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Abstract

This work is concerned with the fast diffusion equation

ut = ∇ · (um−1∇u) (⋆)

with prescribed positive data on a smoothly bounded domain Ω ⊂ R
n, n ≥ 3, and

positive m < 1 . We consider solutions with boundary data u = a > 0 and initial
data u0(x) ≥ a that are continuous for x 6= 0 ∈ Ω and have a singularity at x = 0.
By skilfully choosing the behavior of u0 near 0 and under the further condition m <
(n−2)/n, we construct global in time solutions u(x, t) that oscillate as t→ ∞ between
divergence to infinity at times t2i → ∞ and convergence to a at times t2i−1 → ∞.
This happens locally uniformly in x.
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Introduction

We consider the Dirichlet problem










ut = ∇ · (um−1∇u), x ∈ Ω, t > 0,

u(x, t) = a, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(0.1)

where Ω ⊂ R
n is a bounded domain. Note that for m = 1 this reduces to studying

the classical heat equation that has a well known theory. Here we consider the exponent
range m < 1 which corresponds to what is called the Fast Diffusion Equation (FDE). Data
and solutions are assumed to be positive, but they are not necessarily finite everywhere.
This problem, which has been widely studied in recent decades, generates an evolution
process with a number of remarkable properties. Our goal here is to investigate one of
such peculiar features which can shortly be described as follows: The presence of a certain
type of singular behaviour of the initial data at just one isolated point may lead to a
solution that undergoes very large oscillations in time whose amplitude can be made to fit
any sequential pattern (at suitable times). To make notation easier we take the isolated
point to be the origin, 0 ∈ Ω.

In order to present our results in more detail, let us recall some known facts of the theory.
First of all, for every 0 < m < 1 the initial value problem for the FDE is known to be
solvable in the sense of weak solutions for integrable data, and it generates a semigroup
in the space in L1(Ω) if for instance zero boundary data are prescribed or the domain is
the whole space, cf. Bénilan’s thesis [Be] or [BC]. But the existence theory can be widely
extended; thus, Herrero and Pierre showed in [HP] that one can take as initial data any
unbounded locally integrable data, which is certainly not possible in the heat equation.
Moreover, we can also take functions that are not locally integrable, e. g., Radon measures,
cf. [P], [DaK]. We may even take nonnegative Borel measures with locally infinite measure,
[CV], though in that case it may happen that the solution will continue to be singular
at some points for positive times. Permanent singularities are important for us in what
follows.

An important exponent comes up in the already mentioned studies, mc := (n− 2)/n, in
dimensions n ≥ 3. Indeed, when m < mc a number of more curious properties happens,
and many of them are described in the monographs [DsK], [V]. One of the peculiar aspects
of the equation in this range of exponents is the lack of strong smoothing effect, by which
we mean that data in L1, or even Lp with small p > 1, do not produce solutions that
are bounded in time since they may exhibit singular points for positive times. In a recent
paper, [VW], we have studied in close detail the long-time effect of having a certain point
singularity in the initial data whenm < 1. Under the assumption that u0 is singular at just
one point, say at x = 0 ∈ Ω, and that it behaves like a power function there, u0(x) ∼ |x|−γ

for small |x|, we have shown that the behaviour in time of the singularity depends on the
value of γ as we explain just below. Let us finally point out that the constant boundary
data u = a > 0 are taken for simplicity so as to concentrate our attention on the effect of
the isolated singularity.
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Problem with singular data. The study of [VW] motivated us to look for the pos-
sibility of finding solutions with an oscillating behaviour in time due to the presence of a
unique isolated singularity of the initial data u0 at one point, say x = 0. We take m in the
range 0 < m < mc that is commonly referred to as the very fast diffusion range. We shall
assume that the positive function u0 ∈ C2(Ω \ {0}) has an isolated singularity at x = 0
by requiring that u0(x) → +∞ as x→ 0.

As to such data, we recall the result [V] and [VW] in more detail. If the singularity has
the shape of an inverse power of |x|,

u0(x) ∼ |x|−γ as x→ 0 (0.2)

with some γ > 0, then the size of γ decides between various types of behavior of the
solution:

• If γ < 2
1−m

, then the singularity is immediately smoothed out by the evolution; more

precisely, the solution is smooth in Ω for all positive times.

• If γ = 2
1−m

, then there exists a positive but finite blow-down time T such that u(·, t)
keeps the singularity at x = 0 for all t < T , but becomes smooth afterwards, for
t > T .

• In the case 2
1−m

< γ < n−2
m

, the phenomenon of infinite-time blow-down occurs:
the singularity persists for all times but disappears in the limit t → ∞ in that any
member of the ω-limit set of u is a bounded function.

• If γ = n−2
m

, then the solution keeps its isolated singularity not only for all finite
times but also in the limit t→ ∞.

• Finally, when γ > n−2
n

, the singularity remains located at the origin for all times,
and in the limit t→ ∞ the solution grows up everywhere in the sense that it tends
to +∞ for all x ∈ Ω.

In fact, it was proved in [VW] that generalizations to the case when

a|x|−γ1 ≤ u0(x) ≤ a|x|−γ2 for all x ∈ Ω \ {0} (0.3)

are possible, provided that both γ1 and γ2 lie both in the one of the subregions indicated
above. For instance, infinite-time blow-down occurs if 2

1−m
< γ1 ≤ γ2 <

n−2
m

, and solutions

grow-up if γ1 >
n−2
m

.

