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Abstract

This paper investigates the boundary behavior of nonnegative classical solutions to the
Dirichlet problem for

ut = up∆u+ g(u) in Ω× (0, T ), p > 1,

and draws some consequences for the large time behavior of solutions. Here, Ω ⊂ Rn is a
smooth bounded domain and g : [0,∞) → R is locally Lipschitz continuous with g(0) = 0.
The first goal is to study for which α ≥ 1 the implication

u0(x) ≤ c1(dist (x, ∂Ω))α (c1 > 0)
⇒ u(x, t) ≤ C(T ′)(dist (x, ∂Ω))α in Ω× (0, T ′) for any T ′ < T (I)

is valid, and it turns out that this holds whenever either p ≥ 2, or p < 2 and α ≥ 1
p−1 .

For p ∈ (1, 2] and g ≡ 0, this complements a previously known result, according to which the
lower estimate u0(x) ≥ c0(dist (x, ∂Ω))α with some α < 1

p−1 and c0 > 0 implies the existence
of T > 0 and C > 0 such that u(x, t) ≥ Cdist (x, ∂Ω) for all x ∈ Ω and t ≥ T .
Using (I), we moreover show that whenever p > 1, there exist some values of q ≥ 1 such
that the particular equation ut = upuxx + uq possesses positive classical solutions which are
nondecreasing w.r. to t and remain uniformly bounded in C1(Ω̄) for all times, but do not
converge in C1(Ω̄) as t→∞.
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Introduction

We study nonnegative classical solutions of the Dirichlet problem
ut = up∆u+ g(u) in Ω× (0, T ),

u|∂Ω = 0,

u|t=0 = u0,

(0.1)

in a bounded domain Ω ⊂ Rn with boundary of class C3, where p > 1, T > 0, and g : [0,∞) → R
is locally Lipschitz continuous in [0,∞) with g(0) = 0.
The first objective of this paper is to clarify under which conditions an initially given algebraic
boundary decay is inherited by solutions in the following sense: Suppose that

u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω, (0.2)
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with certain constants α ≥ 1 and c1 > 0; does then

u(x, t) ≤ C(T ′)(dist (x, ∂Ω))α for all x ∈ Ω and 0 < t < T ′ < T (0.3)

hold with some appropriately large constant C(T ′)?
As to the special case g ≡ 0, that is, for the unperturbed problem

ut = up∆u in Ω× (0, T ),

u|∂Ω = 0,

u|t=0 = u0,

(0.4)

it is known that for any α > 1, (0.3) can hold only in presence of sufficiently strong degeneracies:
Namely, in the non-degenerate case when p = 0, the well-known Hopf boundary point lemma
states that each nontrivial nonnegative solution u has strictly negative normal derivative at ∂Ω
for all t > 0; in particular, u(·, t) enters the cone

K :=
{
ϕ : Ω → R

∣∣∣ ∃ c > 0 : ϕ(x) ≥ cdist (x, ∂Ω) for all x ∈ Ω
}

immediately, which is obviously incompatible with (0.3) when α > 1. In [BP], a slightly weaker
result was derived for the weakly degenerate case p ∈ (0, 1), in which (0.4) can be transformed
into the porous medium equation vt = ∆vm via the substitution u = avm with m = 1

1−p > 1

and a = m
1
p : It was proved there that every nonnegative (weak) solution u 6≡ 0 of (0.4), though

possibly lacking a normal derivative at ∂Ω, again enters K after some finite time (which may or
may not be positive, cf. [F] or [A], for instantce).
The results in [Win1] indicate that the picture in the case p ≥ 1 becomes more involved in so
far as, unlike the case p ∈ [0, 1), the boundary behavior of u0 plays an important role: For
instance, it was shown there that if p > 2 then (0.2) implies (0.3) for positive solutions of (0.4)
whenever α > 1, so that such solutions will never enter K. Concerning the intermediate regime
p ∈ [1, 2), the decay exponent αc := 1

p−1 > 1 was detected to be critical with respect to the
possibility of entering K in the following sense: If u0(x) ≥ c0(dist (x, ∂Ω))α holds throughout
Ω with some α < αc then u(·, t) ∈ K for all sufficiently large t, provided that Ω is a ball and
u0 is radially symmetric; on the other hand, if u0 satisfies (0.2) with some α ≥ αc then for all
t > 0 we have u(·, t) 6∈ K. The precise boundary behavior of the latter type of solutions was
left unstudied in [Win1]; for instance, it might be conceivable that a solution satisfying (0.2)
behaves like u(x, t) ∼ (dist (x, ∂Ω))α(t) with some nonconstant α(t), where the known fact that
u(·, t) 6∈ K would be compatible with any α(t) > 1. However, the first main result of the present
work implies that this cannot be the case. More precisely and more generally, in Theorem 1.8
we shall include the case g 6≡ 0 and prove that

• if p > 1 and u0 satisfies (0.2) with some α ≥ 1 such that α ≥ 1
p−1 then every classical

solution of (0.1) satisfies (0.3).

There is a number of examples where appropriate information on the boundary behavior could
be turned into a rather precise knowledge on the time asymptotics of solutions to problems of
type (0.4) with p ≥ 0; various qualitative properties such as stabilization, convergence rates,
asymptotic profiles, or localization of blow-up points were addressed using such methods in
[Wie2], [L], [AP] and [FMcL1], for instance. Correspondingly, the second main goal of this work
is to illustrate how the implication (0.2) ⇒ (0.3) may affect the large time behavior of solutions
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to (0.4) in that it enables us to detect some rather strange solutions. In fact, using Theorem 1.8,
we shall see that for any degeneracy parameter p > 1 there exist locally Lipschitz continuous
sources g(u) such that the one-dimensional version of (0.4) possesses trajectories which remain
uniformly bounded in C1(Ω̄) but are not precompact in C1(Ω̄):

• If n = 1, p > 1 and q ≥ 1 is such that q ∈ (p − 1, p + 1) and q ≥ 3 − p then there exist
u0 ∈ C1(Ω̄) such that the solution u of (0.4) with g(u) = uq is nondecreasing w.r. to t
and satisfies sup

t>0
‖u(·, t)‖C1(Ω̄) < ∞ and lim

t→∞
‖u(·, t) − w‖C0(Ω̄) = 0 with some 0 6≡ w ∈

C1+ϑ(Ω̄) (ϑ > 0), but which has the property lim inf
t→∞

‖u(·, t)−w‖C1(Ω̄) > 0 (Theorem 2.7).

A similar conclusion would clearly be impossible in any semilinear problem of the general form
ut = ∆u+g(x, t, u,∇u) with, say, g locally bounded in Ω̄×[0,∞)×R×Rn, because then standard
parabolic theory ([LSU]) turns a supposedly given bound of the form sup

t>0
‖u(·, t)‖C1(Ω̄) <∞ into

an estimate sup
t>0

‖u(·, t)‖C1+ϑ(Ω̄) < ∞ with some θ > 0. But also when weak degeneracies are

present, a phenomenon of the above type can be ruled out in a fairly general framework. This
will be demonstrated in Lemma 2.8, which shall in fact indicate the parameter p = 1 to be critical
in this respect: Namely, there we shall consider the case p ∈ (0, 1) in the corresponding Dirichlet
problem for the one-dimensional porous-medium type equation ut = upuxx +g(x, t, u, ux), where
g is bounded and locally Hölder continuous in Ω̄ × [0,∞) × R2. Our result will say that for
any ‘solution’ u (cf. Section 2.2 to see what is meant here by ‘solution’) with the property that
lim sup

t→∞
‖u(·, t)‖W 1,∞(Ω) <∞ one can find a sequence of times tk →∞ such that (u(·, tk))k∈N is

precompact in C1(Ω̄), unless ‖u(·, t)‖L∞(Ω) → 0 as t→∞.

