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Abstract

The parabolic-parabolic Keller-Segel system for chemotaxis phenomena,

(

ut = ∇ · (φ(u)∇u) −∇ · (ψ(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

is considered under homogeneous Neumann boundary conditions in a smooth bounded domain
Ω ⊂ R

n with n ≥ 2.
It is proved that if ψ(u)

φ(u)
grows faster than u

2
n as u→ ∞ and some further technical conditions

are fulfilled, then there exist solutions that blow up in either finite or infinite time. Here, the
total mass

R

Ω
u(x, t)dx may attain arbitrarily small positive values.

In particular, in the framework of chemotaxis models incorporating a volume-filling effect in
the sense of Painter and Hillen (Can. Appl. Math. Q. 10, 501-543 (2002)), the results indicate
how strongly the cellular movement must be inhibited at large cell densities in order to rule
out chemotactic collapse.
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Introduction

We consider the initial-boundary value problem for two strongly coupled parabolic equations,























ut = ∇ · (φ(u)∇u) −∇ · (ψ(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(0.1)

with nonnegative initial data u0 ∈ C0(Ω̄) and v0 ∈ C1(Ω̄) in a bounded domain Ω ⊂ R
n with

smooth boundary, where ∂
∂ν

denotes differentiation with respect to the outward normal ν on ∂Ω.
The functions φ and ψ are assumed to belong to C2([0,∞)) and to satisfy φ > 0 on [0,∞), ψ(0) = 0
and, for simplicity, that ψ > 0 on (0,∞).
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PDE systems of this type were introduced by Keller and Segel ([KS]) as a first approach towards
the modelling of the biological phenomenon of directed, or partially directed, movement of cells
in response to a chemical signal. In typical examples, as a reaction to an internal or external
stimulus, the cells within some population start to produce such a signal substance and, at the
same time, begin to move towards regions of higher concentration of this substance. As is known
from experimental observations, such a movement may eventually lead to an aggregation of cells
around one point, or few points, in space. This phenomenon, also referred to as chemotaxis, is
believed to play an essential role in numerous processes of self-organization at the microscopic
level, not only in protozoal populations but also in higher developed organisms (cf. [HP2] for a
recent survey).

In the framework of (0.1), one neglects all further physical and chemical circumstances other
than the presence of the cells theirselves and the signal, denoted in their respective densities
by u(x, t) and v(x, t). One mathematical challenge in this context consists of finding out under
which conditions and, if, in which sense cellular aggregation can indeed be described by the model
(0.1), as simple as it stands. Here, one possible and frequently used mathematical notion of
‘aggregation’ is that (0.1) possesses solutions for which the cell density u becomes unbounded in
space at some finite or infinite time, the so-called blow-up time. Since, formally, (0.1) preserves
the total cellular mass in the sense that

∫

Ω u(x, t)dx =
∫

Ω u0(x)dx for all t > 0, this concept
appears to be meaningful, because it implies that near the blow-up time the mass of an unbounded
solution should essentially concentrate near those points where u becomes large. However, the
analysis of such blow-up solutions brings about several technical difficulties; for instance, there
are only few results available that deal with the asymptotic behavior of unbounded solutions near
their blow-up time. (For literature on existence of blow-up solutions, we refer to [HV], [HWa]
and [Wi], for instance, asymptotic properties are addressed in [HV] and [NSS]; cf. also the survey
[H].) Moreover, from the point of view of modelling it is not completely clear how exploding cell
densities are to be interpreted.

Accordingly, considerable effort has been made in developing models of Keller-Segel type that do
not possess blowing up but exclusively bounded solutions ([HP2]). One such approach was pursued
by Hillen and Painter ([PH]) and is based on a biased random walk analysis. Having as their main
ingredient the assumption that the cells’ movement is inhibited near points where the cells are
densely packed, they derive a functional link between the self-diffusivity φ(u) and the chemotactic
sensitivity ψ(u) that, in a non-dimensionalized version, takes the form

φ(u) = Q(u) − uQ′(u), ψ(u) = uQ(u), u ≥ 0, (0.2)

where Q(u) denotes the density-dependent probability for a cell to find space somewhere in its
current neighborhood. Since this probability is basically unknown, different choices for Q are
conceivable, each of these providing a certain version of (0.1) that incorporates this so-called
volume-filling effect. In [HP1], the authors propose the choice

Q(u) = A(ū− u)+ (0.3)

with some A > 0 and ū > 0, presuming that there exists some critical cell density ū beyond
which no further movement is possible. In fact, this model admits global bounded solutions only
([HP1]), and ‘describing aggregation’ amounts to studying dynamical properties such as instability
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of constant steady states or the existence of attractors ([Wr]).

It is the purpose of the present paper to relax the above ‘decay’ assumption that Q(u) be identically
zero for u large enough, and investigate the question to which extent (0.1) is then still able to
prevent a chemotactic collapse in the sense of blow-up. Specifically, we think of Q(u) to be positive
for all u ∈ [0,∞) and to satisfy Q(u) → 0 as u→ ∞, including algebraic or exponential decay, for
instance. Such generalizations were previously suggested in [CC] and seem to be adequate in view
of the lack of any experimental hint about a reasonable value for ū in (0.3), or about the particular
behavior of Q(u) near u = ū in this particular model.

