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Abstract

This work deals with the Dirichlet problem for the degenerate parabolic equation u; = uPu..+u? in a bounded
interval Q@ C R, where p > 2 and ¢ € [1,p — 1].

It is shown that whenever the initial data uo belong to W(Q), are nonnegative and vanish on 952, the
so-called maximal solution v undergoes an infinite-time gradient blow-up. That is, the function u(-, t) belongs
to Wh*(Q) for all ¢t € [0,00), but we have ||ug(-,t)| 1z — oo as t — oo. Moreover, it is shown that if
q < p— 1 then for sufficiently large m > 1, even the functional [, u®|u,|™ blows up for some a = a(m) > 0.
Finally, by providing explicit upper estimates for the growth of u, with respect to time, it is shown that the
rate of gradient blow-up in any of the integral norms considered above is not faster than algebraic, provided
that ¢ > 1. In the special case when wuo(x) > cdist(z, ) for all z € Q and some ¢ > 0, the same is valid for
the norm of ug in L*°(Q).
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Introduction

We consider nonnegative solutions of the Dirichlet problem

wp = uPug, + ul in © x (0, 00),
ulgo = 0, (0.1)
u|t:0 = Uy,

in a bounded interval 2 = (0, L) C R, where p > 0 and ¢ > 1 and the initial data ug are assumed to satisfy
ug € WH>(9Q), up >0 in Q and  wuglaq = 0. (0.2)

Equations with degeneracies of this type are used in various applications such as, for instance, in electromag-
netism, differential geometry and population dynamics ([2], [3], [15]), where usually p > 1. In the case p € (0, 1),
the PDE in (0.1) can be transformed into the forced porous medium equation vy = (V™) + v with m =

1-p
and 0 = {=£, which is essentially well-understood ([11]).

The existing literature provides a number of examples showing that in the case p > 1 the properties of the diffu-
sion operator in (0.1) are significantly different from those in the range p € (0,1). First results in this direction
revealed that weak solutions need not be unique, and that families of uniformly bounded smooth solutions need
not be locally uniformly continuous ([16], [4], [5]). More recently, further peculiar phenomena were detected. For
instance, classical solutions of u; = u? Au exist for which u(-,t) belongs to C§°(R) for all times ([22]). In the case
p>3and g =p+ 1, (0.1) possesses positive classical solutions which heavily oscillate in time in the sense that
u(-,t;) — 0 and wu(-,tj41) — +oo along some sequences t;,t;41 — oo ([24]). A more subtle result concerning
nonconvergent trajectories states that if p > 1 and ¢ € (p — 1,p+ 1) is such that ¢ > 3 — p, then (0.1) allows for
positive solutions for which (u(-,t))¢>o is bounded in C*(Q), but for which u(-,t) does not converge in C1(2) as
t — oo ([25]).

The present paper focuses on the related phenomenon of gradient blow-up, which is said to occur when a solution
itself remains bounded in L>°(Q), but has a spatial gradient that becomes unbounded either in finite or infinite



time. Such effects are ruled by classical parabolic regularity results in any semilinear diffusion equation with
source terms depending on z and u only, or growing at most quadratically with respect to u, ([13]). Accordingly,
phenomena of this type have been detected quite rarely so far, and most examples of gradient blow-up available
in the literature concentrate on equations of type uy = Au+ f(u, Vu) (see [1], [12], [9], [8], [14] and the references
in the latter, for instance).

As to the quasilinear problem (0.1), it was shown in [18] that when
p>2 and 1<qg<p-—1,

under the additional assumption that ug is smooth in Q and satisfies ug(x) > cdist(z, Q) for all z € Q and some
¢ > 0, the problem (0.1) has a positive classical solution u for which u(-,t) belongs to C*(Q) for all ¢ > 0 but
lu(-, ) [[wree () — 00 as t — oo.

One goal of this work is to clarify whether this phenomenon indeed relies on this additional lower estimate for
ug. In fact, in view of the mentioned lack of regularity in (0.1) it is a priori conceivable that oscillatory behavior
of ug near some of its zeros may result in more irregular behavior such as finite-time or even immediate gradient
blow-up. Our main result in this direction states that

e if p > 2 and g € [1,p — 1], then for all (maximal) solutions of (0.1) we have u, € L*(Q x (0,T)) for all
T >0, but [|ug(-,t)| 1) — 00 ast — oo (cf. Theorem 2.5 and Lemma 3.2, and see Section 1 for a precise
definition of our solution concept).

We moreover ask whether gradient blow-up also occurs in some weaker sense, involving norms of u, measured
only in L™(Q) for some finite m. Indeed, we shall find that this is true for any sufficiently large m:

elfp>2qge(l,p—1) andaZOandm>1aresuchthatmz%,then
/ u®(z, 1) |ug (x, t)|"de — oo as t — oo
Q

(Lemma 3.3).

A natural next step in the study of this type of singularity formation appears to consist of determining the rate
at which the gradient blows up. In this respect, we shall prove that if ¢ > 1 then this blow-up occurs at a rate
not faster than algebraic. Namely,

e if p>2and g€ (1,p — 1], then for all sufficiently large m > 2 there exists C,,, > 0 such that for all ¢ > 1,

[t (- )| L () < Ct2 if ¢ > 5,
+2-2 (p—2¢)(m—1) .
1w allm@y < Ct 2 if g < 3%.
and the respective expressions on the left tend to +00 as t — co (see Corollary 4.3 and also Corollary 4.2
for a slightly more general result).

Finally, under the positivity assumption from [18] we can derive an algebraic upper bound for the blow-up rate
in W1o°(Q) when ¢ > 1:

e If p>2andqe (1,p—1] and ug(z) > edist(x,90Q) for all x € Q and some ¢ > 0, then for all v > 0 there
exists C'(v) > 0 such that

e ()| e () < C(W) -5 D forall t > 1
(Theorem 4.5).

We do not know whether the above estimates are optimal, and it is an interesting open problem to find any lower
estimate for the rate of gradient blow-up in any of the spaces considered above. Also, we do not know whether
the range of ¢ considered here is the maximal one within which gradient blow-up occurs. Finally, it is worth
mentioning that all of our results refer to the maximal among several possible weak solutions only. We are not
aware of any example of a weak solution w for which w, blows up before t = co, but unfortunately we cannot
rule out such a possibility.



1 Preliminaries
A natural way of approximating solutions of (0.1) consists of solving the regularized problem

Uep = UPUczy + UZ in Q x (0,7,
ﬂn5|ag =g, (1.1)
analt:O =ug+¢€

for £ € (0,1). Indeed, due to the a priori lower bound u. > ¢ this problem is actually non-degenerate, and it
can be seen by standard arguments that (1.1) has a classical solution u. defined up to a maximal existence time
Trnaz,e € (0,00]. Moreover, Ty,q5,c increases and u. decreases with e, so that Ty,qq = lima 0 Trnaz,e € (0,00]
exists and

u(x, t) == ;1&1) us(x,t)

defines a nonnegative function in Q x [0, Tjnaz) ([20], [16]). Throughout the sequel we shall call this limit u the
maximal solution of (0.1), ignoring here the question in which (pointwise or integral) sense u actually solves (0.1).
We only remark without proof that by the methods presented in [16] and [4] it can be seen that u indeed solves
(0.1) in the natural weak sense, but that weak solutions are not unique; however, u in fact is maximal among all
weak solutions.

