
Boundedness in the higher-dimensional parabolic-parabolic

chemotaxis system with logistic source

Michael Winkler

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Abstract

We consider nonnegative solutions of the Neumann boundary value problem for the chemotaxis
system

(

ut = ∆u − χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,

in a smooth bounded convex domain Ω ⊂ R
n, n ≥ 1, where τ > 0, χ ∈ R and f is a smooth

function generalizing the logistic source

f(s) = κs − µs
2
, s ≥ 0, with κ > 0, µ > 0.

It is shown that if µ is sufficiently large then for all sufficiently smooth initial data the prob-
lem possesses a unique global-in-time classical solution that is bounded in Ω× (0,∞). Known
results, asserting boundedness under the additional restriction n ≤ 2, are thereby extended to
arbitrary space dimensions.
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Introduction

We consider nonnegative solutions of the Neumann initial-boundary value problem for two coupled
parabolic equations,



























ut = ∆u − χ∇ ·
(

u∇v
)

+ f(u), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(0.1)

in a smooth bounded domain Ω ⊂ R
n, where τ > 0, χ ∈ R and f : R → R is smooth and satisfies

f(0) ≥ 0 as well as
f(s) ≤ a − µs2 for all s ≥ 0 (0.2)
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with some a ≥ 0 and µ > 0.
The PDE system in (0.1) is used in mathematical biology to model the mechanism of chemotaxis,
that is, the movement of cells in response to the presence of a chemical signal substance which is
inhomogeneously distributed in space. Here, u represents the cell density and v the concentration
of the chemical ([KS]). When χ > 0, cells exhibit a tendency to move towards higher signal concen-
trations (chemoattraction), while conversely the choice χ < 0 leads to a model for chemorepulsion,
where cells prefer to move away from the chemical in question. A concise derivation of the PDE
framework in (0.1) is presented in [HP], where the reader is provided with a wide survey on various
chemotaxis models and their respective biological background, as well as with a rich selection of
references.
As compared to the so-called minimal model obtained when f ≡ 0, (0.1) comprises a possible
proliferation of cells, a growth restriction of logistic type being included by the assumption (0.2);
accordingly, one might expect that (0.2) prevents an unlimited increase of the cell density. This
conjecture is supported by numerical experiments (see e.g. [PH] or [S]), which in addition indicate
that (0.1), though apparently simple as a two-component parabolic system, possesses quite a large
variety of dynamical properties, especially in respect of the spontaneous emergence of patterns.
Further evidence, both numerically and analytically, on the self-organizing features of (0.1) can be
found in [MT], where shock-type movements of interfaces are detected when f(u) = u(1−u)(u−a)
(0 < a < 1

2 ) and when cell kinetics take place much faster than cell movement (see also [HHS]).
Unfortunately, the literature seems to provide only partial results concerning the question whether
or not solutions of (0.1) indeed remain bounded, or if under appropriate circumstances blow-up
may occur. It is known, at least, that all solutions of (0.1) are bounded when n = 1 (which can
be seen as in [OY1]) or n = 2 ([OTYM], see also [OY2]). In these cases, the problem even could
be made accessible to strong tools of dynamical systems theory so as to shed light on its global
dynamics, and in the one- and two-dimensional framework there are results on finite dimensional
attractors available not only for (0.1) but also for a number of variants with more general cross-
diffusion terms in the PDE for the cell density ([OY1], [OTYM], [AOTYM]).

However, results addressing the case n ≥ 3 so far only cover simplified versions of (0.1). One of
the most common among such simplifications concerns the choice τ = 0 that reflects and takes to
a limit the physically reasonable model assumption that chemicals diffuse much faster than cells
move ([JL]). In the accordingly obtained initial-boundary value problem for the parabolic-elliptic
analogue of (0.1),

{

ut = ∆u − χ∇ ·
(

u∇v
)

+ f(u), x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,
(0.3)

solutions are global and bounded whenever µ > 0 satisfies µ > n−2
n

χ, while for any µ > 0 one
can at least construct globally existing weak solutions. For χ > 0 this is precisely stated in [TW],
but the proofs there can easily be carried over to the case χ ≤ 0 (cf. also [Wi1] for less restrictive
assumptions on f).
In another simplified variant of (0.1) the second PDE contains no production term, and the out-
come of [K] states that then a global classical solution exists if ‖v0‖L∞(Ω) is small enough.
Finally, a further possibility of reducing technical difficulties in the proof of boundedness of solu-
tions consists of incorporating so-called vloume-filling effects in the diffusive and the cross-diffusive
part of the model, thus taking into account that cell movement is inhibited when cells are densely
packed ([PH]). The resulting variant of (0.1) is known to have global bounded solutions, and the

2



associated dynamical system could be proved to possess a global attractor ([Wr]).

It is the purpose of the present paper to clarify the issue of boundedness for solutions of (0.1)
without any restriction on the space dimension. Our main result is the following.

Theorem 0.1 Suppose Ω ⊂ R
n, n ≥ 1, is a convex bounded domain with smooth boundary, τ > 0

and χ ∈ R. Then for all a > 0 there exists µ0 > 0 with the following property: If f ∈ W
1,∞
loc (R)

satisfies f(0) ≥ 0 and (0.2) holds with some µ ≥ µ0, then for any nonnegative u0 and v0 fulfilling
the inclusions u0 ∈ C0(Ω̄) and v0 ∈ W 1,θ(Ω) for some θ > n, (0.1) possesses a uniquely determined
global solution (u, v) for which both u and v are bounded in Ω × (0,∞).

Let us once again point out that when n ≤ 2 there is no novelty in this, but in the case n ≥ 3 we
can exclude unbounded solutions whenever µ in (0.2) is large enough, which is consistent with the
results for (0.3) mentioned above. We have to leave open the question whether this is optimal in
the sense that also in higher space dimensions boundedness can be asserted for arbitrarily small
µ > 0. That this should be true at least for negative χ is suggested by the fact that in that case it
is known that in the borderline case f ≡ 0 at least global weak solutions always exist ([CLM-R]).

Along with the method by which it is obtained, Theorem 0.1 may serve as a starting point for
further investigation addressing dynamical features of (0.1), in particular the existence of global
attractors. Let us therefore briefly outline the main idea of our proof which can be obtained by a
rather simple observation. Formally differentiating the second equation in (0.1) we obtain

τ

2

d

dt
|∇v|2 = ∇v · ∇∆v − |∇v|2 + ∇u · ∇v.

