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Abstract

This work deals with positive classical solutions of the degenerate parabolic equation

ut = upuxx (⋆)

when p > 2, which via the substitution v = u1−p transforms into the super-fast diffu-
sion equation vt = (vm−1vx)x with m = − 1

p−1
∈ (−1, 0).

It is shown that (⋆) possesses some entire positive classical solutions, defined for all
t ∈ R and x ∈ R, which connect the trivial equilibrium to itself in the sense that
u(x, t) → 0 both as t→ −∞ and as t→ +∞, locally uniformly with respect to x ∈ R.
Moreover, these solutions have quite a simple structure in that they are monotone
increasing in space.
The approach is based on the construction of two types of wave-like solutions, one of
them being used for −∞ < t ≤ 0 and the other one for 0 < t < +∞. Both types
exhibit wave speeds that vary with time and tend to zero as t → −∞ and t → +∞,
respectively.
The solutions thereby obtained decay as x → −∞, uniformly with respect to t ∈ R,
but they are unbounded as x → +∞. It is finally shown that within the class of
functions having such a behavior as x → −∞, there does not exist any bounded ho-
moclinic orbit.
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Introduction

One of the characteristic features of diffusion mechanisms is the irreversibility of time.
In the simplest cases, this is reflected by the dissipation of a certain magnitude which
can frequently be assigned an immediate physical meaning such as energy or entropy, for
instance. In these situations, the existence of such a quantity that decreases with time
clearly rules out the possibility of processes evolving from one state toward the same state
in a nontrivial manner: Once a state has been left, it can never be reached again in the
future.
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Mathematically, this finds expression in various types of statements concerning several
classes of diffusion equations. The first type of results concerns the nonexistence of oscil-
latory behavior, and thus in particular of time-periodicity, the latter being the apparently
most obvious way how a system could return to a state in which it has already been
at some time in the past. As a well-understood example, let us consider the semilinear
parabolic equation

ut = ∆u+ f(u) (0.1)

under homogoneous Dirichlet conditions on the boundary of a smoothly bounded domain
Ω ⊂ R

n, where f ∈ C2(R). Then it is known that if either n = 1 ([M], [Z]) or f is
analytic ([J]), then all bounded solutions of (0.1) in Ω × (0,∞) stabilize toward some
equilibrium as t → ∞. Even without assuming analyticity of f , one can derive the same
conclusion if either Ω is a ball and u ≥ 0 ([HP]), or if the set of steady states of (0.1)
is either discrete or totally ordered ([L]). Results of this flavor, some of which can be
carried over to quasilinear and even degenerate variants of (0.1) ([Win1]), clearly exclude
time oscillations which persist up to arbitrarily large times, with amplitude bounded from
below by a positive constant.
Accordingly, only few results seem to be available that report exceptions from this by
detecting oscillatory behavior in parabolic equations related to (0.1). Some examples of
solutions with large ω-limit sets refer to the heat equation ut = ∆u in Ω = R

n ([VZ]),

(0.1) with f(u) = up in Ω = R
n with n ≥ 11 and p ≥ (n−2)2−4n+8

√
n−1

(n−2)(n−10) ([PY]), (0.1) with

some f = f(x, u) ([PS]), ut = a(x)(∆u + λu) with certain a(x) and λ > 0 ([Win2]), and
ut = up(∆u+ λu) with p ≥ 3 and some λ > 0 ([Win3]).

Another type of results addresses the question of connectibility of equilibria and especially
the nonexistence of homoclinic orbits. We recall that a given steady state v of a diffusion
equation is said to connect to a steady state w if there exists an entire solution u =
u(x, t) 6≡ v of the corresponding parabolic problem, defined for all t ∈ (−∞,∞), that
satisfies u(x, t) → v as t → −∞ and u(x, t) → w as t → +∞. Here, if w 6= v such a
solution is called a heteroclinic orbit, in the case w = v a homoclinic orbit.
The study of connecting orbits is essential for the understanding of the global attractor
of a system, and the most exhausting results are available for the one-dimensional version
of (0.1) which is accessible to strong analytic tools such as assertions on the nonincrease
of zero numbers. Here, for generic choices of f , the mere knowledge on the set of steady
states is essentially sufficient to decide whether or not there exist connections between two
given equilibria; this is true under both Dirichlet ([BF]) or Neumann boundary conditions
in bounded spatial intervals ([FR1]), even for variants of (0.1) allowing the nonlinearity
to depend on ux ([FR2]). A particular outcome is that only heteroclinic connections do
exist in this situation, which can be viewed as a consequence of the presence of an energy
in the sense described above. Clearly, the latter conclusion on nonexistence of homoclinic
orbits carries over to any gradient-like parabolic equation or system.