Being interested in gradient estimates, we should notice that unlike the limit problem (0.1), for each fixed
e € (0,1) the problem (1.1) contains a source term approximately equal to the positive constant €7 near 0.
Since this might inconveniently distort the actual gradient behavior of u near 9 (and, more generally, wherever
w is small), in the sequel we shall rely on a different regularization with a slightly weaker source term. Moreover,
we shall introduce a second regularization parameter which will enable us to separate technical difficulties arising
from possible zeros in the interior of {2 from those stemming from the enforced behavior near 0.

To be precise, for n € (0,1) and € € (0, 1), we consider

Upet = (Une + €)PlUpese + (Uye + 7)1 in Q x (0,7,
ﬂns‘BQ = 07 (1.2)

ane ‘t:O = ﬂOm
where

fioy(2) := uo(a) +msin =, € (0,L),

and « is a fixed number satisfying

k> 1, k>L  and K<M, (1.3)
2q q

which is possible whenever 0 < ¢ < p + 1. Again, (1.2) has a unique positive classical solution ,. defined up
to a maximal existence time Tyq0 ne € (0,00]. We shall see in Lemma 1.4 and Lemma 1.5 below that actually
Tinaz,ne = 00, and that by this procedure after taking ¢ \, 0 and then n \, 0 we again rediscover the maximal
solution u defined above.
We prepare this by three statements concerning steady states of (0.1) as well as stationary sub- and supersolutions
of (1.2) that will be used in several places in the sequel.
To begin with, let us consider the — possibly singular — elliptic boundary-value problem

Wy = w P in (a,b), (1.4)
w(a) =w(b) =0,
where 8 > 0. A list of usefuly properties of (1.4) is provided by the following lemma which can be proved in quite
an elementary way using a straightforward integration of the ODE in (1.4) (cf. [21], [20] and [7], where details
can be found in the general n-dimensional setting).



Lemma 1.1 Suppose that —oo < a < b < oo. Then for all § > 0, the problem (1.4) admits a unique classical
solution w = wq p 5 € C°([a,b]) N C?((a, b)) which is positive in (a,b). This solution satisfies

c-pp(z) <w(z) <C-psx) for all x € (a,b) (1.5)

and

3a+b) g (a+3b7b)7

¢ ppl(x) < dist(z,09) - lwy(x)| < C - pg(x) forall z € (a, 2 1

(1.6)

with certain positive constants ¢ and C, where

(dist(z, 09)) 71 ifB>1,
pﬂ(x) = dlSt(fE7aQ) . ’/h’l m Zfﬁ = ].7
dist(x, 09) if0<pg<1

with some conveniently large K > 0.

Moreover, if w and W belong to C°([a, b])NC?((a, b)) and are positive in (a,b) with w(a) = w(b) = wW(a) = w(b) =0
and w,, —w P <0< ~Wyp —w ? in (a,b), then w < .

Finally, if (aj)jen C R and (bj)jen C R are such that a /" a; < b; /b as j — oo, then the corresponding
solutions in (aj,b;) satisfy wa,p, s — Wapg in Cp, ((a,b)) as j — oo.

In respect of boundedness of solutions in L>°(£2), it is a convenient feature of (1.2) that large multiples of steady
states of (0.1) are supersolutions of (1.2).

Lemma 1.2 Let g € [1,p] and —oo < a < b < co. Then the solution w := wap p—q of (1.4) has the property that
forallC > 1 and € € (0,1),

v(z) :=C - w(x), x € [a,b],
satisfies
(v+ )Py + (v+£7)1 <0 in (a,b).
PROOF.  Since £ > 1 by (1.3), and since € < 1, we have (Cw + £%)? < (Cw + €)? and hence using (1.4) we find

—(v+e)Pvye  (Cw+e)P™7- Cwi™P
(v4em)e (Cw +er)a

> (Cw+e)P~1.- Cwl™ > (Cw)P™1 - Cw?™? = crti=a >,
because p > q and C' > 1. /1]

Thanks to the source term in (1.2), we can also identify some arbitrarily small stationary subsolutions of (1.2).

Lemma 1.3 Suppose that g € [1,p + 1), and that —o0o < a < b < 0o. Then there exist ¢y > 0 and ¢ € (0,1)
such that for all ¢ € (0,¢o] and e € (0,¢),

v(x) ::c~81n%7 x € [a,b],
satisfies
(v+ )P4z + (v+7)T>0 in [a,b]. (1.7)
PROOF.  Writing A = (%)%, we let ¢o := (2PA;)” 7¥1=7 and fix g9 € (0,1) small enough fulfilling £~ <

(2PX1)~1, which is possible since p + 1 — gx > 0 by (1.3). Then given e € (0,¢), if x is such that v(z) € (0,¢)
we have
Mo(vte)P _ e (2)°
(v+e®)e — gar

< PNy - gPTImar <,



whereas if ¢ < v(x) < ¢, then

Av(v + g)P - A - (20)P
(v+er) — v9

< 2PN 0PI
As vz, = —Ajv in [a, b], this proves (1.7) for all ¢ € (0,¢p] and € € (0,¢eq). //]/

As a aconsequence of Lemma 1.2 we obtain global solvability of (1.2) and some pointwise estimates from above
and below which are essentially independent of 1 and ¢.

Lemma 1.4 Let p > 1 and q € [1,p]. Then there exist ¢ > 0, C > 0 and eg € (0,1) such that for all n € (0,1)
and € € (0,¢9), the solution U,. of (1.2) exists globally in time and satisfies

w C/(dist(z, 0Q)) 7¥i— ifg<p—1

. . Uy . ~ . .

len{L’?"‘yHElgm}dlSt(%aQ) < lge(z,1) < Cdlst(x,aﬁ)\/lnm ifg=p—1, (1.8)
Cdist(z, 0) ifg>p—1

for all (z,t) € Q x (0, 00).

PROOF.  Letting w = wo, 1, p—q denote the solution of (1.4), thanks to (1.5) and the fact that sup, ¢ (0,1 [|%oyz || L= ()
is finite, we can find ¢; > 1 independent of 7 and ¢ such that g, < ¢i1 - w in 2. According to Lemma 1.2,
(x,t) = c1 - w(x) is a supersolution of (1.2) dominating t,. on the parabolic boundary of Q x (0, Trnaz,ne), SO
that the comparison principle ensures that @,. < ¢; - w in Q X (0, Tyqz,ne). By parabolic regularity theory, this
entails that actually Ty,40,ne = 00, and in view of (1.5) this moreover establishes the right inequality in (1.8).
To see the left one, we fix ¢y and ¢ as in Lemma 1.3 and let ¢y := inf,cq % and c3 := inf cq %,

where O(x) := sin 7*. Given 1 € (0,1) and € € (0,0), we then have the inequality
Uop(x) > (n+ cac3) - O(2) for all z € Q.
By Lemma 1.3 and the comparison principle, from this we infer that
Upe (x,t) > min{cy,n + cacs} - O(x) for all (x,t) € Q x (0, 00)

and thereby easily complete the proof of (1.8). /l]/

We can now make sure that the approximation procedure (1.2) indeed leads to the same result as (1.1).

Lemma 1.5 Letp > 1 and q € [1,p]. Then for each n € (0,1), the limit U, := lim\ o Uy ezists in the pointwise
sense, and uy, is the unique positive classical solution of (0.1) with initial data Go,. Moreover, we have i, N\, u
in Q x [0,00) as n \, 0, where u denotes the mazimal solution of (0.1).

PrROOF.  According to the two-sided estimates in (1.8), standard parabolic regularity theory ([13]) and the
Arzeld-Ascoli theorem ensure that for fixed n € (0,1) the set (fy)-c(0,c,) is relatively compact in Co (0 x
[0,00)) NC*(Q x (0,00)). Since positive classical solutions of (0.1) are unique ([20]), this entails that @, — u,
in CP (2 x [0,00)) N C’lzo’cl(ﬂ x (0,00)), and that @, has the claimed solution property.

