δk <
δk−1

2 so as to satisfy

‖ϕ‖L∞(Ω\Ωδk
) + ‖u0,k−1‖L∞(Ω\Ωδk

) ≤
νk−1

2
(3.45)

and directly set

u0k := (1 − ζδk
)u0,k−1 + ζδk

ϕ.

Then u0k > 0 in Ω and u0k ≡ ϕ near ∂Ω, so that
∫

Ω
H(u0k) · Θ > −∞ according to our

choice of ϕ. Thus, Corollary 3.7 applies to yield tk > 0 and νk <
νk−1

2k−1 such that (3.39)
holds. While (3.34)-(3.37) are obviously fulfilled now, (3.38) again follows from (3.45)
and the support properties of ζ used in

‖u0k − u0,k−1‖L∞(Ω) ≤ ‖ζδk
(ϕ − u0,k−1)‖L∞(Ω\Ωδk

)

≤
νk−1

2
.
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Having thereby completed the construction of the u0k, we next combine (3.38) with (3.35)
to obtain for 1 ≤ k < k′

‖u0k − u0k′‖L∞(Ω) ≤
k′

∑

i=k+1

νi−1

2

= 1
2

(

νk +
k′

∑

i=k+2

νi−1

)

≤ 1
2

(

νk +
k′

∑

i=k+2

νi−2

2i−2

)

≤ 1
2

(

νk + νk ·
k′

∑

i=k+2

1
2i−2

)

= νk.

(3.46)

Consequently, as k → ∞ we have u0k → u0 in C0(Ω̄) for some u0 that hence vanishes on
∂Ω. From (3.36) and (3.37) it is clear that u0 > 0 in Ω, and taking k′ → ∞ in (3.46)
shows that ‖u0 − u0k‖L∞(Ω) ≤ νk for all k ∈ N. Therefore (3.34) results from (3.39), and
since the solution u of (1.1) cannot undergo a finite time extinction (see Lemma 2.1), u

is global in time and, necessarily, tk must tend to +∞ as k → ∞.

4 The case sf ′(s)
f(s) > κ > 0

In this section we assume that f satisfies the one-sided estimate

sf ′(s)

f(s)
≥ κ > 0 for all s > 0 (4.1)

with some constant κ. This structural assumption is satisfied, for instance, by f(s) = sp

for any p > 0 (with κ = p), but also by suitable extensions of f(s) = e−s−p

, p > 0,
0 < s ≤ s0 < ∞, to all of (0,∞). Thus, (4.1) allows for very strong degeneracies, but
excludes oscillating f .

4.1 Preliminary conclusions from (4.1)

Our starting point is a technically very useful consequence of (4.1), namely the following
semi-convexity estimate for solutions of (1.1) (cf. [Ha]).

Lemma 4.1 If (4.1) holds then the solution u of (1.1) satisfies

ut

u
≥ −

1

κt
in Ω × (0, Tmax). (4.2)

Proof. For ε > 0, let zε := uεt

uε
. By a straightforward computation, we see that

zt = uεf ′(uε)
f(uε) · z2 + f(uε)

uε
· (2∇uε ·∇z +uε∆z) in Ω× (0, Tmax(uε)). By comparison, for all
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0 < τ < T < Tmax(uε), in the region Ω × (τ, T ) the function z(x, t) therefore lies above
the solution y = y(t) of y′(t) = κy2 satisfying y(τ) = −M , that is,

z(x, t) ≥ −
1

1
M

+ κ(t − τ)
for x ∈ Ω, t ∈ (τ, T ),

for all sufficiently large M > 0 depending on ε. Here we let M → ∞, then ε → 0 and
τ → 0 and finally T → Tmax(u) to arrive at (4.2).

Our main tool in this section, Lemma 4.3, requires one further preliminary lemma on
monotone elliptic problems.