Focussing on the most interesting case χ > 0, we can express the last term using the first equation

in (0.1) and rewrite ∇v · ∇∆v = ∆
(

1
2 |∇v|2

)

− |D2v|2 to arrive at the identity

d

dt

(τ

2
|∇v|2 +

1

χ
u
)

= ∆
(1

2
|∇v|2 +

1

χ
u
)

− |D2v|2 − |∇v|2 − u∆v +
1

χ
f(u).

Since |∆v|2 ≤ n|D2v|2, by Young’s inequality we obtain −u∆v ≤ |D2v|2 + n
4 u2 and hence, in view

of (0.2),

d

dt

(τ

2
|∇v|2 +

1

χ
u
)

≤ ∆
(1

2
|∇v|2 +

1

χ
u
)

− |∇v|2 −
(µ

χ
−

n

4

)

u2 +
a

χ
.

Here we see that in the special case τ = 1, essentially meaning that both cells and signal diffuse
at the same speed, under the assumption µ > nχ

4 the function z := τ
2 |∇v|2 + 1

χ
u satisfies a scalar

parabolic inequality of the form
zt ≤ ∆z − bz + c (0.4)

with some positive b and c. Now, for instance, the maximum principle becomes applicable to

ensure that z is bounded – at least when Ω is convex, which entails that ∂|∇v|2

∂ν
≤ 0 on ∂Ω. This

immediately yields boundedness of both u and ∇v.
When τ 6= 1 (or χ ≤ 0), this simple procedure fails. However, we note that the maximum principle
was not the only way to derive boundedness from (0.4). One possible alternative would have
been a Moser-type iteration, based on multiplying (0.4) by zm−1, integrating, estimating suitably
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and carefully tracking the appearing constants when m → ∞. Here it turns out that the first
step, namely integrating powers of z, after certain modifications is somewhat stable with respect
to changing τ . More precisely, the core of our approach will consist of deriving a bound for the
quantity

m
∑

k=0

bk ·

∫

Ω

uk|∇v|2m−2k (0.5)

with arbitrarily large m ∈ N and appropriately constructed positive b0, ..., bm. Upon applying
suitable inequalities to this term from above and below, one can easily check that estimating
the sum in (0.5) is equivalent to estimating the norm of z in Lm(Ω), so that in this sense our
procedure indeed is a variant of the method of integrating powers of z. Once this crucial step has
been accomplished (cf. Lemma 2.7), we will know that the term u∇v in the first equation in (0.1)
is uniformly bounded in any space Lp(Ω), 1 < p < ∞, for all times, so that it will be possible to
apply standard regularity arguments to conclude that u and hence v must be bounded.

1 Preliminaries

Let us first briefly recall standard arguments (see [HW], for instance) to assert local well-posedness
of (0.1) in a sense sufficient for our purpose. Moreover, we make sure that a solution can cease to
exist in finite time only when it blows up in a certain norm.

Lemma 1.1 Suppose that τ > 0, χ ∈ R, and that f ∈ W
1,∞
loc (R) satisfies f(0) ≥ 0. Moreover,

assume that u0 ∈ C0(Ω̄) and v0 ∈ W 1,θ(Ω) are nonnegative, where θ > n. Then there exist a
maximal Tmax ∈ (0,∞] and a uniquely determined pair (u, v) of nonnegative functions

u ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)),

v ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)) ∩ L∞
loc([0, Tmax); W 1,θ(Ω))

that solve (0.1) in the classical sense in Ω × (0, Tmax). Moreover,

if Tmax < ∞ then ‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,θ(Ω) → ∞ as t ր Tmax. (1.1)

Proof. i) Existence. We claim that for all R > 0 there exists T = T (R) > 0 such that
if in addition to the above hypotheses we have ‖u0‖L∞(Ω) ≤ R and ‖v0‖W 1,θ(Ω) ≤ R, then (0.1)
is classically solvable in Ω × (0, T ). In view of a standard extension argument, this will imply the
existence of a maximal existence time Tmax satisfying (1.1). To this end, according to well-known
estimates for the Neumann heat semigroup (et∆)t≥0 (see [Wi2, Lemma 1.3], for instance, for a
formulation adequate for our purpose) we first pick K > 0 such that ‖et∆z‖W 1,θ(Ω) ≤ K‖z‖W 1,θ(Ω)

for all z ∈ W 1,θ(Ω). For small T ∈ (0, 1) to be specified below, we introduce the Banach space

X := C0([0, T ]; C0(Ω̄)) × C0([0, T ]; W 1,θ(Ω))

along with its closed subset

S :=
{

(u, v) ∈ X
∣

∣

∣
‖u‖L∞((0,T );L∞(Ω)) ≤ R + 1 and ‖v‖L∞((0,T );W 1,θ(Ω)) ≤ KR + 1

}

.
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For (u, v) ∈ S and t ∈ [0, T ], we let

Φ(u, v)(t) :=

(

Φ1(u, v)(t)

Φ2(u, v)(t)

)

:=

(

et∆u0 − χ
∫ t

0 e(t−s)∆∇ · (u(s)∇v(s))ds +
∫ t

0 e(t−s)∆f(u(s))ds

e
t
τ
(∆−1)v0 + 1

τ

∫ t

0
e(t−s)(∆−1)u(s)ds

)

.

Then

‖Φ1(u, v)(t)‖L∞(Ω) ≤ ‖et∆u0‖L∞(Ω) + |χ|

∫ t

0

‖e(t−s)∆∇ · (u(s)∇v(s))‖L∞(Ω)ds

+

∫ t

0

‖e(t−s)∆f(u(s))‖L∞(Ω)ds, (1.2)

where by the maximum principle

‖et∆u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) ≤ R (1.3)

and
∫ t

0

‖et∆f(u(s))‖L∞(Ω)ds ≤

∫ t

0

‖f(u(s))‖L∞(Ω)ds ≤ ‖f‖L∞((−R−1,R+1)) · T (1.4)

for all t ∈ (0, T ). Moreover, picking any p > nθ
θ−n

and then α ∈ (n
p
, 1

2 − n
2 (1

θ
− 1

p
)), we have pα > n

and therefore the fractional power Aα of the sectorial operator A := −∆ + 1 with Neumann
data in Lp(Ω) satisfies ‖z‖L∞(Ω) ≤ C‖Aαz‖Lp(Ω) as well as ‖Aαeσ∆z‖Lp(Ω) ≤ Cσ−α‖z‖Lp(Ω)