Our main results, actually not requiring that φ and ψ be connected via (0.2), indicate that the

asymptotic behavior of the quotient ψ(u)
φ(u) for large u is crucial. The main purpose is to show that

• if Ω is a ball in R
n for some n ≥ 2 and

ψ(u)

φ(u)
grows faster than u

2
n as u→ ∞ (0.4)

in a certain sense then for any m > 0, (0.1) possesses unbounded solutions having mass
∫

Ω
u(x, t)dx ≡ m

by proving the claimed conclusion under various, technically inspired, specifications of (0.4); as
will be proved in Corollary 4.2, precise conditions that are sufficient for the occurrence of blow-up
are

• n = 2 and ψ(u)
φ(u) ≥ c0u lnu for some c0 > 0 and sufficiently large u;

• n ≥ 3 and u−αψ(u)
φ(u) → c0 > 0 as u→ ∞ with some α > 2

n
;

• n ≥ 3 and lim inf
u→∞

u(ψ
φ

)′(u)

(ψ
φ

)(u)
> 2

n
.

To illustrate this, let us suppose that φ and ψ are given by (0.2) with Q(u) ≃ u−β for large u for

some β > 0. Then ψ(u)
φ(u) ≃ 1

1+βu and hence the above results imply that blow-up occurs for some

data when n ≥ 3. On the other hand, if Q decays exponentially, Q(u) ≃ e−βu for some β > 0, then
ψ(u)
φ(u) ≃ 1

β
, so that none of the above criteria is fulfilled, and accordingly no collapse is asserted.

However, if Q(u) ≃ e−βu
γ

with positive β and γ then ψ(u)
φ(u) ≃ 1

βγ
u1−γ ; accordingly, we conclude

that if n ≥ 3 and γ < n−2
n

here then blow-up solutions exist.
The number 2

n
in (0.4) cannot be diminished; this is implied by the outcome in [HWi], where it was

proved that if φ ≡ 1 and lim sup
u→∞

u−αψ(u) <∞ for some α < 2
n

then all solutions remain bounded.

It is an interesting open question whether 2
n

is indeed critical in respect of collapse prevention also
when φ(u) decays to zero as u→ ∞. Proving this conjecture seems to be connected to overcoming
some technical complications stemming from the degeneracy in the diffusion part (cf. [CC]). To
the best of our knowledge, affirmative results are available only under stronger growth restrictions
of ψ

φ
([C2]), or for elliptic-parabolic simplifications of (0.1), but then only under the additional

hypothesis that φ decays at most at an algebraic rate ([CW], [DW]).
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Let us mention that in space dimension n = 2, our requirement ψ(u)
φ(u) ≥ c0u lnu at first glance

seems far away from being optimal, for even in the standard Keller-Segel model with φ ≡ 1 and
ψ(u) = u collapse is known to occur. However, in this case the appearance of blow-up is coupled
to a large total mass of cells ([HWa], [NSY]), whereas we assert blow-up for arbitrarily small mass.

Our strategy of proof is inspired by the arguments in [SeS] and in [HWa]. We first identify an
appropriate Lyapunov functional F for (0.1) in Section 1 and thereby prove that bounded solutions
of (0.1) approach certain steady-state solutions in an appropriate sense. Restricting to the radially
symmetric setting henceforth, we next show in Section 2 that if ψ

φ
satisfies some growth hypotheses

then F , when evaluated at such equilibria, is uniformly bounded from below. In Section 3, however,
we prove that suitably fast growth of ψ

φ
implies the existence of smooth initial data at which F

attains arbitrarily large negative values. For such initial data, using the Lyapunov property of F
we easily conclude in Section 4 that the corresponding solutions cannot remain bounded.

1 Linking ω-limit sets and steady states via a Lyapunov

functional

For our purpose, a highly favorable structural property of the considered form of the Keller-Segel
system will be that

F (u, v) :=

∫

Ω

(1

2
|∇v|2 +

1

2
v2 − uv +G(u)

)

acts as a Lyapunov functional for (0.1) in that F (u(·, t), v(·, t)) is nonincreasing along trajectories
and thus plays a role similar to that of energy in physics. Here, for any s0 > 0 one may define the
positive function G = Gs0 on (0,∞) by

G(s) :=

∫ s

s0

∫ σ

s0

φ(τ)

ψ(τ)
dτdσ, s > 0.

The use of a Lyapunov functional has proved to be a strong tool in a large number of models
of Keller-Segel type, also in simplified versions where the second equation in (0.1) is stationary
([CC]); for an overview, we refer to the surveys [H] and [HP2].

Lemma 1.1 Let T ∈ (0,∞] and suppose that (u, v) is a classical solution of (0.1) in Ω × (0, T )
with initial data (u0, v0) satisfying infx∈Ω̄ u0(x) > 0. Then

∫ t

0

∫

Ω

v2
t +

∫ t

0

∫

Ω

ψ(u)·
∣

∣

∣

φ(u)

ψ(u)
∇u−∇v

∣

∣

∣

2

+F (u(·, t), v(·, t)) = F (u0, v0) for all t ∈ (0, T ). (1.1)

Proof. We perform a straightforward extension of the respective computations for the classical
Keller-Segel model where φ ≡ 1 and ψ(u) = u ([GZ]). By the strong maximum principle applied

to the first equation in (0.1), u inherits strict positivity from its initial data. Therefore φ(u)
ψ(u) and

hence G(u) and G′(u) ≡ d
du
G(u) are continuous in Ω̄ × [0, T ), so that the first equation in (0.1)

yields

∫

Ω

G(u)

∣

∣

∣

∣

t

0

=

∫ t

0

∫

Ω

G′(u)∇ · (φ(u)∇u − ψ(u)∇v)
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= −
∫ t

0

∫

Ω

G′′(u)∇u · (φ(u)∇u − ψ(u)∇v)

= −
∫ t

0

∫

Ω

φ2(u)

ψ(u)
|∇u|2 +

∫ t

0

∫

Ω

φ(u)∇u · ∇v.