Lemma 4.2 Let g ∈ C1((0,∞)) be nonincreasing and nonnegative.
i) For all η > 0, the operator Aη := −∆ − ηg(·) satisfies the following comparison

principle: If w1, w2 ∈ C0(Ω̄) ∩ W
1,2
loc (Ω) are positive in Ω and such that

−∆w1 − ηg(w1) ≤ −∆w2 − ηg(w2) in Ω, and w1 ≤ w2 on ∂Ω,

then w1 ≤ w2 in Ω.
ii) Suppose that ηj ց 0 as j → ∞, and that (hj)j∈N ⊂ L∞(Ω) is such that supj∈N ‖hj‖L∞(Ω) <

∞ and hj → 0 in L2(Ω) as j → ∞. Then the problems

{

−∆Wj = ηjg(Wj) + hj in Ω,

Wj |∂Ω = 0,
(4.3)

have unique positive weak solutions Wj ∈ C0(Ω̄) ∩ C1(Ω), and we have

Wj → 0 in C0(Ω̄) as j → ∞, (4.4)

Proof. i) This part can easily be seen upon multiplying the inequality −∆(w1−w2) ≤
η(g(w1) − g(w2)) by (w1 − w2 − µ)+, µ > 0, integrating over Ω, using the monotonicity
of g, and then letting µ → 0.
ii) By standard arguments involving elliptic Schauder estimates ([GT, Chapter 8]) and
part i), we obtain existence and uniqueness of a positive solution of (4.3); details of similar
constructions can be found in [CRT] or [Win1], for instance. Moreover, this Wj satisfies

Wj ≤ W1j + W2j in Ω, (4.5)

where

−∆W1j = ηjg(W1j) in Ω, W1j |∂Ω = 0,

and

−∆W2j = hj in Ω, W2j |∂Ω = 0.

Indeed, this follows from the above comparison principle, because the positivity of W2j

and the monotonicity of g imply that

Aηj
(W1j + W2j) = ηjg(W1j) + hj − ηjg(W1j + W2j) ≥ hj = Aηj

Wj in Ω.
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Since the hj are uniformly bounded in L∞(Ω) and converge to zero in L2(Ω), elliptic
theory ([GT, Theorem 8.33]) says that W2j → 0 in C1(Ω̄). Hence, (4.4) will follow if we
can show that W1j → 0 uniformly in Ω. To this end, we may assume after a coordinate
translation that Ω ⊂ {(x1, x

′) ∈ R
n | 0 < x1 < d} for some d ≥ diamΩ and consider the

auxiliary problems
{

−vjξξ = ηjg(vj) in (0, d),

vj(0) = vj(d) = 0.
(4.6)

By comparison, we then have W1j(x) ≤ vj(x1) for all x = (x1, x
′) ∈ Ω, so that it is

sufficient to show that vj → 0 in C0([0, d]) as j → ∞. We multiply (4.6) by (vj −
1
i
)+,

i ∈ N, and integrate, using the monotonicity of g and Hölder’s inequality, to obtain

∫ d

0

∣

∣

∣
∂x(vj −

1
i
)+

∣

∣

∣

2

≤ ηj

∫ d

0

g(vj)(vj −
1
i
)+

≤ ηjg(1
i
)d

1
2 ·

(

∫ d

0

(vj −
1
i
)2+

)
1
2

≤ ηjg(1
i
)d

1
2 cp ·

(

∫ d

0

∣

∣

∣
∂x(vj −

1
i
)+

∣

∣

∣

2) 1
2

,

where cp is a Poincaré constant on (0, d). Therefore for all i ∈ N we can pick a large
ji ∈ N such that

∫ d

0

∣

∣

∣
∂x(vji

− 1
i
)+

∣

∣

∣

2

≤
1

i
,

which implies (vji
− 1

i
)+ → 0 in W

1,2
0 ((0, d)) →֒ C0([0, d]). Since a straightforward

comparison argument shows that vj decreases with j, this entails that vj → 0 in C0([0, d])
holds along the whole sequence.