for all z ∈ C∞
0 (Ω) (cf. [H]), where here and below C denotes a generic positive constant. As a

consequence,

|χ|

∫ t

0

‖e(t−s)∆∇ · (u(s)∇v(s))‖L∞(Ω)ds ≤ C

∫ t

0

‖Aαe(t−s)∆∇ · (u(s)∇v(s))‖Lp(Ω)ds

≤ C

∫ t

0

(t − s)−α‖e
t−s
2 ∆∇ · (u(s)∇v(s))‖Lp(Ω)ds

≤ C

∫ t

0

(t − s)−α · (t − s)−
1
2−

n
2 ( 1

θ
− 1

p
)‖u(s)∇v(s)‖Lθ(Ω)ds

≤ CT
1
2−α−n

2 ( 1
θ
− 1

p
) · (R + 1) · (KR + 1) (1.5)

for all t ∈ (0, T ), where we have used that T < 1, that α < 1
2−

n
2 (1

θ
− 1

p
), and that ‖eσ∆∇·z‖Lp(Ω) ≤

Cσ− 1
2−

n
2 ( 1

θ
− 1

p
)‖z‖Lθ(Ω) for σ < 1 and all (Rn-valued) z ∈ C∞

0 (Ω) (cf. [Wi2, Lemma 1.3]).
Similarly,

‖Φ2(u, v)(t)‖W 1,θ(Ω) ≤ e−
t
τ ‖e

t
τ
∆v0‖W 1,θ(Ω) + C

∫ t

0

(t − s)−
1
2 ‖u(s)‖Lθ(Ω)ds

≤ K‖v0‖W 1,θ(Ω) + C

∫ t

0

(t − s)−
1
2 ‖u(s)‖L∞(Ω)ds

≤ KR + CT
1
2 · (R + 1) for all t ∈ (0, T ), (1.6)

so that it follows from (1.2)–(1.6) that if we fix T0 ∈ (0, 1) small enough and T satisfies T ∈ (0, T0)
then Φ maps S into itself.
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Furthermore, using the same ideas, for (u, v) ∈ S and (ū, v̄) ∈ S we estimate

‖Φ1(u, v)(t) − Φ1(ū, v̄)(t)‖L∞(Ω) ≤ C

∫ t

0

‖Aαe(t−s)∆∇ · [u(s)∇v(s) − ū(s)∇v̄(s)]‖Lp(Ω)ds

+

∫ t

0

‖e(t−s)∆(f(u(s)) − f(ū(s)))‖L∞(Ω)ds

≤ C

∫ t

0

(t − s)−α− 1
2−

n
2 ( 1

p
− 1

θ
)‖u(s)∇v(s) − ū(s)∇v̄(s)‖Lθ(Ω)ds

+

∫ t

0

‖f(u(s)) − f(ū(s))‖L∞(Ω)ds

≤ C

∫ t

0

(t − s)−α− 1
2−

n
2 ( 1

p
− 1

θ
)
(

‖u(s)‖L∞(Ω)‖∇v(s) −∇v̄(s)‖Lθ(Ω)

+‖u(s)− ū(s)‖L∞(Ω)‖∇v̄(s)‖Lθ(Ω)

)

ds

+‖f ′‖L∞((−R−1,R+1))

∫ t

0

‖u(s) − ū(s)‖L∞(Ω)ds

≤ CT
1
2−α−n

2 ( 1
p
− 1

θ
)
(

(R + 1) + (KR + 1)
)

· ‖(u, v) − (ū, v̄)‖X

+‖f ′‖L∞((−R−1,R+1)) · T · ‖(u, v) − (ū, v̄)‖X

and

‖Φ2(u, v)(t) − Φ2(ū, v̄)(t)‖W 1,θ(Ω) ≤ C

∫ t

0

(t − s)−
1
2 ‖u(s) − ū(s)‖Lθ(Ω)ds

≤ CT
1
2 · ‖(u, v) − (ū, v̄)‖X

for all t ∈ (0, T ), which shows that if T ∈ (0, T0) is chosen sufficiently small then Φ acts as
a contraction on S. Accordingly, the Banach fixed point theorem asserts the existence of some
(u, v) ∈ S such that Φ(u, v) = (u, v). Once again using standard arguments involving semigroup
estimates, it can easily be checked that in fact (u, v) lies in the asserted regularity class and is a
classical solution of (0.1) in Ω × (0, T ). Since f(0) ≥ 0, the maximum principle moreover ensures
that both u and v are nonnegative.

ii) Uniqueness. Proceeding as in [GZ], given T > 0 and two solutions (u, v) and (ū, v̄) in
Ω× (0, T ), we fix T0 ∈ (0, T ), let w := u− ū and z := v− v̄ and obtain by applying straightforward
testing procedures to (0.1) that

1

2

d

dt

∫

Ω

w2 +

∫

Ω

|∇w|2 = χ

∫

Ω

w∇v · ∇w + χ

∫

Ω

ū∇w · ∇z +

∫

Ω

(f(u) − f(ū))w (1.7)

and
τ

2

d

dt

∫

Ω

|∇z|2 +

∫

Ω

|∆z|2 +

∫

Ω

|∇z|2 = −

∫

Ω

w∆z (1.8)
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for t ∈ (0, T0). By Hölder’s, Young’s and the Gagliardo-Nirenberg inequalities,

χ

∫

Ω

w∇v · ∇w ≤ |χ|
(

∫

Ω

|∇w|2
)

1
2

·
(

∫

Ω

|∇v|θ
)

1
θ

·
(

∫

Ω

w
2θ

θ−2

)
θ−2
2θ

≤ C
(

∫

Ω

|∇w|2
)

1
2+ n

2θ

·
(

∫

Ω

|∇v|θ
)

1
θ

·
(

∫

Ω

w2
)

θ−n
2θ

≤
1

2

∫

Ω

|∇w|2 + C

∫

Ω

w2,

where we have used that
∫

Ω w = 0 by simple integration of (0.1), that ‖∇v(t)‖Lθ(Ω) ≤ C for
t ∈ (0, T0), and that θ > n ≥ 2. Furthermore,

χ

∫

Ω

ū∇w · ∇z ≤
1

2

∫

Ω

|∇w|2 + C

∫

Ω

|∇z|2

and
∫

Ω

(f(u) − f(ū))w ≤ C

∫

Ω

w2

in view of the boundedness of u and ū in Ω× (0, T0) and the local Lipschitz continuity of f . Since
finally

−

∫

Ω

w∆z ≤

∫

Ω

|∆z|2 +
1

4

∫

Ω

w2,

we conclude upon adding (1.7) and (1.8) that

d

dt

(

∫

Ω

w2 + τ

∫

Ω

|∇z|2
)

≤ C ·
(

∫

Ω

w2 + τ

∫

Ω

|∇z|2
)

for all t ∈ (0, T0),

which implies w ≡ 0 and z ≡ 0 in Ω × (0, T0) and hence (u, v) ≡ (ū, v̄) in Ω × (0, T ), because
T0 ∈ (0, T ) was arbitrary. ////

2 A priori estimates

In this section we shall develop our main ingredient for the proof of Theorem 0.1. As a first step
towards this, let us derive the following, yet rather weak, a priori bounds for solutions of (0.1).

