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Abstract

This work deals with the Dirichlet problem for the degenerate parabolic equation ut = upuxx+uq in a bounded
interval Ω ⊂ R, where p ≥ 2 and q ∈ [1, p− 1].
It is shown that whenever the initial data u0 belong to W 1,∞(Ω), are nonnegative and vanish on ∂Ω, the
so-called maximal solution u undergoes an infinite-time gradient blow-up. That is, the function u(·, t) belongs
to W 1,∞(Ω) for all t ∈ [0,∞), but we have ‖ux(·, t)‖L∞(Ω) → ∞ as t → ∞. Moreover, it is shown that if
q < p− 1 then for sufficiently large m > 1, even the functional

∫
Ω
uα|ux|

m blows up for some α = α(m) ≥ 0.
Finally, by providing explicit upper estimates for the growth of ux with respect to time, it is shown that the
rate of gradient blow-up in any of the integral norms considered above is not faster than algebraic, provided
that q > 1. In the special case when u0(x) ≥ cdist(x, ∂Ω) for all x ∈ Ω and some c > 0, the same is valid for
the norm of ux in L∞(Ω).
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Introduction

We consider nonnegative solutions of the Dirichlet problem




ut = upuxx + uq in Ω× (0,∞),

u|∂Ω = 0,

u|t=0 = u0,

(0.1)

in a bounded interval Ω = (0, L) ⊂ R, where p > 0 and q ≥ 1 and the initial data u0 are assumed to satisfy

u0 ∈W 1,∞(Ω), u0 ≥ 0 in Ω and u0|∂Ω = 0. (0.2)

Equations with degeneracies of this type are used in various applications such as, for instance, in electromag-
netism, differential geometry and population dynamics ([2], [3], [15]), where usually p ≥ 1. In the case p ∈ (0, 1),
the PDE in (0.1) can be transformed into the forced porous medium equation vt = (vm)xx + vσ with m = 1

1−p

and σ = q−p
1−p

, which is essentially well-understood ([11]).
The existing literature provides a number of examples showing that in the case p ≥ 1 the properties of the diffu-
sion operator in (0.1) are significantly different from those in the range p ∈ (0, 1). First results in this direction
revealed that weak solutions need not be unique, and that families of uniformly bounded smooth solutions need
not be locally uniformly continuous ([16], [4], [5]). More recently, further peculiar phenomena were detected. For
instance, classical solutions of ut = up∆u exist for which u(·, t) belongs to C∞

0 (R) for all times ([22]). In the case
p ≥ 3 and q = p + 1, (0.1) possesses positive classical solutions which heavily oscillate in time in the sense that
u(·, tj) → 0 and u(·, tj+1) → +∞ along some sequences tj , tj+1 → ∞ ([24]). A more subtle result concerning
nonconvergent trajectories states that if p > 1 and q ∈ (p− 1, p+ 1) is such that q ≥ 3− p, then (0.1) allows for
positive solutions for which (u(·, t))t≥0 is bounded in C1(Ω̄), but for which u(·, t) does not converge in C1(Ω̄) as
t→ ∞ ([25]).

The present paper focuses on the related phenomenon of gradient blow-up, which is said to occur when a solution
itself remains bounded in L∞(Ω), but has a spatial gradient that becomes unbounded either in finite or infinite
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time. Such effects are ruled by classical parabolic regularity results in any semilinear diffusion equation with
source terms depending on x and u only, or growing at most quadratically with respect to ux ([13]). Accordingly,
phenomena of this type have been detected quite rarely so far, and most examples of gradient blow-up available
in the literature concentrate on equations of type ut = ∆u+f(u,∇u) (see [1], [12], [9], [8], [14] and the references
in the latter, for instance).

As to the quasilinear problem (0.1), it was shown in [18] that when

p > 2 and 1 ≤ q ≤ p− 1,

under the additional assumption that u0 is smooth in Ω̄ and satisfies u0(x) ≥ cdist(x, ∂Ω) for all x ∈ Ω and some
c > 0, the problem (0.1) has a positive classical solution u for which u(·, t) belongs to C1(Ω̄) for all t ≥ 0 but
‖u(·, t)‖W 1,∞(Ω) → ∞ as t→ ∞.
One goal of this work is to clarify whether this phenomenon indeed relies on this additional lower estimate for
u0. In fact, in view of the mentioned lack of regularity in (0.1) it is a priori conceivable that oscillatory behavior
of u0 near some of its zeros may result in more irregular behavior such as finite-time or even immediate gradient
blow-up. Our main result in this direction states that

• if p ≥ 2 and q ∈ [1, p − 1], then for all (maximal) solutions of (0.1) we have ux ∈ L∞(Ω × (0, T )) for all
T > 0, but ‖ux(·, t)‖L∞(Ω) → ∞ as t→ ∞ (cf. Theorem 2.5 and Lemma 3.2, and see Section 1 for a precise
definition of our solution concept).

We moreover ask whether gradient blow-up also occurs in some weaker sense, involving norms of ux measured
only in Lm(Ω) for some finite m. Indeed, we shall find that this is true for any sufficiently large m:

• If p > 2, q ∈ [1, p− 1) and α ≥ 0 and m > 1 are such that m ≥ p+1−q+2α
p−q−1 , then

∫

Ω

uα(x, t)|ux(x, t)|
mdx→ ∞ as t→ ∞

(Lemma 3.3).

A natural next step in the study of this type of singularity formation appears to consist of determining the rate
at which the gradient blows up. In this respect, we shall prove that if q > 1 then this blow-up occurs at a rate
not faster than algebraic. Namely,

• if p > 2 and q ∈ (1, p− 1], then for all sufficiently large m > 2 there exists Cm > 0 such that for all t ≥ 1,

‖ux(·, t)‖Lm(Ω) ≤ Ct
1
2 if q ≥ p

2 ,

‖(u
p+2−2q

2 )x‖Lm(Ω) ≤ Ct
(p−2q)(m−1)

2p if q < p
2 .

and the respective expressions on the left tend to +∞ as t → ∞ (see Corollary 4.3 and also Corollary 4.2
for a slightly more general result).

Finally, under the positivity assumption from [18] we can derive an algebraic upper bound for the blow-up rate
in W 1,∞(Ω) when q > 1:

• If p > 2 and q ∈ (1, p − 1] and u0(x) ≥ cdist(x, ∂Ω) for all x ∈ Ω and some c > 0, then for all ν > 0 there
exists C(ν) > 0 such that

‖ux(·, t)‖L∞(Ω) ≤ C(ν) · t
p−q−1
2(q−1)

+ν for all t ≥ 1

(Theorem 4.5).

We do not know whether the above estimates are optimal, and it is an interesting open problem to find any lower
estimate for the rate of gradient blow-up in any of the spaces considered above. Also, we do not know whether
the range of q considered here is the maximal one within which gradient blow-up occurs. Finally, it is worth
mentioning that all of our results refer to the maximal among several possible weak solutions only. We are not
aware of any example of a weak solution u for which ux blows up before t = ∞, but unfortunately we cannot
rule out such a possibility.
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1 Preliminaries

A natural way of approximating solutions of (0.1) consists of solving the regularized problem





uεt = upεuεxx + uqε in Ω× (0, T ),

ũηε|∂Ω = ε,

ũηε|t=0 = u0 + ε

(1.1)

for ε ∈ (0, 1). Indeed, due to the a priori lower bound uε ≥ ε this problem is actually non-degenerate, and it
can be seen by standard arguments that (1.1) has a classical solution uε defined up to a maximal existence time
Tmax,ε ∈ (0,∞]. Moreover, Tmax,ε increases and uε decreases with ε, so that Tmax := limεց0 Tmax,ε ∈ (0,∞]
exists and

u(x, t) := lim
εց0

uε(x, t)

defines a nonnegative function in Ω̄× [0, Tmax) ([20], [16]). Throughout the sequel we shall call this limit u the
maximal solution of (0.1), ignoring here the question in which (pointwise or integral) sense u actually solves (0.1).
We only remark without proof that by the methods presented in [16] and [4] it can be seen that u indeed solves
(0.1) in the natural weak sense, but that weak solutions are not unique; however, u in fact is maximal among all
weak solutions.