Correspondingly, the question whether at all homoclinic orbits can be observed in some
parabolic problem appeared to be open for a long time. For the Fujita equation

ut = ∆u+ up (0.2)
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in the whole space Ω = R
n, certain positive singular connections from the trivial equi-

librium to itself were detected for n ≥ 3 and p ∈ (n+2
n−2 , pL), where pL = ∞ if n ≤ 10

and pL = n−4
n−10 otherwise. In fact, these connections can be chosen to be smooth classical

solutions for t < 0, to blow up at the origin at t = 0, and to continue to exist as weak
solutions of (0.2) for t > 0 ([FM], [GV]). Only recently, for (0.2) with n ≥ 3 and p > n+2

n−2 ,
in [FY] a bounded positive classical solution u defined in R

n × (−∞,∞) could be found
which tends to zero as t→ −∞ and for t→ +∞ and thus connects the trivial equilibrium
to itself in a smooth but nontrivial way. Moreover, if either n < 10 or p < n−4

n−10 then this
solution can be chosen radially symmetric and decreasing with respect to |x|, decaying to
zero as |x| → ∞ for each fixed t.

On the other hand, without the source term up in (0.2), a solution with the above proper-
ties cannot exist. In fact, it is easy to see that any solution u of the heat equation in R

n

fulfilling u(x, t) → 0 as t → −∞, uniformly with respect to x ∈ R
n, necessarily satisfies

u ≡ 0. This underlines that in the above results, the detection of homoclinic connections
is essentially linked to the interplay between diffusion and reaction in (0.2). The latter is
in accordance with further precedents that reveal quite a rich dynamical structure in the
variant

ut = ∆u+ f(u,∇u) (0.3)

of (0.1) allowing for gradients in the reaction term. For instance, one of the results in
[DP] says that for any n ≥ 2 there exist some smooth bounded domain Ω ⊂ R

n and some
nonlinearity f such that (0.3) when posed in Ω×R under homogeneous Dirichlet boundary
conditions, possesses an orbit connecting a non-constant, time-periodic solution to itself.

Main results

The present work addresses the question whether smooth homoclinic orbits also exist in
parabolic equations without any source. In other words, we ask whether there are sys-
tems, purely evolving by diffusion, which return to their ancient state limt→−∞ u(x, t) as
t→ +∞. We shall see that this in fact is possible, and that it is possible for quite a simple
type of nonlinear diffusion, and even in space dimension n = 1.

To be more precise, we shall subsequently consider positive classical solutions of the non-
linear diffusion equation

ut = upuxx, (0.4)

for p > 2, where x varies over the real line and the time variable t is allowed to lie in the
whole range (−∞,∞). We note that upon the substitution v = u1−p, (0.4) is transformed
into the super-fast diffusion equation

vt = (vm−1vx)x (0.5)

with parameter m = − 1
p−1 located in the interval (−1, 0) according to our requirement

p > 2. The equation (0.5) has been widely studied for any m ∈ R, and a summary of
results can be found in [V2].

Specifically, we will be interested in homoclinic connections of the trivial solution u ≡ 0 of
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(0.4) to itself. Of course, the most desirable result in this direction would state existence
of such a solution within a set of functions having some convenient decay as |x| → ∞, and
approaching zero with respect to L∞(R) as t → ±∞. However, we shall see below that
such a solution cannot exist (cf. Proposition 0.2), and hence we admit possibly unbounded
solutions, and correspondingly resort to a weaker topology in the state space, namely that
of locally uniform convergence. We ignore here the question in how far this framework
really may constitute a genuine dynamical system; in fact, a complete theory in this
direction appears to be lacking, which may be due to far-reaching nonuniqueness results
([ERV] and [RV]). Since we do not intend to address this general issue but nevertheless
wish to deal with incisive notions, let us pursue the following somewhat naive definition
of a homoclinic orbit.

Definition 0.1 We say that a positive function u ∈ C2,1(R× R) is a homoclinic orbit of
(0.4) if

u(·, t) → 0 locally uniformly on R as t→ ±∞. (0.6)

Our main result states that such homoclinic connections indeed exist, and that moreover
they can have quite a simple structure. In fact, they may be monotone in space and decay
to zero at least in one spatial spatial direction.