The main preparation for the results in Theorems 4.5 and 4.4 below is done in the following
lemma. Its proof contains some ideas already used in [Win3, Theorem 2.1], where a similar
statement was used in ruling out finite time blow-up in the special case f(s) = sp for any
p > 0.

Lemma 4.3 Suppose (4.1) holds and (tk)k∈N ⊂ (0, Tmax(u)) is such that

µ := lim inf
k→∞

‖u(·, tk)‖L∞(Ω) > 0, (4.7)

and that

either tk → ∞ or ‖u(·, tk)‖L∞(Ω) → ∞ as k → ∞.

Then there exist α > 0 and a subsequence of indices kj → ∞ such that

u(·, tkj
)

‖u(·, tkj
)‖L∞(Ω)

→ αΘ in L2(Ω) as j → ∞. (4.8)

18



Proof. We set mk := max{1, ‖u(·, tk)‖L∞(Ω)} and qk(x) := u(x,tk)
mk

for k ∈ N. By
Lemma 4.1,

−∆qk ≤ λ1qk +
1

κtkmk

u(·, tk)

f(u(·, tk))
in Ω,

where we may assume κ ∈ (0, 1) for later convenience. In order to cope with the second
term on the right, we observe that (4.1) implies that g(s) := sκ

f(s) is nonincreasing for

s > 0. Thus, since qk ≤ u(·, tk) ≤ mk and κ < 1,

−∆qk ≤ λ1qk +
1

κtkmk

· u1−κ(·, tk) · g(u(·, tk))

≤ λ1qk +
1

κtkmκ
k

· g(qk)

= λ1qk + ηkg(qk) in Ω, (4.9)

where ηk := 1
κtkmκ

k

→ 0 as k → ∞ by hypothesis. For δ > 0, we multiply (4.9) by

(qk − δ)+ and integrate to obtain
∫

Ω

|∇(qk − δ)+|
2 ≤ λ1

∫

Ω

(qk − δ)2+ + λ1δ

∫

Ω

(qk − δ)+ + ηk

∫

Ω

g(qk) · (qk − δ)+

≤ λ1

∫

Ω

(qk − δ)2+ + λ1δ|Ω| + ηkg(δ)|Ω|, (4.10)

because qk ≤ 1 and g is nonincreasing. Hence, for all j ∈ N we can find some large kj ∈ N

such that
∫

Ω

|∇(qkj
− 1

j
)+|

2 ≤ λ1

∫

Ω

(qkj
− 1

j
)2+ +

2λ1|Ω|

j

Thus, along a subsequence we have, keeping indices unchanged, that (qkj
− 1

j
)+ ⇀ Q

in W
1,2
0 (Ω) as well as qkj

→ Q in L2(Ω) and a.e. in Ω, where
∫

Ω
|∇Q|2 ≤ λ1

∫

Ω
Q2. By

simplicity of the principal Laplacian eigenfunction, however, this means that Q = αΘ for
some α ∈ [0, 1], so that it remains to be shown that α must be positive. In fact, suppose
on the contrary that α = 0, that is, qkj

→ 0 in L2(Ω). Recalling (4.9) and applying
Lemma 4.2, we obtain that

qkj
≤ Wj in Ω,

where Wj solves (4.3) with hj := λ1qkj
(and ηj replaced by ηkj

, of course). But (4.4)
says that Wj → 0 uniformly in Ω, whereas by (4.7) we have ‖qkj

‖L∞(Ω) ≥ µ > 0 for all j.
This contradiction completes the proof.