Unexpected behavior of gradients in quasilinear and semilinear parabolic equations has attracted
increasing interest through the last years. The phenomenon most frequently investigated in this
respect is the blow-up of gradients of bounded solutions in either finite or infinite time, where both
possibilities of boundary as well as interior derivative blow-up have been detected in appropriate
examples (see [Sou], [SV], [AF] and the references therein, for example); however, the occurrence
of bounded but nonconvergent gradients, as studied here, appears to be quite a rarely visible
phenomenon.

Let us finally mention that as to the perturbed problem (0.1), little seems to be known about
boundary behavior so far. The only results we are aware of in the literature concentrate on
proving that (0.2) entails (0.3) for α = 1. Since even classical solutions of the degenerate
problem (0.1) are in general not in C1(Ω̄) for t ≥ 0 (because there may exist even stationary
irregular solutions, cf. [Wie2]), this is not self-evident. Correspondingly, even for α = 1 the
proof of the implication (0.2) ⇒ (0.3) in [FMcL2] and [Wie1] for the equation ut = up∆u+up+1

with p ≥ 1 required new (comparison-based) arguments.

1 Boundary behavior

The proof of the desired implication (0.2) ⇒ (0.3) in Section 1.3 will rely on comparison of u
with time-dependent barrier functions. Here, in Section 1.2 we concentrate on the unperturbed
problem (0.4) first and then use a transformation to cover Lipschitz sources g(u). For the
delicate parameter regime p ∈ (1, 2], the main idea is to proceed in two steps: In the first one
we show that (0.2) implies u(x, t) ≤ C(T ′)(dist (x, ∂Ω))

2
p instead of the stronger estimate (0.3).
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This is prepared in Section 1.1 by constructing suitable barrier functions v̄ defined near ∂Ω
and satisfying the nonlinear inequality v̄t ≥ v̄p∆v̄. Secondly, we use this preliminary estimate
to derive (0.3) by showing that u lies below an appropriate solution ū of the linear parabolic
inequality ūt ≥ up∆ū.

In order to fix terminology, we define that a classical solution of (0.4) is to be understood as a
nonnegative function u ∈ C0(Ω̄ × [0, T )) ∩ C2,1(Ω × (0, T )) that satisfies (0.4) in the pointwise
sense. By a nonnegative classical subsolution we mean a nonnegative function u from the same
regularity class that vanishes on ∂Ω and satisfies ut ≤ up∆u in Ω× (0, T ).

1.1 A radially symmetric auxiliary problem in an annulus

In this section we consider a variant of problem (0.4) where the spatial domain is the annulus
A := BR1(xc) \ B̄R(xc) with a given point xc ∈ Rn and fixed radii satisfying 0 < R < R1. We
intend to use solutions of such problems as (upper) barriers in order to estimate our solution u
of (0.4) from above in a neighborhood of ∂Ω. Therefore, we shall require these solutions to be
zero on the inner part of ∂A and to attain a sufficiently large positive constant on its outer part.
In conjunction with an adequate choice of the initial data, this suggests to study, for instance,
the auxiliary problem 

vt = vp∆v in A× (0,∞),

v|∂BR(xc) = 0,

v|∂BR1
(xc) = M,

v|t=0 = v0,

(1.1)

where M > 0 and v0(x) := M
(R1−R)α · (|x− xc| −R)α for x ∈ Ā.

Since v0 is a convex radial function that is nondecreasing with respect to r = |x − xc|, it is
natural to suspect that a solution of (1.1) is also radially symmetric and nondecreasing with
respect to r, and that furthermore vt ≥ 0. In order to construct a solution with these properties,
we consider the approximate problems

vεt = vp
ε∆vε in A× (0,∞),

vε|∂A = v0|∂A + ε,

vε|t=0 = v0ε

(1.2)

for ε ∈ (0, 1), where v0ε suitably approximates v0. An appropriate selection of v0ε is provided
by the following lemma. A similar statement, using a more involved construction, was given in
[ACP, Lemma A].

Lemma 1.1 For any α > 1 and M > 0 there exists a family (v0ε)ε∈(0,1) ⊂ C∞(Ā) of radially
symmetric initial data v0ε = v0ε(r), r = |x− xc|, satisfying

v0 + ε ≤ v0ε ≤M + ε in A, (1.3)
v0εr ≥ 0 in A, (1.4)
∆v0ε ≥ 0 in A, (1.5)
∆v0ε|∂A = 0 (1.6)

as well as
v0ε → v0 monotonically in Ā and in C1(Ā). (1.7)
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Proof. Let (χε)ε∈(0,1) ⊂ C∞0 (A) denote a nondecreasing family of radial functions χε = χε(r)
such that 0 ≤ χε ≤ 1 in A and χε ↗ 1 in A as ε↘ 0. Then the boundary-value problem{

∆v0ε = χε ·∆v0 in A,

v0ε|∂A = v0|∂A + ε,
(1.8)

has a unique solution v0ε ∈ C∞(Ā) that evidently is radially symmetric and fulfils (1.6). More-
over, (1.5) holds, because the particular choice of v0 in combination with the hypothesis α > 1
implies that ∆v0 ≥ 0 in A.
Next, since z := v0 + ε satisfies

∆z = ∆v0 ≥ χε∆v0 = ∆v0ε in A

as well as z ≤ v0ε on ∂A, the elliptic maximum principle implies that the left inequality in (1.3)
is valid. Similarly, the right inequality in (1.3) follows upon comparison of v0ε with the constant
function z̄ := M + ε which satisfies z̄ ≥ v0ε on ∂A and

∆z̄ = 0 ≤ ∆v0ε in A.

To see (1.4), we note that v0ε(R) = ε together with the left inequality in (1.3) yields v0εr(R) ≥ 0.
But (1.5) states that rn−1v0εr is nondecreasing with r, whence (1.4) follows.
Finally, since for 0 < ε < ε′ < 1 we have v0ε < v0ε′ on ∂A and

∆v0ε = χε ·∆v0 ≥ χε′ ·∆v0 = ∆v0ε′ in A,

elliptic comparison implies that v0ε decreases as ε ↘ 0. Thus, v0ε ↘ z in Ā holds for some
measurable z ≥ v0. Since ∆v0(x) ≤ c(|x − xc| − R)α−2 for all x ∈ A with some c > 0, our
assumption α > 1 implies that ‖∆v0ε‖Lq(A) is uniformly bounded for some q > 1; in fact,
this is true for any q > 1 satisfying (2 − α)q < 1. Therefore elliptic regularity theory yields
uniform boundedness of v0ε in W 2,q(A). In view of the radial symmetry, the compact embedding
W 2,q((R,R1)) ↪→↪→ C1([R,R1]) entails that the convergence v0ε → z actually takes place in
C1(Ā). Therefore (1.8) shows that z ∈ C1(Ā) is a weak solution of ∆z = ∆v0 fulfilling z = v0
on ∂A and hence, by uniqueness of solutions to this linear elliptic problem, must coincide with
v0. ////

Using the parabolic comparison principle, we can now assert the desired consequences for the
corresponding solution v of (1.1).