Since

φ2(u)

ψ(u)
|∇u|2 = ψ(u)

∣

∣

∣

φ(u)

ψ(u)
∇u−∇v

∣

∣

∣

2

− ψ(u)|∇v|2 + 2φ(u)∇u · ∇v,

we obtain
∫

Ω

G(u)

∣

∣

∣

∣

t

0

= −
∫ t

0

∫

Ω

ψ(u)
∣

∣

∣

φ(u)

ψ(u)
∇u−∇v

∣

∣

∣
+

∫ t

0

∫

Ω

ψ(u)|∇v|2 −
∫ t

0

∫

Ω

φ(u)∇u · ∇v. (1.2)

Here, the last term can be rewritten using the first equation in (0.1) according to

−
∫ t

0

∫

Ω

φ(u)∇u · ∇v =

∫ t

0

∫

Ω

∇ · (φ(u)∇u) · v

=

∫ t

0

∫

Ω

utv +

∫ t

0

∫

Ω

∇ · (ψ(u)∇v) · v

=

∫ t

0

∫

Ω

utv −
∫ t

0

∫

Ω

ψ(u)|∇v|2, (1.3)

where
∫ t

0

∫

Ω

utv =

∫

Ω

uv

∣

∣

∣

∣

t

0

−
∫ t

0

∫

Ω

uvt

=

∫

Ω

uv

∣

∣

∣

∣

t

0

−
∫ t

0

∫

Ω

(vt − ∆v + v) · vt

=

∫

Ω

uv

∣

∣

∣

∣

t

0

−
∫ t

0

∫

Ω

v2
t −

1

2

∫

Ω

|∇v|2
∣

∣

∣

∣

t

0

− 1

2

∫

Ω

v2

∣

∣

∣

∣

t

0

. (1.4)

Combining (1.2) and (1.3) with (1.4), after an obvious reorganization we end up with (1.1). ////

In what follows, an important role is played by the properties of solutions (u∞, v∞) of














−∆v∞ + v∞ = u∞, x ∈ Ω,

φ(u∞)∇u∞ = ψ(u∞)∇v∞, x ∈ Ω,

∂v∞
∂ν

= 0, x ∈ ∂Ω.

(1.5)

Evidently, such function pairs are stationary solutions of (0.1) in the classical sense.
The identity (1.1) will allow us to establish a connection between the set Em of such equilibria that
have mass m > 0,

Em :=
{

(u∞, v∞) ∈ (C2(Ω̄))2
∣

∣

∣
(u∞, v∞) solves (1.5) and

∫

Ω

u∞ = m
}

, (1.6)
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and the ω-limit set of bounded solutions of (0.1) given by

ω(u, v) :=
{

(ū∞, v̄∞) ∈ (C2(Ω̄))2
∣

∣

∣
∃tk → ∞ such that as k → ∞,

(u(·, tk), v(·, tk)) → (ū∞, v̄∞) in (C2(Ω̄))2
}

. (1.7)

Lemma 1.2 Suppose (u, v) is a global bounded solution of (0.1) with u0 > 0 in Ω̄ and
∫

Ω u0 = m.
Then ω(u, v) ∩ Em 6= ∅.
Proof. Since u is bounded, scalar parabolic regularity theory applied to the second, the first,

the second and again the first equation in (0.1) ([LSU]) implies boundedness of v in C1+β, 1+β2 (Ω̄×
[1,∞)), then of u in Cβ,

β
2 (Ω̄ × [1,∞)), then of v in C2+β,1+ β

2 (Ω̄ × [1,∞)) and finally of u

in C2+β,1+ β
2 (Ω̄ × [1,∞)) for some β > 0. Moreover, the boundedness of (u, v) entails that

F (u(·, t), v(·, t)) is bounded from below for all times, so that Lemma 1.1 guarantees

∫ ∞

0

∫

Ω

v2
t +

∫ ∞

0

ψ(u)
∣

∣

∣

φ(u)

ψ(u)
∇u −∇v

∣

∣

∣

2

<∞.

Using this together with the Arzelà-Ascoli theorem, we can extract a sequence of times tk → ∞
such that

vt(·, tk) → 0 in L2(Ω) and (1.8)

ψ(u(·, tk))
∣

∣

∣

φ(u(·, tk))
ψ(u(·, tk))

∇u(·, tk) −∇v(·, tk)
∣

∣

∣

2

→ 0 a.e. in Ω (1.9)

as well as

u(·, tk) → u∞ in C2(Ω̄) and (1.10)

v(·, tk) → v∞ in C2(Ω̄) (1.11)

hold with some nonnegative u∞ and v∞ belonging to C2(Ω̄).
Clearly, from (1.11) we know that ∂v∞

∂ν
= 0 on ∂Ω, whereas (1.8), (1.10) and (1.11) imply upon

letting t = tk → ∞ in vt = ∆v − v + u that 0 = ∆v∞ − v∞ + u∞ in Ω. The mass requirement
in the definition of Em is an immediate consequence of the obvious mass conservation property
∫

Ω u(x, t)dx ≡
∫

Ω u0.
In order to prove the second identity in (1.5), we first note that the nonnegativity of u∞ implies
that ∇u∞ ≡ 0 holds in the set {u∞ = 0} of zeros of u∞. Thus, φ(u∞)∇u∞ = ψ(u∞)∇v∞ = 0 in
{u∞ = 0}, because ψ(0) = 0. For fixed x ∈ {u∞ > 0}, however, we have lim infk→∞ ψ(u(x, tk)) >
0, whence from (1.9) we infer that

φ(u(·, tk))
ψ(u(·, tk))

∇u(·, tk) −∇v(·, tk) → 0 a.e. in {u∞ > 0}

and therefore

φ(u∞)∇u∞ = ψ(u∞)∇v∞ a.e. in {u∞ > 0}.