Being interested in gradient estimates, we should notice that unlike the limit problem (0.1), for each fixed
ε ∈ (0, 1) the problem (1.1) contains a source term approximately equal to the positive constant εq near ∂Ω.
Since this might inconveniently distort the actual gradient behavior of u near ∂Ω (and, more generally, wherever
u is small), in the sequel we shall rely on a different regularization with a slightly weaker source term. Moreover,
we shall introduce a second regularization parameter which will enable us to separate technical difficulties arising
from possible zeros in the interior of Ω from those stemming from the enforced behavior near ∂Ω.
To be precise, for η ∈ (0, 1) and ε ∈ (0, 1), we consider





ũηεt = (ũηε + ε)pũηεxx + (ũηε + εκ)q in Ω× (0, T ),

ũηε|∂Ω = 0,

ũηε|t=0 = ũ0η,

(1.2)

where

ũ0η(x) := u0(x) + η sin
πx

L
, x ∈ (0, L),

and κ is a fixed number satisfying

κ > 1, κ >
p

2q
and κ <

p+ 1

q
, (1.3)

which is possible whenever 0 < q < p + 1. Again, (1.2) has a unique positive classical solution ũηε defined up
to a maximal existence time Tmax,ηε ∈ (0,∞]. We shall see in Lemma 1.4 and Lemma 1.5 below that actually
Tmax,ηε = ∞, and that by this procedure after taking ε ց 0 and then η ց 0 we again rediscover the maximal
solution u defined above.
We prepare this by three statements concerning steady states of (0.1) as well as stationary sub- and supersolutions
of (1.2) that will be used in several places in the sequel.
To begin with, let us consider the – possibly singular – elliptic boundary-value problem

{
−wxx = w−β in (a, b),

w(a) = w(b) = 0,
(1.4)

where β ≥ 0. A list of usefuly properties of (1.4) is provided by the following lemma which can be proved in quite
an elementary way using a straightforward integration of the ODE in (1.4) (cf. [21], [20] and [7], where details
can be found in the general n-dimensional setting).
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Lemma 1.1 Suppose that −∞ < a < b < ∞. Then for all β ≥ 0, the problem (1.4) admits a unique classical
solution w = wa,b,β ∈ C0([a, b]) ∩ C2((a, b)) which is positive in (a, b). This solution satisfies

c · ρβ(x) ≤ w(x) ≤ C · ρβ(x) for all x ∈ (a, b) (1.5)

and

c · ρβ(x) ≤ dist(x, ∂Ω) · |wx(x)| ≤ C · ρβ(x) for all x ∈
(
a,

3a+ b

4

)
∪
(a+ 3b

4
, b
)
, (1.6)

with certain positive constants c and C, where

ρβ(x) :=





(dist(x, ∂Ω))
2

β+1 if β > 1,

dist(x, ∂Ω) ·
√
ln K

dist(x,∂Ω) if β = 1,

dist(x, ∂Ω) if 0 ≤ β < 1

with some conveniently large K > 0.
Moreover, if w and w belong to C0([a, b])∩C2((a, b)) and are positive in (a, b) with w(a) = w(b) = w(a) = w(b) = 0
and wxx − w−β ≤ 0 ≤ −wxx − w−β in (a, b), then w ≤ w.
Finally, if (aj)j∈N ⊂ R and (bj)j∈N ⊂ R are such that a ւ aj < bj ր b as j → ∞, then the corresponding
solutions in (aj , bj) satisfy waj ,bj ,β → wa,b,β in C0

loc((a, b)) as j → ∞.

In respect of boundedness of solutions in L∞(Ω), it is a convenient feature of (1.2) that large multiples of steady
states of (0.1) are supersolutions of (1.2).

Lemma 1.2 Let q ∈ [1, p] and −∞ < a < b <∞. Then the solution w := wa,b,p−q of (1.4) has the property that
for all C > 1 and ε ∈ (0, 1),

v(x) := C · w(x), x ∈ [a, b],

satisfies

(v + ε)pvxx + (v + εκ)q ≤ 0 in (a, b).

Proof. Since κ > 1 by (1.3), and since ε < 1, we have (Cw+ εκ)q ≤ (Cw+ ε)q and hence using (1.4) we find

−(v + ε)pvxx
(v + εκ)q

=
(Cw + ε)p−q · Cwq−p

(Cw + εκ)q
≥ (Cw + ε)p−q · Cwq−p ≥ (Cw)p−q · Cwq−p = Cp+1−q ≥ 1,

because p ≥ q and C ≥ 1. ////

Thanks to the source term in (1.2), we can also identify some arbitrarily small stationary subsolutions of (1.2).

Lemma 1.3 Suppose that q ∈ [1, p + 1), and that −∞ < a < b < ∞. Then there exist c0 > 0 and ε0 ∈ (0, 1)
such that for all c ∈ (0, c0] and ε ∈ (0, ε0),

v(x) := c · sin
π(x− a)

b− a
, x ∈ [a, b],

satisfies
(v + ε)pvxx + (v + εκ)q ≥ 0 in [a, b]. (1.7)

Proof. Writing λ1 := ( π
b−a

)2, we let c0 := (2pλ1)
− 1

p+1−q and fix ε0 ∈ (0, 1) small enough fulfilling εp+1−qκ
0 <

(2pλ1)
−1, which is possible since p + 1 − qκ > 0 by (1.3). Then given ε ∈ (0, ε0), if x is such that v(x) ∈ (0, ε)

we have

λ1v(v + ε)p

(v + εκ)q
≤
λ1ε · (2ε)

p

εqκ
≤ 2pλ1 · ε

p+1−qκ < 1,
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whereas if ε ≤ v(x) ≤ c0, then

λ1v(v + ε)p

(v + εκ)q
≤
λ1v · (2v)

p

vq
≤ 2pλ1 · v

p+1−q ≤ 1.

As vxx = −λ1v in [a, b], this proves (1.7) for all c ∈ (0, c0] and ε ∈ (0, ε0). ////

As a aconsequence of Lemma 1.2 we obtain global solvability of (1.2) and some pointwise estimates from above
and below which are essentially independent of η and ε.

Lemma 1.4 Let p ≥ 1 and q ∈ [1, p]. Then there exist c > 0, C > 0 and ε0 ∈ (0, 1) such that for all η ∈ (0, 1)
and ε ∈ (0, ε0), the solution ũηε of (1.2) exists globally in time and satisfies

cmin
{
1, η + inf

y∈Ω

u0(y)

dist(y, ∂Ω)

}
dist(x, ∂Ω) ≤ ũηε(x, t) ≤





C(dist(x, ∂Ω))
2

p+1−q if q < p− 1

Cdist(x, ∂Ω)
√

ln C
dist(x∂Ω) if q = p− 1,

Cdist(x, ∂Ω) if q > p− 1

(1.8)

for all (x, t) ∈ Ω× (0,∞).

Proof. Letting w = w0,L,p−q denote the solution of (1.4), thanks to (1.5) and the fact that supη∈(0,1) ‖ũ0ηx‖L∞(Ω)

is finite, we can find c1 ≥ 1 independent of η and ε such that ũ0η ≤ c1 · w in Ω. According to Lemma 1.2,
(x, t) 7→ c1 · w(x) is a supersolution of (1.2) dominating ũηε on the parabolic boundary of Ω × (0, Tmax,ηε), so
that the comparison principle ensures that ũηε ≤ c1 · w in Ω× (0, Tmax,ηε). By parabolic regularity theory, this
entails that actually Tmax,ηε = ∞, and in view of (1.5) this moreover establishes the right inequality in (1.8).

To see the left one, we fix c0 and ε0 as in Lemma 1.3 and let c2 := infx∈Ω
dist(x,∂Ω)

Θ(x) and c3 := infx∈Ω
u0(x)

dist(x,∂Ω) ,

where Θ(x) := sin πx
L
. Given η ∈ (0, 1) and ε ∈ (0, ε0), we then have the inequality

ũ0η(x) ≥ (η + c2c3) ·Θ(x) for all x ∈ Ω.

By Lemma 1.3 and the comparison principle, from this we infer that

ũηε(x, t) ≥ min{c0, η + c2c3} ·Θ(x) for all (x, t) ∈ Ω× (0,∞)

and thereby easily complete the proof of (1.8). ////

We can now make sure that the approximation procedure (1.2) indeed leads to the same result as (1.1).

Lemma 1.5 Let p ≥ 1 and q ∈ [1, p]. Then for each η ∈ (0, 1), the limit ūη := limεց0 ũηε exists in the pointwise
sense, and ūη is the unique positive classical solution of (0.1) with initial data ũ0η. Moreover, we have ūη ց u

in Ω̄× [0,∞) as η ց 0, where u denotes the maximal solution of (0.1).