Lemma 1.2 Let α > 1 and M > 0. Then the problem (1.1) has a global classical radially
symmetric solution v = v(r, t). This solution can be obtained as the limit v = lim

ε↘0
vε in C0

loc(Ā×

[0,∞)) ∩ C2,1
loc (A× [0,∞)) of a decreasing family of positive solutions vε of (1.2) which satisfy

vεr ≥ 0 in A× (0,∞) (1.9)

and
vεt ≥ 0 in A× (0,∞). (1.10)

Consequently, we also have vr ≥ 0 and vt ≥ 0 in A× (0,∞).
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Proof. We consider (1.2), where v0ε is as provided by Lemma 1.1. Since ε ≤ v0ε ≤ M + ε
in A and v := ε and v̄ := M + ε are a sub- and a supersolution of (1.2), respectively, it follows
from standard arguments ([Wie2]) that (1.2) is actually non-degenerate and has a unique global
classical solution vε that satisfies

ε ≤ vε ≤M + ε in A× (0,∞). (1.11)

Due to (1.6), the first-order compatibility condition for (1.2) is fulfilled, so that vε in fact belongs
to C2,1(Ā× [0,∞))∩C∞(A× (0,∞)). Clearly, vε inherits the radial symmetry of v0ε, and since
differentiation of (1.2) with respect to r shows that z(r, t) := vεr(r, t) satisfies the linear parabolic
equation

zt = vp
εzrr + pvp−1

ε vεrzr + n−1
r vp

εzr + n−1
r vp

εvεrz − n−1
r2 v

p
εz in (R,R1)× (0,∞),

it follows from the maximum principle that z remains nonnegative if the same is true on the
parabolic boundary of (R,R1)× (0,∞). Indeed, by (1.4) we have z ≥ 0 at t = 0, whereas (1.11)
along with the boundary conditions in (1.2) imply that also z ≥ 0 at r = R and at r = R1; thus,
(1.9) has been proved.
Next, by the above regularity statement the function w := vεt belongs to C0(Ā × [0,∞)) ∩
C∞(A× (0,∞)) and satisfies

wt = vp
ε∆w + pvp−1

ε ∆vε · w in A× (0,∞).

Since in view of vε|∂A = v0|∂A + ε, we have w|∂A = 0 and (1.5) yields w ≥ 0 at t = 0, the
maximum principle guarantees that (1.10) holds.
Together with (1.3), this sharpens (1.11) according to v0 + ε ≤ vε ≤ M + ε in A × (0,∞).
Thus, parabolic Schauder estimates may be applied to (1.2) to yield a uniform bound for vε

in C
2+θ, 1+θ

2
loc ((Ā \ ∂BR(xc)) × [0,∞)) with some θ > 0. Since evidently vε ↘ v as ε ↘ 0 with

some nonnegative function v, the latter statement in conjunction with the Arzelà-Ascoli theorem
ensures that actually vε → v in C2,1

loc ((Ā \ ∂BR(xc))× [0,∞)). Consequently, v solves vt = vp∆v
in A× (0,∞) and attains the desired values at t = 0 and the outer part ∂BR1(xc) of the lateral
boundary. The continuity of v at the corresponding inner part ∂BR(xc) follows from the fact
vε ↘ v as ε↘ 0; indeed, this monotone convergence implies that v is upper semicontinuous and
hence, as a nonnegative function, continuous wherever v is zero. – which clearly is the case at
∂BR(xc). Altogether, we see that v is continuous in Ā × [0,∞), whence Dini’s theorem ensures
that the convergence vε → v is locally uniform in Ā × [0,∞). ////

The following lemma will play a key role in the proof of (0.3). Here the assumption α ≥ 1
p−1 is

essentially used.

Lemma 1.3 Let p ∈ [1, 2), α ≥ 1
p−1 and M > 0. Then for any R0 ∈ (R,R1) we have∫

BR0
(xc)\BR(xc)

v1−p(x, t)dx = +∞ for all t ≥ 0. (1.12)

Proof. Since v is radially symmetric, we again may write v = v(r, t), where r = |x−xc|. We
multiply (1.2) by ϕ

vp
ε
, where φ(r) := R0−r

rn−1 . Integrating by parts with respect to r ∈ (R,R0) gives

− 1
p− 1

d

dt

∫ R0

R
v1−p
ε (r, t) · (R0 − r)dr
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=
∫ R0

R
(vεrr +

n− 1
r

vεr) · (R0 − r)dr

=
∫ R0

R
vεrdr + vεr · (R0 − r)

∣∣∣R0

R

−(n− 1)
∫ R0

R
vε ·

(R0 − r

r

)
r
dr + (n− 1) · vε ·

R0 − r

r

∣∣∣R0

R

= vε(R0, t)− vε(r, t)− vεr(R, t) · (R0 −R)

+(n− 1)
∫ R0

R

vε(r, t)
r2

dr − (n− 1) · vε(R, t) ·
R0 −R

R

for t > 0. Since vε increases with r by Lemma 1.2, we can estimate

− 1
p− 1

d

dt

∫ R0

R
v1−p
ε (r, t) · (R0 − r)dr ≤ (M + ε) ·

[
1 + (n− 1) · R0 −R

R2

]
.

From this it follows that

d

dt

∫ R0

R
v1−p
ε (r, t) · (R0 − r)dr ≥ −C for all t > 0

with some C > 0, which upon integration implies that∫ R0

R
v1−p
ε (r, t) · (R0 − r)dr ≥

∫ R0

R
v1−p
0ε (r) · (R0 − r)dr − Ct for all t > 0.

Here we use that vε(·, t) ↘ v(,̇t) for t > 0 and v0ε(r) ↘ v0(r) = M
(R1−R)α (r − R)α as ε > 0, and

apply Beppo-Levi’s theorem to obtain∫ R0

R
v1−p(r, t) · (R0 − r)dr ≥

( M

(R1 −R)α

)1−p
∫ R0

R
(r −R)(1−p)α · (R0 − r)dr − Ct

for all t > 0. But since α ≥ 1
p−1 , the right-hand side equals +∞, so that∫ R0

R
rn−1v1−p(r, t)dr ≥ Rn−1

R0
·
∫ R0

R
v1−p(r, t) · (R0 − r)dr = +∞ for all t > 0,

as claimed. ////

We are now ready to complete the announced preliminary upper estimate for the solution v.

Lemma 1.4 Let p ∈ [1, 2), α ≥ 1
p−1 and M > 0. Then for all T > 0 there exists C =

C(T, p, α,M,R,R1) > 0 such that the solution v = lim
ε↘0

vε of (1.1) satisfies

v(x, t) ≤ C · (|x− xc| −R)
2
p for all (x, t) ∈ A× (0, T ). (1.13)

Proof. Since v is radial, we may write v(r, t) instead of v(x, t), where r = |x − xc|. Given
T > 0, we fix a small positive number δ satisfying

δ ≤ (1 + pat)−
1
p , (1.14)
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where a := 2(2+(n−2)p)
p2 > 0. We claim that it is possible to find some R0 > R satisfying

R0 ≤ R̄0 := min
{
R+

( δ

M

) 1

α− 2
p , R1

}
(1.15)

with the property that
v(R0, T ) ≤ δ(R0 −R)

2
p . (1.16)

In fact, if such an R0 did not exist, we would have v(r, T ) > δ(r −R)
2
p for all r ∈ (R0, R̄0) and

hence ∫
BR̄0

(xc)\BR(xc)
v1−p(x, t)dx ≤ δ1−p ·

∫ R̄0

R
rn−1 · (r −R)

2
p
(1−p)

dr.

Since 2
p(1 − p) > −1 whenever p < 2, the integral on the right is finite, whence we would have

a contradiction to Lemma 1.3.
We now let

v̄η(r, t) := y(t) · (r −R+ η)
2
p , r ∈ [R,R0], t ∈ [0, T ],

where η ∈ (0, 1) and y is the solution of the initial-value problem{
y′(t) = ayp+1, t ∈ (0, T ),

y(0) = δ,
(1.17)

that is,

y(t) = (δ−p − pat)−
1
p , t ∈ [0, T ].

Observe that by (1.14),

y(t) ≤ (δ−p − paT )−
1
p ≤ 1 for all t ∈ [0, T ]. (1.18)

Using (1.17), we see that v̄η satisfies

v̄ηt − v̄p
η∆v̄η = y′ · (r −R+ η)

2
p

−
[
y · (r −R+ η)

2
p

]p
· y ·

{
2
p(2

p − 1)(r −R+ η)
2
p
−2

+n−1
r · 2

p · (r −R+ η)
2
p
−1

}
≥ y′ · (r −R+ η)

2
p

−yp+1 · (r −R+ η)2 ·
{

2
p(2

p − 1)(r −R+ η)
2
p
−2

+2(n−1)
p (r −R+ η)

2
p
−2

}
=

[
y′ − 2(2−p+(n−1)p

p2 yp+1
]
· (r −R+ η)

2
p

= (y′ − ayp+1) · (r −R+ η)
2
p

= 0 for r ∈ (R,R0), t ∈ (0, T ), (1.19)
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where we note that r > r −R+ η for r ∈ (R,R0) due to our restriction η < R. Moreover,

v̄η(R, t) > 0 = v(R, t) for all t ∈ (0, T ) (1.20)

and

vη(R0, t) = y(t) · (R0 −R+ η)
2
p

> δ · (R0 −R)
2
p for all t ∈ [0, T ].