Since both sides of this equation are continuous in Ω̄, this proves that φ(u∞)∇u∞ ≡ ψ(u∞)∇v∞
also holds in the whole set {u∞ > 0}, as desired. ////
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Remark. It can be shown that actually each u∞ ∈ Em must be positive throughout Ω̄. In fact,
suppose that some component C of {u∞ > 0} does not coincide with Ω̄. Then there exist x0 ∈ ∂C
and a sequence of points xj ∈ C such that xj → x0. Writing g(s) :=

∫ s

s0

φ(σ)
ψ(σ)dσ for s > 0, we

know from (1.5) that ∇(g(u∞) − v∞) ≡ 0 and hence g(u∞) − v∞ ≡ Γ in C with some Γ ∈ R.
Since φ(0) > 0 = ψ(0) and ψ ∈ C1([0,∞)), it is clear that g(0) = −∞, so that taking j → ∞ in
g(u∞(xj))−v∞(xj) = Γ yields a contradiction. Accordingly, C = Ω̄, which means that u∞ > 0 in Ω̄.

2 Lower bounds for steady-state energies

The goal of this section is to assert a lower bound for the values of F (u, v) for all possible members
(u, v) of Em. According to slightly different technical approaches, we distinguish between the cases
n = 2 and n ≥ 3.
As a first step, let us make a simple but useful observation that allows us to rewrite the energy
F (u, v) of a solution (u, v) of (1.5) without the ‘mixed’ term

∫

Ω uv.

Lemma 2.1 If (u, v) is a solution of (1.5) and s0 > 0 then

F (u, v) = −1

2

∫

Ω

|∇v|2 − 1

2

∫

Ω

v2 +

∫

Ω

Gs0(u). (2.1)

Proof. We multiply the first equation in (1.5) by v to obtain
∫

Ω |∇v|2+
∫

Ω v
2 =

∫

Ω uv. Inserting
this into the definition of F immediately results in (2.1). ////

The following preliminary estimate for radial steady states will be a common ingredient for both
cases n = 2 and n ≥ 3. It is inspired by the classical proof of Pohozaev’s identity.

Lemma 2.2 Let Ω = BR(0), s0 > 0 and

H(s) :=

∫ s

s0

σφ(σ)

ψ(σ)
dσ for s > 0. (2.2)

Then for all nonnegative and nonincreasing ζ ∈ C∞([0, R]) satisfying ζ′(0) = 0 and ζ(R) = 0, the
inequality

n− 2

2

∫

Ω

ζ(|x|)|∇v|2 − 1

2

∫

Ω

|x|ζ′(|x|)|∇v|2

≤
∫

Ω

|x|ζ(|x|) · (v + s0) · |∇v| + n

∫

{u>s0}

ζ(|x|)H(u) (2.3)

is valid for each radially symmetric solution (u, v) of (1.5).

Proof. We multiply ∆v = v − u by ζ(|x|)(x · ∇v) and integrate over Ω to see that

∫

Ω

ζ(|x|)(x · ∇v)∆v =

∫

Ω

ζ(|x|)v(x · ∇v) −
∫

Ω

ζ(|x|)u(x · ∇v). (2.4)
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Since ζ(R) = 0, two integrations by parts on the left yield
∫

Ω

ζ(|x|)(x · ∇v)∆v = −
∫

Ω

ζ(|x|)|∇v|2

−
∫

Ω

ζ′(|x|)
|x| (x · ∇v)2

−1

2

∫

Ω

ζ(|x|)(x · ∇|∇v|2)

and

−1

2

∫

Ω

ζ(|x|)(x · ∇|∇v|2) =
n

2

∫

Ω

ζ(|x|)|∇v|2 +
1

2

∫

Ω

|x|ζ′(|x|)|∇v|2.

Thereupon, (2.4) turns into the identity

n− 2

2

∫

Ω

ζ(|x|)|∇v|2 −
∫

Ω

ζ′(|x|)
|x| (x · ∇v)2 +

1

2

∫

Ω

|x|ζ′(|x|)|∇v|2

=

∫

Ω

ζ(|x|)v(x · ∇v) −
∫

Ω

ζ(|x|)u(x · ∇v).

We now use the radial symmetry of v which guarantees that (x · ∇v)2 = |x|2|∇v|2, so that

n− 2

2

∫

Ω

ζ(|x|)|∇v|2 − 1

2

∫

Ω

|x|ζ′(|x|)|∇v|2 =

∫

Ω

ζ(|x|)v(x · ∇v) −
∫

Ω

ζ(|x|)u(x · ∇v). (2.5)

In order to find an upper bound for the second term on the right, we recall the definition of H and
split the integral in question according to

−
∫

Ω

ζ(|x|)u(x · ∇v) = −
∫

{u≤s0}

ζ(|x|)u(x · ∇v) −
∫

{u>s0}

ζ(|x|)(x · ∇H(u)). (2.6)

Here, integrating by parts we obtain

−
∫

{u>s0}

ζ(|x|)(x · ∇H(u)) = n

∫

{u>s0}

ζ(|x|)H(u) +

∫

{u>s0}

|x|ζ′(|x|)H(u)

≤ n

∫

{u>s0}

ζ(|x|)H(u), (2.7)

because H(x) ≡ 0 on ∂{u > s0} ∩ Ω, ζ(R) = 0 and ζ′ ≤ 0. Using the obvious estimates

−
∫

{u≤s0}

ζ(|x|)u(x · ∇v) ≤
∫

Ω

|x|ζ(|x|)s0 |∇v|

and
∫

Ω

ζ(|x|)v(x · ∇v) ≤
∫

Ω

|x|ζ(|x|)v|∇v|,

we thus infer from (2.5)-(2.7) that (2.3) holds. ////
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2.1 The case n = 2

We now concentrate on the two-dimensional case first. In this, the first term on the left of (2.3)
vanishes, so that taking advantage from this estimate means using the second term on its left
appropriately. This is the main technical goal in the proof of the following statement.