Theorem 0.1 Let p > 2. Then there exists a homoclinic orbit of (0.4) in the sense of
Definition 0.1. More precisely, (0.4) posseses a positive classical solution u ∈ C∞(R×R)
such that for all y ∈ R one can find C > 0 such that

‖u(·, t)‖L∞((−∞,y)) ≤ Ct
− 1

p (ln t)
2

p for all t ≥ 2 (0.7)

and
‖u(·, t)‖L∞((−∞,y)) ≤ C(−t)

− 1

p ln(−t) for all t ≤ −2. (0.8)

Moreover, this solution can be constructed in such a way that ux > 0 holds in R×R, and
that u(x, t) → 0 as x→ −∞, even uniformly with respect to t ∈ R, that is,

‖u‖L∞((−∞,y)×R) → 0 as y → −∞. (0.9)

More precise statemets on the spatial asymptotics (cf. Theorems 0.3 and 0.4 below) shall
reveal that our solution, though unbounded in space for t < 0 (and possibly also for t > 0),
is at least linearly bounded with respect to x > 0 for all t ∈ R. However, it will satisfy
∫

R
u2x(x, t)dx = +∞ for all t < 0, so that Theorem 0.1 does not contradict the formal

energy identity related to (0.4),

∫ t2

t1

∫

R

u2t
up
dxdt+

∫

R

u2x(x, t2)dx =

∫

R

u2x(x, t1), x ∈ R, −∞ < t1 < t2 <∞.

One may next wonder whether one can achieve boundedness of some homoclinic orbit in
(0.4). Indeed, this is the case for (0.2) ([FY]), and substituting u = ρ(w) we see that the
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solution from Theorem 0.1 corresponds to a spatially monotone and bounded homoclinic
orbit of the source-free nonlinear diffusion equation

wt =
ρp(w)

ρ′(w)
·
(

ρ′(w)wx

)

x
, x ∈ R, t ∈ R,

whenever ρ is a diffeomorphism from [0, 1) to [0,∞) with ρ′ > 0. In the present setting,
however, a similar phenomenon is impossible:

Proposition 0.2 Let p > 2. Then (0.4) possesses no bounded homoclinic orbit in the
sense of Definition 0.1, having the additional property of uniform decay as x → −∞
specified in (0.9).

Another distictive feature that deserves being emphasized is the spatial monotonicity of
the solution in Theorem 0.1. Indeed, homoclinics with such a simple structure seem hard
to detect, no matter whether they are bounded or unbounded in space. For instance, it
is easy to see that the heat equation ut = uxx does not possess any nonnegative spatially
monotone homoclinic connecting the trivial solution to itself.

In order to provide further connection to the existing literature, let us recall that some of
the known facts on (0.5) indeed underline a certain criticality of the exponent m = −1.
This may give rise to the conjecture that our restriction p > 2 for (0.4) might not be
of purely technical nature, although we cannot prove any nonexistence result in the less
degenerate range p ≤ 2. For instance, precisely for m > −1 there exist the celebrated
explicit Barenblatt solutions for (0.5), which for m ∈ (−1, 1) take the form

va(x, t) :=
(2(1 +m)

1−m

)
1

1−m
· t

1

1−m ·
(

x2 + at
2

1+m

)− 1

1−m
, x ∈ R, t > 0,

where a > 0 is arbitrary ([V2]).
The most striking difference between the ranges m ∈ (−∞,−1] and m ∈ (−1, 0), however,
seems to be linked to the well-posedness in the corresponding Cauchy problem: It is known
that for m ≤ −1, (0.5) does not possess any nontrivial nonnegative local-in-time solution
whenever the initial data v0 := v(·, 0) belong to L1(R) ([V1]), whereas if m ∈ (−1, 0) then
for each smooth positive v0 ∈ L∞(R), (0.5) is classically solvable on R × (0,∞). But in
the latter case, the solution is never unique, not even in the class of arbitrarily smooth
solutions ([ERV], [RV]).

Slowly traveling waves as the main ingredient

Before going into details of the proof of Theorem 0.1, let us briefly describe the main
ingredients that are constitutive to our approach. We first consider the evolution governed
by (0.4) for positive times, and seek for slowly traveling wave solutions, by which we mean
solutions of (0.4) having the form

u(x, t) = t−γ · F (x+ c ln t), x ∈ R, t > 0, (0.10)
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for suitable real constants γ and c > 0 and an appropriate positive function F defined on
R. Substituting (0.10) into (0.4) we readily see that we should take γ = 1

p
and choose F

to be a solution of the ODE

F pF ′′ =
1

pα
F ′ −

1

p
F on R, (0.11)

where we have substituted c = 1
pα

for convenience. It might be of interest of its own that
such solutions indeed exist, and that their asymptotic behavior can be described quite
well, because apart from the application we have in mind here, this gives examples of how
mass transport occurs in the super-fast diffusion equation (0.5). We therefore separately
state our following main result on slowly traveling waves for t > 0, the proof of which will
be given in Section 1.