On the other hand, from Lemma 1.2 we know that v is nonincreasing in t, so that (1.16) yields

v(R0, t) ≤ v(R0, T )

≤ δ(R0 −R)
2
p for all t ∈ [0, T ]

and thus
v̄η(R0, t) > v(R0, t) for all t ∈ [0, T ]. (1.21)

Finally, at t = 0 we have

v(r, 0)
v̄η(r, 0)

=
M(r −R)α

δ(r −R+ η)
2
p

<
M(r −R)α

δ(r −R)
2
p

≤ M
δ (R0 −R)α− 2

p

≤ 1 for r ∈ [R,R0] (1.22)

due to (1.15) and the fact that α ≥ 1
p−1 >

2
p .

Since the inequalities (1.20)-(1.22) on the parabolic boundary of (R,R0)× (0, T ) are strict, we
may invoke the comparison principle for the degenerate parabolic inequality (1.19) (see [Wie2]
for an appropriate version) to conclude that v ≤ v̄η holds for all r ∈ [R,R0], t ∈ [0, T ] and
η ∈ (0, R). In particular, by (1.18), in the limit η → 0 we find

v(r, t) ≤ y(T ) · (r −R)
2
p

≤ (r −R)
2
p for all r ∈ [R,R0] and t ∈ [0, T ],

while for r ∈ [R0, R1] we trivially have

v(r, t)

(r −R)
2
p

≤ M(R1 −R)α

(R0 −R)
2
p

.

Accordingly, (1.13) follows if we set C := max
{

1, M(R1−R)α

(R0−R)
2
p

}
. ////
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1.2 Upper estimate for subsolutions of (0.4)

In this section we shall use the previously constructed radial functions in order to estimate
arbitrary subsolutions of (0.4) from above. Admitting subsolutions here rather than restricting
ourselves to solutions will enable us to easily cope with the perturbed problem (0.1) in Section
1.3.
We first assert that if p ∈ (1, 2) then (0.2) implies that each corresponding subsolution decays
at least like (dist (x, ∂Ω))

2
p near ∂Ω for t > 0. Observe that since 2

p >
1

p−1 , this is weaker than
the desired conclusion (0.3).

Lemma 1.5 Let p ∈ (1, 2), T > 0 and Ω ⊂ Rn be a bounded domain of class C3. Suppose that
u is a nonnegative classical subsolution of (0.4) with u|t=0 = u0, where

u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω (1.23)

with certain constants α ≥ 1
p−1 and c1 > 0. Then there exists c > 0 with

u(x, t) ≤ c · (dist (x, ∂Ω))
2
p for all x ∈ Ω and t ∈ (0, T ). (1.24)

Proof. From the assumed smoothness of ∂Ω it follows that there exists R > 0 such that for
all y ∈ ∂Ω one can find xc(y) ∈ Rn \ Ω with B̄R(xc) ∩ Ω̄ = {y}. Moreover, there is d > 0 with
the property that for any x ∈ Ω with dist (x, ∂Ω) < d there exists exactly one point y(x) ∈ ∂Ω
such that dist (x, ∂Ω) = |x− y(x)| (cf. [Se], [AP]).
Now let x0 ∈ Ω satisfy dist (x0, ∂Ω) < d, and set y := y(x0) and xc := xc(y). Then for all
x ∈ BR+d(xc) ∩Ω, the point ȳ(x) := xc +R · x−xc

|x−xc| lies on ∂BR(xc) and thus outside Ω, so that

dist (x, ∂Ω) = dist (x,Rn \ Ω)
≤ |x− ȳ(x)|
= |x− xc| −R for all x ∈ BR+d(xc) ∩ Ω. (1.25)

Let vε and v := lim
ε→0

vε denote the solutions of (1.2) and (1.1), respectively, with R1 := R+d and

M := max{c1 · (R1−R)α, ‖u0‖L∞(Ω)}, as constructed in Lemma 1.2). Then on (∂BR1(xc)∩ Ω̄)×
[0, T ], we have vε > v ≥ M ≥ u, because u ≤ ‖u0‖L∞(Ω) by comparison. If x ∈ B̄R1(xc) ∩ ∂Ω,
however, then trivially vε(x, t) > 0 = u(x, t) for all t ∈ [0, T ]. Furthermore, for t = 0 and any
x ∈ B̄R1 ∩ Ω̄, by (1.25) we find

vε(x, 0) > v(x, 0) = M
(R1−R)α (|x− xc| −R)α ≥ c1(|x− xc| −R)α ≥ u0(x),

whereby we have shown that the strict inequality vε > u holds on the parabolic boundary of
Ω0×(0, T ), where Ω0 := BR1(xc)∩Ω. Therefore parabolic comparison yields vε ≥ u in Ω0×(0, T ).
Thus, taking ε→ 0 and recalling Lemma 1.4, we see that

u(x, t) ≤ v(x, t) ≤ c · (|x− xc| −R)
2
p for all x ∈ Ω0 and t ∈ (0, T )

holds with some constant c depending on T, p, α,M,R and R1 only. Since |x0 − xc| ≤ |x0 −
y(x0)| + |y(x0) − xc| = dist (x0, ∂Ω) + R in view of the definition of y(x0), this in particular
entails

u(x0, t) ≤ c · (|x0 − xc| −R)
2
p ≤ c · (dist (x0, ∂Ω))

2
p for all t ∈ (0, T )
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with some c independent of x0. This immediately gives (1.24). ////

We next claim that the estimate gained in the last lemma in conjunction with (0.2) entails
the desired result (0.3). In fact, this can be proved for any p > 1 by regarding the inequality
ut ≤ up∆u as a linear parabolic inequality with a variable coefficient up(x, t) satisfying an
appropriate decay condition near ∂Ω.

Lemma 1.6 Let Ω ⊂ Rn be a bounded C3-domain, let p > 1, T > 0 and suppose that u is a
nonnegative clasical subsolution of (0.4) with initial data u|t=0 = u0 satisfying

u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω (1.26)

with some c1 > 0 and α ≥ 1 such that α ≥ 1
p−1 . Assume furthermore that there exists c2 > 0

such that
u(x, t) ≤ c2(dist (x, ∂Ω))

2
p for all x ∈ Ω and t ∈ (0, T ). (1.27)

Then
u(x, t) ≤ c3(dist (x, ∂Ω))α for all x ∈ Ω and t ∈ (0, T ) (1.28)

holds with a sufficiently large constant c3 > 0.

Proof. We let ϕ ∈ C1(Ω̄) ∩ C2(Ω) denote any function satisfying ∆ϕ ≤ 0 in Ω and

cϕ · dist (x, ∂Ω) ≤ ϕ(x) ≤ Cϕ · dist (x, ∂Ω) for all x ∈ Ω

with positive constants cϕ and Cϕ. (For instance, due to the smoothness of ∂Ω this is true if we
take ϕ to be the solution of −∆ϕ = 1 in Ω with ϕ|∂Ω = 0.)
We set

y(t) := y0 e
κt, t ≥ 0, (1.29)

where y0 := c1
cα
ϕ
> 0 and κ := α(α− 1) · cp

2
c2ϕ
· ‖∇ϕ‖2L∞(Ω) ≥ 0, and set

ū(x, t) := y(t) · ϕα(x), x ∈ Ω̄, t ∈ [0, T ].