Lemma 2.3 Assume that Ω = BR(0) ⊂ R
2 for some R > 0. If

∫ s

s0

σφ(σ)

ψ(σ)
dσ ≤ K

s

ln s
for all s ≥ s0 (2.8)

holds with some K > 0 and s0 > 1, then for all m > 0 there exists C = C(R, n,K, s0) > 0 such
that

F (u, v) ≥ −C (2.9)

is valid for all radial solutions (u, v) of (1.5).

Proof. For η ∈ (0, 1), we let

ζ(r) := ln
R2 + η

r2 + η
, r ∈ [0, R].

Then ζ is smooth and nonnegative in [0, R] with ζ(R) = 0 and ζ′(r) = − 2r
r2+η , so that ζ′ ≤ 0 on

[0, R] and ζ′(0) = 0. Thus, from (2.3) we obtain, again abbreviating H(s) =
∫ s

s0

σφ(σ)
ψ(σ) dσ and using

Young’s inequality,

∫

Ω

|x|2
|x|2 + η

· |∇v|2 ≤
∫

Ω

|x| ln
( R2 + η

|x|2 + η

)

· (v + s0) · |∇v| + 2

∫

{u>s0}

ln
( R2 + η

|x|2 + η

)

·H(u)

≤ 1

2

∫

Ω

|x|2
|x|2 + η

· |∇v|2 +

∫

Ω

(|x|2 + η) · ln2
( R2 + η

|x|2 + η

)

· v2

+s20

∫

Ω

(|x|2 + η) · ln2
( R2 + η

|x|2 + η

)

+2

∫

{u>s0}

ln
( R2 + η

|x|2 + η

)

·H(u).

Since it can easily be checked that (r2 + η) · ln2 R2+η
r2+η ≤ 4(R2 + η)e−2 for all r ∈ [0, R], we thus find

1

2

∫

Ω

|x|2
|x|2 + η

· |∇v|2 ≤ 4(R2 + 1)e−2

∫

Ω

v2 + 4(R2 + 1)e−2s20|Ω|

+2

∫

{u>s0}

ln
( R2 + η

|x|2 + η

)

·H(u). (2.10)

Now in Young’s inequality in the form

ab ≤ 1

δe
eδa +

1

δ
b ln b,

9



valid for all positive a, b and δ, we pick any δ ∈ (0, 1) and thus estimate

2

∫

{u>s0}

ln
( R2 + η

|x|2 + η

)

H(u) ≤ 2

δe

∫

Ω

( R2 + η

|x|2 + η

)δ

+
2

δ

∫

{u>s0}

H(u) lnH(u)

≤ 2(R2 + 1)δ

δe

∫

Ω

|x|−2δ +
2

δ

∫

{u>s0}

H(u) lnH(u)

for all η ∈ (0, 1), where the first integral on the right is finite since δ < 1. According to (2.8), we
have

H(s) lnH(s) ≤ K
s

ln s
· ln Ks

ln s
≤ K

s

ln s

(

ln s+ ln
K

ln s0

)

≤ K(1 + c1)s for all s > s0

with c1 := max{0, ln K
ln s0

ln s0
}. Since

∫

{u>s0}
u ≤

∫

Ω
u = m, (2.10) therefore implies

1

2

∫

Ω

|x|2
|x|2 + η

|∇v|2 ≤ c2

∫

Ω

v2 + c3,

where

c2 = 4(R2 + 1)e−2 and c3 = 4(R2 + 1)e−2s20|Ω| + 2(R2 + 1)δ

δe
·
∫

Ω

|x|−2δ +
2K(1 + c1)m

δ
.

In the limit η → 0, Fatou’s lemma thus yields

1

2

∫

Ω

|∇v|2 ≤ c2

∫

Ω

v2 + c3.

Hence, by (2.1) and the nonnegativity of G,

F (u, v) ≥ 1

2

∫

Ω

|∇v|2 −
∫

Ω

|∇v|2 − 1

2

∫

Ω

v2

≥ 1

2

∫

Ω

|∇v|2 −
(

2c2 +
1

2

)

∫

Ω

v2 − 2c3.

Finally, from Ehrling’s lemma we gain some c4 > 0 such that

(

2c2 +
1

2

)

∫

Ω

w2 ≤ 1

2

∫

Ω

|∇w|2 + c4

(

∫

Ω

w
)2

for all w ∈ W 1,2(Ω)

and thereby conclude, recalling
∫

Ω v = m, that

F (u, v) ≥ −c4m2 − 2c3,

and finish the proof. ////
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2.2 The case n ≥ 3

In the three-dimensional situation, the first term on the left of (2.3) will be essentially responsible
for the fact that a corresponding lower bound for all steady-state energies can be proved under a
less restrictive growth restriction on ψ

φ
.