Lemma 2.1 Let f satisfy (0.2). Then there exists A > 0 such that the solution (u, v) of (0.1)
satisfies

∫

Ω

u(x, t)dx ≤ A and

∫

Ω

|∇v(x, t)|2dx ≤ A for all t ∈ (0, Tmax). (2.1)
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Proof. Integrating the first equation in (0.1) using (0.2) gives

d

dt

∫

Ω

u =

∫

Ω

f(u) ≤ a|Ω| − µ

∫

Ω

u2 for all t ∈ (0, Tmax). (2.2)

Since u2 ≥ 2u − 1, this yields

d

dt

∫

Ω

u ≤ (µ + a)|Ω| − 2µ

∫

Ω

u for all t ∈ (0, Tmax). (2.3)

Next, multiplying the second equation in (0.1) by −∆v and integrating, we see that

τ

2

d

dt

∫

Ω

|∇v|2 +

∫

Ω

|∆v|2 +

∫

Ω

|∇v|2 = −

∫

Ω

u∆v ≤
1

4

∫

Ω

u2 +

∫

Ω

|∆v|2

for all t ∈ (0, Tmax) by Young’s inequality. Hence, in view of (2.2) and (2.3) we obtain

d

dt

(τ

2

∫

Ω

|∇v|2 +
1

2µ

∫

Ω

u
)

+

∫

Ω

|∇v|2 ≤
1

4

∫

Ω

u2 +
1

4µ

(

a|Ω| − µ

∫

Ω

u2
)

+
1

4µ

d

dt

∫

Ω

u

=
a|Ω|

4µ
+

1

4µ

(

(µ + a)|Ω| − 2µ

∫

Ω

u
)

for all t ∈ (0, Tmax). Thus, y(t) := τ
2

∫

Ω |∇v|2 + 1
2µ

∫

Ω u satisfies the ODI y′ ≤ −cy+C in (0, Tmax)

with c := min{ 2
τ
, µ} > 0 and C := (µ+2a)|Ω|

4µ
. Now an integration shows that y(t) ≤ max{y(0), C

c
}

for all t ∈ (0, Tmax) and thereby completes the proof. ////

Still having in mind the sum in (0.5), we prepare a proof of its boundedness by following estimate
for its summands. The following lemma is the only place in this paper in which we immediately
require that Ω be convex.

Lemma 2.2 Suppose that Ω is convex, τ > 0 and χ ∈ R, and that f satisfies (0.2). Then for all
m ∈ N and k ∈ {0, ..., m}, the solution (u, v) of (0.1) satisfies the inequality

d

dt

∫

Ω

uk|∇v|2m−2k +k(k − 1)

∫

Ω

uk−2|∇u|2|∇v|2m−2k

+
2(m− k)

τ

∫

Ω

uk|∇v|2m−2k−2|D2v|2

+
(m − k)(m − k − 1)

τ

∫

Ω

uk|∇v|2m−2k−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+kµ

∫

Ω

uk+1|∇v|2m−2k

≤
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2∇u · ∇v

+k(k − 1)χ

∫

Ω

uk−1|∇v|2m−2k∇u · ∇v

+k(m − k)χ

∫

Ω

uk|∇v|2m−2k−2∇v · ∇|∇v|2
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−k(m − k)
(

1 +
1

τ

)

∫

Ω

uk−1|∇v|2m−2k−2∇u · ∇|∇v|2

+ak

∫

Ω

uk−1|∇v|2m−2k for all t ∈ (0, Tmax). (2.4)

Proof. By direct differentiation we obtain, using the fact that (u, v) is a smooth solution of
(0.1) in Ω̄ × (0, Tmax),

d

dt

∫

Ω

uk|∇v|2m−2k = k

∫

Ω

uk−1|∇v|2m−2k ·
[

∆u − χ∇ · (u∇v) + f(u)
]

+
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2∇v · ∇(∆v − v + u)

=: I1 + I2. (2.5)

Here, I1 gives a nonzero contribution only in the case k ≥ 1, in which we integrate by parts to
obtain

k

∫

Ω

uk−1|∇v|2m−2k∆u = −k(k − 1)

∫

Ω

uk−2|∇u|2|∇v|2m−2k

−k(m − k)

∫

Ω

uk−1|∇v|2m−2k−2∇u · ∇|∇v|2 (2.6)

and

kχ

∫

Ω

uk−1|∇v|2m−2k∇ · (u∇v) = k(k − 1)χ

∫

Ω

uk−1|∇v|2m−2k∇u · ∇v

+k(m − k)χ

∫

Ω

uk|∇v|2m−2k−2∇v · ∇|∇v|2, (2.7)

where we have used that both ∂u
∂ν

and ∂v
∂ν

vanish on ∂Ω. Moreover, by (0.2) we have

k

∫

Ω

uk−1|∇v|2m−2kf(u) ≤ ka

∫

Ω

uk−1|∇v|2m−2k − kµ

∫

Ω

uk+1|∇v|2m−2k. (2.8)

In treating I2, we make use of the pointwise identity

∇v · ∇∆v =
1

2
∆(|∇v|2) − |D2v|2

to obtain

I2 =
m − k

τ

∫

Ω

uk|∇v|2m−2k−2∆|∇v|2 −
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2|D2v|2

−
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k +
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2∇u · ∇v

=: I21 + I22 + I23 + I24, (2.9)

Clearly,
I23 ≤ 0, (2.10)

9



whereas I22 and I24 exactly coincide with the third term on the left and the first term on the right
of (2.4). As to I21, another integration by parts reveals that

I21 = −
k(m − k)

τ

∫

Ω

uk−1|∇v|2m−2k−2∇u · ∇|∇v|2

−
(m − k)(m − k − 1)

τ

∫

Ω

uk|∇v|2m−2k−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+
m− k

τ

∫

∂Ω

uk|∇v|2m−2k−2 ∂|∇v|2

∂ν
. (2.11)

Since the convexity of ∂Ω along with the relation ∂v
∂ν

= 0 on ∂Ω implies that ∂|∇v|2

∂ν
≤ 0 on ∂Ω

(cf. [DalPGG]), collecting (2.5)–(2.11) yields (2.4) after obvious rearrangements. ////

Our plan is to estimate the right-hand side of (2.4) appropriately. This will be done separately for
the cases k = 0, k = 1, k ∈ {2, ..., m − 1} and k = m in the next four lemmata. To begin with, let
us start with the case when u does not appear on the left of (2.4).