Next, by comparison ([20]), @, decreases to some u as n N\, 0. Clearly, & < u, because g, < uo + n and hence
Une < u. whenever ¢ > 7. To see the opposite inequality, we consider the solutions @,. of (1.1) with initial
data Uye|i—o = oy + €. By comparison, these satisfy w,. > u., but according to a similar limit procedure they
also decrease to a positive classical solution of (0.1) with initial data o, ([20]). Again by uniqueness of positive

classical solutions of (0.1), we infer that ,. — @, as € \, 0, so that taking n \, 0 we obtain @ > u. //]/

As a last preliminary, we shall need the following adaptation to (1.2) of the one-sided estimate “t > —é that
can easily be derived for (0.1) at a formal level. Semi-convexity inequalities of this type play a considerable role
in the qualitative study of a number of related degenerate equations such as the classical porous medium and
fast diffusion equations (see [19], for instance).



Lemma 1.6 Letp >0 and g € [1,p+1), and let B := (b+ 1)(p+‘117q)q_1. Then for anyn € (0,1) and € € (0,1)
the solution .. of (1.2) satisfies

(e + 7)1

~ 1~
Upe + )P Upege + —
(tn n e T 2

> —2z.(t) for all (x,t) € Q x (0,00), (1.9)

where z. deotes the solution of z. = —pz% + Be?™ 1z, for t > 0 with limy~ o 2 (t) = +00 given by

Bet~1
ze(t) :== P By t>0. (1.10)

PROOF.  We first observe that according to parabolic regularity results, for each 7 > 0 the function v defined
by v(z,t) := Upe(z, 7 +t) + € is smooth in  x [0,00) and satisfies v, = VPV, + (v — )7 in Q x (0, 00) with

§ := e —¢e" > 0 according to (1.3). Since v > ¢, we thus see that also V := % = vP"lu,, + @ is smooth in
Q x [0,00), and a straightforward computation reveals that
0="PV :=V; —0PVyy — 20P 10,V —pV?2 — I(x,t)V  in Q x (0,00) (1.11)

with I(z,t) := % . {(p+ 16— (p+1-— q)v}. Clearly, I < 0 holds at each point where v > ;Tﬂg. However,

if o< 1(71:317)2, then since v > e > ¢ and ¢ > 1, we have
(v—8)1! (v —8)1
I(z,t) < ——— (p+1)6<—F— - (p+1)
+ 1) (2 —1)9-1. e -1
< (p )(p+1—q ) <(p+ 1)( q )q .64—1’
€ p+1—gq

and therefore it follows that I < Be?~! in Q x (0,00). Since z. is positive, this implies that (x,t) = —z.(t) is a
subsolution of the parabolic equation in (1.11). Using that —z.(t) — —oo as t \, 0, upon a comparison argument
we conclude that V' > —z.(t) in Q x (0,00). As 7 > 0 was arbitrary, this shows that =2t > —z_(¢) in Q x (0, 00)

U

and thereby completes the proof. /1]

2 Estimates for the large time behavior near 0¢). Absence of gradient
blow up in finite time

In this section our goal is to find estimates for the quotient % which are essentially independent of n and
¢ and thus allow for a control of @y, (-,t) on 9S2. As a preparation, we prove an elementary calculus lemma.

Lemma 2.1 For all v € (0,1) there exists o > 0 with the property that for all k > 0 and each p € (0,0 - kﬁ)
we have

E+pu<ke  forall€ e [2(%)7 f~kﬁ].

Proor. Welet ¢, (&) ==&+ p— k& for € > 0 and p > 0. Then

en(2(8)) =2(4) 4 p-2u= (2T £ 1-2) <o

for all p < gy = (£51)™5 - k™5, and moreover
1 1 1 1 1 v 1—2771
‘pﬂ(g)(i.kl—w) — ikl—-y +M_k.27.kl—’y :M_T.kl—w <0



=277 g

holds whenever p < pp 1= =5 =7. Since %gpu({) = (1 — v)k&'~? is positive on (0,00), this means

that ¢,, is negative throughout [2(%)%, ik 1iW], provided that ¢ < min{uy, p2}. This proves the claim upon an
evident choice of o. /]

We can now establish the desired boundary estimate in the case ¢ > 1.

Lemma 2.2 Let p > 2 and q € (1,p — 1]. Then for all v > 0 there exists C(v) > 0 with the property that for
all T > 0 one can find eo(T) € (0,1) such that for each n € (0,1) and € € (0,9(T)) the solution u,. of (1.2)
satisfies

Upe(z,t) < C(v)- (t+1) St v - dist(x, 0Q) for all (z,t) € Q x (0,T). (2.1)
PROOF.  Since v > 0, we can fix 8 € (0,1) close enough to 1 such that

s _P—a="p p—g¢-1
GiDg-1 = 20q-1)

and, according to (1.3), that also
p

K> . 2.2
(6+1)q 22

Then by Lemma 1.1, the solution w of (1.4) in § satisfies
crdist(z, 002) < w(z) < codist(x, 09) for all z € Q (2.3)

1
with certain positive constants ¢; and co. We abbreviate c3 := % -0a-1 and let

. ) e
Yo = maX{* - sup ||ogel|Le @) 5 ¢ }
C1 n€(0,1)

We next fix 7> 0 and define a comparison function v in Q x [0, 7] by
v(z, t) == y(t) - w(z), where y(t) :=yo - (t+1)°, (x,t) € Q% [0,T).
Then since

11077(3:) '17/077(1') < 1 ~ < f 1
- €T oo 1 Q,
w(z) ~ edist(z,00) T ¢ lonllze @) < 9o oraftre

if follows that v > ,. holds on the parabolic boundary of © x (0,T) for any n € (0,1) and € € (0,1). In
view of (2.3) and the comparison principle, it is thus sufficient for the proof of (2.1) to show that there exists
eo(T) € (0,1) such that

Pv:=v — (v + &) vz, — (v+ )4

satisfies
P.v >0 in Qx (0,7) (2.4)

whenever ¢ € (0,¢0(T)). To achieve this, we compute
Po=y  -w+ (yw+e)P -yw? — (yw + )9 in Q x (0,7) (2.5)

and decompose @ :=Q x (0,7) into Q = Q1 U Q2 U Q3, where

Q= {(@1) € Q [ uw(e) > esyfm Ty T (1)},

Q2 = {(x,t) €Q|w(x) < C4Eqny()_%y_1+%(t)} and
Q3:=Q\ (Q1UQs)



(2.6)

with ¢4 := %.
We first claim that there exists 1(T") € (0, 1) such that
P.u>0 inQs whenever ¢ € (0,e1(7)).
Indeed, applying Lemma 2.1 to & := y - w,vy := %, p=c"and k := 5 - (y?‘))q%, we obtain that for all points
(z,t) € Q at which
5” q 1 yo qfll; 1_1l
e { I T } <yw(z) < 5 {6q (—) } ’, (2.7)
da - (%) q6 2 y(t)
the inequality
y(Owe) + et < (8" (ulwl) (2.8)
is valid, provided that
1y
1 Yo a5 | ‘77 1 1
K s (20 T =g.87T . (t4+1)" 71 2.9
<o { () } o 5Tt 1 1) (2.9)
with o as given by Lemma 2.1. Since (x,t) € @ can easily be seen to satisfy (2.7) if and only if it belongs to @3,
we conclude upon rearrangng (2.8) and (2.9) that if
1 12
e<e(T) = {0~5F . (T+1)_ﬁ}n,

then for all (z,t) € Q3 we have

and hence, by (2.5), arrive at (2.6).
.
(Y +2)P -y £>0,

In order to prove a similar statement in ()2, let us consider the auxiliary function ¢ defined by
(€)= (v + 7)iE?”