Lemma 2.4 Let n ≥ 3 and Ω = BR(0) with some R > 0. Suppose that
∫ s

s0

σφ(σ)

ψ(σ)
dσ ≤ n− 2 − ε

n

∫ s

s0

∫ σ

s0

φ(τ)

ψ(τ)
dτdσ +Ks for all s ≥ s0 (2.11)

holds for some s0 > 1 and ε ∈ (0, 1). Then for each m > 0 one can find C = C(R,m, n, ε, s0) > 0
with the property that

F (u, v) ≥ −C (2.12)

is satisfied for all radial solutions (u, v) of (1.5).

Proof. We fix a nondecreasing ζ0 ∈ C∞(R) such that ζ0 ≡ 0 in (−∞, 1) and ζ0 ≡ 1 on (2,∞),
and let ζ(r) ≡ ζk(r) := ζ0(k(R− r)) for r ∈ [0, R] and k ∈ N large satisfying k > 2

R
. Then Lemma

2.2 ensures that with H(s) =
∫ s

s0

σφ(σ)
ψ(σ) dσ, we have

n− 2

2

∫

Ω

ζk(|x|)|∇v|2 ≤
∫

Ω

|x|ζk(|x|) · (v + s0) · |∇v| + n

∫

{u>s0}

ζk(|x|)H(u)

≤
∫

Ω

|x|(v + s0)|∇v| + n

∫

{u>s0}

H(u)

for all such k, whence by Fatou’s lemma we gain

n− 2

2

∫

Ω

|∇v|2 ≤
∫

Ω

|x|(v + s0)|∇v| + n

∫

{u>s0}

H(u).

With ε taken from (2.11), we use Young’s inequality to estimate
∫

Ω

|x|(v + s0)|∇v| ≤ ε

4

∫

Ω

|∇v|2 +
1

ε

∫

Ω

|x|2(v + s0)
2

≤ ε

4

∫

Ω

|∇v|2 +
2R2

ε

∫

Ω

v2 +
2s20R

2|Ω|
ε

,

so that

n− 2 − ε

2

∫

Ω

|∇v|2 ≤ −ε
4

∫

Ω

|∇v|2 +
2R2

ε

∫

Ω

v2 +
2s20R

2|Ω|
ε

+ n

∫

{u>s0}

H(u).

Rearranging this, from (2.1) we infer that

F (u, v) ≥ ε

4(n− 2 − ε)

∫

Ω

|∇v|2 − c1

∫

Ω

v2 − c2 −
n

n− 2 − ε

∫

{u>s0}

H(u) +

∫

Ω

G(u)

with

c1 =
2R2

ε(n− 2 − ε)
+

1

2
and c2 =

2s20R
2|Ω|

ε(n− 2 − ε)
.

11



Now by Ehrling’s lemma, we have

c1

∫

Ω

v2 ≤ ε

4(n− 2 − ε)

∫

Ω

|∇v|2 + c3

(

∫

Ω

v
)2

for some c3 > 0. In view of the mass identity
∫

Ω v = m, we thus find

F (u, v) ≥ −c3m2 − c2 −
n

n− 2 − ε

∫

{u>s0}

H(u) +

∫

Ω

G(u).

Since G(s) ≥ 0 for s ≤ s0 and

G(s) − n

n− 2 − ε
H(s) ≥ − nK

n− 2 − ε
s for all s ≥ s0

by (2.11), we conclude that

F (u, v) ≥ −c3m2 − c2 −
nKm

n− 2 − ε
,

because
∫

Ω
u = m. ////

3 Initial data with large negative energy

We next assert that smooth initial data with arbitrarily large negative energies exist. The con-
struction partly parallels that in [HWi, Lemma 5.2]. However, the growth assumptions on ψ

φ
are

weaker here, especially in the case n = 2; moreover, we provide initial data in C∞ here.

Lemma 3.1 Let n ≥ 2, R > 0 and Ω = BR(0), and suppose that there exist k > 0 and s0 > 1
such that

∫ s

s0

∫ σ

s0

φ(τ)

ψ(τ)
dτdσ ≤

{

ks(ln s)θ if n = 2 with some θ ∈ (0, 1),

ks2−α if n ≥ 3 with some α > 2
n
,

(3.1)

holds for all s ≥ s0. Then for each m > 0 and C > 0 one can find (u0, v0) ∈ (C∞(Ω̄))2 satisfying
∫

Ω u0 = m and
F (u0, v0) < −C. (3.2)

Proof. First, in the case n ≥ 3 we evidently may assume that (3.1) is valid with some α > 2
n

satisfying α < 1. We then pick positive numbers β, γ and δ such that

β > n, γ ∈ ((1 − α)n, n− 2) and δ >
n

2
, (3.3)

which is possible because α > 2
n
. For small η > 0, we define the smooth functions uη and vη by

uη(x) := aη · ηβ−n · (|x|2 + η2)−
β
2 , and

vη(x) := ηδ−γ · (|x|2 + η2)−
δ
2

12



for x ∈ Ω̄, where

aη :=
ηn−βm

∫

Ω
(|x|2 + η2)−

β
2 dx

.

Since upon the substitution r = ηs we see that

ηλ−N
∫ R

0

rN−1(r2 + η2)−
λ
2 dr → A(N,λ) :=

∫ ∞

0

sN−1(s2 + 1)−
λ
2 ds as η → 0 (3.4)

whenever N > 0 and λ > N , it can easily be checked that aη → a0 := m
ωn·A(n,β) as η → 0, where ωn

denotes the (n− 1)-dimensional surface area of the unit sphere in R
n. In particular, aη is bounded

from above and below by a positive constant, uniformly with respect to η ∈ (0, 1).
The choice of aη immediately implies that

∫

Ω
uη = m. Moreover, by straightforward computations

using (3.4) we obtain

η−n+2γ+2

∫

Ω

|∇vη|2 = ωnδ
2η−n+2δ+2

∫ R

0

rn+1(r2 + η2)−δ−2dr

→ ωnδ
2 ·A(n+ 2, 2δ + 4) as η → 0

and

η−n+2γ

∫

Ω

v2
η = ωnη

−n+2δ

∫ R

0

rn−1(r2 + η2)−δdr

→ ωn ·A(n, 2δ) as η → 0.