Proof. According to the two-sided estimates in (1.8), standard parabolic regularity theory ([13]) and the
Arzelá-Ascoli theorem ensure that for fixed η ∈ (0, 1) the set (ũηε)ε∈(0,ε0) is relatively compact in C0(Ω̄ ×
[0,∞)) ∩C2,1(Ω× (0,∞)). Since positive classical solutions of (0.1) are unique ([20]), this entails that ũηε → ūη

in C0
loc(Ω̄× [0,∞)) ∩ C2,1

loc (Ω× (0,∞)), and that ūη has the claimed solution property.
Next, by comparison ([20]), ūη decreases to some ū as η ց 0. Clearly, ū ≤ u, because ũ0η ≤ u0 + η and hence
ũηε ≤ uε whenever ε ≥ η. To see the opposite inequality, we consider the solutions ûηε of (1.1) with initial
data ûηε|t=0 = ũ0η + ε. By comparison, these satisfy ûηε ≥ uε, but according to a similar limit procedure they
also decrease to a positive classical solution of (0.1) with initial data ũ0η ([20]). Again by uniqueness of positive
classical solutions of (0.1), we infer that ûηε → ūη as εց 0, so that taking η ց 0 we obtain ū ≥ u. ////

As a last preliminary, we shall need the following adaptation to (1.2) of the one-sided estimate ut

u
≥ − 1

pt
that

can easily be derived for (0.1) at a formal level. Semi-convexity inequalities of this type play a considerable role
in the qualitative study of a number of related degenerate equations such as the classical porous medium and
fast diffusion equations (see [19], for instance).
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Lemma 1.6 Let p > 0 and q ∈ [1, p+1), and let B := (b+1)( q
p+1−q

)q−1. Then for any η ∈ (0, 1) and ε ∈ (0, 1)

the solution ũηε of (1.2) satisfies

(ũηε + ε)p−1ũηεxx +
(ũηε + εκ)q

ũηε + ε
≥ −zε(t) for all (x, t) ∈ Ω× (0,∞), (1.9)

where zε deotes the solution of z′ε = −pz2ε +Bεq−1zε for t > 0 with limtց0 zε(t) = +∞ given by

zε(t) :=
Bεq−1

p · (1− e−Bεq−1t)
, t > 0. (1.10)

Proof. We first observe that according to parabolic regularity results, for each τ > 0 the function v defined
by v(x, t) := ũηε(x, τ + t) + ε is smooth in Ω̄ × [0,∞) and satisfies vt = vpvxx + (v − δ)q in Ω × (0,∞) with

δ := ε − εκ > 0 according to (1.3). Since v ≥ ε, we thus see that also V := vt

v
≡ vp−1vxx + (v−δ)q

v
is smooth in

Ω̄× [0,∞), and a straightforward computation reveals that

0 = PV := Vt − vpVxx − 2vp−1vxVx − pV 2 − I(x, t)V in Ω× (0,∞) (1.11)

with I(x, t) := (v−δ)q−1

v
·
{
(p+1)δ− (p+1− q)v

}
. Clearly, I ≤ 0 holds at each point where v ≥ (p+1)δ

p+1−q
. However,

if v < (p+1)δ
p+1−q

, then since v ≥ ε ≥ δ and q ≥ 1, we have

I(x, t) ≤
(v − δ)q−1

v
· (p+ 1)δ ≤

(v − δ)q−1

ε
· (p+ 1)δ

≤
(p+ 1)( p+1

p+1−q
− 1)q−1 · δq

ε
≤ (p+ 1)

( q

p+ 1− q

)q−1

· εq−1,

and therefore it follows that I ≤ Bεq−1 in Ω× (0,∞). Since zε is positive, this implies that (x, t) 7→ −zε(t) is a
subsolution of the parabolic equation in (1.11). Using that −zε(t) → −∞ as tց 0, upon a comparison argument

we conclude that V ≥ −zε(t) in Ω× (0,∞). As τ > 0 was arbitrary, this shows that
ũηεt

ũηε
≥ −zε(t) in Ω× (0,∞)

and thereby completes the proof. ////

2 Estimates for the large time behavior near ∂Ω. Absence of gradient

blow up in finite time

In this section our goal is to find estimates for the quotient
ũηε(x,t)

dist(x,∂Ω) which are essentially independent of η and

ε and thus allow for a control of ũηεx(·, t) on ∂Ω. As a preparation, we prove an elementary calculus lemma.

Lemma 2.1 For all γ ∈ (0, 1) there exists σ > 0 with the property that for all k > 0 and each µ ∈ (0, σ · k
1

1−γ )
we have

ξ + µ ≤ kξγ for all ξ ∈
[
2
(µ
k

) 1
γ

,
1

2
· k

1
1−γ

]
.

Proof. We let ϕµ(ξ) := ξ + µ− kξγ for ξ > 0 and µ > 0. Then

ϕµ

(
2
(µ
k

) 1
γ
)
= 2

(µ
k

) 1
γ

+ µ− 2γµ =
(
2k−

1
γ µ

1−γ
γ + 1− 2γ

)
· µ < 0

for all µ < µ1 := ( 2
γ−1
2 )

γ
1−γ · k

1
1−γ , and moreover

ϕµ(ξ)
(1
2
· k

1
1−γ

)
=

1

2
k

1
1−γ + µ− k ·

1

2γ
· k

γ
1−γ = µ−

1− 2γ−1

2γ
· k

1
1−γ < 0
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holds whenever µ < µ2 := 1−2γ−1

2γ · k
1

1−γ . Since d2

dξ2
ϕµ(ξ) = γ(1 − γ)kξγ−2 is positive on (0,∞), this means

that ϕµ is negative throughout [2(µ
k
)

1
γ , 12k

1
1−γ ], provided that µ < min{µ1, µ2}. This proves the claim upon an

evident choice of σ. ////

We can now establish the desired boundary estimate in the case q > 1.

Lemma 2.2 Let p > 2 and q ∈ (1, p − 1]. Then for all ν > 0 there exists C(ν) > 0 with the property that for
all T > 0 one can find ε0(T ) ∈ (0, 1) such that for each η ∈ (0, 1) and ε ∈ (0, ε0(T )) the solution ũηε of (1.2)
satisfies

ũηε(x, t) ≤ C(ν) · (t+ 1)
p−q−1
2(q−1)

+ν · dist(x, ∂Ω) for all (x, t) ∈ Ω× (0, T ). (2.1)

Proof. Since ν > 0, we can fix β ∈ (0, 1) close enough to 1 such that

δ :=
p− q − β

(β + 1)(q − 1)
≤
p− q − 1

2(q − 1)
+ ν

and, according to (1.3), that also

κ >
p

(β + 1)q
. (2.2)

Then by Lemma 1.1, the solution w of (1.4) in Ω satisfies

c1dist(x, ∂Ω) ≤ w(x) ≤ c2dist(x, ∂Ω) for all x ∈ Ω (2.3)

with certain positive constants c1 and c2. We abbreviate c3 := 1
2 · δ

1
q−1 and let

y0 := max
{ 1

c1
· sup
η∈(0,1)

‖ũ0ηx‖L∞(Ω) , c
−

p−q−β
β+1

3

}
.

We next fix T > 0 and define a comparison function v in Ω̄× [0, T ] by

v(x, t) := y(t) · w(x), where y(t) := y0 · (t+ 1)δ, (x, t) ∈ Ω̄× [0, T ].

Then since

ũ0η(x)

w(x)
≤

ũ0η(x)

c1dist(x, ∂Ω)
≤

1

c1
· ‖ũ0ηx‖L∞(Ω) ≤ y0 for all x ∈ Ω,

if follows that v ≥ ũηε holds on the parabolic boundary of Ω × (0, T ) for any η ∈ (0, 1) and ε ∈ (0, 1). In
view of (2.3) and the comparison principle, it is thus sufficient for the proof of (2.1) to show that there exists
ε0(T ) ∈ (0, 1) such that

Pεv := vt − (v + ε)pvxx − (v + εκ)q

satisfies
Pεv ≥ 0 in Ω× (0, T ) (2.4)

whenever ε ∈ (0, ε0(T )). To achieve this, we compute

Pεv = y′ · w + (yw + ε)p · yw−β − (yw + εκ)q in Ω× (0, T ) (2.5)

and decompose Q := Ω× (0, T ) into Q = Q1 ∪Q2 ∪Q3, where

Q1 :=
{
(x, t) ∈ Q | w(x) > c3y

1
(q−1)δ

0 y
−1− 1

(q−1)δ (t)
}
,

Q2 :=
{
(x, t) ∈ Q | w(x) < c4ε

qκy
− 1

δ

0 y−1+ 1
δ (t)

}
and

Q3 := Q \ (Q1 ∪Q2)
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with c4 := 2
δ
.

We first claim that there exists ε1(T ) ∈ (0, 1) such that

Pεv ≥ 0 in Q3 whenever ε ∈ (0, ε1(T )). (2.6)

Indeed, applying Lemma 2.1 to ξ := y · w, γ := 1
q
, µ := εκ and k := δ

1
q · (y0

y
)

1
qδ , we obtain that for all points

(x, t) ∈ Q at which

2 ·

{
εκ

δ
1
q · ( y0

y(t) )
1
qδ

}q

≤ y(t)w(x) ≤
1

2
·

{
δ

1
q ·

( y0

y(t)

) 1
qδ

} 1

1− 1
q
, (2.7)

the inequality

y(t)w(x) + εκ ≤ δ
1
q ·

( y0

y(t)

) 1
qδ

·
(
y(t)w(x))

1
q (2.8)

is valid, provided that

εκ < σ ·

{
δ

1
q ·

( y0

y(t)

) 1
qδ

} 1

1− 1
q
≡ σ · δ

1
q−1 · (t+ 1)−

1
q−1 (2.9)

with σ as given by Lemma 2.1. Since (x, t) ∈ Q can easily be seen to satisfy (2.7) if and only if it belongs to Q3,
we conclude upon rearrangng (2.8) and (2.9) that if

ε < ε1(T ) :=
{
σ · δ

1
q−1 · (T + 1)−

1
q−1

} 1
κ

,

then for all (x, t) ∈ Q3 we have

(
y(t)w(x) + εκ

)q

≤ δ ·
( y0

y(t)

) 1
δ

· y(t)w(x) ≡ y′(t)w(x)

and hence, by (2.5), arrive at (2.6).