Main results. In the present paper we discuss an effect that may arise when the initial
data yet satisfy (0.3), but with γ1 and γ2 belonging to different ranges of the above
mentioned list, thus allowing u0 to oscillate rather widely in space near x = 0, we shall
see that this may lead to large oscillations in time of the corresponding solution of (0.1).
To be more precise, we can state our main result as follows.
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Theorem 1 Suppose that 0 ∈ Ω, 0 < m < mc and a > 0. Then there exists u0 ∈ C∞(Ω \
{0}) such that u0|∂Ω = a, u0 ≥ a in Ω, and such that (0.1) has a unique global singular
classical solution u with the following property: There exists an increasing sequence of
times tk → ∞ such that

u(·, t2k) → ∞ locally uniformly in Ω \ {0} , (0.4)

and
u(·, t2k−1) → a locally uniformly in Ω \ {0} (0.5)

as k → ∞. Moreover, for any γ1 and γ2 satisfying

2

1−m
< γ1 < n <

n− 2

m
< γ2, (0.6)

these initial data u0 can be chosen in such a way that (0.3) is valid with certain positive
constants a and a.

Some precedents. A number of papers have treated the complicated or chaotic long-
time behaviour of nonlinear parabolic equations, due to special properties of the data or the
equation. Thus, the case of the heat equation and porous medium equation was treated by
Vazquez-Zuazua in [VZ] and subsequently by Cazenave-Dickstein-Weissler, [CDW]. The
equation is posed in the whole space and the origin of the oscillations for large times is
the oscillatory behaviour of the initial data as |x| → ∞. We can even take nonnegative
and bounded solutions and data.

Similarly, some oscillating solutions for diffusion equations with sources were detected in
presence of non-degenerate diffusion and supercritical reaction terms for Ω = R

n, [PY], and
for degenerate diffusion even in bounded domains with smooth initial data, see [W1] and
[W2]. Similar results can be expected for other equations such as first-order conservation
laws or viscous fluid problems. Some results are given in [VZ].

In another direction, in [CV] Carrillo and the first author consider generalized porous
medium equations of the form ut = ∆Φ(u), also posed in the whole space, and show
oscillatory behaviour of the asymptotic ω-limit (for a rescaling of the solution) due to the
oscillating behaviour of the nonlinearity Φ(u) only near u = 0. This solved in the negative
a conjecture about simple attractors (of Barenblatt type) for such equations.

In contrast with these cases, our oscillatory asymptotics depends only on the behaviour
of the initial data near a single singular point. The consequence to derive is that (any
neighbourhood of) the singularity may contain very sophisticated information.
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1 Preliminaries

The standard way to construct solutions of Problem (0.1) proceeds by approximation,
using the solutions uε of the following family of regularized problems:











uεt = ∇ · (um−1
ε ∇uε), x ∈ Ω, t > 0,

uε(x, t) = a, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

(1.1)

where ε ∈ (0, 1/a) and u0ε := min{u0, (1/ε)}. Since infx∈Ω u0(x) > 0, it follows that u0ε is
positive and belongs to W 1,∞(Ω) and satisfies u0ε = a on ∂Ω for such ε, whence standard
parabolic theory ensures that Problem (1.1) possesses a unique global positive classical
solution. It is easy to see by comparison that the uε are ordered and

uε ր up in Ω× [0,∞) (1.2)

holds for some limit function up attaining values in (0,+∞]. This function is commonly
called the proper solution of (0.1). The term was coined in [GV] in the study of blow-up
problems in reaction-diffusion. There is large literature on proper solutions for blow-up
problems, and they were used for this equation in our previous paper [VW].

It will be essential to our approach to know that the solutions we are dealing with depend
continuously on the initial data in an appropriate sense. In order to demonstrate that
this is true for the above proper solutions (cf. Lemma 8 below), let us consider a further
solution property that is shared by up in our case but much easier to verify for a given
function.

Definition 1 Let T ∈ (0,∞]. By a singular-classical solution of (0.1) in Ω× (0, T ) (with
singularity at the origin) we mean a function

u ∈ C0(Ω× [0, T ); (0,+∞]) ∩ C2,1((Ω \ {0})× (0, T ))

that solves ut = ∇ · (um−1∇u) classically in (Ω \ {0})× (0, T ) and that satisfies the initial
and boundary conditions u|∂Ω = a and u|t=0 = u0 as well as the singularity condition
u(0, t) = +∞ for all t ∈ (0, T ) in the sense of limit as x→ 0.
In the case T = ∞, u is said to be a global singular-classical solution of Problem (0.1).

Remark. Our class of singular-classical solutions is a special subclass of the set of extended
continuous solutions introduced in [CV].

We now observe that when (0.3) holds with sufficiently large γ1, then the proper solution
indeed solves (0.1) in the latter sense. This is a consequence of the fact that under this
assumption the singularity at x = 0 persists for all times:

Lemma 2 Suppose that (0.3) holds for some 0 < a ≤ a and 2
1−m

< γ1 ≤ γ2 < ∞.
Then up is a global singular-classical solution of (0.1). Moreover, for all T > 0 there exist
c0(T ) > 0 and c1(T ) > 0 such that

c0(T )|x|−γ1 ≤ up(x, t) ≤ c1(T )|x|−γ2 for all x ∈ Ω \ {0} and t ∈ [0, T ] . (1.3)
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If γ2 <
n−2
m

then c1(T ) can be chosen independent of T .

Proof. See [VW, Lemma 3.3, Lemma 3.9, Corollary 3.10] �

1.1 Uniqueness of singular-classical solutions

As an important step towards the proof of the property of continuous dependence on u0,
we shall make sure in this section that singular-classical solutions are unique and hence
always coincide with up, still provided that (0.3) holds with γ1 >

2
1−m

.

To begin with, we provide a lower bound which would be trivial for bounded classical
solutions.

Lemma 3 Let T ∈ (0,∞] and u be a singular-classical solution of (0.1) in Ω × (0, T ).
Then u ≥ c := infx∈Ω u0(x) in Ω× (0, T ).