4.2 An unbounded ordered ω-limit set in the case
∫

0
H(s)ds = −∞

With the tools just provided we can now easily improve the result of Lemma 3.8: Namely,
if

∫

0 sH(s)ds = −∞ and, additionally, (4.1) holds then the oscillating solution constructed
in Lemma 3.8 in fact has an unbounded ω-limit set consisting of all nonnegative steady
states of (1.1).
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Theorem 4.4 Assume f is such that (4.1) holds as well as
∫

0
sH(s) = −∞. Then there

exists u0 ∈ C0(Ω̄) with u0 > 0 in Ω and u0|∂Ω = 0, such that the solution u of (1.1) is
global and unbounded and satisfies

ω(u0) = {αΘ | α ∈ [0,∞)}. (4.11)

Proof. From Lemma 3.8 we know that there exists a function u0 in the indicated class
such that u is global and satisfies lim inf

t→∞
‖u(·, t)‖L∞(Ω) = 0 and lim sup

t→∞
‖u(·, t)‖L∞(Ω) =

∞. But the latter entails that also lim sup
t→∞

‖u(·, t)‖L2(Ω) = ∞, because if tk → ∞ is such

that ‖u(·, tk)‖L∞(Ω) → ∞ as k → ∞ then Lemma 4.3 asserts that lim sup
k→∞

‖u(·,tk)‖L2(Ω)

‖u(·,tk)‖L∞(Ω)

must be positive.
From this and the continuity of t 7→ ‖u(·, t)‖L2(Ω) we infer that for any α > 0 there exists
a sequence tk → ∞ such that

‖u(·, tk)‖L2(Ω) = α‖Θ‖L2(Ω) for all k ∈ N. (4.12)

Again by Lemma 4.3, ‖u(·, tk)‖L∞(Ω) cannot be unbounded, whence for a subsequence we
have ‖u(·, tkj

)‖L∞(Ω) → µ, where µ must be positive due to (4.12). One more application
of Lemma 4.3 shows that after another extraction process we gain

u(·, tkji
) → µα̃Θ in L2(Ω) as i → ∞

with some α̃ > 0. Combining this with (4.12) yields µα̃ = α and thus u(·, tkji
) → αΘ in

L2(Ω) as i → ∞. This shows that each positive multiple of Θ lies in ω(u0), and hence
ω(u0) ⊃ {αΘ | α ≥ 0}, because ω(u0) is closed. The opposite inclusion is an immediate
consequence of Lemma 4.3.

4.3 Stabilization in case of
∫

0
sH(s)ds > −∞

If
∫

0
sH(s)ds is finite then the following theorem states that all solutions stabilize. In

particular, this indicates that the above condition
∫

0 sH(s)ds = −∞ in fact was sharp in
respect of the occurrence of oscillating solutions.

Theorem 4.5 Suppose (4.1) holds as well as
∫

0
sH(s)ds > −∞. Then the solution u of

(1.1) is global and bounded. Moreover, we have

u(·, t) → αΘ in L2(Ω) as t → ∞, (4.13)

where α ≥ 0 is the uniquely determined number satisfying

{

α = 0 if
∫

Ω
H(u0)Θ = −∞,

∫

Ω
H(αΘ)Θ =

∫

Ω
H(u0)Θ if

∫

Ω
H(u0)Θ > −∞.

(4.14)

Proof. In order to prove that u is global and bounded, by the comparison principle
it is sufficient to show this for u0 so large that u0 ≥ Θ in Ω. Under this additional
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assumption, we clearly know that u(·, t) ≥ Θ holds in Ω for all t ∈ (0, Tmax(u)). We fix
any M > ‖u0‖L∞(Ω) and define HM (s) := min{H(s), H(M)} for s > 0. Then we have

H(Θ)Θ ≤ HM (u(·, t))Θ ≤ H(M)Θ in Ω for all t ∈ (0, Tmax(u)), (4.15)

whence HM (u(·, t)) is integrable by Corollary 3.2 and

∫

Ω

HM (u(·, t))Θ ≤

∫

Ω

H(u(·, t))Θ =

∫

Ω

H(u0)Θ <

∫

Ω

H(M)Θ for all t ∈ (0, Tmax(u))

(4.16)
as a consequence of Lemma 2.3. Now if u were unbounded then ‖u(·, tk)‖L∞(Ω) → ∞
for some tk → Tmax(u) ≤ ∞ and thus Lemma 4.3 allows to pass to a subsequence along
which u(·, tk) → ∞ a.e. in Ω holds. Therefore HM (u(·, tk)) → H(M) a.e. in Ω, which
together with the two-sided estimate (4.15) implies

∫

Ω

HM (u(·, tk))Θ →

∫

Ω

H(M)Θ as k → ∞

by the dominated convergence theorem. This, however, contradicts (4.16).