Then at t = 0 we have, by (1.26),

u(x, 0)
ū(x, 0)

≤ c1(dist (x, ∂Ω))α

y0 · ϕα(x)

<
c1

y0 · cαϕ
= 1 for all x ∈ Ω,

whereas evidently u = 0 ≤ ū on ∂Ω×(0, T ). Furthermore, from the assumption (1.27) we obtain

up(x, t) ≤ cp2(dist (x, ∂Ω))2

≤ cp2
c2ϕ
· ϕ2(x) for all x ∈ Ω and t ∈ (0, T ).

11



Using this, we obtain that ū satisfies the linear parabolic inequality

ūt − up∆ū = y′ · ϕα

−up · y ·
[
αϕα−1∆ϕ+ α(α− 1)ϕα−2|∇ϕ|2

]
≥ y′ · ϕα − α(α− 1)upϕα−2|∇ϕ|2y

≥ y′ · ϕα − α(α− 1) · cp
2

c2ϕ
· ϕα|∇ϕ|2y

≥
{
y′ − α(α− 1) cp

2
c2ϕ
· ‖∇ϕ‖2L∞(Ω)ẏ

}
· ϕα in Ω× (0, T ).

Therefore the maximum principle implies

u(x, t) ≤ ū(x, t)
≤ y0 e

κTϕα(x)
≤ y0 e

κT · Cα
ϕ · (dist (x, ∂Ω))α for all x ∈ Ω and t ∈ (0, T ),

which yields (1.28). ////

Combining the previous two lemmata with an additional argument for p ≥ 2 (which essen-
tially replaces Lemma 1.5 for such p), we obtain the desired conclusion for arbitrary classical
subsolutions of (0.4).

Corollary 1.7 Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of class C3. Suppose that
p > 1 and T > 0, and that u is a nonnegative classical subsolution of (0.4) with u|t=0 = u0,
where

u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω (1.30)

with some c1 > 0 and some α ≥ 1 satisfying α ≥ 1
p−1 . Then there exists C = C(T ) > 0 such

that
u(x, t) ≤ C(dist (x, ∂Ω))α for all x ∈ Ω and t ∈ (0, T ). (1.31)

Proof. If p ∈ (1, 2), we apply Lemma 1.5 and then Lemma 1.6 to obtain (1.31) immediately.
In the case p ≥ 2, the claim results from Lemma 1.6 as soon as we have checked that the
hypothesis (1.27) of this lemma is satisfied. To see this, as in the proof of Lemma 1.6 we once
again pick any ϕ ∈ C1(Ω̄)∩C2(Ω) with the properties ∆ϕ ≤ 0 in Ω and cϕdist (x, ∂Ω) ≤ ϕ(x) ≤
Cϕdist (x, ∂Ω) throughout Ω, where 0 < cϕ < Cϕ. Since (1.30) and our assumption on α implies
that u0(x) ≤ c̃1dist (x, ∂Ω) for some c̃1 ≥ c1, we obtain u0 ≤ aϕ in Ω for a := c̃1

cϕ
. Therefore

u does not exceed ū(x, t) := aϕ(x) on the parabolic boundary of Ω × (0, T ) for any η > 0. In
conjunction with the linear parabolic inequality

ūt − up∆ū = −up · a∆ϕ ≥ 0 in Ω× (0, T ),

this yields u ≤ ū in Ω× (0, T ). Hence,

u(x, t) ≤ aCϕdist (x, ∂Ω) ≤ c2(dist (x, ∂Ω))
2
p for x ∈ Ω and t ∈ (0, T )

holds with c2 := aCϕ ·max
x∈Ω

(dist (x, ∂Ω))
p−2

p , so that Lemma 1.6 may be applied to assert (1.28),

that is, (1.31). ////

12



1.3 Boundary behavior: the main results

Using a simple transformation and the results obtained above, we can now easily prove our main
statement on boundary decay of solutions to the full problem (0.1).

Theorem 1.8 Suppose Ω ⊂ Rn is a bounded domain with boundary ∂Ω of class C3, and p > 1.
Let u be a nonnegative classical solution of (0.1) in Ω× (0, T ), where

u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω (1.32)

with some c1 > 0 and some α ≥ 1 satisfying α ≥ 1
p−1 . Then for all T ′ < T , there exists

C(T ′) > 0 such that

u(x, t) ≤ C(T ′)(dist (x, ∂Ω))α for all x ∈ Ω and t ∈ (0, T ′). (1.33)

Proof. As a classical solution, u is bounded for t < T ′, say, u ≤ M in Ω × (0, T ′). Letting
L > 0 denote a Lipschitz constant for g in the interval [0,M ], we obtain from g(0) = 0 that
g(s) ≤ Ls for all s ∈ [0,M ] and in particular g(u) ≤ Lu in Ω× (0, T ′). Now the substitution

u(x, t) = eLt · z(x, s), x ∈ Ω, s := 1
pL (epLt − 1) ∈ (0, S′),

where S′ := 1
pL (epLT ′ − 1), transforms the PDE in (0.1) into the equation

e(p+1)Ltzs + LeLtz = ut

= up∆u+ g(u)
≤ up∆u+ Lu

= e(p+1)Ltzp∆z + LeLtz, x ∈ Ω, s ∈ (0, S′)

which is equivalent to the inequality

zs ≤ zp∆z in Ω× (0, S′).

Since z(·, 0) ≡ u0, Corollary 1.7 says that the assumption (1.32) in fact entails (1.33). ////

For the sake of completeness, let us briefly demonstrate that a corresponding lower bound for
the boundary decay is preserved for any parameter α ≥ 1. The proof of the following lemma
relies on none of the previous results.

Lemma 1.9 Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C3, and p > 0. Let u be a nonnegative
classical solution of (0.1) in Ω× (0, T ), where

u0(x) ≥ c0(dist (x, ∂Ω))α for all x ∈ Ω (1.34)

with some c0 > 0 and α ≥ 1. Then for all T ′ < T there exists C(T ′) > 0 such that

u(x, t) ≥ C(T ′)(dist (x, ∂Ω))α for all x ∈ Ω and t ∈ (0, T ′). (1.35)

Proof. Given T ′ ∈ (0, T ), we let M := ‖u‖L∞(Ω×(0,T ′)) and L := ‖g′‖L∞((0,M)). Then
ut ≥ up∆u−Lu in Ω× (0, T ′), since g(0) = 0. In order to construct an appropriate subsolution,
we let Θ denote a positive Dirichlet eigenfunction of −∆ in Ω corresponding to the principal
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eigenvalue λ1 > 0, and note that due to the smoothness of ∂Ω we have cΘdist (x, ∂Ω) ≤ Θ(x) ≤
CΘdist (x, ∂Ω) for all x ∈ Ω with positive constants cΘ and CΘ. We let

u(x, t) := y(t) ·Θα(x), x ∈ Ω̄, t ∈ [0, T ′],

where y(t) := y0 e
−κt with y0 := c0

Cα
Θ

and κ := λ1αM
p + L. Then it is easy to see that u ≤ u at

t = 0 and on ∂Ω, and since u satisfies the linear parabolic inequality

ut − up∆u+ Lu = y′Θα − upy · [αΘα−1∆Θ + α(α− 1)Θα−2|∇Θ|2] + LyΘα

≤ y′Θα + λ1αu
pyΘα + Lyθα

= [y′ + λ1αM
py + Ly]Θα

= 0 in Ω× (0, T ′),

we conclude by the comparison principle that u ≤ u in Ω× (0, T ′). Accordingly, (1.35) holds if
we set C(T ′) := y0 e

−κT ′cαΘ. ////

2 Consequences for the large time asymptotics

2.1 Solutions with nonconvergent bounded gradients for p > 1

In this section we specialize on the problem
ut = upuxx + uq in Ω× (0,∞),

u|∂Ω = 0,

u|t=0 = u0,

(2.1)

in the one-dimensional domain Ω = (0, L), where p > 1 and q ≥ 1 is such that q ∈ (p− 1, p+ 1).
The initial data u0 are now assumed to be positive in Ω and to vanish on ∂Ω.
The following preliminary result on global existence of a classical solution can be derived using
standard methods (cf. [Win2] or [Wie2], for instance).