y(t) and t € (0,7") and ¢ € (0,1) are fixed. We calculate
_pyy€ e’ (Y +e) €8 — (yE+ )P - lay(yE +em) T - €F + By€ + 7)1 - €77

(v + )2 - 579

where y =
1 /
(6 =
; (€)
for &€ > 0 to see that ¢'(¢) < 0 if and only if
py(ys +€%) - €< (W€ +e) - [qy€ + By& + %)),
that is, if
(p—q—B8) 4> <[(a+Be—(p— P (y&) + pe"+1. (2.10)
Since £ > 1, we have (p — 8)e® < 1(q+ B)e for all € € (0,e2) with g5 := (Z(%fﬁ))ﬁ, and hence (2.10) implies
that .
©'(€) <0 forall £ <cs- ; (2.11)
holds with ¢5 := %{ﬁﬁ)
Now suppose that (z,t) € Q2. Then
qK _%y71+g 1
wiz) _ casyy © et (L) < St gy <,
G5y C5 Yy Cs Yo Cs
8



1

provided that 0 < ¢ < e3(T) := (=2~ )e1. Hence, if in addition € < &5 then the monotonicity property
C4(T+1)
(2.11) yields
(yw 4 E)py (045‘1"i ya + 5) -y
(yw +e)7 - wp

T
= p(w) = p(css™yy Ty ) = . SESRY:
(045q”y0 Sys + 8“) . <c45q“yo 59_1+§>

for such (z,t). Since ¢ > 1 and thus

qK,,~ S i
GUE Yo V' < ele DR (T4 1) <1 forallt e (0,7)
EK/

if0<e<eq(T) :=[ca(T+1)]" @D+ | from this and (2.2) we infer that

yw+e)y Py
R)q . - 1
(y’LU + € ) wﬁ (2€n)q . <C3Eq,‘cy0 Jy 1+5)
1 s
- éggé.g—KB+1MN—p},ya y? g—E+1
4

e LY S BTN CIEb L
QQCE

> LB - min {1 T+ 1)(B+1)67ﬂ} el Dan—p) 51
24c,

> 1 for all (z,t) € Q2
for any € € (0,e5(T)), where £5(T) € (0, 1) is such that e5(7) < min{ea,e3(T),e4(T)} and

ylott FFDa=r
e5(T) g{ L min{l, (T+1)(5+1>“’}} .
24cy
Consequently, (2.5) ensures that
P.u>0 in Qs whenever ¢ € (0,e5(7)). (2.12)

Finally, if (z,t) € Q then w(z) > eyl ™° 2 y_l_“l*ll)é (t), and therefore using that ¢” < e and p > ¢+ 8 > q we
may estimate

(yw + )Py < (yw + )P~y > (yw)P~ 1y = yPtl-ayp—a-5
(yw+e")-wf  — w? oW

N Cg q— By 5 .yp+17q+(*1fﬁ)'(:0*qﬂ3) for all (z,t) € Q1.

Since according to our choice of § we have

p—q—p3 1 B

this means that

(yw + )Py g8 B4l
Gute)wg” D Syt > 1 forall (x,t) € Q

in view of our definition of yo. Hence, (2.5) results in the inequality
Pev >0 in @ for all € € (0,1),
and thus recalling (2.6) and (2.12) we conclude that indeed (2.4) is valid, whereby the proof is completed. ////

The above estimate is obviously no longer meaningful when ¢ = 1. Correspondingly, in this borderline case we
only obtain an exponential upper bound:



Lemma 2.3 Letp > 2 and ¢ = 1. Then for all 0 > 1 there exists C' > 0 such that for alln € (0,1) and € € (0,1)
the solution i, of (1.2) satisfies

e (2,t) < C e - dist(x, 00) for all (x,t) € Q x (0, 00). (2.13)

PrROOF.  According to (1.3), we can fix 5 € (0,1) such that (54 1)x > p, and let w denote the solution of (1.4)
B41

in Q. Then thanks to (1.5) there exists ¢; > 0 such that (§ —1)c;” > 1 and dg,(2) < ¢ -w(z) for all z € Q and

each n € (0,1). Thus, for arbitrary n € (0,1) and € € (0, 1), the function v(z,t) := y(t) - w(x), (z,t) € Qx [0, 00),

with y(t) := ¢, €%, t > 0, satisfies v > e on OS2 and at t = 0. Moreover,

Pvi=v; — (V4 &)P0pp — (v 4 %) = (6 — Dyw + (yw + )P - yw =P — &~ (2.14)
Here, at each point where w(x) < Epgmy%(t), we have (yw +¢)? - yw™? > ePyw=" > &% and hence Pv > 0 since
0 > 1. If conversely w(z) < Epgmy%f(t)7 then
0—1 0—1y- B5y p—(B+1r BEL B+1
( )yw>( Jy-e 7y >(0—1) 7 o’ >0-1)c" >1
gr gr

due to our choice of ¢;. Therefore, the comparison pronciple yields @, < v in © x (0, 00), which in view of (1.5)
yields (2.13). /1]

2.1 Absence of finite-time gradient blow-up

Using the above boundary estimates, upon another comparison argument we obtain an (exponential) upper
bound for the growth of the norm in L>°(2) of any maximal solution of (0.1). This will be a consequence of the
following lemma.

Lemma 2.4 Letp > 2 and q € [1,p—1]. Then there exist 0 > 1 and C > 0 with the property that for any T > 0
one can pick eo(T) € (0,1) such that for any n € (0,1) and each € € (0,e0(T)), the solution of (1.2) fulfills

[nes (- )| L) < Ce®  forallt € (0,T). (2.15)

PROOF.  Let us first assume that ug € C?(Q2). Then standard parabolic regularity theory ([13]) ensures that
Tty _

Uye belongs to Cllot%_ 2 (0 x [0,00)) N C=(2 x (0,00)) for some v € (0,1), which in particular implies that

U 1= gy lies in CO(Q x [0,00)) N C*H(Q x (0,00)) for each fixed n and e. Differentiating (1.2) with respect to

x, we see that thus v is a classical solution of

V¢ = (Uye + €)PVgq + p(Une + e)p_lvvz + q(tye + 8”)‘1_11) in Q x (0,00)

with initial data vo := v(-,0) fulfilling [|vo||L=(q) < c1 := sup,c(o,1) [ty || (@)- Now in view of (1.8) we can
pick ¢ > 0 independent of 1 and & such that @,. < ¢z in Q x (0,00), and fix any 6 > 1 fulfilling 6 > g-(co+1)971.
Then Lemma 2.2 and Lemma 2.3 imply that there exists c3 > ¢; with the property that given 7" > 0 one can find

go(T) € (0,1) such that whenever i € (0,1) and ¢ € (0,2¢(T')), we have |v(z,t)| < cze? for all t € (0,T) and each

x € 9. Since c3 > c1, this entails that the spatially homogeneous function V(z,t) := c3 €%, (x,t) € Q x [0, 00),

satisfies V' > |v| on the parabolic boundary of  x (0,7 for any such n and . Since
Vi — (iige + €)PVig % pliige + )P VV; — qlilge + )7V = {9 — qliipe + e”)q—l} - et
> {0 dlea+ 1)} s 20
in © x (0, 00), twice applying the comparison principle we conclude that [v| <V in Q x (0,7"), which yields (2.15)

in the case up € C?(Q).
If merely ug € W12°(2), we can choose a sequence (u$));en € C2(9) of nonnegative functions vanishing on 99
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such that u(()j )X ugp in WH°(Q) and apply the above result to the corresponding solutions 115732. Since aﬁ,@ — Upe
in C’l2 O’cl (€ x (0,00)) by a continuous dependence argument applied to the non-degenerate problem (1.2), (2.15)
easily follows from the fact that the above constant c¢3 can be chosen independently of j. /]l

On letting e N\, 0 and then n \, 0 in (2.15), we can now without further comment state our main result concerning
the impossibility of finite-time gradient blow-up of any maximal solution of (0.1).