Lemma 2.3 Suppose that Ω is convex, τ > 0 and χ ∈ R, and that f satisfies (0.2). Then for all
m ∈ N with m ≥ 2 there exist positive constants c0 and C0 such that

d

dt

∫

Ω

|∇v|2m + c0

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

≤ C0

∫

Ω

u2|∇v|2m−2 for all t ∈ (0, Tmax). (2.12)

Proof. When applied to k = 0, (2.4) takes the form

d

dt

∫

Ω

|∇v|2m +
2m

τ

∫

Ω

|∇v|2m−2|D2v|2 +
m(m − 1)

τ

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

≤
2m

τ

∫

Ω

|∇v|2m−2∇u · ∇v. (2.13)

Here an integration by parts yields

2m

τ

∫

Ω

|∇v|2m−2∇u · ∇v = −
2m(m− 1)

τ

∫

Ω

u|∇v|2m−4∇v · ∇|∇v|2 −
2m

τ

∫

Ω

u|∇v|2m−2∆v,(2.14)

because ∂u
∂ν

= 0 on ∂Ω. By Young’s inequality,

−
2m(m− 1)

τ

∫

Ω

u|∇v|2m−4∇v · ∇|∇v|2 ≤
m(m − 1)

2τ

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+
2m(m− 1)

τ

∫

Ω

u2|∇v|2m−2 (2.15)

and

−
2m

τ

∫

Ω

u|∇v|2m−2∆v ≤
2m

nτ

∫

Ω

|∇v|2m−2|∆v|2 +
mn

2τ

∫

Ω

u2|∇v|2m−2. (2.16)
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Recalling that the Cauchy-Schwarz inequality entails the pointwise estimate

|∆v|2 =
∣

∣

∣

n
∑

i=1

∂2v

∂x2
i

∣

∣

∣

2

≤ n ·

n
∑

i=1

(∂2v

∂x2
i

)2

≤ n|D2v|2,

we may combine (2.13)–(2.16) to arrive at

d

dt

∫

Ω

|∇v|2m +
m(m − 1)

2τ

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

≤
(2m(m − 1)

τ
+

mn

2τ

)

·

∫

Ω

u2|∇v|2m−2,

which coincides with (2.12) upon evident choices of c0 and C0. ////

In order to absorb the term on the right of (2.12), our sum in (0.5) will contain a suitable multiple
of the term in (2.4) obtained for k = 1. This is made possible by the next lemma.

Lemma 2.4 Suppose that Ω is convex, τ > 0 and χ ∈ R, and that f satisfies (0.2). Then for all
m ∈ N with m ≥ 2 there exists C1 > 0 such that

d

dt

∫

Ω

u|∇v|2m−2 +
(

µ − C1

)

·

∫

Ω

u2|∇v|2m−2 ≤

∫

Ω

|∇u|2|∇v|2m−4 + C1

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+C1

∫

Ω

|∇v|2m−2 for all t ∈ (0, Tmax). (2.17)

Proof. By (2.4) with k = 1,

d

dt

∫

Ω

u|∇v|2m−2 +
2(m− 1)

τ

∫

Ω

u|∇v|2m−4|D2v|2 +
(m − 1)(m − 2)

τ

∫

Ω

u|∇v|2m−6
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+µ

∫

Ω

u2|∇v|2m−2

≤
2(m − 1)

τ

∫

Ω

u|∇v|2m−4∇u · ∇v + (m − 1)χ

∫

Ω

u|∇v|2m−4∇v · ∇|∇v|2

−(m − 1)
(

1 +
1

τ

)

∫

Ω

|∇v|2m−4∇u · ∇|∇v|2 + a

∫

Ω

|∇v|2m−2. (2.18)

Here, the first three terms on the right can be estimated by Young’s inequality according to

2(m − 1)

τ

∫

Ω

u|∇v|2m−4∇u · ∇v ≤
1

2

∫

Ω

|∇u|2|∇v|2m−4 +
2(m − 1)2

τ2

∫

Ω

u2|∇v|2m−2

and

(m − 1)χ

∫

Ω

u|∇v|2m−4∇v · ∇|∇v|2 ≤

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+
(m − 1)2χ2

4

∫

Ω

u2|∇v|2m−2

as well as

−(m − 1)
(

1 +
1

τ

)

∫

Ω

|∇v|2m−4∇u · ∇|∇v|2 ≤
1

2

∫

Ω

|∇u|2|∇v|2m−4

+
(m − 1)2(1 + 1

τ
)2

2

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

.
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Dropping the second and the third term on the left of (2.18), we thus easily find that (2.17) holds

if we let C1 := max{ (m−1)2χ2

4 + 2(m−1)2

τ2 ,
(m−1)2(1+ 1

τ
)2

2 + 1, a}. ////

Again, the right-hand side in (2.17) contains ill-signed terms that have to be coped with. Treating
the third will be postponed until the proof of Corollary 2.8, while the second already appeared
with a favorable sign in (2.12). The first will be estimated using the following lemma.