Theorem 0.3 Let p > 2 and α > 0. Then there exists an increasing positive function
Fα ∈ C∞(R) such that the function uα defined by

uα(x, t) := t
− 1

p · Fα

(

x+
1

pα
ln t
)

, x ∈ R, t > 0, (0.12)

is a positive classical solution uα ∈ C∞(R× (0,∞)) of (0.4) in R× (0,∞).
Moreover, there exist positive constants c0, c1, d0 and d1 such that

c0e
αξ ≤ Fα(ξ) ≤ c1e

αξ for all ξ ≤ 0 (0.13)

and
d0(ξ + 1)

2

p ≤ Fα(ξ) ≤ d1(ξ + 1)
2

p for all ξ ≥ 0. (0.14)

As a particular consequence of (0.13), (0.14) and a comparison argument, in Section 3.1
we shall obtain the following intermediate result: For any sufficiently smooth positive
function u0 on R that satisfies u0(x) ≤ ceαx for all x ∈ R and some positive c and α, the
initial-value problem for (0.4) with prescribed initial data u(·, 0) = u0 has at least one
positive classical solution u on R× (0,∞) which tends to zero as t→ +∞ (Theorem 3.2).

Next, in order to find an adequate ancient solution defined on R × (−∞, 0], we shall
pursue an ansatz similar to (0.10), with t replaced by −t. Upon an appropriately modified
analysis, in Section 2 we will end up with the following analogue of Theorem 0.3.

Theorem 0.4 For any p > 2 and each α > 0 one can find an increasing positive Gα ∈
C∞(R) such that

ũα(x, t) := (−t)
− 1

p ·Gα

(

x+
1

pα
ln(−t)

)

, x ∈ R, t < 0, (0.15)

defines a positive classical solution ũα ∈ C∞(R× (−∞, 0)) of (0.4) in R× (−∞, 0).
Furthermore, for suitable positive constants c0, c1, d0 and d1 we have

c0e
αξ ≤ Gα(ξ) ≤ c1e

αξ for all ξ ≤ 0 (0.16)

as well as
d0(ξ + 1) ≤ Gα(ξ) ≤ d1(ξ + 1) for all ξ ≥ 0. (0.17)
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Finally, in our construction of a homoclinic orbit we shall use any of the latter ancient
solutions for, say, t ≤ −1, and use the function u(·,−1) ∈ C∞(R) thereby obtained as
data in an initial-value problem for (0.4). According to the right estimates in (0.16) and
(0.17), we may apply our above intermediate result and conclude (Section 4).

In order to state a problem arising here, let us note that a by-product of Theorem 0.3
is the logarithmic correction in the time decay rate of slowly traveling waves, as induced
by (0.12), (0.13) and (0.14). This correction does neither appear in the explicit solutions

u(x, t) = ( p
2(p−2))

1

p t
− 1

px
2

p of (0.4) defined on the half-axis x > 0 for t > 0, nor in separated

solutions of the Dirichlet problem for (0.4) in bounded intervals. It would be interesting
to obtain more information about how the initial data influence the time asymptotics in
(0.4).

1 Slowly traveling waves for t > 0

In this section we shall prove Theorem 0.3, which basically reduces to analyzing the ODE

(0.11) suggested by the wave ansatz. Here, writing F (ξ) = (pα2)
− 1

p · f(αξ), we obtain the
simpler equation

fpf ′′ = f ′ − f on R (1.1)

(cf. (1.15) and (1.16)). Upon the substitution f ′ = ϕ(f), this leads to the first-order
equation fp · ϕ(f)ϕ′(f) = ϕ(f) − f for the new unknown ϕ = ϕ(f), to be considered for
positive values of f . We will not solve this singular ODE directly, but rather find certain
sub- and supersolutions which will provide corresponding ordered sub- and supersolutions
for (1.1) and thereby enable us to finally construct appropriate solutions of (1.1) with the
desired asymptotics.
To begin with, let us consider subsolutions of the first-oder equation.