Theorem 2.5 Let p > 2 and q € [1,p — 1], and suppose that ug satisfies (0.2). Then the mazimal solution u of
(0.1) satisfies u(-,t) € WH>°(Q) for all t > 0, and there exist 0 > 1 and C > 0 such that

lluz (-, )| Lo () < C e for all t > 0.

3 Gradient blow-up in infinite time

We proceed to identify some norms involving u, with respect to which our solutions of (0.1) are unbounded
as t — oo. To this end, we first make sure that trajectories approach steady states of (0.1) in an approrpiate
sense. We observe that the natural energy E(p) := %fQ 2 + p7;71 fQ o~ (P=9=1) associated with (0.1) may be
unbounded throughout the evolution. In fact, this is true whenever ¢ < p — 2, or if ug is such that {ug = 0} has
nonempty interior, for instance, where we note that in the latter case the set {u(-, )} will have nonempty interior
as well ([6], [23]). Accordingly, our approach has to utilize more subtle arguments, relying on Lemma 1.6 on the

one hand, and comparison from below with certain time monotone solutions on the other.

Lemma 3.1 Let p > 2 and ¢ € [1,p — 1], and suppose that there exist w € C°(Q2) and a sequence of times
0 < tj = oo such that the mazimal solution u of (0.1) satisfies

u(+t;) = w in C°(Q) as j — oo. (3.1)
Then {w > 0} is nonvoid, and for each connected component G = (a,b) of {w > 0} we have the identity
W = Wa,bp—q in G, (3.2)
where W p—q denotes the solution of (1.4) in G corresponding to 8 =p — q.

PROOF.  First, by using appropriate stationary subsolutions of (1.2) as given by Lemma 1.3 it can easily be
checked that {w > 0} contains the positivity set {ug > 0} of up and hence is not empty. The proof of (3.2) will
be carried out in four steps.

Step 1. Let us first make sure that for all subintervals G’ = (a’,b') CC G there exist jo € N,gg € (0,1) and
cgr > 0 such that for any e € (0,eg), the classical solution v. of

Vet = (Ve + €)PUcsn + (Ve + &) in G’ x (t,,00),
velagr = 0, (3.3)
U5|t:tj0 = Yo,
with ( N
. w(z—a -
vo(x) := cgr - sin o red, (3.4)
satisfies v, > 0in G’ x (t;,,00) as well as
Upe >ve  in G’ X (t,,00) (3.5)

whenever 7 € (0, 1).

In fact, given any such G’, from (3.1) we obtain that since inf,eq w(x) > 0 by our assumptions on G and G’,
we must have inf,cqr u(w,t;,) > 0 for some sufficiently large jo € N. Using that (Gyc(-,t5,))ne(0,1),c€(0,20) 19
relatively compact in C°(G”) for some gy € (0,1) by Lemma 2.4, we can thus find ¢ > 0 such that

Une(w,t5,) > Co for all x € G' and each n € (0,1) and € € (0, ).
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We now apply Lemma 1.3 to see that there exists ¢ € (0,c2) such that vy as defined by (3.4) fulfills (v +
€)Pvze + (Vo +€7)7 > 0in G’. By a standard reasoning (cf. [17, Chapter 52], for instance), this guarantees that
the solution v, of (3.3) indeed satisfies v, > 0 in G’ x (t;,,00), whereas (3.5) is a consequence of the comparison
pronciple and the fact that @,.(-,¢;,) > vo in G'.

Step 2. We next assert that for any open subinterval G’ CC G we can find j; € N and &; € (0,1) such that

(Cne)ne(0,1),c€(0,e,) 1s relatively compact in C’fo’;(é’ X [tj,,00)). (3.6)

Indeed, choosing another open interval G” = (a”,b"”) C R such that G’ ¢ G"” ¢ G” C G, from Step 1 we
particularly infer the existence of j; € N ey € (0,1) and ¢3 > 0 fulfilling

m(x —a”)
yr—

Taking into account the upper bound provided by (1.8), after diminishing e, if necessary we obtain ¢4 > 0 and
cs > 0 such that

Upe(z,t) > c3 - sin for all (z,t) € G” x (t;,,00),n € (0,1) and £ € (0,1).

cg < lye < c3 in G’ x (tj,,00)

for all n € (0,1) and € € (0,1). According to parabolic Schauder estimates ([13]) and the Arzeld-Ascoli theorem,
this entails (3.6).

Step 3. We proceed to show that
W > We b p—g in G. (3.7)

In view of Lemma 1.1, it is sufficient for this to prove that for all G = (a’,b") CC G we have
w>w i =we g  inGL (3.8)

For this purpose, we fix any such G’ and take j, € N,y € (0,1) and v.,e € (0,g9), as provided by Step 1.
The since vy < ¢g - w’ in G’ for some cg > 1 by Lemma 1.1, we conclude using Lemma 1.2, Lemma 1.1 and the
comparison principle that there exists ¢; > 0 such that

vo(z) < ve(z,t) < eqw'(z) < er(dist(z, 0G"))Fri—a for all (z,t) € G’ x (tj,,00) (3.9)

whenever € € (0,g). Therefore a standard limit procedure (cf. [20] for details) shows that as € N\, 0, v. converges
to the unique positive classical solution v of

vy = VPV, + v in G’ x (tj‘)’ 00),
oy =0 (3.10)

U|t:tjo = Yo,

in C0 (G’ x [tj,,00)) N CHL(G" x (tj,,00)). Clearly, v; > 0 in G’ x (t,,00), and hence in view of (3.9) and
parabolic Schauder theory, W (x) := lim;_,, v(x,t) defines a function W € C°(G’) N C?(G") which clearly must
be a positive steady state of (3.10). According to the uniqueness statement in Lemma 1.1, W thus must coincide
with w’. This entails (3.8), because taking € ™, 0 and then 7\, 0 in (3.5) ensures that « > v in G’ x (t;,,0), so

that in particular w = lim;_, o u(-, t;) > limj o v(-, t;) = W = w'.
Step 4.  We complete the proof of (3.2) by showing that
W < Wabp—g in G. (3.11)

To this end, we again fix an open interval G’ CC G and recall Lemma 1.6 which asserts that

_(ﬂns + 5)pﬂnsx3c < (ﬂna + sﬁ)q + Za(t) : (ﬂna + 6) in G'

for all n € (0,1),e € (0,1) and ¢ > 0, with z. as defined by (1.10). Using the compactness property (3.6) and
the fact that lim.\ fe(t) = ﬁ — 0 as t — 0o, we may let € N\, 0, then n N\, 0 and finally ¢ = ¢; — oo here to
obtain that w € C?(G’) and —wPw,, < w?in G’. Since G’ CC G was arbitrary and w > 0 in G, this means that
—Wgp — w9 P < 0 in G, which in view of the fact that w|gg = 0 implies (3.11) due to the elliptic comparison

principle stated in Lemma 1.1. /1]

As a first consequence we state that u cannot remain bounded in W1>°(Q).
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Lemma 3.2 Let p > 2 and q € [1,p — 1]. Then for the maximal solution u of (0.1) we have
llte (-, )| Loe () — 00 as t — oo. (3.12)

PrOOF.  If (3.12) was false, we could pick a sequence of numbers ¢; — oo and a function w € W1>°(Q) such

that u(-,t;) = w in WH(Q) as j — oco. In accordance to Lemma 3.1, there exists a subinterval G' = (a,b) of Q
such that w coincides with the solution wg . ,—q of (1.4) in G. However, Lemma 1.1 entails that since p — ¢ > 1,
the function wg p,—g does not belong to W (G). This contradiction shows that actually (3.12) must hold.