The proof of stabilization to αΘ as t → ∞ follows the basic idea introduced in [Win3,
Theorem 2.4]: In light of Lemma 4.3 we only need to make sure that if u(·, tk) → βΘ in
L2(Ω) and a.e. in Ω for some tk → ∞, then β = α. To see this, let us first assume that
u0 ≥ c0Θ in Ω with some c0 > 0. Then u(·, t) ≥ c0Θ for all t > 0 by comparison and hence
H(c0Θ)Θ ≤ H(u(·, tk))Θ ≤ H(N)Θ provides a uniform two-sided L1(Ω)-bound, where
N := ‖u‖L∞(Ω×(0,∞)) is known to be finite now. Therefore we achieve

∫

Ω H(u0)Θ ≡
∫

Ω
H(u(·, tk)Θ →

∫

Ω
H(βΘ)Θ > −∞ as k → ∞ by the dominated convergence theorem,

which identifies β = α.

For general u0, we consider the approximate solutions u(δ) of (1.1) emanating from u
(δ)
0 :=

max{u0, δΘ}. According to what we have just shown, these satisfy u(δ)(·, t) → αδΘ as

t → ∞, where αδ > 0 is given by
∫

Ω H(αδΘ)Θ =
∫

Ω H(u
(δ)
0 )Θ. Since H ′ > 0 and

u(δ) ց u0 as δ ց 0, the monotone convergence theorem implies that αδ ց α ≥ 0 as
δ ց 0. But u(δ) lies above u by comparison, so that β ≤ αδ for all δ > 0 and thus β ≤ α.
In the case α = 0 this already proves β = α. If α > 0, the opposite inequality β ≥ α can
be obtained upon combining the pointwise convergence H(u(·, tk))Θ → H(βΘ)Θ a.e. in
Ω with the upper estimate H(u(·, tk))Θ ≤ H(N)Θ: Applying Fatou’s lemma shows that
∫

Ω
H(βΘ)Θ ≥

∫

Ω
H(u0)Θ and hence in fact β ≥ α.
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[PY] Poláčik, P., Yanagida, E.: On bounded and unbounded global solutions of a
supercritical semilinear heat equation. Math. Annal. 327, 745-771 (2003)

[Wie] Wiegner, M.: A Degenerate Diffusion Equation with a Nonlinear Source Term.
Nonlin. Anal. TMA 28, 1977-1995 (1997)

[Win1] Winkler, M.: Large time behavior of degenerate parabolic equations with ab-
sorption. Nonlinear Differ. Equ. Appl. 8 (3), 343-361 (2001)

[Win2] Winkler, M.: Boundary behaviour in strongly degenerate parabolic equations.
Acta Math. Univ. Comenianae 72 (1), 129-139 (2003)

[Win3] Winkler, M.: A doubly critical degenerate parabolic problem.
Math. Meth. Appl. Sci. 27 (14), 1619-1627 (2004)

[Win4] Winkler, M.: Propagation vs. constancy of support in the degenerate parabolic
equation ut = f(u)∆u. Rend. Univ. Di Trieste 36, 1-15 (2004)

[Win5] Winkler, M.: Large time behavior and stability of equilibria of degenerate
parabolic equations. J. Dyn. Differ. Eq. 17 (2), 331-351 (2005)

[Win6] Winkler, M.: Nontrivial ordered ω-limit sets in a linear degenerate parabolic
equation. To appear in: Discr. Cont. Dyn. Syst.

[Ze] Zelenyak, T.I.: Stabilization of solutions of boundary value problems for a second
order parabolic equation with one space variable. Differential Equations (transl. from
Differencialnye Uravnenia) 4, 17-22 (1968)

23