In order to prove a similar statement in Q2, let us consider the auxiliary function ϕ defined by

ϕ(ξ) :=
(yξ + ε)p · y

(yξ + εκ)qξβ
, ξ > 0,

where y = y(t) and t ∈ (0, T ) and ε ∈ (0, 1) are fixed. We calculate

1

y
· ϕ′(ξ) =

py(yξ + ε)p−1 · (yξ + εκ)q · ξβ − (yξ + ε)p · [qy(yξ + εκ)q−1 · ξβ + β(yξ + εκ)q · ξβ−1]

(yξ + εκ)2q · s2β

for ξ > 0 to see that ϕ′(ξ) ≤ 0 if and only if

py(yξ + εκ) · ξ ≤ (yξ + ε) · [qyξ + β(yξ + εκ)],

that is, if
(p− q − β) · (yξ)2 ≤ [(q + β)ε− (p− β)εκ] · (yξ) + βεκ+1. (2.10)

Since κ > 1, we have (p − β)εκ ≤ 1
2 (q + β)ε for all ε ∈ (0, ε2) with ε2 := ( q+β

2(p−β) )
1

κ−1 , and hence (2.10) implies

that
ϕ′(ξ) ≤ 0 for all ξ ≤ c5 ·

ε

y
(2.11)

holds with c5 := q+β
2(p−q−β) .

Now suppose that (x, t) ∈ Q2. Then

w(x)

c5 ·
ε
y

<
c4ε

qκy
− 1

δ
y
−1+ 1

δ

0

c5 ·
ε
y

=
c4

c5
· εqκ−1 ·

( y
y0

) 1
δ

≤
c4

c5
· εqκ−1 · (1 + T ) ≤ 1,
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provided that 0 < ε < ε3(T ) := ( c5
c4(T+1) )

1
qκ−1 . Hence, if in addition ε < ε2 then the monotonicity property

(2.11) yields

(yw + ε)py

(yw + εκ)q · wβ
= ϕ(w) ≥ ϕ

(
c4ε

qκy
− 1

δ

0 y−1+ 1
δ

)
=

(
c4ε

qκy
− 1

δ

0 y
1
δ + ε

)p

· y
(
c4εqκy

− 1
δ

0 y
1
δ + εκ

)q

·
(
c4εqκy

− 1
δ

0 y−1+ 1
δ

)β

for such (x, t). Since q > 1 and thus

c4ε
qκy

− 1
δ

0 y
1
δ

εκ
≤ c4ε

(q−1)κ · (T + 1) ≤ 1 for all t ∈ (0, T )

if 0 < ε < ε4(T ) := [c4(T + 1)]−
1

(q−1)κ , from this and (2.2) we infer that

(yw + ε)py

(yw + εκ)q · wβ
≥

εpy

(2εκ)q ·
(
c3εqκy

− 1
δ

0 y−1+ 1
δ

)β

=
1

2qcβ4
· ε−[(β+1)qκ−p] · y

β
δ

0 · yβ−
β
δ
+1

=
1

2qcβ4
· ε−[(β+1)qκ−p] · yβ+1

0 · (t+ 1)(β+1)δ−β

≥
1

2qcβ4
·min

{
1 , (T + 1)(β+1)δ−β

}
· ε−[(β+1)qκ−p] · yβ+1

0

≥ 1 for all (x, t) ∈ Q2

for any ε ∈ (0, ε5(T )), where ε5(T ) ∈ (0, 1) is such that ε5(T ) ≤ min{ε2, ε3(T ), ε4(T )} and

ε5(T ) ≤

{
y
β+1
0

2qcβ4
·min

{
1 , (T + 1)(β+1)δ−β

}} 1
(β+1)qκ−p

.

Consequently, (2.5) ensures that

Pεv ≥ 0 in Q2 whenever ε ∈ (0, ε5(T )). (2.12)

Finally, if (x, t) ∈ Q1 then w(x) > c3y
1

(q−1)δ

0 y
−1− 1

(q−1)δ (t), and therefore using that εκ < ε and p > q + β > q we
may estimate

(yw + ε)py

(yw + εκ)q · wβ
≥

(yw + ε)p−qy

wβ
≥

(yw)p−qy

wβ
= yp+1−qwp−q−β

> c
p−q−β
3 y

p−q−β
(q−1)δ

0 · yp+1−q+(−1− 1
(q−1)δ

)·(p−q−β) for all (x, t) ∈ Q1.

Since according to our choice of δ we have

p− q − β

(q − 1)δ
= β + 1 and

(
− 1−

1

(q − 1)δ

)
· (p− q − β) = 0,

this means that

(yw + ε)py

(yw + εκ)q · wβ
> c

p−q−β
3 y

β+1
0 ≥ 1 for all (x, t) ∈ Q1

in view of our definition of y0. Hence, (2.5) results in the inequality

Pεv ≥ 0 in Q1 for all ε ∈ (0, 1),

and thus recalling (2.6) and (2.12) we conclude that indeed (2.4) is valid, whereby the proof is completed. ////

The above estimate is obviously no longer meaningful when q = 1. Correspondingly, in this borderline case we
only obtain an exponential upper bound:
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Lemma 2.3 Let p ≥ 2 and q = 1. Then for all θ > 1 there exists C > 0 such that for all η ∈ (0, 1) and ε ∈ (0, 1)
the solution ũηε of (1.2) satisfies

ũηε(x, t) ≤ C eθt · dist(x, ∂Ω) for all (x, t) ∈ Ω× (0,∞). (2.13)

Proof. According to (1.3), we can fix β ∈ (0, 1) such that (β+1)κ ≥ p, and let w denote the solution of (1.4)

in Ω. Then thanks to (1.5) there exists c1 > 0 such that (θ− 1)c
β+1
β

1 ≥ 1 and ũ0η(x) ≤ c1 ·w(x) for all x ∈ Ω and
each η ∈ (0, 1). Thus, for arbitrary η ∈ (0, 1) and ε ∈ (0, 1), the function v(x, t) := y(t) ·w(x), (x, t) ∈ Ω̄× [0,∞),
with y(t) := c1 e

θt, t ≥ 0, satisfies v ≥ ũηε on ∂Ω and at t = 0. Moreover,

Pv := vt − (v + ε)pvxx − (v + εκ)q = (θ − 1)yw + (yw + ε)p · yw−β − εκ. (2.14)

Here, at each point where w(x) ≤ ε
p−κ
β y

1
β (t), we have (yw + ε)p · yw−β ≥ εpyw−β ≥ εκ and hence Pv ≥ 0 since

θ > 1. If conversely w(x) < ε
p−κ
β y

1
β (t), then

(θ − 1)yw

εκ
>

(θ − 1)y · ε
p−κ
β y

1
β

εκ
≥ (θ − 1)ε

p−(β+1)κ
β c

β+1
β

1 ≥ (θ − 1)c
β+1
β

1 ≥ 1

due to our choice of c1. Therefore, the comparison pronciple yields ũηε ≤ v in Ω× (0,∞), which in view of (1.5)
yields (2.13). ////

2.1 Absence of finite-time gradient blow-up

Using the above boundary estimates, upon another comparison argument we obtain an (exponential) upper
bound for the growth of the norm in L∞(Ω) of any maximal solution of (0.1). This will be a consequence of the
following lemma.