Proof. For δ ∈ (0, 1), we let w(x, t) := u(x, t)−c−δt for (x, t) ∈ Ω× [0, T ), and assume
that for some T ′ ∈ (0, T ), w were not nonnegative in Ω× (0, T ′). Then there would exist
x0 ∈ Ω and t0 ∈ [0, T ′] such that w(x0, t0) = min(x,t)∈Ω×[0,T ′]w(x, t) < 0. Since w ≥ 0 at

t = 0, we have t0 > 0 and hence the function w(·, t0) ∈ C0(Ω; (0,∞])∩C2(Ω \ {0}) attains
its negative minimum at x0. From the inequality w ≥ 0 on ∂Ω we know that x0 ∈ Ω, and
since w(0, t0) = +∞ we have x0 6= 0. It follows that ∆um(x0, t0) ≥ 0, because um(·, t0) =
(w(·, t0) + c − δt0)

m attains a minimum at x0. Thus, 0 ≥ wt = ut + δ = 1
m
∆um + δ ≥ δ

at (x0, t0). This contradiction shows that w ≥ 0 and thus yields the claim upon taking
δ ց 0. �

The next lemma shows that a singular-classical solution cannot attain values below the
proper solution up defined through (1.2) and (1.1):

Lemma 4 If u is a singular-classical solution of (0.1) in Ω× (0, T ) for some T ∈ (0,∞]
then u ≥ up in Ω× (0, T ).

Proof. To see that u ≥ uε for all ε ∈ (0, 1
a
), we pick a nonnegative χ ∈ C∞(R) such

that χ ≡ 0 in (−∞, 0), χ ≡ 1 in (1,∞) and 0 ≤ χ′ ≤ 2 on R, and let χδ(s) := χ( s
δ
) for

s ∈ R and δ ∈ (0, 1). Now if (x, t) ∈ Ω × (0, T ) is such that u(x, t) < uε(x, t) then u is
smooth at (x, t) and hence (uε − u)t =

1
m
∆(umε − um) holds at this point. Therefore, the

identity (uε − u)t · χδ(u
m
ε − um) = 1

m
∆(umε − um) · χδ(u

m
ε − um) is valid in Ω× (0, T ), and

integrating this yields

− 1

m

∫ t

0

∫

Ω
|∇(umε − um)|2 · χ′

δ(u
m
ε − um) =

∫ t

0

∫

Ω
(uε − u)t · χδ(u

m
ε − um)

=

∫

Ω
(uε − u) · χδ(u

m
ε − um)

∣

∣

∣

∣

t

0

−
∫ t

0

∫

Ω
(uε − u) · χ′

δ(u
m
ε − um) ·

(

(umε )t − (um)t

)

(1.4)
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for t ∈ (0, T ). Since u ≥ c in Ω × (0, T ) for some c > 0 by Lemma 3, it follows from
parabolic regularity theory that both (um)t and (umε )t are bounded in the set {u < uε}
by a constant C(ε) > 0, so that

∣

∣

∣

∣

(uε − u) · χ′
δ(u

m
ε − um) ·

(

(umε )t − (um)t

)

∣

∣

∣

∣

≤ (uε − u) · 2
δ
· χ{um

ε −um≤δ} · 2C(ε)

≤ 1

m
u1−m
ε · 2 · 2C(ε).

As each uε is bounded, we conclude by the dominated convergence theorem that the last
integral in (1.4) vanishes in the limit δ ց 0. Consequently,

∫

Ω
(uε − u)+(·, t) ≤

∫

Ω
(uε − u)+(·, 0) = 0

for all t ∈ (0, T ), which proves the lemma. �

The next statement on local-in-time boundedness of certain generalized moments of clas-
sical solutions is independent of the size of γ1 and γ2 in (0.3).

Lemma 5 Assume that u0 ∈ C2(Ω \ {0}) satisfies (0.3) with positive constants a, a and
γ2, and that u is a classical solution of (0.1) in (Ω \ {0}) × (0, T ) for some T ∈ (0,∞].
Then for all α > max{2, γ2 − n} and each T ′ ∈ (0, T ) one can pick C(α, T ′) > 0 with the
property that

∫

Ω
|x|αu(x, t)dx ≤ C(α, T ′) for all t ∈ (0, T ′). (1.5)

Proof. We fix any α > max{2, γ2 − n} and let

ϕδ(x) := (|x| − δ)α+, x ∈ Ω,

for δ ∈ (0, 1). Then α > 2 guarantees that ϕδ ∈ C2(Ω) and

∆ϕδ = α(α− 1)(|x| − δ)α−2
+ +

(n− 1)α

|x| · (|x| − δ)α−1
+

≤ α(n+ α− 2)(|x| − δ)α−2
+ . (1.6)

Since u is a classical solution at each x ∈ Ω with |x| > δ, we may multiply ut =
1
m
∆um

by ϕδ and integrate over Ω to obtain from Green’s formula

d

dt

∫

Ω
ϕδ(x)u(x, t)dx =

1

m

∫

Ω
ϕδ∆u

m

=
1

m

∫

Ω
∆ϕδ · um +

1

m

∫

∂Ω
ϕδ ·

∂um

∂ν
− 1

m

∫

∂Ω

∂ϕδ

∂ν
· um (1.7)

for t ∈ (0, T ). Since u = a on ∂Ω, it is obvious that

∣

∣

∣

1

m

∫

∂Ω

∂ϕδ

∂ν
· um

∣

∣

∣
≤ C1(α)
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with C1(α) independent of δ and T . Next, as a classical solution for t ∈ (0, T ), u is
bounded from above and below in any fixed neighborhood U ⊂ Ω of ∂Ω for t ∈ (0, T ′),
which by parabolic regularity theory ([LSU]) entails that ∂um