/1]

In the case ¢ < p — 1 we can go even further and assert blow-up of certain weaker norms of u,.
Lemma 3.3 Let p > 2 and g € [1,p — 1), and assume that « > 0 and m > 1 are such that

> PEL—a+ 20

2 (3.13)

Then the mazimal solution u of (0.1) satisfies
/ u®(z, t)|ug (2, t)|"de — oo as t — oo. (3.14)
Q

PROOF.  Assuming on the contrary that (3.14) be false, since WLm(Q) is reflexive and compactly embedded
into C°(€2), we could find a sequence of times ¢; — oo along which

u(+,t;) — w in CY(Q) and u o () —=w m in WH™(Q) (3.15)
would hold for some nonnegative w € C°(€) vanishing on 9. By Lemma 3.1 we can fix an interval G = (a,b) C €
such that w = wqpp—q in G, where wq p,—q denotes the solution of (1.4) corresponding to 8 = p — ¢. Invoking
Lemma 1.1 we can thus find § > 0 and ¢; > 0 such that

1

w(z) > c1(z —a) 7F=7  and wy(x) > e1(z —a) PFi= for all x € (a,a +9).

Therefore,
mta m m—+a\™ ot a m
o > (22 [ o
m a-+0
> C71n+a . (LM) / (x _ a)ﬁ*‘(ﬁ—l)'mdw.
m a

According to our assumptions on « and m, this means that w™* cannot be an element of Wwtm(Q), which
contradicts (3.15) and thereby completes the proof. /]

4 Algebraic upper bounds for the blow-up rate

4.1 Integral bounds for solutions with arbitrary initial data

Combining Theorem 2.5 with the results from Lemma 3.2 and Lemma 3.3, we obtain that whenever 1 < ¢ < p—1,
the maximal solution of (0.1) undergoes a gradient blow-up which occurs in infinite time and at a rate no faster
than exponential. We proceed to derive some upper bounds on u, which indicate that if ¢ > 1 then this rate in
fact is at most algebraic. We first consider estimates for u, in L™(Q) for finite m, possibly involving powers of
u as weight functions.
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Lemma 4.1 Assume that p > 2 and q € [1,p — 1], and let o > 0 and m > 2 be such that a« > (§ — q)m. Then
there exist C > 0 and g € (0,1) such that for alln € (0,1) and € € (0,e9) the solution of (1.2) satisfies

2 BTt 1 w t o eBelTlt w
o~ m\ ™ o o
([ i) <o(Gmmmy) ™ 40 [ () 7 @ (4.1)
for allt > 1, where B > 0 is as defined in Lemma 1.6.

PROOF.  Writing u instead of @, for convenience, we know from parabolic regularity theory that u is smooth
in  x (0,00) and satisfies u; = 0 on 9 x (0,00). Hence, integrating by parts over {2 we compute

G [t el = —mm=1) [ @+ 2, = mim = 1) [ (w42 el
tJa Q Q

—(m— 1)a/ (1 + )Py [P — (0 — 1)@/(u ) (a4 %)y ™
Q Q

= Lh+L+Is+1, for all ¢ > 0. (4.2)
Here, Lemma 1.6 says that with z. as given by (1.10) we have the one-sided estimate
Uy < (u+ &) P2 (t) + (ute) P (u+ ™)l in  x (0, 00),
so that since a > 0 and m > 2,

I < (m—l)a~za(t)~/

(u+2)% s + (m = D [ a0 )| (43)
Q

Q
Moreover, applying Young’s inequality and the Holder inequality we find

2 m(m —1)

Bl < mlm =) [ (e, - T e e
Q Q

< mim=1) [t 9,
Q

m—2 2

+7m(m4— D (/Q(u—&-s)ﬂuﬂm) "o (/ﬂ(u—ka)_%“’a . (u+5“)mq) " (4.4)

for all ¢ > 0. Since Lemma 1.4 ensures that u < ¢; in © x (0,00) with some ¢; > 0 independent of  and &, and
since k > 1, our restriction on « allows us to estimate

2

[ ) ¢ B[
< o= WOQ\ (er + 1)*%+a+mq)%

for all ¢ > 0. Inserted into (4.4), combined with (4.3) and (4.2) this implies that the function y defined by
y(t) == [o(u+e)¥ug|™, t > 1, satisfies

T (m—1Daz(t) -y for all ¢ > 0.

A straightforward integration of this Bernoulli-type ODI leads to the estimate

o
i

3

m-1)a 2 b 2m-1a
ym (t) < ym (1) e Ze(t) 4 22 / o TS (Ze (1)~ 2:(9)) g for all t > 1 (4.5)
m-J1

with Z.(t) := ft

1 %e(s)ds, t > 1. Recalling the definition (1.10) of 2., we can explicitly compute Z. to obtain

Bett ot 4 1 eBt
Z:(t) = : / =
P 1 1 — e Bei™'t P eBe? -1
Thus, from (4.5) we can can easily derive (4.1) thanks to the fact that sup,c(0,1),c€(0,20) ltnex (-, 1| L () is finite
for some ¢y € (0,1) by Lemma 2.4. 1]/

After passing to the degenerate limit, for ¢ > 1 this yields the following.
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Corollary 4.2 Let p > 2 and q € (1,p — 1], and suppose that o > 0 and m > 2 are such that a > (5 — q)m.
Then there exists C > 0 such that for each t > 2, the mazimal solution u of (0.1) fulfills

o 1
(/ua|ux\m) <{ C-(tlnt)= zfa— = 1), (4.6)
Q m—1)a
C't( m;) Zfa>m

PrOOF.  We fix t > 2 and let € \, 0 in (4.1), which in view of the fact that ¢ > 1 is equivalent to letting
§ := Be?! tend to zero. To justify the limit process on the right of (4.1), we observe that for each s € [1,] we

have
ot 1

eds —1
by I'Hospital’s rule. Since t is fixed, there exist positive constants ¢; and ¢y such that e’ — 1 < ¢;6t and

e — 1 > ¢96 for all s € [1,¢], which shows that 1 < sgt:i < %; for all such s. Therefore the dominated

convergence theorem may be applied along with (4.7) and Fatou’s lemma to assert that after taking ¢ N\, 0 and
then 1\, 0, (4.1) gives
2(m—1)a

2 j2m=e o 2
(/ uo‘|ux|m) <C- mp —|—/ (*) ds for all ¢t > 2
Q 1 S

with C' > 0 taken from Lemma 4.1. This easily yields (4.6). //]/

t
=3 as d — 0 (4.7)

Choosing the smallest possible o and hence the largest possible weight in (4.6), recalling Lemma 3.3 we can
summarize as follows.

Corollary 4.3 Let p>2 and g € (1,p—1). Then as 1 <t — oo, for the proper solution u of (0.1) we have

(p—2¢)(m—1) p+2 2q

Ct > |[(u

Oth > us( 1) imay 00 for allm > max{2, 2124} ifggq<p1,}

)ellLm @) = 00 f0rallm>max{2 pzllq,Q;pQZ)} if1<q<?¥,

(4.8)
with some C' > 0 depending on m only.