Lemma 2.4 Let p ≥ 2 and q ∈ [1, p− 1]. Then there exist θ > 1 and C > 0 with the property that for any T > 0
one can pick ε0(T ) ∈ (0, 1) such that for any η ∈ (0, 1) and each ε ∈ (0, ε0(T )), the solution of (1.2) fulfills

‖ũηεx(·, t)‖L∞(Ω) ≤ C eθt for all t ∈ (0, T ). (2.15)

Proof. Let us first assume that u0 ∈ C2(Ω̄). Then standard parabolic regularity theory ([13]) ensures that

ũηε belongs to C
1+γ, 1+γ

2

loc (Ω̄ × [0,∞)) ∩ C∞(Ω̄ × (0,∞)) for some γ ∈ (0, 1), which in particular implies that
v := ũηεx lies in C0(Ω̄ × [0,∞)) ∩ C2,1(Ω × (0,∞)) for each fixed η and ε. Differentiating (1.2) with respect to
x, we see that thus v is a classical solution of

vt = (ũηε + ε)pvxx + p(ũηε + ε)p−1vvx + q(ũηε + εκ)q−1v in Ω× (0,∞)

with initial data v0 := v(·, 0) fulfilling ‖v0‖L∞(Ω) ≤ c1 := supη∈(0,1) ‖ũ0ηx‖L∞(Ω). Now in view of (1.8) we can

pick c2 > 0 independent of η and ε such that ũηε ≤ c2 in Ω× (0,∞), and fix any θ > 1 fulfilling θ ≥ q · (c2+1)q−1.
Then Lemma 2.2 and Lemma 2.3 imply that there exists c3 ≥ c1 with the property that given T > 0 one can find
ε0(T ) ∈ (0, 1) such that whenever η ∈ (0, 1) and ε ∈ (0, ε0(T )), we have |v(x, t)| ≤ c3e

θt for all t ∈ (0, T ) and each
x ∈ ∂Ω. Since c3 ≥ c1, this entails that the spatially homogeneous function V (x, t) := c3 e

θt, (x, t) ∈ Ω̄× [0,∞),
satisfies V ≥ |v| on the parabolic boundary of Ω× (0, T ) for any such η and ε. Since

Vt − (ũηε + ε)pVxx ± p(ũηε + ε)p−1V Vx − q(ũηε + ε)q−1V =
{
θ − q(ũηε + εκ)q−1

}
· c3e

θt

≥
{
θ − q(c2 + 1)q−1

}
· c3e

θt ≥ 0

in Ω× (0,∞), twice applying the comparison principle we conclude that |v| ≤ V in Ω× (0, T ), which yields (2.15)
in the case u0 ∈ C2(Ω̄).

If merely u0 ∈W 1,∞(Ω), we can choose a sequence (u
(j)
0 )j∈N ⊂ C2(Ω̄) of nonnegative functions vanishing on ∂Ω
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such that u
(j)
0

⋆
⇀ u0 in W 1,∞(Ω) and apply the above result to the corresponding solutions ũ

(j)
ηε . Since ũ

(j)
ηε → ũηε

in C2,1
loc (Ω × (0,∞)) by a continuous dependence argument applied to the non-degenerate problem (1.2), (2.15)

easily follows from the fact that the above constant c3 can be chosen independently of j. ////

On letting εց 0 and then η ց 0 in (2.15), we can now without further comment state our main result concerning
the impossibility of finite-time gradient blow-up of any maximal solution of (0.1).

Theorem 2.5 Let p ≥ 2 and q ∈ [1, p− 1], and suppose that u0 satisfies (0.2). Then the maximal solution u of
(0.1) satisfies u(·, t) ∈W 1,∞(Ω) for all t ≥ 0, and there exist θ > 1 and C > 0 such that

‖ux(·, t)‖L∞(Ω) ≤ C eθt for all t ≥ 0.

3 Gradient blow-up in infinite time

We proceed to identify some norms involving ux with respect to which our solutions of (0.1) are unbounded
as t → ∞. To this end, we first make sure that trajectories approach steady states of (0.1) in an approrpiate
sense. We observe that the natural energy E(ϕ) := 1

2

∫
Ω
ϕ2
x + 1

p−q−1

∫
Ω
ϕ−(p−q−1) associated with (0.1) may be

unbounded throughout the evolution. In fact, this is true whenever q ≤ p− 2, or if u0 is such that {u0 = 0} has
nonempty interior, for instance, where we note that in the latter case the set {u(·, t)} will have nonempty interior
as well ([6], [23]). Accordingly, our approach has to utilize more subtle arguments, relying on Lemma 1.6 on the
one hand, and comparison from below with certain time monotone solutions on the other.

Lemma 3.1 Let p ≥ 2 and q ∈ [1, p − 1], and suppose that there exist w ∈ C0(Ω̄) and a sequence of times
0 < tj → ∞ such that the maximal solution u of (0.1) satisfies

u(·, tj) → w in C0(Ω̄) as j → ∞. (3.1)

Then {w > 0} is nonvoid, and for each connected component G = (a, b) of {w > 0} we have the identity

w ≡ wa,b,p−q in G, (3.2)

where wa,b,p−q denotes the solution of (1.4) in G corresponding to β = p− q.

Proof. First, by using appropriate stationary subsolutions of (1.2) as given by Lemma 1.3 it can easily be
checked that {w > 0} contains the positivity set {u0 > 0} of u0 and hence is not empty. The proof of (3.2) will
be carried out in four steps.

Step 1. Let us first make sure that for all subintervals G′ = (a′, b′) ⊂⊂ G there exist j0 ∈ N, ε0 ∈ (0, 1) and
cG′ > 0 such that for any ε ∈ (0, ε0), the classical solution vε of





vεt = (vε + ε)pvεxx + (vε + εκ)q in G′ × (tj0 ,∞),

vε|∂G′ = 0,

vε|t=tj0
= v0,

(3.3)

with

v0(x) := cG′ · sin
π(x− a′)

b′ − a′
, x ∈ Ḡ′, (3.4)

satisfies vεt ≥ 0 in G′ × (tj0 ,∞) as well as

ũηε ≥ vε in G′ × (tj0 ,∞) (3.5)

whenever η ∈ (0, 1).
In fact, given any such G′, from (3.1) we obtain that since infx∈G′ w(x) > 0 by our assumptions on G and G′,
we must have infx∈G′ u(x, tj0) > 0 for some sufficiently large j0 ∈ N. Using that (ũηε(·, tj0))η∈(0,1),ε∈(0,ε0) is
relatively compact in C0(Ḡ′) for some ε0 ∈ (0, 1) by Lemma 2.4, we can thus find c2 > 0 such that

ũηε(x, tj0) ≥ c2 for all x ∈ G′ and each η ∈ (0, 1) and ε ∈ (0, ε0).
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We now apply Lemma 1.3 to see that there exists cG′ ∈ (0, c2) such that v0 as defined by (3.4) fulfills (v0 +
ε)pv0xx + (v0 + εκ)q ≥ 0 in G′. By a standard reasoning (cf. [17, Chapter 52], for instance), this guarantees that
the solution vε of (3.3) indeed satisfies vεt ≥ 0 in G′ × (tj0 ,∞), whereas (3.5) is a consequence of the comparison
pronciple and the fact that ũηε(·, tj0) ≥ v0 in G′.

Step 2. We next assert that for any open subinterval G′ ⊂⊂ G we can find j1 ∈ N and ε1 ∈ (0, 1) such that

(ũηε)η∈(0,1),ε∈(0,ε1) is relatively compact in C2,1
loc (Ḡ

′ × [tj1 ,∞)). (3.6)

Indeed, choosing another open interval G′′ = (a′′, b′′) ⊂ R such that Ḡ′ ⊂ G′′ ⊂ Ḡ′′ ⊂ G, from Step 1 we
particularly infer the existence of j1 ∈ N, ε1 ∈ (0, 1) and c3 > 0 fulfilling

ũηε(x, t) ≥ c3 · sin
π(x− a′′)

b′′ − a′′
for all (x, t) ∈ G′′ × (tj1 ,∞), η ∈ (0, 1) and ε ∈ (0, ε1).

Taking into account the upper bound provided by (1.8), after diminishing ε1 if necessary we obtain c4 > 0 and
c5 > 0 such that

c4 ≤ ũηε ≤ c5 in G′ × (tj1 ,∞)

for all η ∈ (0, 1) and ε ∈ (0, ε1). According to parabolic Schauder estimates ([13]) and the Arzelá-Ascoli theorem,
this entails (3.6).

Step 3. We proceed to show that
w ≥ wa,b,p−q in G. (3.7)

In view of Lemma 1.1, it is sufficient for this to prove that for all G′ = (a′, b′) ⊂⊂ G we have

w ≥ w′ := wa′,b′,p−q in G’. (3.8)

For this purpose, we fix any such G′ and take j0 ∈ N, ε0 ∈ (0, 1) and vε, ε ∈ (0, ε0), as provided by Step 1.
The since v0 ≤ c6 · w

′ in G′ for some c6 ≥ 1 by Lemma 1.1, we conclude using Lemma 1.2, Lemma 1.1 and the
comparison principle that there exists c7 > 0 such that

v0(x) ≤ vε(x, t) ≤ c6w
′(x) ≤ c7(dist(x, ∂G

′))
2

p+1−q for all (x, t) ∈ G′ × (tj0 ,∞) (3.9)

whenever ε ∈ (0, ε0). Therefore a standard limit procedure (cf. [20] for details) shows that as εց 0, vε converges
to the unique positive classical solution v of





vt = vpvxx + vq in G′ × (tj0 ,∞),

v|∂G′ = 0,

v|t=tj0
= v0,

(3.10)

in C0
loc(Ḡ

′ × [tj0 ,∞)) ∩ C
2,1
loc (G

′ × (tj0 ,∞)). Clearly, vt ≥ 0 in G′ × (tj0 ,∞), and hence in view of (3.9) and
parabolic Schauder theory, W (x) := limt→∞ v(x, t) defines a function W ∈ C0(Ḡ′) ∩ C2(G′) which clearly must
be a positive steady state of (3.10). According to the uniqueness statement in Lemma 1.1, W thus must coincide
with w′. This entails (3.8), because taking εց 0 and then η ց 0 in (3.5) ensures that u ≥ v in G′ × (tj0 ,∞), so
that in particular w = limj→∞ u(·, tj) ≥ limj→∞ v(·, tj) =W = w′.