Lemma 1.1 Let p > 2. Then there exist a+ > 0 and s+ > 0 such that the function
ϕ+ : [0,∞) → R defined by

ϕ+(s) :=







s+ a+s
p+1 if 0 ≤ s ≤ s+,

√

2
p−2s

− p−2

2 if s > s+,
(1.2)

is continuous on [0,∞) and satisfies

ϕ′
+(s) ≤ s−p −

s1−p

ϕ+(s)
for all s ∈ (0,∞) \ {s+}. (1.3)

Proof. Let us define

S(a) :=

(

√

p2 + 4(p+ 1)a− p− 2

2(p+ 1)a

)
1

p

for a ≥ 1. (1.4)

Since p2+4(p+1)a ≥ p2+4(p+1) = (p+2)2 for a ≥ 1, S is well-defined and nonnegative
on [1,∞) with S(1) = 0. Using that S is positive on (1,∞) and satisfies

a
1

2pS(a) → (p+ 1)
− 1

2p =: c0 as a→ ∞,
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we obtain that

S(a) ≥
c0

2
a
− 1

2p for all a ≥ a1

is valid with some a1 ≥ 1. Accordingly,

ψ(a) := S
p

2 (a) + a · S
3p

2 (a), a ≥ 1,

defines a continuous function ψ : [1,∞) → R such that ψ(1) = 0 and

ψ(a) ≥ a · S
3p

2 (a) ≥ a ·
(c0

2

)
3p

2

· a−
3

4 =
(c0

2

)
3p

2

· a
1

4 for all a ≥ a1,

so that by a continuity argument we can pick some a+ > 1 such that ψ(a+) =
√

2
p−2 , that

is,

S
p

2 (a+) + a+ · S
3p

2 (a+) =

√

2

p− 2
. (1.5)

Letting s+ := S(a+) and then defining ϕ+ by (1.2), we infer from (1.5) that ϕ+ is contin-
uous on [0,∞). Moreover, for large s we find

Dϕ+ := ϕ′
+(s)− s−p +

s1−p

ϕ+(s)

< ϕ′
+(s) +

s1−p

ϕ+(s)

= −
p− 2

2
·

√

2

p− 2
· s−

p

2 +
s1−p

√

2
p−2 · s−

p−2

2

= 0 for all s > s+,

whereas near s = 0,

Dϕ+ = 1 + (p+ 1)a+s
p − s−p +

s1−p

s+ a+sp+1

= 1 + (p+ 1)a+s
p −

a+

1 + a+sp

=
1 + (p+ 2)a+s

p + (p+ 1)a2+s
2p − a+

1 + a+sp
for all s ∈ (0, s+).

Computing the roots of the numerator yields the factorization

1 + (p+ 2)a+s
p + (p+ 1)a2+s

2p − a+

= (p+ 1)a2+ ·

(

sp −

√

p2 + 4(p+ 1)a+ − p− 2

2(p+ 1)a+

)

·

(

sp +
p+ 2 +

√

p2 + 4(p+ 1)a+
2(p+ 1)a+

)

,

whence in view of (1.4) we infer that Dϕ ≤ 0 also holds for 0 < s < s+ = S(a+), as
claimed. ////
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We next seek for corresponding supersolutions, maintaining some degrees of freedom that
shall eventually be fixed so as to guarantee the desired ordering of sub- and supersolutions
for the second-order ODE (1.1).

Lemma 1.2 Let p > 2. Then for any s0 > 0 there exist s− ∈ (0, s0), a− ∈ (0, 1
3sp

−

) and

b− ∈ (0,
√

2
p−2) such that ϕ− : [0,∞) → R defined by

ϕ−(s) :=

{

s− a−s
p+1 if 0 ≤ s ≤ s−,

b−s
− p−2

2 if s > s−,
(1.6)

is continuous on [0,∞) and fulfills

ϕ′
−(s) ≥ s−p −

s1−p

ϕ−(s)
for all s ∈ (0,∞) \ {s−}. (1.7)

Proof. Given s0 > 0, we first fix b− > 0 small such that b− <
√

2
p−2 and

b−

1− p−2
2 b2−

< s
p

2

0 (1.8)

as well as
p− 2

2
b2− <

1

p+ 1
, (1.9)

and then obtain from (1.8) that

s− :=

(

b−

1− p−2
2 b2−

)
2

p

(1.10)

satisfies 0 < s− < s0. Since this particularly implies that b− < s
2

p

−, the number

a− :=
1− b−s

− p

2

−
s
p
−

(1.11)

is positive and, by (1.9), satisfies

a−s
p
− = 1− b−s

− p

2

− =
p− 2

2
b2− <

1

p+ 1
, (1.12)

so that clearly a− ∈ (0, 1
3sp

−

). As
√

p2 − 4(p+ 1)a− < p, (1.12) furthermore entails that

s
p
− <

p+ 2−
√

p2 − 4(p+ 1)a−
2(p+ 1)a−

. (1.13)
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Upon these prelimineries, let ϕ− be as in (1.6). Then (1.11) precisely asserts that ϕ− is
continuous at s = s− and hence on [0,∞), while from (1.10) we gain that

Dϕ− ≡ ϕ′
− − s−p +

s1−p

b−s
− p−2

2

= −
p− 2

2
b−s

− p

2 − s−p +
s1−p

b−s
− p−2

2

=

{

1− p−2
2 b2−

b−
− s−

p

2

}

· s−
p

2

≥

{

1− p−2
2 b2−

b−
− s

− p

2

−

}

· s−
p

2

= 0 for all s ∈ (s−,∞).