Lemma 2.5 Suppose that Ω is convex, τ > 0 and χ ∈ R, and that f satisfies (0.2). Then for all
m ∈ N with m ≥ 3 and each k ∈ {2, ..., m − 1} one can find ck > 0 and Ck > 0 such that the
solution (u, v) of (0.1) fulfils the estimate

d

dt

∫

Ω

uk|∇v|2m−2k +ck

∫

Ω

uk−2|∇u|2|∇v|2m−2k +
(

kµ − Ck

)

·

∫

Ω

uk+1|∇v|2m−2k

≤

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 + Ck

∫

Ω

u2|∇v|2m−2

+Ck

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+Ck

∫

Ω

|∇v|2m−2 + Ck for all t ∈ (0, Tmax). (2.19)

Proof. For k ∈ {2, ..., m−1}, estimating the terms on the right of (2.4) turns out to be slightly
more involved than it was in Lemma 2.3 and Lemma 2.4. Unlike the situation in those lemmata,
however, the second term on the left of (2.4) fortunately now appears with the positive factor
k(k − 1) and thus may be used to absorb some of the terms from the right-hand side.
First, by Young’s inequality, the last term in (2.4) satisfies

I5 := ak

∫

Ω

uk−1|∇v|2m−2k

≤ ak ·
k − 1

k + 1

∫

Ω

uk+1|∇v|2m−2k + ak ·
2

k + 1

∫

Ω

|∇v|2m−2k

≤ ak ·
k − 1

k + 1

∫

Ω

uk+1|∇v|2m−2k

+ak ·
2

k + 1
·
m − k

m − 1

∫

Ω

|∇v|2m−2 + ak ·
2

k + 1
·
k − 1

k + 1
|Ω|, (2.20)

whereas also by straightforward interpolation,

I1 :=
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2∇u · ∇v ≤
1

2

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2

+
2(m − k)2

τ2

∫

Ω

uk+1|∇v|2m−2k. (2.21)

Similarly,

I2 := k(k − 1)χ

∫

Ω

uk−1|∇v|2m−2k∇u · ∇v ≤
k(k − 1)

2

∫

Ω

uk−2|∇u|2|∇v|2m−2k

+
k(k − 1)χ2

2

∫

Ω

uk|∇v|2m−2k−2 (2.22)
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and

I3 := k(m − k)χ

∫

Ω

uk|∇v|2m−2k−2∇v · ∇|∇v|2 ≤
m − k

4τ

∫

Ω

uk|∇v|2m−2k−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+k2(m − k)χ2τ

∫

Ω

uk|∇v|2m−2k+2.(2.23)

In order to estimate the last terms in (2.22) and (2.23), we note that once again by Young’s
inequality,

∫

Ω

uk|∇v|2m−2k+2 =

∫

Ω

(

u2|∇v|2m−2
)

1
k−1

·
(

uk+1|∇v|2m−2k
)

k−2
k−1

≤
1

k − 1

∫

Ω

u2|∇v|2m−2 +
k − 2

k − 1

∫

Ω

uk+1|∇v|2m−2k,

so that in view of (2.20)–(2.23), (2.4) yields

d

dt

∫

Ω

uk|∇v|2m−2k +
k(k − 1)

2

∫

Ω

uk−2|∇u|2|∇v|2m−2k +
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2|D2v|2

+(kµ − C)

∫

Ω

uk+1|∇v|2m−2k

≤
1

2

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 +
m − k

4τ

∫

Ω

uk|∇v|2m−2k−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+C
(

∫

Ω

u2|∇v|2m−2 +

∫

Ω

|∇v|2m−2 + 1
)

+ I4 (2.24)

with some C > 0 and

I4 := −k(m − k)
(

1 +
1

τ

)

∫

Ω

uk−1|∇v|2m−2k−2∇u · ∇|∇v|2.

Observe that in (2.24) we have dropped the nonnegative fourth term on the left of (2.4), which
might have been useful in coping with the second term on the right of (2.24). However, since we
want to present a uniform treatment for all k up to the value k = m − 1, we shall rather rely on
the remaining term involving |D2v|2 here (cf.(2.25) below).
As to I4, upon another two-step interpolation we obtain

I4 ≤
1

2

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 +
k2(m − k)2(1 + 1

τ
)2

2

∫

Ω

uk−1|∇v|2m−2k−2
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

and then estimate
∫

Ω

uk−1|∇v|2m−2k−2
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

=

∫

Ω

(

εuk|∇v|2m−2k−4
)

k−1
k

·
(

ε−(k−1)|∇v|2m−4
)

1
k

·
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

≤
(k − 1)ε

k

∫

Ω

uk|∇v|2m−2k−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+
1

kεk−1

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2
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for arbitrary ε > 0. Choosing ε appropriately small, we can hence achieve that

I1 ≤
1

2

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 +
m − k

4τ

∫

Ω

uk|∇v|2m−2k−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+Ĉ

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

holds with some Ĉ > 0. Since
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

=
∣

∣2D2v · ∇v
∣

∣

2
≤ 4|D2v|2 · |∇v|2 (2.25)

by the Cauchy-Schwarz inequality, (2.24) thereupon turns into the relation

d

dt

∫

Ω

uk|∇v|2m−2k +
k(k − 1)

2

∫

Ω

uk−2|∇u|2|∇v|2m−2k +
2(m − k)

τ

∫

Ω

uk|∇v|2m−2k−2|D2v|2

+(kµ − C)

∫

Ω

uk+1|∇v|2m−2k

≤

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 + 2 ·
m − k

4τ
· 4

∫

Ω

uk|∇v|2m−2k−2|D2v|2

+C
(

∫

Ω

u2|∇v|2m−2 +

∫

Ω

|∇v|2m−2 + 1
)

+ Ĉ

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

,

which immediately gives (2.19) if we let ck := k(k−1)
2 and Ck := max{C, Ĉ}. ////

Finally, in order to digest the first term appearing on the right of (2.19) when k = m− 1, we shall
employ (2.4) for k = m with the following result.

Lemma 2.6 Let Ω be convex, τ > 0, χ ∈ R, and assume (0.2). Then for all m ∈ N with m ≥ 2
the inequality

d

dt

∫

Ω

um +cm

∫

Ω

um−2|∇u|2 + (mµ − Cm)

∫

Ω

um+1

≤ Cm

∫

Ω

u2|∇v|2m−2 + Cm for all t ∈ (0, Tmax) (2.26)

holds for suitable positive constants cm and Cm.

Proof. We let k = m in (2.4) to obtain

d

dt

∫

Ω

um + m(m − 1)

∫

Ω

um−2|∇u|2 + mµ

∫

Ω

um+1 ≤ m(m − 1)χ

∫

Ω

um−1∇u · ∇v

+am

∫

Ω

um−1, (2.27)

where Young’s inequality gives

am

∫

Ω

um−1 ≤ am ·
m − 1

m + 1

∫

Ω

um+1 + am ·
2

m + 1
|Ω| (2.28)
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and

m(m − 1)χ

∫

Ω

um−1∇u · ∇v ≤
m(m − 1)

2

∫

Ω

um−2|∇u|2 +
m(m − 1)χ2

2

∫

Ω

um|∇v|2. (2.29)

Interpolating once more by the same token, we have

∫

Ω

um|∇v|2 =

∫

Ω

u
(m+1)(m−2)

m−1 ·
(

u2|∇v|2m−2
)

1
m−1

≤
m − 2

m − 1

∫

Ω

um+1 +
1

m − 1

∫

Ω

u2|∇v|2m−2.