Step 4. We complete the proof of (3.2) by showing that

w ≤ wa,b,p−q in G. (3.11)

To this end, we again fix an open interval G′ ⊂⊂ G and recall Lemma 1.6 which asserts that

−(ũηε + ε)pũηεxx ≤ (ũηε + εκ)q + zε(t) · (ũηε + ε) in G′

for all η ∈ (0, 1), ε ∈ (0, 1) and t > 0, with zε as defined by (1.10). Using the compactness property (3.6) and
the fact that limεց0 zε(t) =

1
pt

→ 0 as t → ∞, we may let ε ց 0, then η ց 0 and finally t = tj → ∞ here to

obtain that w ∈ C2(Ḡ′) and −wpwxx ≤ wq in G′. Since G′ ⊂⊂ G was arbitrary and w > 0 in G, this means that
−wxx − wq−p ≤ 0 in G, which in view of the fact that w|∂G = 0 implies (3.11) due to the elliptic comparison
principle stated in Lemma 1.1. ////

As a first consequence we state that u cannot remain bounded in W 1,∞(Ω).
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Lemma 3.2 Let p ≥ 2 and q ∈ [1, p− 1]. Then for the maximal solution u of (0.1) we have

‖ux(·, t)‖L∞(Ω) → ∞ as t→ ∞. (3.12)

Proof. If (3.12) was false, we could pick a sequence of numbers tj → ∞ and a function w ∈ W 1,∞(Ω) such

that u(·, tj)
⋆
⇀ w in W 1,∞(Ω) as j → ∞. In accordance to Lemma 3.1, there exists a subinterval G = (a, b) of Ω

such that w coincides with the solution wa,b,p−q of (1.4) in G. However, Lemma 1.1 entails that since p− q ≥ 1,
the function wa,b,p−q does not belong to W 1,∞(G). This contradiction shows that actually (3.12) must hold.
////

In the case q < p− 1 we can go even further and assert blow-up of certain weaker norms of ux.

Lemma 3.3 Let p > 2 and q ∈ [1, p− 1), and assume that α ≥ 0 and m > 1 are such that

m ≥
p+ 1− q + 2α

p− q − 1
. (3.13)

Then the maximal solution u of (0.1) satisfies

∫

Ω

uα(x, t)|ux(x, t)|
mdx→ ∞ as t→ ∞. (3.14)

Proof. Assuming on the contrary that (3.14) be false, since W 1,m(Ω) is reflexive and compactly embedded
into C0(Ω̄), we could find a sequence of times tj → ∞ along which

u(·, tj) → w in C0(Ω̄) and u
m+α
m (·, tj)⇀ w

m+α
m in W 1,m(Ω) (3.15)

would hold for some nonnegative w ∈ C0(Ω̄) vanishing on ∂Ω. By Lemma 3.1 we can fix an interval G = (a, b) ⊂ Ω
such that w ≡ wa,b,p−q in G, where wa,b,p−q denotes the solution of (1.4) corresponding to β = p − q. Invoking
Lemma 1.1 we can thus find δ > 0 and c1 > 0 such that

w(x) ≥ c1(x− a)
1

p+1−q and wx(x) ≥ c1(x− a)
2

p+1−q
−1 for all x ∈ (a, a+ δ).

Therefore,

∥∥∥(w
m+α
m )x

∥∥∥
m

Lm(Ω)
≥

(m+ α

m

)m

·

∫ a+δ

a

wα(x)wm
x (x)dx

≥ cm+α
1 ·

(m+ α

m

)m

·

∫ a+δ

a

(x− a)
2α

p+1−q
+( 2

p+1−q
−1)·mdx.

According to our assumptions on α and m, this means that w
m+α
m cannot be an element of W 1,m(Ω), which

contradicts (3.15) and thereby completes the proof. ////

4 Algebraic upper bounds for the blow-up rate

4.1 Integral bounds for solutions with arbitrary initial data

Combining Theorem 2.5 with the results from Lemma 3.2 and Lemma 3.3, we obtain that whenever 1 ≤ q ≤ p−1,
the maximal solution of (0.1) undergoes a gradient blow-up which occurs in infinite time and at a rate no faster
than exponential. We proceed to derive some upper bounds on ux which indicate that if q > 1 then this rate in
fact is at most algebraic. We first consider estimates for ux in Lm(Ω) for finite m, possibly involving powers of
u as weight functions.
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Lemma 4.1 Assume that p ≥ 2 and q ∈ [1, p − 1], and let α ≥ 0 and m > 2 be such that α ≥ (p2 − q)m. Then
there exist C > 0 and ε0 ∈ (0, 1) such that for all η ∈ (0, 1) and ε ∈ (0, ε0) the solution of (1.2) satisfies

(∫

Ω

ũαηε|ũηεx|
m
) 2

m

≤ C
(eBεq−1t − 1

eBεq−1 − 1

) 2(m−1)α
mp

+ C

∫ t

1

( eBεq−1t − 1

eBεq−1s − 1

) 2(m−1)α
mp

ds (4.1)

for all t ≥ 1, where B > 0 is as defined in Lemma 1.6.

Proof. Writing u instead of ũηε for convenience, we know from parabolic regularity theory that u is smooth
in Ω̄× (0,∞) and satisfies ut = 0 on ∂Ω× (0,∞). Hence, integrating by parts over Ω we compute

d

dt

∫

Ω

(u+ ε)α|ux|
m = −m(m− 1)

∫

Ω

(u+ ε)p+α|ux|
m−2u2xx −m(m− 1)

∫

Ω

(u+ ε)α(u+ εκ)q|ux|
m−2uxx

−(m− 1)α

∫

Ω

(u+ ε)p+α−1|ux|
muxx − (m− 1)α

∫

Ω

(u+ ε)α−1(u+ εκ)q|ux|
m

=: I1 + I2 + I3 + I4 for all t > 0. (4.2)

Here, Lemma 1.6 says that with zε as given by (1.10) we have the one-sided estimate

−uxx ≤ (u+ ε)1−pzε(t) + (u+ ε)−p(u+ εκ)q in Ω× (0,∞),

so that since α ≥ 0 and m > 2,

I3 ≤ (m− 1)α · zε(t) ·

∫

Ω

(u+ ε)α|ux|
m + (m− 1)α

∫

Ω

(u+ ε)α−1(u+ εκ)q|ux|
m. (4.3)

Moreover, applying Young’s inequality and the Hölder inequality we find

|I2| ≤ m(m− 1)

∫

Ω

(u+ ε)p+α|ux|
m−2u2xx +

m(m− 1)

4

∫

Ω

(u+ ε)−p+α(u+ εκ)2q|ux|
m−2

≤ m(m− 1)

∫

Ω

(u+ ε)p+α|ux|
m−2u2xx

+
m(m− 1)

4

(∫

Ω

(u+ ε)α|ux|
m
)m−2

m

·
(∫

Ω

(u+ ε)−
mp
2 +α · (u+ εκ)mq

) 2
m

(4.4)

for all t > 0. Since Lemma 1.4 ensures that u ≤ c1 in Ω× (0,∞) with some c1 > 0 independent of η and ε, and
since κ > 1, our restriction on α allows us to estimate

m(m− 1)

4

(∫

Ω

(u+ ε)−
mp
2 +α · (u+ εκ)mq

) 2
m

≤
m(m− 1)

4

(∫

Ω

(u+ ε)−
mp
2 +α+mq

) 2
m

≤ c2 :=
m(m− 1)

4

(
|Ω| · (c1 + 1)−

mp
2 +α+mq

) 2
m

for all t > 0. Inserted into (4.4), combined with (4.3) and (4.2) this implies that the function y defined by
y(t) :=

∫
Ω
(u+ ε)α|ux|

m, t ≥ 1, satisfies

y′ ≤ c2y
m−2
m + (m− 1)αzε(t) · y for all t > 0.

A straightforward integration of this Bernoulli-type ODI leads to the estimate

y
2
m (t) ≤ y

2
m (1) · e

2(m−1)α
m

·Zε(t) +
2c2
m

·

∫ t

1

e
2(m−1)α

m
·(Zε(t)−Zε(s))ds for all t ≥ 1 (4.5)

with Zε(t) :=
∫ t

1
zε(s)ds, t ≥ 1. Recalling the definition (1.10) of zε, we can explicitly compute Zε to obtain

Zε(t) =
Bεq−1

p
·

∫ t

1

ds

1− e−Bεq−1t
=

1

p
· ln

eBεq−1t − 1

eBεq−1 − 1
.