∂ν
is bounded on ∂Ω× (0, T ′)

and hence

∣

∣

∣

1

m

∫

∂Ω
ϕδ ·

∂um

∂ν

∣

∣

∣
≤ C2(α, T

′)

holds for all t ∈ (0, T ′), where C2(α, T
′) is independent of δ ∈ (0, 1). Altogether, using

(1.6) we find from (1.7) that

d

dt

∫

Ω
(|x| − δ)α+u(x, t)dx ≤ C1(α) + C2(α, T

′) +
α(n+ α− 2)

m

∫

Ω
(|x| − δ)α−2

+ um

for t ∈ (0, T ′). By Young’s inequality, this yields

d

dt

∫

Ω
(|x| − δ)α+u(x, t)dx ≤ C1(α) + C2(α, T

′) + α(n+ α− 2)

∫

Ω
(|x| − δ)α+u

+
(1−m)α(n+ α− 2)

m

∫

Ω
(|x| − δ)

α− 2
1−m

+

for such t. Since α− 2
1−m

> − 2
1−m

> −n due to the fact that m < mc, we conclude upon
integrating this differential inequality and using (0.3) that

∫

Ω
(|x| − δ)α+u(x, t)dx ≤

(

∫

Ω
(|x| − δ)α+u0(x)dx) · eβt

≤ a
(

∫

Ω
(|x| − δ)α+|x|−γ2dx

)

· eβt

for all t ∈ (0, T ′) and some β = β(α, T ′) > 0 independent of δ ∈ (0, 1). Recalling that
α− γ2 > −n, we may let δ ց 0 to arrive at (1.5). �

Building on the latter result, we can proceed to show uniqueness of singular-classical
solutions when γ1 >

2
1−m

.

Theorem 6 Assume that (0.3) is valid with some 0 < a ≤ a and 2
1−m

< γ1 ≤ γ2 < ∞.
Let T ∈ (0,∞] and u be a singular-classical solution of (0.1) in Ω × (0, T ). Then u ≡ up
in Ω× (0, T ).

Proof. We pick α > max{2, γ2 −n} and multiply the equation (u− up)t =
1
m
∆(um −

ump ) by ϕδ(x) = (|x| − δ)α+. After an integration, this results in

d

dt

∫

Ω
ϕδ(x)(u(x, t)− up(x, t))dx =

1

m

∫

Ω
ϕδ∆(um − ump )

=
1

m

∫

Ω
∆ϕδ · (um − ump ) +

1

m

∫

∂Ω
ϕδ ·

∂(um − ump )

∂ν
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for t ∈ (0, T ), because u = up on ∂Ω. Since we already know from Lemma 4 that

u ≥ up in Ω× (0, T ), (1.8)

we necessarily have
∂(um−um

p )

∂ν
≤ 0 on ∂Ω. Recalling (1.6), we thus find

d

dt

∫

Ω
(|x| − δ)α+(u(x, t)− up(x, t))dx ≤ α(n+ α− 2)

m

∫

Ω
(|x| − δ)α−2

+ (um − ump ) (1.9)

for t ∈ (0, T ). Now by the mean value theorem and (1.8),

um − ump ≤ mum−1
p (u− up) in Ω× (0, T ).

Here, Lemma 2 says that (0.3) ensures the lower estimate up ≥ c0(T )|x|−γ1 with some
c0(T ) > 0 and hence

um − ump ≤ mcm−1
0 (T )|x|(1−m)γ1(u− up)

≤ mcm−1
0 (T ) ·R(1−m)γ1−2 · |x|2(u− up) in Ω× (0, T ),

where R > 0 is large such that Ω ⊂ BR(0). Inserted into (1.9), upon another integration
this gives

∫

Ω
(|x| − δ)α+(u(x, t)− up(x, t))dx ≤ C1

∫ t

0

∫

Ω
(|x| − δ)α−2

+ |x|2(u− up) (1.10)

for all t ∈ (0, T ) with C1 := α(n + α − 2)cm−1
0 (T )R(1−m)γ1−2, where we have used that

both u and up coincide with u0 initially. Again using (1.8), we now invoke the monotone
convergence theorem in taking δ ց 0 on both sides of (1.10) to achieve

I(t) :=

∫

Ω
|x|α(u(x, t)− up(x, t))dx ≤ C2

∫ t

0

∫

Ω
|x|α(u− up)

for t ∈ (0, T ). Since the nonnegative function I belongs to L∞((0, T ′)) for all T ′ ∈ (0, T )
by Lemma 5, Gronwall’s lemma asserts that I ≡ 0 in (0, T ), which entails the desired
identity. �

Let us state an immediate consequence of the asserted uniqueness property.

Corollary 7 Let u0 and u0 belong to C2(Ω \ {0} and fulfill u0|∂Ω = u0|pO = a and

a|x|−γ1 ≤ u0(x) ≤ u0(x) ≤ a|x|−γ2 for all x ∈ Ω \ {0} (1.11)

with positive constants a and a and γ2 ≥ γ1 >
2

1−m
. Then (0.1) possesses uniquely deter-

mined global singular-classical solutions u and u with initial data u0 and u0, respectively,
that satisfy

u(x, t) ≤ u(x, t) for all x ∈ Ω \ {0} and t ≥ 0.

Proof. Since u0ε ≤ u0ε for all ε ∈ (0, 1
a
), applying the comparison principle to the

solutions of (1.1) we find that the corresponding proper solutions up and up satisfy up ≤ up.
But Lemma 6 guarantees that under the assumptions (1.11) no singular solutions other
than the proper solution exist. �
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1.2 Continuous dependence on the initial data

We can now derive the following statement on continuous dependence of our solutions on
u0 with respect to convergence in C2

loc(Ω \ {0}).