Combining this with (2.29), (2.28) and (2.27) directly results in (2.26). ////

We now sum up all the inequalities obtained so far, each one provided with an appropriate weight.

Lemma 2.7 Let Ω be convex, τ > 0, χ ∈ R and m ∈ N be such that m ≥ 3. Then there exists
µ0 = µ0(τ, χ, m) > 0 with the property that whenever µ ≥ µ0, one can find positive constants c, C

and b0, ..., bm such that the solution (u, v) of (0.1) satisfies

d

dt

{ m
∑

k=0

bk ·

∫

Ω

uk|∇v|2m−2k

}

+c

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+c

∫

Ω

um−2|∇u|2

≤ C
(

1 +

∫

Ω

|∇v|2m−2
)

for all t ∈ (0, Tmax). (2.30)

Proof. We let c0, c2, ..., cm and C0, C1, ..., Cm denote the constants provided by Lemma 2.3,
Lemma 2.4, Lemma 2.5 and Lemma 2.6. It is then possible to pick a number M > 1 large enough
such that

Mck > 2 for all k ∈ {2, ..., m} (2.31)

and after that ε > 0 small enough fulfilling

m−1
∑

k=1

εMkCk <
c0

2
(2.32)

as well as
m

∑

k=2

εMkCk < 1. (2.33)

We next fix µ0 > 0 large enough satisfying

εM · (µ0 − C1) > C0 + 1 (2.34)

and
kµ0 > Ck for all k ∈ {2, ..., m}. (2.35)
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We now define
b0 := 1 and bk := εMk, k ∈ {1, ..., m}, (2.36)

and claim that then for any choice of µ ≥ µ0, (2.30) holds for sufficiently small c > 0 and suitably
large C > 0.
Indeed, in the sum on the left of (2.30) let us apply Lemma 2.3, Lemma 2.4, Lemma 2.5 and
Lemma 2.6 separately to the terms corresponding to k = 0, k = 1, k ∈ {2, ..., m − 1} and k = m,
respectively. The consequence thus obtained then reads

J :=

{

d

dt

m
∑

k=0

bk ·

∫

Ω

uk|∇v|2m−2k

}

=
d

dt

∫

Ω

|∇v|2m + b1
d

dt

∫

Ω

u|∇v|2m−2

+

m−1
∑

k=2

bk ·
d

dt

∫

Ω

uk|∇v|2m−2k + bm

d

dt

∫

Ω

um

≤ −c0

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+ C0

∫

Ω

u2|∇v|2m−2

+b1 ·

{

− (µ − C1)

∫

Ω

u2|∇v|2m−2 +

∫

Ω

|∇u|2|∇v|2m−4

+C1

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+ C1

∫

Ω

|∇v|2m−2

}

+

m−1
∑

k=2

bk ·

{

− ck

∫

Ω

uk−2|∇u|2|∇v|2m−2k

−(kµ − Ck)

∫

Ω

uk+1|∇v|2m−2k

+

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 + Ck

∫

Ω

u2|∇v|2m−2

+Ck

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+ Ck

∫

Ω

|∇v|2m−2 + Ck

}

+bm ·

{

− cm

∫

Ω

um−2|∇u|2 − (mµ − Cm)

∫

Ω

um+1

+Cm

∫

Ω

u2|∇v|2m−2 + Cm

}

, t ∈ (0, Tmax).

In view of (2.35), we have kµ − Ck ≥ 0 for k ∈ {2, ..., m}, whence after rearranging we obtain

J ≤ −

{

c0 − b1C1 −

m−1
∑

k=2

bkCk

}

·

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

−

{

b1(µ − C1) − C0 −

m−1
∑

k=2

bkCk − bmCm

}

·

∫

Ω

u2|∇v|2m−2

+b1

∫

Ω

|∇u|2|∇v|2m−4
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−

m−1
∑

k=2

bkck

∫

Ω

uk−2|∇u|2|∇v|2m−2k

+
m−1
∑

k=2

bk

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2

−bmcm

∫

Ω

um−2|∇u|2

+

{

b1C1 +

m−1
∑

k=2

bkCk

}

·

∫

Ω

|∇v|2m−2

+

m−1
∑

k=2

bkCk + bmCm. (2.37)

Here, (2.32) and the definition (2.36) of b1, ..., bm assert that

−

{

c0 − b1C1 −

m−1
∑

k=2

bkCk

}

·

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

≤ −
c0

2

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

, (2.38)

whereas (2.33) in conjunction with (2.34) guarantees that

b1(µ − C1) − C0 −

m−1
∑

k=2

bkCk − bmCm > b1(µ − C1) − C0 − 1 > 0, (2.39)

implying nonpositivity of the second term on the right of (2.37). The sum of the third, fourth,
fifth and sixth terms on the right of (2.37) can readily be rewritten according to

J3−6 := b1

∫

Ω

|∇u|2|∇v|2m−4 −

m−1
∑

k=2

bkck

∫

Ω

uk−2|∇u|2|∇v|2m−2k

+

m−1
∑

k=2

bk

∫

Ω

uk−1|∇u|2|∇v|2m−2k−2 − bmcm

∫

Ω

um−2|∇u|2

= −
m

∑

k=2

(bkck − bk−1) ·

∫

Ω

uk−2|∇u|2|∇v|2m−2k. (2.40)

Since (2.36) and the restriction (2.31) on M > 1 entail that

bkck − bk−1 = εMk−1(Mck − 1) > εMk−1 > εM for all k ∈ {2, ..., m},

we thus have

J3−6 ≤ −εM ·

m
∑

k=2

∫

Ω

uk−2|∇u|2|∇v|2m−2k

and hence in particular

J3−6 ≤ −εM

∫

Ω

um−2|∇u|2. (2.41)
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Collecting (2.37)–(2.41) and letting c := min{ c0

2 , εM} and C :=
∑m

k=1 bkCk, we immediately end
up with (2.30). ////

As a comparatively easy consequence we obtain time-independent bounds for u in Lm(Ω) and for
∇v in L2m(Ω) for arbitrarily large m.