Lemma 2.1 Let p > 1, q ∈ [1, p+1) and u0 ∈ C0(Ω̄) be positive in Ω with u0|∂Ω = 0. Then (2.1)
has a unique global positive classical solution u ∈ C0(Ω̄× [0,∞)) ∩C2,1(Ω× (0,∞)). Moreover,
if (u0k)k∈N ⊂ C0(Ω̄) is a sequence of functions that are positive in Ω and satisfy u0k → u0 in
C0(Ω̄) then the approximating problems

ukt = up
kukxx + uq

k in Ω× (0,∞),

uk|∂Ω = u0k|∂Ω,

uk|t=0 = u0k,

(2.2)

have global classical solutions uk with

uk → u in C0
loc(Ω̄× [0,∞)) ∩ C2,1

loc (Ω× (0,∞)).
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Concerning the large time behavior of classical solutions, we recall the following result from
[Win2]. It states that if q < p + 1 then all classical solutions of (2.1) approach a uniquely
determined continuous steady state as t → ∞. If q > p − 1 then this stationary solution even
belongs to C1+ q+1−p

2 (Ω̄). For a detailed analysis of these steady states, we refer the reader to
[Wie2].

Lemma 2.2 Let p > 1 and q ≥ 1 be such that q ∈ (p − 1, p + 1), and assume that u0 ∈ C0(Ω̄)
is positive in Ω with u0|∂Ω = 0. Then the solution u of (2.1) satisfies

u(·, t) → w in C0(Ω̄) as t→∞,

where w ∈ C1+ q+1−p
2 (Ω̄) ∩ C2(Ω) is the unique positive solution of the singular elliptic problem{

−wxx = wq−p in Ω,

w|∂Ω = 0,
(2.3)

In our construction we shall consider a solution u approaching the above steady state monoton-
ically from below. To this end, we first construct suitable initial data.

Lemma 2.3 Let p > 1 and q ∈ (p− 1, p+ 1). Then for all α > 1 there exist c0 > 0, c1 > 0, ϑ ∈
(0, 1) and u0 ∈ C1+ϑ(Ω̄) ∩ C∞(Ω) such that

c0(dist (x, ∂Ω))α ≤ u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω (2.4)

and
u0xx + uq−p

0 > 0 in Ω. (2.5)

Proof. According to [Wie2], due to the fact that q − p ∈ (−1, 1) the solution w of (2.3)
belongs to C1+ϑ′(Ω̄) for some ϑ′ ∈ (0, 1) and satisfies

c̃0dist (x, ∂Ω) ≤ w(x) ≤ c̃1dist (x, ∂Ω) for all x ∈ Ω (2.6)

with positive constants c0 and c1. Picking a small number A > 0 such that

αAp+1−q‖w‖(p+1−q)(α−1)
L∞(Ω) < 1,

we set

u0(x) := Awα(x), x ∈ Ω̄.

Then, since α > 1, both u0 and u0x are Hölder continuous in Ω̄, and (2.4) immediately results
from (2.6). Moreover, we have

u0xx + uq−p
0 = A

(
αwα−1wxx + α(α− 1)wα−2w2

x

)
+Aq−pw(q−p)α

≥ −Aαwα−1 · wq−p +Aq−pw(q−p)α

=
(
− αAp+1−q · w(p+1−q)(α−1) + 1

)
·Aq−pw(q−p)α

> 0 in Ω

by definition of A, whereby (2.5) has been shown. ////

Next, we assert that such initial data in fact lead to solutions that are nondecreasing with time.
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Lemma 2.4 Let p > 1 and q ∈ [1, p+ 1), and assume that u0 ∈ C0(Ω̄)∩C2(Ω) is positive in Ω
and satisfies u0|∂Ω = 0 as well as u0xx + uq−p

0 > 0 in Ω. Then the solution u of (2.1) satisfies
ut ≥ 0 in Ω× (0,∞).

Proof. We first claim that for all ε ∈ (0, 1) there exist δε ∈ (0, 2ε] and u0ε ∈ C∞(Ω̄) satisfying

max{δε, u0 − ε} ≤ u0ε ≤ u0 + 3ε in Ω, (2.7)
u0εxx + uq−p

0ε ≥ 0 in Ω and (2.8)
u0ε ≡ δε in a neighborhood of ∂Ω. (2.9)

To this end, we begin with the case q < p and let

Ωε := {x ∈ Ω | u0(x) > ε},

µε := min
{

1, min{u0xx(x) + uq−p
0 (x) | x ∈ Ω̄ε}

}
,

νε := min
{µε

2
, (2ε)q−p

}
and

δε := min
{2ε

3
,

2ε
3
·
[
(1− 1

2µε · εp−q)−
1

p−q − 1
]}
.

Since ū0ε := (u0−ε)+ satisfies ū0εxx ≥ u0xx ·χΩε in the sense of distributions in Ω, we can apply
the satndard mollifying procedure to ū0ε in order to obtain a nonnegative û0ε ∈ C∞0 (Ω) fulfilling
u0 − ε− δε

2 ≤ û0ε ≤ u0 + δε
2 in Ω and û0εxx ≥ ū0εxx − νε ≥ u0xx · χΩε − νε in the distributional

sense. Thus, the function u0ε := û0ε + δε evidently satisfies (2.9) and

max{δε, u0 − ε+ δε
2 } ≤ u0ε ≤ u0 + 3

2δε in Ω, (2.10)

which implies (2.7), because 3
2δε ≤ ε. Moreover, if x ∈ Ωε then

u0εxx(x) + uq−p
0ε (x) = û0εxx(x) + uq−p

0ε (x)
≥ u0xx(x)− νε + uq−p

0ε (x)
≥ µε − uq−p

0 (x)− νε + uq−p
0ε (x)

≥ µε

2
− uq−p

0 (x) +
(
u0(x) +

3
2
δε

)q−p
.

Since u0(x) > ε for such x, by definition of δε we have

u0q − p(x)−
(
u0(x) +

3
2
δε

)q−p
≤ εq−p −

(
ε+

3
2
δε

)q−p
≤ µε

2

and hence u0εxx + uq−p
0ε ≥ 0 in Ωε. On the other hand, if x ∈ Ω \ Ωε then (2.10) implies

u0εxx(x) + uq−p
0ε (x) ≥ −νε + uq−p

0ε (x)
≥ −νε + (2ε)q−p

≥ 0 (2.11)

in view of the definition of νε, wich proves (2.8).
In the case q ≥ p the procedure is similar but less involved: We take Ωε, µε and νε as before and
let δε := 2ε this time. Then the correspondingly constructed function u0ε again fulfills (2.9),
(2.10) and (2.9), so that in particular for x ∈ Ωε we have u0ε(x) ≥ u0(x) and hence

u0εxx(x) + uq−p
0ε (x) ≥ µε − uq−p

0 (x)− νε + uq−p
0ε (x)

≥ 0.
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If x ∈ Ω \ Ωε then (2.11) remains valid, because u0ε ≥ δε = 2ε by (2.10).