Proor. 1If ¢ > &, we choose a := 0 in Corollary 4.2, whence the first inequality in (4.8) follows from (4.6). On
the other hand, upon this choice of o, Lemma 3.3 says that [, [u.(-,t)|™ — oo as t — oo whenever m > §+1 1,
The proof in the case ¢ < £ is similar. ////

4.2 An estimate in W'>*(Q) in the case inf,cq #@29) >0

According to the possible loss of regularity due to the degeneracy in (0.1), pointwise estimates for the derivative u,
cannot be derived in a trivial way from estimates for u, on the lateral boundary. In fact, in [25] it was shown that
even some positive classical solutions exist which have the peculiar property that u, = 0 on 9Qx (0, c0). Therefore,
in order to turn the boundary estimate in Lemma 2.2 into its natural counterpart concerning [[uz (-, )| L (q), we
shall need an additional assumption on the initial data. Requiring ug to be bounded from below by a positive
multiple of dist(-,0Q), this will provide sufficient control the degeneracy near points where wu is small.

Lemma 4.4 Let p > 2 and q € (1,p — 1], and suppose that there exists ¢ > 0 such that
uo(x) > cdist(z, 08) for all x € Q. (4.9)

Then for any v > 0 there exists C(v) > 0 with the property that for all T > 0 there is eo(T) € (0,1) such that
for each n € (0,1) and € € (0,e0(T)) the solution . of (1.2) satisfies

Jiew (- 1) || ey < C() - (t + DEETY forallt € (0,T). (4.10)
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PrROOF.  We detail the proof for ¢ < p — 1 only; upon slight modifications, the borderline case ¢ = p — 1 can
be treated in quite the same manner.
We first observe that due to Lemma 2.4 there exist ¢; > 0 and €1 € (0,1) such that whenever € (0,1) and
e € (0,e1),

ltnee (- 1) Loy < 1 for all ¢t € [0,1], (4.11)

whence it is sufficient to prove (4.10) for 1 < t < T < oo. To this end, we fix ¥ > 0 and apply Lemma 2.2 to
obtain ¢g > 1 such that for all T > 1 we can find e5(7T") € (0,£1) such that

b—q—

lpe(z,t) < eot?@ 05 g for all (z,8) € Q x (1,T), (4.12)

whence in particular
p—g—1_ v
liper(0,1) < cpt?@DF2  forallte (1,7) (4.13)

whenever n € (0,1) and € € (0,e2(T)). Moreover, in view of our assumption (4.9), (1.8) provides ¢3 € (0,1),
¢y >0 and e3 € (0,e2(T)) such that for n € (0,1) and € € (0,e3),

czdist(z, 00) < Upe(2,t) < ca for all (z,t) € Q x (0,00). (4.14)
Therefore interior parabolic regularity theory implies the existence of ¢ > 0 fulfilling
L
‘ﬁm(a,t)‘ <es  forallt>1 (4.15)

for n € (0,1) and € € (0,¢e3).
We now fix v € (0, 1) so small that v < ¥,

p—q—-1 v p—q—1 p—q—-1 v
) 1) < —) -2y < .
<2(q—1) +2) (v+1) < 50 -1) +v  and ( + ) 2y < 2v, (4.16)

and then a constant yy > 0 satisfying

Yo > c1¢y, (4.17)
Yo >4yt (4.18)
cqy + 1\
Yo > c5 - ( 2 ) (4.19)
2
as well as
4 JN\E (2(g—1 e
yoz( (¢ +7)c )2( (q )(q+w))z<q D (4.20)
Y p—q—1
5 \: (20g—1 55
yoz( (q+7)c2 )2( (q )(q+v)>2<q . (4.21)
Yp—v—1) p—q-—1
Following [10], for T'> 1, n € (0,1) and & € (0, e3) we introduce the auxiliary function
- - L
J(@,8) 1= igea(.8) =y @) (e (,8), (@8) € [0,5] x [1T]
with
y(t) == got a0, 121,
L
Y(x) = (x+¢€)7, T € {O, 5}, and
flu) :=(u—g)77, u > 0.
Then at t =1,
J(.’E,l) = ansz(‘xal) —yo(.’lﬁ—f—E)’y(ﬂnE(x, 1) +€)_7
< o —yocy !
L
< 0 forallze (0,5) (4.22)
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due to (4.11), (4.12), (4.17) and the fact that co > 1. On the left lateral boundary a = 0,
J(Oa t) = ﬁnsm (Ov t) - y(t)

ot B e

0 forallt € (1,T)

INIA

because of (4.13), (4.18) and, again, our assumption ¢y > 1. For x = % we have

(E) = b o () (a5 )
LN\
< c5—y0-(§> (e +1)77
< 0 forallt € (1,T)

in view of (4.15), (4.14) and (4.19).
Next, using the identities

I = ﬂnsmﬁ - y%f - wa/ansz and
Jxa: - ﬁnswcx - yq/)a:xf - 2y¢xf/ansx wa” E]ex - y'l/)f/ﬂnexm

we compute
Ji = (ﬂna + g)pJ:cx +p(ane + 5)p71 : (‘] =+ y¢f) Sy
+{ 200 (iige + )P '+ ytiine + )P f"T + 248 (Gige + €)"f + aliige + )7~
(e + ) (yuf + 2P+ g f D)}

—yll/)f + Yz (ane + 5)pf + 2y2w1/}x (ﬂna + €)pff/ + py2¢¢x (ﬂna + €)p71f2

+yP 3 (e + )P f2 1" 4 py® (e + )P 2 f

+qy (e + %) f — yib(ine + 7)1’
in (0,%£) x (1,7). Thus,

) L
= L]+ I(x,t) in (o, 5) x (1,7),

where L is a linear uniformly parabolic operator with smooth coefficients and

1 = %(unsﬂ) 7= AL = )+ &) (e + )

+7(p = 27)y(x + &) Hige + )P —q(p — v — Dy (@ + €)* (e +)P2772
1

(
+q(Upe +€7)17 1(un5—|—€) T+ (e + )ty +2)77
/

IN

2

+H(g+7) (e +2)177
=: —Il +12—I3+I4.

Here we have used that v < 1, that v < %, and that € < ¢ since kK > 1.
Now (4.12), (4.16) and (4.18) imply

i,y

Lo _4 (M)V“ <A g S0 o gy (oé) « (1,T).

T +e )+V

Y0 t2(q T

Moreover, thanks to (4.16) we know that

A _ 4(q +7) <ﬁna + 5)2“’@176 + E)—(p—q—l)

i pyw? T+e

17

Z (iime +€) 7"+ pry(@ + &) (e + )P — 2@ 4 )2 (d1ye 4 €)P372

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



Aaty) o et T2 (g, + )~ P9

S e Eai,, @
Yy -t et
2y
< 4(q+72)02 (e 4 e) e D)
PYYo
<1 (4.28)

holds at any point (z,t) € (0,%) x (1,T) where

1

4 2N == 1
e + 2 > (w)” D = (4.29)
PYYo
If the latter inequality is violated, however, then since 3’ > g(qq 1% ¥ we obtain
Is_ (a+ ) (g +e)" !
I Yy
Y
7 P q— 1 _
(q+7) ( Hatne” ) 1
< —q—1 ;-1
2(q 1)
_ 20¢-D@+7) (4(q +7)03”)p3%11
p—q-—1 PYYo
< 1 (4.30)

due to (4.20). Combining (4.22)-(4.30), we conclude from the maximum principle that J < 0 in (0, %) x (1,7)
and hence

r+e )7

p—g—1
~ poalyy
U z,t) < [AICEE DI (~
nsr( s ) > Yo e + €

IN

P—gqg— L
yocs I forall (w,6) € (0,5) x (1,7) (4.31)

for all n € (0,1) and € € (0,e3) because of (4.14).