Corollary 2.8 Suppose that Ω is convex, τ > 0, χ ∈ R and 3 ≤ m ∈ N, and assume that
µ ≥ µ0(τ, χ, m) with µ0(τ, χ, m) > 0 as given by Lemma 2.7. Then there exists K > 0 such that
the solution (u, v) of (0.1) satisfies

∫

Ω

um(x, t)dx ≤ K and

∫

Ω

|∇v(x, t)|2mdx ≤ K for all t ∈ (0, Tmax). (2.42)

Proof. We first use Young’s inequality with exponents m
k

and m
m−k

to estimate

∫

Ω

uk|∇v|2m−2k ≤ K1

(

∫

Ω

um +

∫

Ω

|∇v|2m
)

, t ∈ (0, Tmax),

for each k ∈ {1, ..., m − 1}, where K1 is a positive constant independent of k and t. Therefore,
with b0, b1, ..., bm as in Lemma 2.7, the function

y(t) :=

m
∑

k=0

bk ·

∫

Ω

uk|∇v|2m−2k, t ∈ [0, Tmax),

satisfies

y(t) ≤ K2

(

∫

Ω

um +

∫

Ω

|∇v|2m
)

, t ∈ (0, Tmax), (2.43)

with some K2 depending on m only. We next invoke the Poincaré inequality in the form

∫

Ω

z2 ≤ Kp

{
∫

Ω

|∇z|2 +
(

∫

Ω

|z|
2
m

)m
}

for all z ∈ W 1,2(Ω), (2.44)

valid with some Kp > 0, and apply this first to z := u
m
2 . Letting A denote the constant provided

by Lemma 2.1, we thereby obtain

∫

Ω

um ≤ Kp

{
∫

Ω

|∇u
m
2 |2 +

(

∫

Ω

u
)m

}

≤
m2Kp

4

∫

Ω

um−2|∇u|2 + AmKp, t ∈ (0, Tmax). (2.45)

Similarly, the choice z := |∇v|m in (2.44) yields

∫

Ω

|∇v|2m ≤ Kp

{
∫

Ω

∣

∣

∣
∇(|∇v|2)

m
2

∣

∣

∣

2

+
(

∫

Ω

|∇v|2
)m

}

≤
m2Kp

4

∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+ AmKp, t ∈ (0, Tmax). (2.46)
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By (2.43), (2.45) and (2.46), Lemma 2.7 states that with c > 0 and C > 0 taken from (2.30),

y′(t) ≤ −c ·

{
∫

Ω

|∇v|2m−4
∣

∣

∣
∇|∇v|2

∣

∣

∣

2

+

∫

Ω

um−2|∇u|2
}

+ C
(

1 +

∫

Ω

|∇v|2m−2
)

≤ −
4c

m2Kp

(

∫

Ω

|∇v|2m +

∫

Ω

um
)

+
8cAm

m2
+ C

(

1 +

∫

Ω

|∇v|2m−2
)

holds for all t ∈ (0, Tmax). Since by Young’s inequality we have

C

∫

Ω

|∇v|2m−2 ≤
2c

m2Kp

∫

Ω

|∇v|2m + K3, t ∈ (0, Tmax),

with some K3 > 0, this shows that

y′(t) ≤ −K4y(t) + K5 for all t ∈ (0, Tmax),

where K4 = 2c
m2KpK2

and K5 = 8cAm

m2 + C + K3 are positive. Integrating the latter ODI, we see

that

y(t) ≤ max
{

y(0),
K5

K4

}

and thereby conclude the proof. ////

3 Proof of the main result

We can now easily prove our main result.
Proof (of Theorem 0.1). In view of Lemma 1.1, we only need to make sure that Tmax = ∞ and
that (u, v) is bounded. To this end, we pick q > n and then infer from Corollary 2.8 the existence
of c1 > 0 such that

‖u(·, t)∇v(·, t)‖Lq(Ω) ≤ c1 for all t ∈ (0, Tmax). (3.1)

Since in view of (0.2),

ut ≤ ∆u − χ∇ · (u∇v) + a in Ω × (0, Tmax),

from the order preserving property of the Neumann heat semigroup (et∆)t≥0 we obtain

u(·, t) ≤ e(t−t0)∆u(·, t0) − χ

∫ t

t0

e(t−s)∆∇ · (u(·, s)∇v(·, s))ds +

∫ t

t0

e(t−s)∆ads (3.2)

for all t ∈ (0, Tmax) and t0 ∈ [0, t). Here, the third term on the right equals a(t − t0), while the
first can be estimated according to

‖e(t−t0)∆u(·, t0)‖L∞(Ω) ≤ c2A(t − t0)
−n

2
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with some c2 > 0, A being the constant from Lemma 2.1. As to the second term, we fix any
p ∈ (q,∞) and apply (3.1) and standard Lp − Lq estimates for (et∆)t≥0 (cf. also [Wi2, Lemma
1.3]) to obtain for suitably large c3 and c4

∥

∥

∥
e(t−s)∆∇ · (u(·, s)∇v(·, s))

∥

∥

∥

L∞(Ω)
≤ c3(t − s)−

n
2p

∥

∥

∥
e

t−s
2 ∆∇ · (u(·, s)∇v(·, s))

∥

∥

∥

Lp(Ω)

≤ c4(t − s)−
n
2p · (t − s)−

1
2−

n
2 ( 1

q
− 1

p
)‖u(·, s)∇v(·, s)‖Lq(Ω)

≤ c4c1(t − s)−
1
2−

n
2q for all s ∈ (t0, t) with s ≥ t − 1.

Since 1
2 + n

2q
< 1, we conclude from (3.2) that if t0 ∈ [0, t] is such that t0 ≥ t − 1 then

‖u(·, t)‖L∞(Ω) ≤ c5

{

(t − t0)
−n

2 + (t − t0)
1
2−

n
2q + (t − t0)

}

for some c5 > 0. Thus, picking t0 := max{0, t − 1} here shows that with some c6 > 0 we have

‖u(·, t)‖L∞(Ω) ≤ c6

(

1 + t−
n
2

)

for all t ∈ (0, Tmax).

Since u is bounded in Ω × (0, Tmax

2 ) by (1.1), this shows that u is bounded in Ω × (0, Tmax). In
view of standard parabolic theory applied to the second equation in (0.1), we also obtain that v

is bounded in L∞((0, Tmax); W 1,θ(Ω)). Along with (1.1), this proves that Tmax = ∞ and that in
fact, (u, v) is bounded in Ω × (0,∞). ////
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