Lemma 8 Let u0 ∈ C2(Ω \ {0}) satisfy (0.3) with positive a ≥ a > 0 and γ2 ≥ γ1 >
2

1−m
.

Suppose that (u0,l)l∈N ⊂ C2(Ω \ {0}) is a sequence of functions such that for all l ∈ N,
u0,l satisfies (0.3) with the same constants a, a, γ1 and γ2, and that u0,l = a on ∂Ω.
Moreover, assume that u0,l(x) → u0(x) in C

2
loc(Ω\{0}) as l → ∞, and let ul and u denote

the singular-classical solutions of Problem (0.1) with initial data u0,l and u0, respectively.
Then,

i) If u0,l+1 ≤ u0,l in Ω for all l ∈ N, then for all δ > 0 and T > 0 and each compact set
K ⊂ Ω \ {0} there exists l0 = l0(δ, T,K) ∈ N such that

ul(x, t) ≤ u(x, t) + δ for all x ∈ K and t ∈ [0, T ] (1.12)

holds whenever l ≥ l0.

ii) If u0,l+1 ≥ u0,l in Ω for all l ∈ N then for all δ > 0 and T > 0 and any compact
K ⊂ Ω \ {0} one can find l0 = l0(δ, T,K) ∈ N such that for all l ≥ l0,

ul(x, t) ≥ u(x, t)− δ for all x ∈ K and t ∈ [0, T ]. (1.13)

Proof. i) Since a|x|−γ1 ≤ u0(x) ≤ u0,l(x) ≤ a|x|−γ2 in Ω, it follows from Lemma 2
and Corollary 7 that both u and ul exist globally in time and, given T ∈ (0,∞), satisfy

c0(T )|x|−γ1 ≤ u(x, t) ≤ ul(x, t) ≤ c1(T )|x|−γ2 for all x ∈ Ω \ {0} and t ∈ [0, T ] (1.14)

with positive constants c0(T ) and c1(T ). Moreover, ul+1 ≤ ul, hence

ul ց û as l → ∞

holds in (Ω \ {0}) × ([0,∞) with some limit function û fulfilling û ≥ u. Due to (1.14),
parabolic regularity theory ([LSU]) can be applied to assert that (ul)l∈N is relatively com-
pact in both C0

loc((Ω \ {0}) × [0,∞)) and C2,1((Ω \ {0}) × (0,∞)), and that accordingly
the convergence ul → û actually takes place in these spaces. Therefore, it is clear that

ût = ∇ · (ûm−1∇û) in (Ω \ {0})× (0,∞),

that û(x, 0) = u0(x) holds for all x ∈ Ω \ {0}, and that û(x, t) = a is valid for all x ∈ ∂Ω
and t > 0. Moreover, (1.14) guarantees that û(x, t) ≥ c0(T )|x|−γ1 in (Ω \ {0}) × [0, T ],
which shows that û ∈ C0(Ω × [0, T ]; (0,+∞]) for all t > 0 with û(0, t) = +∞ for each
t ≥ 0. Thus, û is a singular-classical solution of (0.1) in the sense of Definition 1 and
hence must coincide with u. Since this implies ul → u in C0(K × [0, T ]) as l → ∞, the
conclusion (1.12) is an immediate consequence.
ii) This part can be proved similarly. �
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1.3 Stabilizing and growing up solutions

For a proof of the following lemma on grow-up of solutions emanating from sufficiently
strongly singular initial data we refer to [VW, Theorem 3.13].

Lemma 9 Assume that u0 satisfies (0.3) with a ≥ a > 0 and γ2 ≥ γ1 >
n−2
m

. Then the
singular-classical solution u of (0.1) satisfies

u(·, t) → ∞ locally uniformly in Ω as t→ ∞

in the sense that for each compact K ⊂ Ω, infx∈K u(x, t) → ∞ as t→ ∞.

We next consider initial data with a singularity that is strong enough to persist, but weak
enough to be smoothed out in the limit t → ∞. As seen in [VW, Lemma 3.9, Theorem
3.11], in the framework of initial data satisfying (0.3) this is possible only when m < mc

and 2
1−m

< γ1 ≤ γ2 <
n−2
m

. In a slightly smaller range of γ1, γ2 – which is yet nonempty
whenever m < mc – we can show that the corresponding solution in fact stabilizes towards
a constant as t→ ∞.

Lemma 10 Let u0 fulfill (0.3) with 0 < a ≤ a and 2
1−m

< γ1 ≤ γ2 < n, and assume that
u0 ≥ a in Ω as well as u0|∂Ω = a. Then there exists a sequence of times tk → ∞ such that
the singular-classical solution u of (0.1) satisfies

u(·, tk) → a locally uniformly in Ω \ {0} (1.15)

as k → ∞.

Proof. Since u is unique by Lemma 6, it is sufficient to prove (1.15) for the proper
solution u = up = limεց0 uε as defined through (1.1). Let us fix α > 1 such that αγ2 < n
and multiply (1.1) by uα−1

ε . Using that u0 ≥ a implies uε ≥ a by comparison, we obtain
that ∂uε

∂ν
≤ 0 on ∂Ω, and thus we find after integrating by parts that

1

α

∫

Ω
uαε (x, t)dx+ (α− 1)

∫ t

0

∫

Ω
um+α−3
ε |∇uε|2 =

1

α

∫

Ω
uα0ε(x)dx+

∫

∂Ω
um+α−2
ε

∂uε
∂ν

≤ 1

α

∫

Ω
uα0 (x)dx

for all t > 0. Since αγ2 < n, the right-hand side is bounded from above, whence we may
take ε ց 0 and then t → ∞ to obtain, using Fatou’s lemma, that