We now pick a sequence of numbers 1 > εk ↘ 0 as k → ∞ and let u0k := u0εk
. Using these

functions as approximations for u0 in Lemma 2.1, we obtain a corresponding family of solutions
uk of (2.2) which even belong to C2,1(Ω̄ × [0,∞)), because (2.7) ensures that (2.2) is actually
non-degenerate, whereas (2.9) implies that the compatibility condition of first order is fulfilled
for (2.2). Thus, z := ukt is a classical solution of the linear parabolic equation

zt = ukt

= up
kzxx + (pup−1

k ukt + quq−1
k )z in Ω× (0,∞)

satisfying z|∂Ω = 0 and z|t=0 ≥ 0 in view of (2.8). Hence, from the maximum principle we gain
that ukt ≥ 0 in Ω× (0,∞), which in the limit k →∞ yields the claim because of the pointwise
convergence ukt → ut asserted by Lemma 2.1. ////

The fact that ut ≥ 0 will now be used to prove that u(·, t) remains uniformly bounded in
W 1,∞(Ω) for all times, provided that u0 does not decay too fast near ∂Ω.

Lemma 2.5 Let p > 1 and q ≥ 1 be such that q ∈ (p−1, p+1). Let u0 ∈ C0(Ω̄)∩C2(Ω) be such
that u0xx + uq−p

0 > 0 in Ω. Moreover, assume that c0(dist (x, ∂Ω))α ≤ u0(x) ≤ c1(dist (x, ∂Ω))α

holds for all x ∈ Ω with positive constants c0, c1 and α > 1 fulfilling α ≥ 1
p−1 and (p− q)α < 1.

Then there exists C > 0 such that the solution u of (2.1) satisfies

|ux| ≤ C in Ω× (0,∞). (2.12)

Proof. We first claim that our assumptions guarantee that uq−p(x, t) ≤ ψ(x) holds for all
x ∈ Ω, t > 0 and some function ψ ∈ L1(Ω). Indeed, if q ≥ p this directly results from the
boundedness of u; in the case q < p, we use the fact that ut ≥ 0 by Lemma 2.4 to estimate

uq−p(x, t) ≤ uq−p
0 (x)

≤ cq−p
0 (dist (x, ∂Ω))−(p−q)α

for all x ∈ Ω and t > 0. Since (p− q)α < 1, the right-hand side belongs to L1(Ω).
In order to prove that (2.12) holds with C := ‖ψ‖L1(Ω), we take an arbitrary (x, t) ∈ Ω× (0,∞)
and first consider the case ux(x, t) < 0. Then, since u(·, t) is positive in Ω and vanishes on ∂Ω,
there exists x0 ∈ Ω with x0 < x such that ux(x0, t) = 0. Now from Lemma 2.4 we know that
ut ≥ 0 and thus uxx ≥ −uq−p in Ω× (0,∞), so that in particular

ux(x, t) = ux(x0, t) +
∫ x

x0

uxx(y, t)dy

=
∫ x

x0

uxx(y, t)dy

≥ −
∫ x

x0

uq−p(y, t)dy

≥ −‖ψ‖L1(Ω).

Combined with a similar reasoning in the case ux(x, t) > 0, this proves (2.12). ////

The boundary behavior of ux can now be controlled using our knowledge on the boundary
behavior of u and an additional scaling argument similar to that demonstrated in [Wie1].
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Lemma 2.6 Let p > 1 and q ≥ 1 be such that q ∈ (p − 1, p + 1) and q ≥ 3 − p, and let
u0 ∈ C1+ϑ(Ω̄) ∩ C2(Ω) for some ϑ ∈ (0, 1). Suppose that u0xx + uq−p

0 > 0 in Ω, and that

c0(dist (x, ∂Ω))α ≤ u0(x) ≤ c1(dist (x, ∂Ω))α for all x ∈ Ω (2.13)

holds with positive constants c0 and c1 and some α > 1 satisfying α ≥ 1
p−1 and α ≤ 2

p+1−q .
Then the solution u of (2.1) satisfies

u(·, t) ∈ C1(Ω̄) for all t > 0 (2.14)

and
ux(·, t)|∂Ω = 0 for all t > 0. (2.15)

Remark. The additional restriction q ≥ 3 − p is made to guarantee that there indeed exist
some numbers α complying with the above assumptions.

Proof. Let t0 > 0. In view of Theorem 1.8 and the monotonicity with respect to t asserted
by Lemma 2.4, the assumption (2.13) implies that

c0(dist (x, ∂Ω))α ≤ u(x, t) ≤ c̃1(dist (x, ∂Ω))α for x ∈ Ω and t ∈ (0, 2t0)

holds with some c̃1 ≥ c1. Thus, fixing x0 ∈ Ω and writing d := dist (x0, ∂Ω) and s0 := 2dpα−2t0,
we know that

v(y, s) :=
1
dα
· u(x0 + dy, d2−pαs), y ∈ (−1, 1), s ∈ (0, s0),

satisfies
c0
2α ≤ v(y, s) ≤ (3

2)αc̃1 for all y ∈ (−1
2 ,

1
2) and s ∈ (0, s0). (2.16)

Moreover, a straightforward calculation shows that v satisfies

vs = vpvyy + d2−(p+1−q)αvq in (−1, 1)× (0, s0).

Therefore, interior parabolic Schauder estimates in combination with the regularity of u0, with
(2.16) and the fact that 2 − (p + 1 − q)α > 0 provide some ϑ′ ∈ (0, ϑ) and a bound C for

v in C1+ϑ′, 1+ϑ′
2 ([−1

4 ,
1
4 ] × [0, s0]) which does not depend on x0. In particular, this means that

|ux(x0, t0)| = dα−1|vy(0, dpα−2t0)| ≤ Cdα−1. Since α > 1, this implies that ux(·, t0) belongs to
C0(Ω̄) and vanishes on ∂Ω. ////

Collecting the above facts, we easily obtain the following.

Theorem 2.7 Suppose p > 1 and q ≥ 1 is such that q ∈ (p−1, p+1) and q ≥ 3−p. Then there
exist initial data u0 ∈ C1(Ω̄) such that the solution u of (2.1) is nondecreasing with respect to t
and has the following properties: It satisfies u(·, t) ∈ C1(Ω̄) for all t ≥ 0,

‖u(·, t)‖C1(Ω̄) ≤ C for all t ≥ 0

with some C independent of t, and

u(·, t) → w in C0(Ω̄) as t→∞,

where w denotes the solution of (2.3), but ux(·, t)|∂Ω ≡ 0 for t > 0. In particular, there exists
δ > 0 such that

‖u(·, t)− w‖C1(Ω̄) ≥ δ for all t ≥ 0.
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Proof. As mentioned above (cf. the remark following Lemma 2.6), since q ≥ 3− p, we have
1

p−1 ≤
2

p+1−q , and from the assumption q > p − 1 we gain that 2
p+1−q > 1. Therefore there

exists α > 1 such that α ≥ 1
p−1 and α ≤ 2

p+1−q . We now take u0 as provided by Lemma 2.3
and immediately obtain from Lemma 2.4, Lemma 2.5 and Lemma 2.6 that the corresponding
solution u has the desired properties. ////

2.2 Boundedness in W 1,∞(Ω) implies precompactness in C1(Ω̄) for p < 1

Let us finally illustrate that the observed phenomenon of boundedness in C1(Ω̄) without pre-
compactness in C1(Ω̄) must in fact be due to the strong degeneracy in (2.1). In order to see that
the above result is sharp in this direction, we shall detect the degeneracy measuring parameter
p to be critical at p = 1 in this respect, even when very general nonlinear sources are taken into
account.
To be more precise, let us consider the problem

ut = upuxx + g(x, t, u, ux) in Ω× (0,∞),

u|∂Ω = 0,

u|t=0 = u0,

(2.17)

where u0 and g are nonnegative functions with u0 ∈ C0(Ω̄), u0|∂Ω = 0 and g ∈ Cϑ
loc(Ω̄× [0,∞)×

[0,∞)× R) for some ϑ > 0. Our goal is to show that if p < 1 then a result similar to Theorem
2.7 cannot be found; that is, we wish to prove that if u(·, t) remains bounded in C1(Ω̄) (or,
more generally, in W 1,∞(Ω)) then u(·, tk) must converge in C1(Ω̄) at least along some sequence
of times tk →∞.
Since our focus is on solutions which are (eventually) bounded in W 1,∞(Ω), a natural assumption
on g seems to be that g be bounded. And in fact, this rather mild requirement is already
sufficient for our purpose. In order to circumvent any difficulties about existence and uniqueness
within various concept of weak solutions of (2.17), we concentrate here on the ‘viscosity limit’
u := limε↘0 uε of the family of solutions uε of the approximate problems

uεt = up
εuεxx + g(x, t, uε, uεx) in Ω× (0,∞),

uε|∂Ω = ε,

uε|t=0 = u0 + ε,

(2.18)

for ε ∈ (0, 1). Since uε evidently decreases when ε decreases, the limit u exists in the pointwise
sense and defines a nonnegative upper semicontinuous function which in a large number of
situations indeed is a solution (in an appropriate sense) of (2.17) (see [ACP], [A], [B], [Wie2] or
[FPS], for instance).
Our main result concerning (2.17) reads as follows.