Moreover, for small s we compute

Dϕ = 1− (p+ 1)a−s
p − s−p +

s1−p

1− a−sp

=
1 + a− − (p+ 2)a−s

p + (p+ 1)a2−s
2p

1− a−sp
for all s ∈ (0, s−).

Hence, using (1.13) we easily see that Dϕ− is positive on (0, s−), which completes the
proof. ////

Now the main step in the construction of slowly traveling waves is accomplished in the
following lemma.

Lemma 1.3 Let p > 2 and α > 0. Then there exists a positive solution Fα ∈ C∞(R) of

F p
αF

′′
α =

1

pα
F ′
α −

1

p
Fα, ξ ∈ R. (1.14)

Moreover, we have F ′
α > 0 on R, and there exist positive constants c0, c1, d0 and d1 such

that the two-sided estimates (0.13) and (0.14) hold.

Proof. Upon the substitution

Fα(ξ) = (pα2)−
1

p · f(αξ), ξ ∈ R, (1.15)

(1.14) transforms into the equation

Ef := −fpf ′′ + f ′ − f = 0, σ ∈ R. (1.16)

In order to solve (1.16), we first claim that there exist f± ∈ C1(R) ∩ C∞(R \ {0}) such
that

Ef− ≤ 0 and Ef+ ≥ 0 on R, (1.17)
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that
f−(σ) < f+(σ) for all σ ∈ R, (1.18)

and that the two-sided estimates

k0e
σ ≤ f±(σ) ≤ k1e

σ for all σ ≤ 0 (1.19)

and
l0(σ + 1)

2

p ≤ f±(σ) ≤ l1(σ + 1)
2

p for all σ ≥ 0 (1.20)

hold with positive constants k0, k1, l0 and l1.
To see this, we let ϕ+, a+ and s+ be as given by Lemma 1.1, next choose s0 > 0 small
enough such that s0 < s+ and

s
−p
0 >

3

2
(s−p

+ + a+), (1.21)

and then take s− ∈ (0, s0), a− ∈ (0, 1
3sp

−

), b− ∈ (0,
√

2
p−2) and ϕ− as provided by Lemma

1.2.
We now define f± to be the solutions of

{

f ′+(σ) = ϕ+(f+(σ)), σ ∈ R,

f+(0) = s+,
(1.22)

and
{

f ′−(σ) = ϕ−(f−(σ)), σ ∈ R,

f−(0) = s−.
(1.23)

In view of the respective choices of ϕ+ and ϕ−, both these problems are explicitly solvable
and we obtain

f+(σ) =











eσ ·
[

s
−p
+ + a+ − a+e

pσ
]− 1

p
if σ ≤ 0,

(

s
p

2

+ +
√

p2

2(p−2)σ
)

2

p
if σ > 0,

(1.24)

as well as

f−(σ) =











eσ ·
[

s
−p
− − a− + a−e

pσ
]− 1

p
if σ ≤ 0,

(

s
p

2

− + pb−
2 σ
)

2

p
if σ > 0.

(1.25)

Now differentiating (1.22) and (1.23) and using (1.2) and (1.6) we immediately deduce
(1.17), whereas (1.19) and (1.20) directly result from (1.24) and (1.25).
To see (1.18), we consider the case σ > 0 first, in which we use that s− < s+ and

b− <
√

2
p−2 to derive from (1.24) and (1.25) that

f−(σ) =
(

s
p

2

− +
pb−
2
σ
)

2

p

<

(

s
p

2

+ +
p
√

2
p−2

2
σ

)
2

p

= f+(σ) for all σ > 0.
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As to σ ≤ 0, however, in view of the fact that a− < 1
3sp

−

and s− < s0, from (1.24) and

(1.25) we gain

epσ ·
(

f
−p
− (σ)− f

−p
+ (σ)

)

= (s−p
− − a− + a−e

pσ)− (s−p
+ + a+ − a−e

pσ)

> s
−p
− − s

−p
+ − a− − a+

>
2

3
s
−p
− − s

−p
+ − a+

>
2

3
s
−p
0 s

−p
+ − a+

> 0

because of (1.21).
Having thus asserted (1.17)-(1.20), from standard theory of elliptic boundary value prob-
lems ([T]) we infer that for each R > 0 the problem











EfR = 0, σ ∈ (−R,R),

fR(−R) = k1e
−R,

fR(R) = l1(R+ 1)
2

p ,

(1.26)

has at least one positive solution fR ∈ C2([−R,R]) satisfying

k0e
σ ≤ fR(σ) ≤ k1e

σ for all σ ∈ [−R, 0]

and

l0(σ + 1)
2

p ≤ fR(σ) ≤ l1(σ + 1)
2

p for all σ ∈ [0, R].