Similarly,

ηγ
∫

Ω

uηvη = ωnaη · η−n+β+δ

∫ R

0

rn−1(r2 + η2)−
β+δ
2 dr

→ ωna0 · A(n, β + δ) as η → 0

and

η(1−α)n

∫

Ω

G(uη) ≤ ωnka
2−α
η · η(1−α)n+(2−α)(β−n)

∫ R

0

rn−1(r2 + η2)−
(2−α)β

2 dr

→ ωnka
2−α
0 ·A(n, (2 − α)β) as η → 0.

Since γ > 0 and

γ > −n+ 2γ + 2, γ > −n+ 2γ and γ > (1 − α)n

according to (3.3), it follows that F (uη, vη) → −∞ as η → 0, whence (3.2) is true for all sufficiently
small η > 0.

In the case n = 2 we define uη as above, but let

vη(x) :=
(

ln
R

η

)−κ

· ln R2

|x|2 + η2

13



for η ∈ (0, R2 ) this time, where κ ∈ (0, 1) is small enough fulfilling κ < 1 − θ. Then, again
substituting r = ηs, we find

∫

Ω

|∇vη|2 = 8π ·
(

ln
R

η

)−2κ

·
∫ R

0

r3(r2 + η2)−2dr

= 8π ·
(

ln
R

η

)−2κ

·
∫ R

η

0

s3(s2 + 1)−2ds

≤ 8π ·
(

ln
R

η

)−2κ

·
(

1 + ln
R

η

)

,

whereas clearly

∫

Ω

v2
η = 2π ·

(

ln
R

η

)−2κ

·
∫ R

0

r
(

ln
R2

r2 + η2

)2

dr

≤ 8π · (ln 2)−2κ ·
∫ R

0

r
(

ln
R

r

)2

dr

for all η ∈ (0, R2 ). Moreover,

(

ln
R

η

)κ−1

·
∫

Ω

uηvη = 2πaη · ηβ−2 ·
(

ln
R

η

)−1

·
∫ R

0

r(r2 + η2)−
β
2 · ln R2

r2 + η2
dr

= 2πaη ·
(

ln
R

η

)−1

·
∫ R

η

0

s(s2 + 1)−
β
2 ·

(

2 ln
R

η
− ln(s2 + 1)

)

ds

= 4πaη ·
∫ R

η

0

s(s2 + 1)−
β
2 ds

−2πaη ·
(

ln
R

η

)−1

·
∫ R

η

0

s(s2 + 1)−
β
2 ln(s2 + 1)ds

→ 4πa0 ·
∫ ∞

0

s(s2 + 1)−
β
2 ds as η → 0

and, by (3.1),

∫

Ω

G(uη) ≤ 2πkaη · ηβ−2 ·
∫ R

0

r(r2 + η2)−
β
2 ·

(

ln
(

aηη
β−2(r2 + η2)−

β
2

)

)θ

dr

= 2πkaη ·
∫ R

η

0

s(s2 + 1)−
β
2 ·

(

ln
(

aηη
−2(s2 + 1)−

β
2

)

)θ

ds

≤ 2πkaη ·
(

2 ln

√
aη

η

)θ

·
∫ ∞

0

s(s2 + 1)−
β
2 ds.

It therefore follows that

F (uη, vη) ≤ −c2
(

ln
R

η

)1−κ

+ c3

(

1 +
(

ln
R

η

)1−2κ

+
(

ln

√
aη

η

)θ
)
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for all η ∈ (0, R2 ) with positive constants c2 and c3. Since

1 − κ > 0, 1 − κ > 1 − 2κ and 1 − κ > θ

due to our choice of κ, we again infer that F (uη, vη) → −∞ as η → 0 and conclude as before. ////

4 Blow-up

It is not the purpose of the present paper to develop a refined existence and uniqueness theory
under optimal regularity assumptions on φ, ψ, ∂Ω and the initial data. Since we intend to use
(u0, v0) as provided by Lemma 3.1 as initial data, the only element from existence theory that we
need here is the fact that if Ω is a ball in R

n then for any positive (u0, v0) ∈ (C∞(Ω̄))2, there exists
a maximal existence time Tmax ≤ ∞ such that (0.1) possesses at least one classical solution (u, v)
in Ω × (0, Tmax), and that the alternative

either Tmax = ∞ or lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞ (4.1)

holds. The existence of at least one such solution can be demonstrated by means of either
Schauder’s fixed point theorem or general theory of quasilinear parabolic systems ([A]; cf. also
[C1], [C2] or [Wr] for corresponding procedures in closely related problems); the existence of a
maximal existence time along with its property (4.1) can be deduced from standard extendibility
arguments.

Theorem 4.1 Let n ≥ 2 and Ω ⊂ R
n be a ball, and suppose that there exist s0 > 1, ε ∈ (0, 1),

K > 0 and k > 0 such that

∫ s

s0

σφ(σ)

ψ(σ)
dσ ≤

{

K s
ln s if n = 2,

n−2−ε
n

∫ s

s0

∫ σ

s0

φ(τ)
ψ(τ)dτdσ +Ks if n ≥ 3

(4.2)

as well as
∫ s

s0

∫ σ

s0

φ(τ)

ψ(τ)
dτdσ ≤

{

ks(ln s)θ with some θ ∈ (0, 1) if n = 2,

ks2−α with some α > 2
n

if n ≥ 3
(4.3)

hold for all s ≥ s0. Then for each m > 0 there exist initial data (u0, v0) ∈ (C∞(Ω̄))2 with
∫

Ω
u0 = m such that the corresponding solution (u, v) blows up in either finite or infinite time.