∫∞
0

∫

Ω u
m+α−3|∇u|2 is

finite. Therefore along some sequence tk → ∞ we have u
m+α−1

2 (·, tk) → c in W 1,2(Ω) with
some c > 0. Since Lemma 2 in combination with standard parabolic regularity theory
([LSU]) implies that (u(·, t))t>1 is relatively compact in C0

loc(Ω \ {0}) with u(·, t)|∂Ω ≡ a,

we must have c = a
m+α−1

2 , and hence (1.15) follows. �
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2 Construction of oscillating solutions

Proof of Theorem 1. Let us fix constants γ1 and γ2 satisfying the conditions (0.6),
which is possible since m < mc. Our plan is to construct u0 as the limit of a recursively
defined sequence of data u0,j that lead to solutions uj which along some sequence tj → ∞
approach +∞ if j is odd, and a if j is even.

As a preparation, we choose a nondecreasing cut-off function χ ∈ C∞(R) such that χ ≡ 0 in
(−∞, 12) and χ ≡ 1 in (1,∞). For δ > 0 and x ∈ Ω, we shall abbreviate χδ(x) := χ(|x|/δ).
We then put ψ = 1 − χ and ψδ = 1 − χδ. Then 0 ≤ ψδ ≤ 1 and ψδ = 1 for |x| ≤ δ/2,
ψδ = 0 for |x| ≥ δ. Moreover, we let Ωj := {x ∈ Ω | |x| > 1

j
and dist (x, ∂Ω) > 1

j
} for

j ∈ N.

Step 1: Construction of u0,0 and u0,1.
For convenience, let us set u0,0(x) := a for all x ∈ Ω, and pick any ε1 > 0. Then there
exists δ1 > 0 such that ε1|x|−γ2 ≥ u0,0(x) for all x ∈ Bδ1(0), which implies that the
combination

u0,1(x) := (1− ψδ1(x))u0,0(x) + ε1ψδ1(x)|x|−γ2 , x ∈ Ω \ {0},

belongs to C∞(Ω \ {0}) and satisfies u0,1 ≥ a in Ω as well as u0,1|∂Ω = a.

Step 2: Iterative construction of u0,2i and u0,2i+1 for i ≥ 1.
At each step we perform a modification of the previous initial function in smaller neigh-
borhood of the origin, oscillating between the two desired singular rates, |x|−γ1 and |x|−γ2 ,
depending on even or odd subindex. A delicate choice of radii and constants is needed for
the solutions to behave in an oscillating way in time as expected.

Suppose that for some i ≥ 1, we have already found numbers ε1, ..., ε2i−1, δ1, ..., δ2i−1,
t2 > 2, ..., t2i−1 > 2i − 1 and functions u0,0, ..., u0,2i−1 ∈ C∞(Ω \ {0}) with the properties
u0,0 ≡ a,

{

u0,j(x) = (1− ψδj (x))u0,j−1(x) + εjψδj (x)|x|−γ2

and u0,j−1(x) ≤ εj |x|−γ2 for x ∈ Bδj (x) \ {0}

}

if j ∈ {1, ..., 2i− 1} is odd,

(2.1){

u0,j(x) = (1− ψδj (x))u0,j−1(x) +
1
εj
ψδj (x)|x|−γ1

and u0,j−1(x) ≥ 1
εj
|x|−γ1 ≥ a for x ∈ Bδj (x) \ {0}

}

if j ∈ {2, ..., 2i− 2} is even,

where the constants εj , δj satisfy

0 < εj <
εj−1

2
if j ∈ {2, ..., 2i− 1}, (2.2)

0 < δj <
δj−1√

2
if j ∈ {2, ..., 2i− 1}, (2.3)

Let uj be the singular-classical solutions of (0.1) with uj |t=0 = u0,j . We also assume that
at the selected times t2, ..., t2i−1 they exhibit the following oscillatory behaviour:

uj(x, tj) ≥ j for all x ∈ Ωj if j ∈ {2, ..., 2i− 2} is even,

12



(2.4)
uj(x, tj) ≤ a+

1

j
for all x ∈ Ωj if j ∈ {3, ..., 2i− 1} is odd.

In order to fulfill the induction step we now have to construct u0,2i and u0,2i+1 with
the same properties and prove that the solutions have the same oscillating behaviour at
suitable times t2i, t2i+1. Let us examine the details.

(2A): To construct u0,2i, we observe that due to the first identity in (2.1) we have

u0,2i−1(x) = ε2i−1|x|−γ2 for 0 < |x| < δ2i−1

2
. (2.5)

Since γ2 >
n−2
m

, Lemma 9 implies that u2i−1(·, t) → ∞ locally uniformly in Ω as t → ∞.
Thus, there exists some large t2i > 2i, t2i > t2i−1, such that

u2i−1(x, t2i) ≥ 2i+ 1 for all x ∈ Ω2i. (2.6)

Now again due to (2.5) and the fact that γ1 < γ2, for each ε > 0 we can find δ(ε) > 0 such
that u0,2i−1(x) ≥ 1

ε
|x|−γ1 ≥ a for all x ∈ Bδ(ε)(0) \ {0}. Accordingly, if we let ε(l) := 1

l

for l ∈ N then we can pick a decreasing sequence (δ(l))l∈N ⊂ (0,∞) such that δ(l) ց 0 as
l → ∞ and u0,2i−1(x) ≥ 1

ε(l)
|x|−γ1 ≥ a for all x ∈ Bδ(l)(0) \ {0} – in fact, one may employ

δ(l) := min
{δ2i−1

2
,
(ε2i−1

l

)
1

γ2−γ1 , (ε2i−1a)
− 1

γ1

}

for this purpose. This implies that

u
(l)
0,2i(x) := u0,2i−1(x)− ψδ(l)