Thus, from (4.5) we can can easily derive (4.1) thanks to the fact that supη∈(0,1),ε∈(0,ε0) ‖ũηεx(·, 1)‖L∞(Ω) is finite
for some ε0 ∈ (0, 1) by Lemma 2.4. ////

After passing to the degenerate limit, for q > 1 this yields the following.
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Corollary 4.2 Let p > 2 and q ∈ (1, p − 1], and suppose that α ≥ 0 and m > 2 are such that α ≥ (p2 − q)m.
Then there exists C > 0 such that for each t ≥ 2, the maximal solution u of (0.1) fulfills

(∫

Ω

uα|ux|
m
) 1

m

≤





C · t
1
2 if α < mp

2(m−1) ,

C · (t ln t)
1
2 if α = mp

2(m−1) ,

C · t
(m−1)α

mp if α > mp
2(m−1) .

(4.6)

Proof. We fix t ≥ 2 and let ε ց 0 in (4.1), which in view of the fact that q > 1 is equivalent to letting
δ := Bεq−1 tend to zero. To justify the limit process on the right of (4.1), we observe that for each s ∈ [1, t] we
have

eδt − 1

eδs − 1
→

t

s
as δ → 0 (4.7)

by l’Hospital’s rule. Since t is fixed, there exist positive constants c1 and c2 such that eδt − 1 ≤ c1δt and

eδs − 1 ≥ c2δ for all s ∈ [1, t], which shows that 1 ≤ eδt−1
eδs−1

≤ c1t
c2

for all such s. Therefore the dominated
convergence theorem may be applied along with (4.7) and Fatou’s lemma to assert that after taking ε ց 0 and
then η ց 0, (4.1) gives

(∫

Ω

uα|ux|
m
) 2

m

≤ C ·

(
t
2(m−1)α

mp +

∫ t

1

( t
s

) 2(m−1)α
mp

ds

)
for all t ≥ 2

with C > 0 taken from Lemma 4.1. This easily yields (4.6). ////

Choosing the smallest possible α and hence the largest possible weight in (4.6), recalling Lemma 3.3 we can
summarize as follows.

Corollary 4.3 Let p > 2 and q ∈ (1, p− 1). Then as 1 ≤ t→ ∞, for the proper solution u of (0.1) we have

Ct
1
2 ≥ ‖ux(·, t)‖Lm(Ω) → ∞ for all m > max{2, p+1−q

p−q−1} if p
2 ≤ q < p− 1,

Ct
(p−2q)(m−1)

2p ≥ ‖(u
p+2−2q

2 )x‖Lm(Ω) → ∞ for all m > max{2, p+1−q
q−1 ,

2(p−q)
p−2q } if 1 < q < p

2 ,

}

(4.8)
with some C > 0 depending on m only.

Proof. If q ≥ p
2 , we choose α := 0 in Corollary 4.2, whence the first inequality in (4.8) follows from (4.6). On

the other hand, upon this choice of α, Lemma 3.3 says that
∫
Ω
|ux(·, t)|

m → ∞ as t→ ∞ whenever m ≥ p+1−q
p−q−1 .

The proof in the case q < p
2 is similar. ////

4.2 An estimate in W 1,∞(Ω) in the case infx∈Ω
u0(x)

dist(x,∂Ω)
> 0

According to the possible loss of regularity due to the degeneracy in (0.1), pointwise estimates for the derivative ux
cannot be derived in a trivial way from estimates for ux on the lateral boundary. In fact, in [25] it was shown that
even some positive classical solutions exist which have the peculiar property that ux ≡ 0 on ∂Ω×(0,∞). Therefore,
in order to turn the boundary estimate in Lemma 2.2 into its natural counterpart concerning ‖ux(·, t)‖L∞(Ω), we
shall need an additional assumption on the initial data. Requiring u0 to be bounded from below by a positive
multiple of dist(·, ∂Ω), this will provide sufficient control the degeneracy near points where u is small.

Lemma 4.4 Let p > 2 and q ∈ (1, p− 1], and suppose that there exists c > 0 such that

u0(x) ≥ c dist(x, ∂Ω) for all x ∈ Ω. (4.9)

Then for any ν > 0 there exists C(ν) > 0 with the property that for all T > 0 there is ε0(T ) ∈ (0, 1) such that
for each η ∈ (0, 1) and ε ∈ (0, ε0(T )) the solution ũηε of (1.2) satisfies

‖ũηεx(·, t)‖L∞(Ω) ≤ C(ν) · (t+ 1)
p−q−1
2(q−1)

+ν for all t ∈ (0, T ). (4.10)
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Proof. We detail the proof for q < p − 1 only; upon slight modifications, the borderline case q = p − 1 can
be treated in quite the same manner.
We first observe that due to Lemma 2.4 there exist c1 > 0 and ε1 ∈ (0, 1) such that whenever η ∈ (0, 1) and
ε ∈ (0, ε1),

‖ũηεx(·, t)‖L∞(Ω) ≤ c1 for all t ∈ [0, 1], (4.11)

whence it is sufficient to prove (4.10) for 1 < t < T < ∞. To this end, we fix ν > 0 and apply Lemma 2.2 to
obtain c2 ≥ 1 such that for all T > 1 we can find ε2(T ) ∈ (0, ε1) such that

ũηε(x, t) ≤ c2t
p−q−1
2(q−1)

+ ν
2 · x for all (x, t) ∈ Ω× (1, T ), (4.12)

whence in particular

ũηεx(0, t) ≤ c2t
p−q−1
2(q−1)

+ ν
2 for all t ∈ (1, T ) (4.13)

whenever η ∈ (0, 1) and ε ∈ (0, ε2(T )). Moreover, in view of our assumption (4.9), (1.8) provides c3 ∈ (0, 1),
c4 > 0 and ε3 ∈ (0, ε2(T )) such that for η ∈ (0, 1) and ε ∈ (0, ε3),

c3dist(x, ∂Ω) ≤ ũηε(x, t) ≤ c4 for all (x, t) ∈ Ω× (0,∞). (4.14)

Therefore interior parabolic regularity theory implies the existence of c5 > 0 fulfilling
∣∣∣ũηεx

(L
2
, t
)∣∣∣ ≤ c5 for all t ≥ 1 (4.15)

for η ∈ (0, 1) and ε ∈ (0, ε3).
We now fix γ ∈ (0, 1) so small that γ < p−2

2 ,

(p− q − 1

2(q − 1)
+
ν

2

)
· (γ + 1) ≤

p− q − 1

2(q − 1)
+ ν and

(p− q − 1

2(q − 1)
+
ν

2

)
· 2γ ≤ 2ν, (4.16)

and then a constant y0 > 0 satisfying

y0 ≥ c1c
γ
2 , (4.17)

y0 ≥ 4cγ+1
2 , (4.18)

y0 ≥ c5 ·
(c4 + 1

L
2

)γ

(4.19)

as well as

y0 ≥
(4(q + γ)c2γ2

pγ

) 1
2

·
(2(q − 1)(q + γ)

p− q − 1

) p−q−1
2(q−1)

and (4.20)

y0 ≥
( (q + γ)c2γ2
γ(p− γ − 1)

) 1
2

·
(2(q − 1)(q + γ)

p− q − 1

) p−q−1
2(q−1)

. (4.21)

Following [10], for T > 1, η ∈ (0, 1) and ε ∈ (0, ε3) we introduce the auxiliary function

J(x, t) := ũηεx(x, t)− y(t)ψ(x)f(ũηε(x, t)), (x, t) ∈
[
0,
L

2

]
× [1, T ]

with

y(t) := y0t
p−q−1
2(q−1)

+ν
, t ≥ 1,

ψ(x) := (x+ ε)γ , x ∈
[
0,
L

2

]
, and

f(u) := (u− ε)−γ , u ≥ 0.