In order to estimate ., from below, we proceed quite similarly, so that we may confine ourselves with an outline
of the proof: We now define

= - . L
F@t) = fgea, )+ yO0@ e @0). @ot) € [0, 5] x 1.7
with y,v and f as above. Then
~ _ L
J(z,1) > —c1+cy 'yo >0  forallz e (O, 5) (4.32)

by (4.17). Moreover, ~
J(0,8) > fiyep(0,£) >0 forall t € (1,7), (4.33)

since tye > 0 and 1y |po = 0, while (4.19) asserts that

~rL L\~
= > (=) - > . .
J(2,t>_ ¢+ 1o (2) (a+1)7>0 forallte (1,7T) (4.34)
Furthermore,
. . L
=LJ+I(z,t) in (o, 5) % (1,T) (4.35)
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with a smooth linear uniformly parabolic operator £ and

1 ~ /
o L= e )T (=) o) e + e
+y(p = 27)y(z + 5)7_1(7:67]6 + E)p_%/_l +y(p—7— 1)y2(1' + 5)27(77475 + 5)1’—3"/—2
7q(a776 + {_:H)qfl(ﬁns +e) 7 - 7(1~lns + €H)q(7-bns + 5)7771

/

y?(ﬁns +6) 7+ =y = Dy (@ + ) (e + )P = (g + ) (e + )77

Y

=: I~1 —|—i2 —jg. (436)

Here, if (z,t) € (0,%) x (1,T) is such that

i g+ =T,
22 (SO0 57
" v == Dyg 37
then
é = +7 (ﬂﬂs + 5)%{ (e + )~ P727Y
I Yp—v-D\ z+e
< a+ L& BT (g, 4 e)" e
Yp =y =Dyg-t T
< 1
If (4.37) is false, however, then
E _ (g + ) (@pe +)7 "
L v
q—1
(¢+7)ey” VP11
L (o)
p—gq—1 1
2(¢—1)
< 1

according to (4.21). Therefore (4.32)-(4.36) along with the maximum principle and (4.14) ensure that

Tr+e
Upe + €

~ p—qg—1 v _ pP—q—1
e (1) 2 —yot TT D ( ) =~y T B

is valid for all (z,t) € (0,%) x (1,T), n € (0,1) and € € (0,e3). Combined with (4.31) and (4.11) this establishes
(4.10). /11

Without further difficulty we can pass to the proof of our final result which essentially sharpens the outcome of
Lemma 3.2 under the assumption (4.9).

Theorem 4.5 Let p > 2 and q € (1,p — 1], and assume that ug satisfies (0.2) and
up(x) > cdist(z, 08) for all x € Q
with some ¢ > 0. Then for all v > 0 there exists C(v) > 0 such that the mazimal solution w of (0.1) satisfies
e ()| ooy < CW) - (E+ D) ED T for all t > 0,

PrROOF.  The claim immediately follows on letting ¢ — 0 and then n — 0 in (4.10). //]/

19



References

[1]

2]

[17]

[18]

[19]

AvLikAKOs, N.D., Bares, P.W., Grant, C.P.: Blow up for a diffusion-advection equation.
Proc. Roy. Soc. Edinburgh Sect. A 113 (3-4), 181-190 (1989)

ALLEN, L.J.S.: Persistence and extinction in single species reaction-diffusion models. Bull. Math. Biol. 45,
209-227 (1983)

ANGENENT, S.: On the formation of singularities in the curve shortening flow. J. Differ. Geom. 33 (3),
601-633 (1991)

BERTSCH, M., DAL Passo, R., UagHI, M.: Discontinuous ’viscosity’ solutions of a degenerate parabolic
equation. Trans. Amer. Math. Soc. 320, 779-798 (1990)

BERTSCH, M., DAL Passo, R., UcHI, M.: Nonuniqueness of Solutions of a Degenerate Parabolic Equation.
Annali di Matematica pura ed applicata 161, 57-81 (1992)

BERTSCH, M., UcHI, M-.: Positivity properties of viscosity solutions of a degenerate parabolic equation.
Nonlinear Anal. TMA 14, 571-592 (1990)

CRrANDALL, M.G., RaBiNowITZ, P.H., TARTAR, L.: On a Dirichlet Problem with a Singular Nonlinearity.
Comm. Part. Diff. Eqns. 2(2), 193-222 (1977)

Drotko, T.: Ezamples of parabolic problems with blowing-up derivatives. J. Math. Anal. Appl. 154 (1),
226-237 (1991)

FiLa, M., LIEBERMAN, G.M.: Derwative blow-up and beyond for quasilinear parabolic equations.
Diff. Int. Eq. 7 (3-4), 811-821 (1994)

FRIEDMAN, A., McLEOD, B.: Blow-up of positive solutions of semilinear heat equations. Indiana
Univ. Math. J. 34 (2), 425-447 (1985)

GALAKTIONOV, V.A.; KURDYUMOV, S.P.; MIKHAILOV, A.P., SAMARSKII, A.A.: Blow-up in quasilinear
parabolic equations. De Gruyter Expositions in Mathematics, Berlin, 1995

GIGA, Y.: Interior derivative blow-up for quasilinear parabolic equations. Discrete Contin. Dyn. Syst. 1 (3),
449-461 (1995)

LADYZENSKAJA, O.A., SOLONNIKOV, V.A., URAL'CEVA, N.N.: Linear and Quasi-linear Equations of
Parabolic Type. AMS, Providence, 1968

L1, Y., SourLET, PH.: Single-Point Gradient Blow-up on the Boundary for Diffusive Hamilton-Jacobi
Equations in Planar Domains. Commun. Math. Phys. 293, 499-517 (2010)

Low, B.C.: Resistive diffusion of force-free magnetic fields in a passive medium. Astrophys. J. 181 209-226
(1973)

LuckHAus, S., DAL PaAsso, R.: A degenerate diffusion problem not in divergence form. J. Differ. Eq. 69,
1-14 (1987)

QUITTNER, P., SOUPLET, PH.: Superlinear parabolic problems. Blow-up, global existence and steady states.
Birkhauser Verlag, Basel, 2007

STINNER, C., WINKLER, M.: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equa-
tion. Indiana Univ. Math. Journal 57 (5), 2321-2354 (2008)

VAzQUEZ, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous
Medium Type. Oxford Lecture Series in Mathematics and Its Applications 33, Oxford University Press,
2006

WIEGNER, M.: A Degenerate Diffusion Equation with a Nonlinear Source Term. Nonlin. Anal. TMA 28,
1977-1995 (1997)

20



[21] WINKLER, M.: Large time behavior of solutions to degenerate parabolic equations with absorption. Nonlinear
Differential Equations and Applications 8 (3), 343-361 (2001)

[22] WINKLER, M.: Boundary behaviour in strongly degenerate parabolic equations. Acta Math. Univ. Comeni-
anae 72 (1), 129-139 (2003)

[23] WINKLER, M.: Propagation vs. constancy of support in the degenerate parabolic equation uy = f(u)Au.
Rend. Univ. Di Trieste 36, 1-15 (2004)

[24] WINKLER, M.: Oscillating solutions and large w-limit sets in a degenerate parabolic equation. Journal of
Dynamics and Differential Equations 20 (1), 87-113 (2008)

[25] WINKLER, M.: Conservation of boundary decay and nonconvergent bounded gradients in degenerate diffusion
problems. Advances in Differential Equations 13 (1-2), 27-54 (2008)

21