These two-sided bounds allow us to apply elliptic regularity estimates to (1.26) so as to
obtain that along an appropriate sequence of numbers Rj → ∞ we have

fRj
→ f in C2

loc(R)

for some f ∈ C2(R) that solves Ef = 0 on R and fulfills

k0e
σ ≤ f(σ) ≤ k1e

σ for all σ ≤ 0 (1.27)

and
l0(σ + 1)

2

p ≤ f(σ) ≤ l1(σ + 1)
2

p for all σ ≥ 0. (1.28)

Transforming back to the original variables via (1.15), we thereby obtain a solution Fα

of (1.14) which, by (1.27) and (1.28), satisfies (0.13) and (0.14). By elliptic regularity
arguments applied to (1.14), we furthermore infer that in fact Fα ∈ C∞(R). Finally, since
(1.14) rules out the occurrence of both local minima and saddle points of Fα, in view of
the asymptotics described by (0.13) and (0.14) we finally gain that F ′

α must be positive
throughout R. ////

12



Our main result on the existence of slowly traveling wave solutions of (0.4) for positive
times is now an immediate consequence.

Proof of Theorem 0.3. In view of Lemma 1.3, we only need to make sure that uα as
defined by (0.12) in fact solves (0.4). To this end, we compute, omitting the argument
x+ 1

pα
ln t of Fα,

uαt = −
1

p
t
− 1

p
−1

· Fα + t
− 1

p ·
1

pα
·
1

t
· F ′

α and uαxx = t
− 1

p · F ′′
α

and thus obtain

uαt − upαuαxx = t
− 1

p
−1

·
{1

p
Fα +

1

pα
F ′
α + F p

αF
′′
α

}

= 0 on R× (0,∞)

according to (1.14). ////

2 Ancient slowly traveling wave solutions

In this section we seek for traveling waves defined for t < 0 by pursuing the ansatz

u(x, t) = (−t)
− 1

p ·G
(

x+
1

pα
ln(−t)

)

, x ∈ R, t < 0.

Then instead of (0.11) and (1.1) we should solve

GpG′′ =
1

p
G−

1

pα
G′ on R (2.1)

and
gpg′′ = g − g′ on R, (2.2)

respectively. We this time find it more convenient to study the latter equation directly,
without order reduction. In fact, we shall see that it is possible to glue together two
solutions of (2.2), one defined for negative and the other one for positive values of the
variable.
The former will again be obtained using sub- and supersolutions, and our construction
actually applies to any choice of p > 0 in (0.4).

Lemma 2.1 Let p > 0. Then there exists a positive solution g ∈ C2((−∞, 0]) of

gpg′′ = g − g′, σ < 0, (2.3)

and this solution satisfies
g′(σ) > 0 for all σ ≤ 0 (2.4)

as well as
c0e

σ ≤ g(σ) ≤ c1e
σ for all σ ≤ 0 (2.5)

for some c0 > 0 and c1 > 0.

13



Proof. We fix arbitrary constants a+ ≥ 1 and a− ∈ (0, 1) and then pick numbers
s+ ∈ (0, 1) and s− ∈ (0, s+) such that

a+s
p
+ < 1 (2.6)

and
(p+ 2)a−s

p
− ≤ 1− a−. (2.7)

Then s−p
+ > a+ and sp− > 1 > a−, and hence the functions g+ and g− explicitly given by

g±(σ) :=
[

(s−p
± − a±)e

−pσ + a±
]− 1

p
, σ ≤ 0, (2.8)

are both well-defined, positive and nondecreasing on (−∞, 0]. Moreover, since a− < a+
and s− < s+ imply that

epσ ·
(

g
−p
+ (σ)− g

−p
− (σ)

)

= (s−p
+ − a+ + a+e

−pσ)− (s−p
− − a− + a−e

−pσ)

= (s−p
+ − s

−p
− )− (a+ − a−)(1− e−pσ)