Proof. Let m > 0 be given. From Lemma 1.2 we know that each global bounded solu-
tion (u, v) of (0.1) gives rise to a steady-state solution (u∞, v∞) of (1.5) satisfying F (u∞, v∞) ≤
F (u(·, 0), v(·, 0)). By Lemma 2.4 and Lemma 2.3, this entails that for some C > 0 we have
F (u(·, 0), v(·, 0)) ≥ −C whenever (u, v) is global and bounded. But Lemma 3.1 says that there
exist smooth initial data (u0, v0) with

∫

Ω u0 = m but F (u0, v0) < −C. In view of (4.1), the corre-
sponding solution of (u, v) evidently must blow up. ////

Let us finally specify some conditions on ψ
φ

that are sufficient to guarantee (4.2) and (4.3) but
easier to verify.
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Corollary 4.2 In each ball Ω ⊂ R
n, n ≥ 2, for any m > 0 there exist unbounded solutions of

(0.1) having mass
∫

Ω u(x, t) ≡ m, provided that one of the following hypotheses is satisfied.

i) n = 2 and there exist c0 > 0 and s0 > 1 such that

ψ(s)

φ(s)
≥ c0s ln s for all s ≥ s0 (4.4)

holds.

ii) n ≥ 3 and for some c0 > 0 and s0 > 1, the lower estimate

ψ(s)

φ(s)
≥ c0s for all s ≥ s0 (4.5)

is valid.

iii) n ≥ 3 and for some c0 > 0 and α > 2
n

we have

s−α
ψ(s)

φ(s)
→ c0 as s→ ∞. (4.6)

iv) n ≥ 3 and

lim inf
s→∞

s(ψ
φ
)′(s)

(ψ
φ
)(s)

>
2

n
. (4.7)

Proof. i) We may assume that s0 ≥ e2. From (4.4) we obtain
∫ s

s0

σφ(σ)
ψ(σ) dσ ≤ 1

c0

∫ s

s0

dσ
lnσ , and

since

d

ds

(

∫ s

s0

dσ

lnσ
− 2s

ln s

)

=
2 − ln s

(ln s)2
≤ 0 for all s ≥ e2,

(4.2) follows with K := 2
c0

upon integrating this.

In order to show that (4.3) actually holds for all θ ∈ (0, 1), we observe that because of s0 ≥ e2, we
have

d2

ds2

(

s(ln s)θ
)

=
θ(ln s)θ

s ln s
·
(

1 − 1 − θ

ln s

)

≥ θ(ln s)θ

s

(

1 − 1 − θ

2

)

≥ θ · 2θ
s ln s

· 1 + θ

2
for all s ≥ s0.

Integrating this twice, we easily derive (4.3) upon the choice k := 21−θ

θ(1+θ)c0
.

ii) As, by (4.5),

∫ s

s0

σφ(σ)

ψ(σ)
dσ ≤ 1

c0
(s− s0) ≤

1

c0
s for all s ≥ s0,
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and since the first term on the right of (4.2) is nonnegative, we may let K := 1
c0

and see that (4.2)
is satisfied, whereas (4.3) is trivial here.

iii) In view of ii) we only need to consider the case when α < 1, in which we fix κ ∈ (1,
1− 2

n

1−α ) and
let c1 > 0 be such that c1 < c0 < κc1. Then (4.6) guarantees that for some s0 > 1, we have

c1s
α ≤ ψ(s)

φ(s)
≤ κc1s

α for all s ≥ s0. (4.8)

We now pick ε ∈ (0, 1) such that ε < n− 2 − n(1 − α)κ and use (4.8) to estimate

∫ s

s0

∫ σ

s0

φ(τ)

ψ(τ)
dτdσ − n

n− 2 − ε

∫ s

s0

σφ(σ)

ψ(σ)
dσ

≥ 1

κc1(1 − α)(2 − α)
(s2−α − s2−α0 ) − s1−α0

κc1(1 − α)
(s− s0) −

n

(n− 2 − ε)c1(2 − α)
(s2−α − s2−α0 )

≥ 1

c1(2 − α)

( 1

κ(1 − α)
− n

n− 2 − ε

)

s2−α − s1−α0

κc1(1 − α)
s− s2−α0

κc1(1 − α)(2 − α)

for all s ≥ s0, where according to the choice of ε, the first term on the right is nonnegative. Hence

it follows that (4.2) is true if we set K :=
(3−α)(n−2−ε)s1−α0

κc1(1−α)(2−α)n , for instance, whereas (4.3) is obvious.

iv) We note that (4.7) implies the existence of ε ∈ (0, 1) and s0 > 1 such that

d

ds

sφ(s)

ψ(s)
≤ n− 2 − ε

n
· φ(s)

ψ(s)
for all s ≥ s0. (4.9)

From this, we immediately derive (4.2) with K := 0 upon two integrations. Rewriting (4.9) in the
equivalent form

d
ds

ψ(s)
φ(s)

ψ(s)
φ(s)

≥ 2 + ε

ns
for all s ≥ s0,

again by integration we also obtain (4.3) with α := 2+ε
n

∈ ( 2
n
, 1) and k :=

sα0 φ(s0)
(1−α)(2−α)ψ(s0) . ////
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