(

u0,2i−1(x)−
1

ε(l)
|x|−γ1

)

, x ∈ Ω \ {0},

defines an increasing sequence (u
(l)
0,2i)l∈N ⊂ C∞(Ω \ {0}) of initial data u

(l)
0,2i ≤ u0,2i−1

which evidently converge to u0,2i−1 in C∞
loc(Ω \ {0}) as l → ∞, because for each compact

K ⊂ Ω \ {0} we have u
(l)
0,2i ≡ u0,2i−1 in K for all sufficiently large l. Therefore, we can use

the continuous dependence result of Lemma 8 ii) to make sure that there exists l0 ∈ N

such that if l ≥ l0 then the singular-classical solution u
(l)
2i of (0.1) with u

(l)
2i |t=0 = u

(l)
0,2i

satisfies u
(l)
2i ≥ u2i−1−1 in Ω2i× [0, t2i]. Choosing l appropriately large, we thus infer that

there exist ε2i ∈ (0, ε2i−1

2 ) and δ2i ∈ (0, δ2i−1√
2
) such that

u0,2i−1(x) ≥
1

ε2i
|x|−γ1 ≥ a for all x ∈ Bδ2i(0) \ {0}, (2.7)

and such that the singular-classical solution u2i of (0.1) emanating from

u0,2i(x) := u0,2i−1(x)− ψδ2i(x)
(

u0,2i−1(x)−
1

ε2i
|x|−γ1

)

, x ∈ Ω \ {0}, (2.8)

satisfies u2i(·, t2i) ≥ u2i−1(·, t2i)− 1 in Ω2i; hence, by (2.6),

u2i(x, t2i) ≥ 2i for all x ∈ Ω2i. (2.9)

13



Observe that by (2.8), (2.9) and our choice of ε2i and δ2i, the requirements (2.1)–(2.4) are
now fulfilled also up to j = 2i.

(2B): Pursuing the same basic idea but referring to Lemma 10 and Lemma 8 i) rather
than to Lemma 9 and Lemma 8 ii), we proceed to define u0,2i−1 as follows: According to
(2.8),

u0,2i(x) =
1

ε2i
|x|−γ1 for 0 < |x| < δ2i

2
, (2.10)

so that since γ1 < n, Lemma 10 says that u2i(·, t(k)) → a in L∞
loc(Ω \ {0}) along some

sequence t(k) → ∞, and therefore

u2i(x, t2i−1) ≤ a+
1

2(2i+ 1)
for all x ∈ Ω2i+1 (2.11)

is valid with some large t2i+1 > 2i+ 1.
Arguing as above, writing ε(l) := 1

l
for l ∈ N we find (δ̂(l))l∈N ⊂ (0,∞) satisfying δ̂(l) ց o

as l → ∞ and
u0,2i(x) ≤ ε(l)|x|−γ2 for all x ∈ B

δ̂(l)
(0) \ {0}. (2.12)

Consequently, u
(l)
0,2i+1 ∈ C∞(Ω \ {0}), as defined by

u
(l)
0,2i+1(x) := u0,2i(x) + ψ

δ̂(l)
(x)

(

ε(l)|x|−γ2 − u0,2i(x)
)

, x ∈ Ω \ {0},

decreases to u0,2i as l → ∞, this convergence also taking place in C∞
loc(Ω \ {0}). Invoking

Lemma 8 i), we obtain that if l is large then the singular-classical solution u2i+1 := u
(l)
2i+1

of (0.1) evolving from u0,2i+1 := u
(l)
0,2i+1, that is, from

u0,2i+1(x) := u0,2i(x) + (1− χδ2i+1(x))
(

ε2i+1|x|−γ2 − u0,2i(x)
)

, x ∈ Ω \ {0},

with ε2i+1 := ε(l) ∈ (0, ε2i2 ) and δ2i+1 := δ̂(l) ∈ (0, δ2i√
2
), satisfies u2i+1(·, t2i+1) ≤ u2i(·, t2i+1)+

1
2(2i+1) in Ω2i+1. Hence, (2.11) implies

u2i+1(x, t2i+1) ≤ a+
1

2i+ 1
for all x ∈ Ω2i+1,

and recalling (2.12) we see that (2.1)–(2.4) become valid even up to j = 2i+ 1.

Step 3: Construction and properties of u0.
Since δj ց 0 y (2.3), it follows from (2.1) that in each compact subset of Ω̄ \ {0}, u0,j ≡
u0,j−1 holds for all sufficiently large j ∈ N. Therefore, trivially, u0,j converges to some
limit function u0 in C∞

loc(Ω \ {0}). In order to gain more information about u0, we claim
that (u0,j)j∈N, besides

u0,0 ≤ u0,1, u0,1 ≥ u0,2, u0,2 ≤ u0,3, u0,3 ≥ u0,4, . . . , (2.13)
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enjoys the ordering properties

u0,0 ≤ u0,2 ≤ u0,4 ≤ ... in Ω \ {0} (2.14)

and
u0,1 ≥ u0,3 ≥ u0,5 ≥ ... in Ω \ {0}. (2.15)

Indeed, whereas (2.13) is obvious from (2.1), to see (2.14) we let j ∈ N be an even
nonnegative integer and suppose that x ∈ Ω \ {0}. In the case |x| ≥ δj+2, we know that
χδj+2(x) = 1 and hence, by (2.1) and (2.13),

u0,j+2(x) = u0,j+1(x) ≤ u0,j(x)

for such x.