Lemma 2.8 Suppose p ∈ (0, 1) and g ∈ L∞(Ω× (0,∞)× (0,∞)×R) is nonnegative and locally
Hölder continuous in Ω̄× [0,∞)× [0,∞)× R. Assume that u := limε↘0 uε satisfies

‖u(·, t)‖W 1,∞(Ω) ≤M for all t ≥ t0 (2.19)
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with positive constants t0 and M . Then eihter ‖u(·, t)‖L∞(Ω) → 0 as t → ∞, or there exists a
sequence (tk)k∈N ⊂ (t0∞) with tk →∞ as k →∞ such that

(u(·, tk))k∈N is relatively compact in C1(Ω̄). (2.20)

Remark. We require local Hölder continuity of g only in order to ensure that the approximate
problems (2.18) are classically solvable.

Proof. If u(·, t) does not converge to zero as t → ∞, then (2.19) and the Arzelà-Ascoli
theorem provide a sequence t̃k →∞ and a nonnegative nontrivial w ∈ C0(Ω̄) such that u(·, t̃k) ≥
w in Ω for all k ∈ N. Since uε ≥ u and g ≥ 0, the comparison principle ensures that for all ε > 0
we have

uε(x, t̃k + s) ≥ Uε(x, s) for all x ∈ Ω and s ≥ 0, (2.21)

where Uε denotes the positive classical solution of
Uεs = Up

εUεxx in Ω× (0,∞),

Uε|∂Ω = ε,

Uε|s=0 = w + ε.

By [BP], the (weak) solution U := limε↘0 Uε of the corresponding porous medium equation
satisfies

U(x, s) ≥ cU · dist (x, ∂Ω) for all x ∈ Ω and s ∈ (s0, s0 + 1)

with some cU > 0 and s0 > 0. Hence, (2.21) entails

uε(x, t) ≥ cU · dist (x, ∂Ω) for all x ∈ Ω and t ∈ (t̂k, t̂k + 1) (2.22)

with t̂k := t̃k + s0.
We now multiply (2.18) by −uεxx and integrate by parts over Ω to obtain

1
2
d

dt

∫
Ω
u2

εx +
∫

Ω
up

εu
2
εxx = −

∫
Ω
g(x, t, uε, uεx)uεxx

for t > 0, where we have used that uεt vanishes on ∂Ω for t > 0. By Young’s inequality,

−
∫

Ω
g(x, t, uε, uεx) ≤ 1

2

∫
Ω
up

εu
2
εxx +

1
2

∫
Ω

g2(x, t, uε, uεx)
up

ε

≤ 1
2

∫
Ω
up

εu
2
εxx +

G2

2

∫
Ω
u−p

ε ,

where G is an upper bound for the function g. By (2.22), however,∫
Ω
u−p

ε (x, t)dx ≤ c−p
U

∫
Ω
(dist (x, ∂Ω))−pdx for all t ∈ (t̂k, t̂k + 1),

and since p < 1 we thus have

1
2
d

dt

∫
Ω
u2

εx +
1
2

∫
Ω
u2

εxx ≤ c1 for all t ∈ (t̂k, t̂k + 1) (2.23)
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with some c1 > 0. Now since uε|∂Ω = ε and uε ≥ ε in Ω by comparison, another integration by
parts yields ∫

Ω
u2

εx =
∫

Ω
(uε − ε)x · uεx = −

∫
Ω
(uε − ε) · uεxx

≤
( ∫

Ω
(uε − ε)pu2

εxx

) 1
2 ·

( ∫
Ω
(uε − ε)2−p

) 1
2 for t > 0. (2.24)

Here, by Hölder’s and Poincaré’s inequalities we have( ∫
Ω
(uε − ε)2−p

) 1
2 ≤ |Ω|

p
4

( ∫
Ω
(uε − ε)2

) 2−p
4 ≤ |Ω|

p
4 · ( |Ω|π )

2−p
2

( ∫
Ω
u2

εx

) 2−p
4
,

so that from (2.24) we obtain∫
Ω
u2

εx ≤ c2

( ∫
Ω
up

εu
2
εxx

) 1
2 ·

( ∫
Ω
u2

εx

) 2−p
4 for t > 0,

that is, ∫
Ω
up

εu
2
εxx ≥ c3

( ∫
Ω
u2

εx

) 2+p
2 for t > 0

with positive constants c2 and c3. Inserted into (2.23), this shows that the function y(t) :=∫
Ω u

2
εx(x, t)dx satisfies

y′(t) ≤ 2c1 − c3y
2+p
2 for all t ∈ (t̂k, t̂k + 1).

Since z(t) := A(t− t̂k)
− 2

p satisfies

z′ − 2c1 + c3z
2+p
2 = (2A

p + c3A
2+p
2 )(t− t̂k)

− 2+p
p − 2c1

≥ 0 for all t ∈ (t̂k, t̂k + 1)

whenever A ≥ max{( 4
pc3

)
p
2 , (4c1

c3
)

p
2+p }, it results from an ODE comparison argument that y ≤ z

in (t̂k, t̂k + 1), whence in particular

y(t) ≤ c4 for all t ∈ (t̂k + 1
2 , t̂k + 1)

holds with some c4 > 0. Now an integration of (2.23) yields∫ t̂k+1

t̂k+ 1
2

∫
Ω
up

εu
2
εxx ≤ c1 + c4,

which together with (2.21) entails∫ t̂k+1

t̂k+ 1
2

∫
Ω
(dist (x, ∂Ω))pu2

εxx ≤ c5

with some c5 > 0. As a consequence, the convergence uε → u takes place in the weak topology
of L2((t̂k + 1

2 , t̂k + 1);W 2,2(Ω′)) for all Ω′ ⊂⊂ Ω, and∫ t̂k+1

t̂k+ 1
2

∫
Ω
(dist (x, ∂Ω))pu2

xx ≤ c5.
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In particular, there exists tk ∈ (t̂k + 1
2 , t̂k + 1) such that uxx(·, tk) ∈W 2,2

loc (Ω) and∫
Ω
(dist (x, ∂Ω))pu2

xx(x, tk)dx ≤ 2c5.

At this time tk, for all x1, x2 ∈ Ω with x1 < x2 we find

|ux(x2, tk)− ux(x1, tk)| =
∣∣∣ ∫ x2

x1

uxx(x, tk)dx
∣∣∣

≤
( ∫

Ω
(dist (x, ∂Ω))pu2

xx(x, tk)dx
) 1

2 ·
( ∫ x2

x1

(dist (x, ∂Ω))−pdx
) 1

2
.

Since it can easily be checked that
∫ x2

x1
(dist (x, ∂Ω))−pdx ≤ c6|x2−x1|1−p with suitably large c6,

we thus obtain

|ux(x2, tk)− ux(x1, tk)| ≤
√

2c5c6 · |x2 − x1|
1−p
2

and thereby have proved that u(·, tk) is bounded in C1+ 1−p
2 (Ω̄) by a constant independent of k.

In view of the Arzelà-Ascoli theorem this immediately gives (2.20). ////
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