Then at t = 1,

J(x, 1) = ũηεx(x, 1)− y0(x+ ε)γ(ũηε(x, 1) + ε)−γ

≤ c1 − y0c
−γ
2

≤ 0 for all x ∈
(
0,
L

2
) (4.22)
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due to (4.11), (4.12), (4.17) and the fact that c2 ≥ 1. On the left lateral boundary x = 0,

J(0, t) = ũηεx(0, t)− y(t)

≤ c2t
p−q−1
2(q−1)

+ ν
2 − y0t

p−q−1
2(q−1)

+ν

≤ 0 for all t ∈ (1, T ) (4.23)

because of (4.13), (4.18) and, again, our assumption c2 ≥ 1. For x = L
2 we have

J
(L
2
, t
)

= ũηεx

(L
2
, t
)
− y(t) ·

(L
2
+ ε

)γ

·
(
ũηε

(L
2
, t
)
+ ε

)−γ

≤ c5 − y0 ·
(L
2

)γ

· (c4 + 1)−γ

≤ 0 for all t ∈ (1, T ) (4.24)

in view of (4.15), (4.14) and (4.19).
Next, using the identities

Jx = ũηεxx − yψxf − yψf ′ũηεx and

Jxx = ũηεxxx − yψxxf − 2yψxf
′ũηεx − yψf ′′ũ2ηεx − yψf ′ũηεxx,

we compute

Jt = (ũηε + ε)pJxx + p(ũηε + ε)p−1 · (J + yψf) · Jx

+
{
2yψx(ũηε + ε)pf ′ + yψ(ũηε + ε)pf ′′J + 2yψ(ũηε + ε)pf + q(ũηε + εκ)q−1

+p(ũηε + ε)p−1(yψxf + 2y2ψ2ff ′ + yψf ′J)
}
· J

−y′ψf + yψxx(ũηε + ε)pf + 2y2ψψx(ũηε + ε)pff ′ + py2ψψx(ũηε + ε)p−1f2

+y3ψ3(ũηε + ε)pf2f ′′ + py3ψ3(ũηε + ε)p−1f2f ′

+qyψ(ũηε + εκ)q−1f − yψ(ũηε + εκ)qf ′

in (0, L2 )× (1, T ). Thus,

Jt = LJ + I(x, t) in
(
0,
L

2

)
× (1, T ), (4.25)

where L is a linear uniformly parabolic operator with smooth coefficients and

1

yψ
· I = −

y′

y
(ũηε + ε)−γ − γ(1− γ)(x+ ε)−2(ũηε + ε)p−γ

+γ(p− 2γ)y(x+ ε)γ−1(ũηε + ε)p−2γ−1 − γ(p− γ − 1)y2(x+ ε)2γ(ũηε + ε)p−3γ−2

+q(ũηε + εκ)q−1(ũηε + ε)−γ + γ(ũηε + εκ)q(ũηε + ε)−γ−1

≤ −
y′

y
(ũηε + ε)−γ + pγy(x+ ε)γ−1(ũηε + ε)p−2γ−1 −

pγ

2
y2(x+ ε)2γ(ũηε + ε)p−3γ−2

+(q + γ)(ũηε + ε)q−γ−1

=: −I1 + I2 − I3 + I4. (4.26)

Here we have used that γ < 1, that γ < p−2
2 , and that εκ ≤ ε since κ > 1.

Now (4.12), (4.16) and (4.18) imply

I2
1
2I3

=
4

y
·
( ũηε + ε

x+ ε

)γ+1

≤
4

y0t
p−q−1
2(q−1)

+ν
· cγ+1

2 · t(
p−q−1
2(q−1)

+ ν
2 )·(γ+1) ≤ 1 in

(
0,
L

2

)
× (1, T ). (4.27)

Moreover, thanks to (4.16) we know that

I4
1
2I3

=
4(q + γ)

pγy2

( ũηε + ε

x+ ε

)2γ

(ũηε + ε)−(p−q−1)
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≤
4(q + γ)

pγy20 · t
p−q−1
q−1 +2ν

· c2γ2 · t(
p−q−1
2(q−1)

+ ν
2 )·2γ(ũηε + ε)−(p−q−1)

≤
4(q + γ)c2γ2

pγy20
· t−

p−q−1
q−1 · (ũηε + ε)−(p−q−1)

≤ 1 (4.28)

holds at any point (x, t) ∈ (0, L2 )× (1, T ) where

ũηε + ε ≥
(4(q + γ)c2γ2

pγy20

) 1
p−q−1

· t−
1

q−1 . (4.29)

If the latter inequality is violated, however, then since y′ ≥ p−q−1
2(q−1) ·

y
t
we obtain

I4

I1
=

(q + γ)(ũηε + ε)q−1

y′

y

<
(q + γ) ·

(
4(q+γ)c2γ2

pγy2
0

) q−1
p−q−1

· t−1

p−q−1
2(q−1) · t

−1

=
2(q − 1)(q + γ)

p− q − 1
·
(4(q + γ)c2γ2

pγy20

) q−1
p−q−1

≤ 1 (4.30)

due to (4.20). Combining (4.22)-(4.30), we conclude from the maximum principle that J ≤ 0 in (0, L2 ) × (1, T )
and hence

ũηεx(x, t) ≤ y0t
p−q−1
2(q−1)

+ν ·
( x+ ε

ũηε + ε

)γ

≤ y0c
−γ
3 t

p−q−1
2(q−1)

+ν for all (x, t) ∈
(
0,
L

2

)
× (1, T ) (4.31)

for all η ∈ (0, 1) and ε ∈ (0, ε3) because of (4.14).

In order to estimate ũηεx from below, we proceed quite similarly, so that we may confine ourselves with an outline
of the proof: We now define

J̃(x, t) := ũηεx(x, t) + y(t)ψ(x)f(ũηε(x, t)), (x, t) ∈
[
0,
L

2

]
× [1, T ],

with y, ψ and f as above. Then

J̃(x, 1) ≥ −c1 + c
−γ
2 y0 ≥ 0 for all x ∈

(
0,
L

2

)
(4.32)

by (4.17). Moreover,
J̃(0, t) ≥ ũηεx(0, t) ≥ 0 for all t ∈ (1, T ), (4.33)

since ũηε ≥ 0 and ũηε|∂Ω = 0, while (4.19) asserts that

J̃
(L
2
, t
)
≥ −c5 + y0 ·

(L
2

)γ

· (c4 + 1)−γ ≥ 0 for all t ∈ (1, T ). (4.34)

Furthermore,

J̃t = L̃J̃ + Ĩ(x, t) in
(
0,
L

2

)
× (1, T ) (4.35)
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with a smooth linear uniformly parabolic operator L̃ and

1

yψ
· Ĩ =

y′

y
(ũηε + ε)−γ + γ(1− γ)(x+ ε)−2(ũηε + ε)p−γ

+γ(p− 2γ)y(x+ ε)γ−1(ũηε + ε)p−2γ−1 + γ(p− γ − 1)y2(x+ ε)2γ(ũηε + ε)p−3γ−2

−q(ũηε + εκ)q−1(ũηε + ε)−γ − γ(ũηε + εκ)q(ũηε + ε)−γ−1

≥
y′

y
(ũηε + ε)−γ + γ(p− γ − 1)y2(x+ ε)2γ(ũηε + ε)p−3γ−2 − (q + γ)(ũηε + ε)q−γ−1

=: Ĩ1 + Ĩ2 − Ĩ3. (4.36)

Here, if (x, t) ∈ (0, L2 )× (1, T ) is such that

ũηε + ε ≥
( (q + γ)c2γ2
γ(p− γ − 1)y20

) 1
p−q−1

t−
1

q−1 , (4.37)

then

Ĩ3

Ĩ2
=

q + γ

γ(p− γ − 1)

( ũηε + ε

x+ ε

)2γ

· (ũηε + ε)−(p−q−1)

≤
q + γ

γ(p− γ − 1)y20 · t
p−q−1
q−1 +2ν

· c2γ2 · t(
p−q−1
2(q−1)

+ ν
2 )·2γ · (ũηε + ε)−(p−q−1)

≤ 1.

If (4.37) is false, however, then

Ĩ3

Ĩ1
=

(q + γ)(ũηε + ε)q−1

y′

y

<
(q + γ) ·

(
(q+γ)c2γ2

γ(p−γ−1)y2
0

) q−1
p−q−1

· t−1

p−q−1
2(q−1) · t

−1

≤ 1

according to (4.21). Therefore (4.32)-(4.36) along with the maximum principle and (4.14) ensure that

ũηεx(x, t) ≥ −y0t
p−q−1
2(q−1)

+ν ·
( x+ ε

ũηε + ε

)γ

≥ −y0c
−γ
3 · t

p−q−1
2(q−1)

+ν

is valid for all (x, t) ∈ (0, L2 )× (1, T ), η ∈ (0, 1) and ε ∈ (0, ε3). Combined with (4.31) and (4.11) this establishes
(4.10). ////

Without further difficulty we can pass to the proof of our final result which essentially sharpens the outcome of
Lemma 3.2 under the assumption (4.9).

Theorem 4.5 Let p > 2 and q ∈ (1, p− 1], and assume that u0 satisfies (0.2) and

u0(x) ≥ c dist(x, ∂Ω) for all x ∈ Ω

with some c > 0. Then for all ν > 0 there exists C(ν) > 0 such that the maximal solution u of (0.1) satisfies

‖ux(·, t)‖L∞(Ω) ≤ C(ν) · (t+ 1)
p−q−1
2(q−1)

+ν for all t > 0.

Proof. The claim immediately follows on letting ε→ 0 and then η → 0 in (4.10). ////
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