If |x| < δj+2, however, (2.1) says that in the case j = 0 we have u0,j+2(x) ≥ a = u0,0(x)
as desired, while if j ≥ 2 then u0,j+1(x) ≥ 1

εj+2
|x|−γ1 and therefore

u0,j+2(x) = χδj+2(x) · u0,j+1(x) + (1− χδj+2(x)) ·
1

εj+2
|x|−γ1

≥ χδj+2(x) ·
1

εj+2
|x|−γ1 + (1− χδj+2(x)) ·

1

εj+2
|x|−γ1

=
1

εj+2
|x|−γ1 . (2.16)

Since |x| < δj+2 entails |x| < δj
2 by (2.3), on the other hand we have χδj (x) = 0 and thus

u0,j(x) =
1

εj
|x|−γ1 (2.17)

for these x. As εj+2 < εj by (2.2), (2.16) and (2.17) complete the proof of (2.14), and the
inequalities in (2.15) can be seen quite similarly.

Step 4: Conclusion.
Now, (2.14) and (2.15) in particular imply that u0,2 ≤ u0 ≤ u0,1, from which it follows that
(0.3) is true for u0 with some positive constants a and a. Accordingly, (0.1) possesses a
unique singular classical solution u with initial data u0. To see that this solution exhibits
the claimed oscillatory behavior, we observe that (2.14) also entails that for all even j,
u0,j ≤ u0 and thus, by Corollary 7, that uj ≤ u. In view of (2.4), this implies that

u(x, tj) ≥ j for all x ∈ Ωj if j ∈ N is even, (2.18)

so that u(·, t2i) → ∞ locally uniformly in Ω \ {0} as i→ ∞. Similarly, (2.15) yields

u(x, tj) ≤ a+
1

j
for all x ∈ Ωj if j ∈ N is odd. (2.19)

Since (2.14) also implies that u0 ≥ u0,0 ≡ a, one more comparison argument shows that
u ≥ a in Ω× (0,∞), whence (2.19) entails that u(·, t2i+1) → a in L∞

loc(Ω \ {0}) as i → ∞
and thereby completes the proof. �
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3 Extensions

There are a number of variants and improvements that can be made by using the previous
ideas. One of them is to have solutions that exhibit three types of behaviour at sequences of
time, namely, diverging, stabilizing to the nonsingular steady state and finally stabilizing
to the singular steady state. This is a more complex variant of the previous result, where
only the two first forms are represented.

Another possibility is to refine the analysis and distinguish different time sequences where
the solution diverges as time grows to infinity with different rates.

4 Appendix: Absence of oscillations in the case m ∈ (mc, 1]

Let us finally demonstrate that oscillations in the style detected above do not occur in
the problem (0.1) when m ∈ (mc, 1]. As in the previous part of the paper, we restrict
our considerations to the proper solution of (0.1), that is, we let up denote the limit of
solutions uε of (1.1) as εց 0, and, particularly when m = 1, ignore the question whether
or not up satisfies (0.1) in a reasonable sense.

Theorem 11 Let m ∈ (mc, 1], and assume that u0 ∈ C0(Ω) is continuous with values in
(0,+∞] and such that u0|∂Ω = a. Then as t→ ∞, the proper solution up of (0.1) satisfies

up(·, t) →
{

a uniformly in Ω if
∫

Ω u0 <∞,

+∞ locally uniformly in Ω if
∫

Ω u0 = ∞.
(4.20)

Proof. (i) Let us first consider the case when
∫

Ω u0 <∞. Then well-known smoothing
results ([HP]) state that (0.1) has a unique weak solution which clearly coincides with
up and is smooth and bounded in Ω × (τ,∞) for any τ > 0. Hence, a standard energy
argument can be applied to show that up(·, t) approaches the unique steady state u∞ ≡ a
of (0.1).

(ii) On the other hand, if
∫

Ω u0 = +∞ then in the case m = 1 it can easily be seen upon
representing uε via a convolution involving Green’s function of the heat semigroup on Ω
that since

∫

Ω u0ε ր +∞, in view of the monotone convergence theorem we must have
uε(x, t) ր +∞ for all (x, t) ∈ Ω × (0,∞) as ε ց 0. Thus, in this situation we actually
have immediate global blow-up, that is, up(x, t) ≡ +∞ in Ω × (0,∞), so that (4.20) is
trivially satisfied.

(ii-b) We are thus left with the case
∫

Ω u0 = ∞ when m ∈ (mc, 1), in which we can
proceed as follows: Let us fix u0 ∈ C0(Rn; (0,+∞]) by letting u0(x) :=

1
8u0(x) if x ∈ Ω

and u0(x) :=
a
8 else. Then for some x0 ∈ Ω we necessarily have

∫

Br(0)
u0(x)dx = +∞ for

all r > 0. Accordingly, Theorem 2.2 and Lemma 2.1 in [CV] show that the corresponding
proper solution u of ut = ∇ · (um−1∇u) in R

n with initial data u0 satisfies

u(x, t) ≥ c1

( t

|x− x0|2
)

1
1−m

for all x ∈ R
n and t > 0 (4.21)
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with some c1 > 0. Since moreover u0(x) ≤ a
4 holds for all x ∈ R

n \ K with a compact
subset K of Ω, Theorem 2.2 along with Definition 1 in [CV] entail that u is continuous in
(Rn \K) × [0,∞) and thus, in particular, there exists τ > 0 such that u(x, t) ≤ a

2 holds
for all x ∈ ∂Ω and each t ∈ (0, τ). By comparison, we therefore have u(x, t) ≤ up(x, t) for
all x ∈ Ω and t ∈ (0, τ), so that (4.21) entails that

up(x, τ) ≥ c2|x− x0|
2

1−m for all x ∈ Ω

is valid with a positive constant c2. But now Theorem 3.13 in [VW] becomes applicable
to ensure that up(·, t) → +∞ uniformly with respect to x ∈ Ω. �
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