< 0 for all σ ≤ 0,

g+ and g− are strictly ordered in the sense that

g−(σ) < g+(σ) for all σ ≤ 0. (2.9)

Next, it can easily be checked using (2.8) that g+ and g− are the respective solutions of
the initial-value problems

{

g′± = g± − a±g
p+1
± , σ < 0,

g±(0) = s±.
(2.10)

We claim that writing

Eg := −gpg′′ − g′ + g,

we have the inequalities

Eg+ > 0 and Eg− < 0 on (−∞, 0]. (2.11)

Indeed, by (2.10) we compute

Eg± = −gp± ·
(

1− (p+ 1)a±g
p
±

)

·
(

g± − a±g
p+1
±

)

−
(

g± − a±g
p+1
±

)

+ g±

= g
p+1
± ·

(

a± − 1 + (p+ 2)a±g
p
± − (p+ 1)a2±g

2p
±

)

for σ < 0. (2.12)

Since a+ ≥ 1 and g+ increases on (−∞, 0], from (2.6) we obtain

Eg+ ≥ a+g
2p+1
+ ·

(

p+ 2− (p+ 1)a+g
p
+

)

≥ a+g
2p+1
+ ·

(

p+ 2− (p+ 1)a+s
p
+

)

≥ a+g
2p+1
+ ·

(

p+ 2− (p+ 1)
)

> 0 on (−∞, 0].
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As to g−, in (2.12) we omit the last nonnegative summand in brackets and use the fact
that also g− increases in deriving

Eg− < g
p+1
− ·

(

− (1− a−) + (p+ 2)a−g
p
−

)

≤ g
p+1
− ·

(

− (1− a−) + (p+ 2)a−s
p
−

)

≤ 0 on (−∞, 0]

because of (2.7).
Having thereby found a pair of ordered sub- and supersolutions g± of (2.3), we can proceed
in a standard way to construct a solution g of (2.3) fulfilling g− ≤ g ≤ g+ (cf. the proof of
Lemma 1.3): According to [T], for each R > 0 the problem











EgR = 0, σ ∈ (−∞, 0),

gR(−R) = g+(−R),

gR(0) = g+(0),

(2.13)

has a solution gR ∈ C2([−R, 0]) such that g− ≤ gR ≤ g+ in [−R, 0]. Using this in con-
junction with elliptic regularity theory, we infer that along a suitable sequence of numbers
R = Rj ր ∞ we have gRj

→ g in C2
loc((−∞, 0]), where taking limits in (2.13) shows that

g in fact solves (2.3). Since clearly g− ≤ g ≤ g+ on (−∞, 0], (2.5) immediately results
from (2.8). Finally, (2.3) implies that g′′ > 0 at each point where g′ = 0, which together
with (2.5) entails that actually g′ > 0 on (−∞, 0]. ////

We next extend the solution obtained above to the positive half-axis by solving a corre-
sponding initial-value problem.

Lemma 2.2 Let p > 2, a > 0 and b > 0. Then the initial-value problem











gpg′′ = g − g′, σ > 0,

g(0) = a,

g′(0) = b,

(2.14)

has a positive solution g ∈ C2([0,∞)) satisfying g′ > 0 on [0,∞) and

d0(σ + 1) ≤ g(σ) ≤ d1(σ + 1) for all σ ≥ 0 (2.15)

with certain positive constants d0 and d1.

Proof. Let g denote the local solution of (2.14), extended up to some maximal σmax ∈
(0,∞]. Since b > 0 and g cannot attain a positive local maximum in (0, σmax), we must
have g′ > 0 on (0, σmax) and hence gp ≥ ap > 0 on (0, σmax). Therefore we have the
two-sided estimate

−a−pg′ ≤ g′′ ≤ a−pg on (0, σmax),
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which excludes the possibility that either g or g′ blows up at σmax. It follows that actually
σmax = ∞, and that g′ > 0 on (0,∞).
To see the right inequality in (2.15), we multiply the differential equation in (2.14) by
g−pg′ and integrate over (0, σ) to obtain

1

2
g′2(σ)−

1

2
b2 =

1

p− 2
a2−p −

1

p− 2
g2−p(σ)−

∫ σ

0
g−p(τ)g′2(τ)dτ.

Dropping nonnegative terms, we conclude that

g′(σ) ≤

√

2

p− 2
a2−p + b2 =: d̃1 for all σ > 0

and thereby see that the second estimate in (2.15) holds for d1 := max{a, d̃1}.

In order to derive the lower bound in (2.15), let us proceed to show that there exists σ0 > 0
such that

g′′(σ) ≥ 0 for all σ ≥ σ0. (2.16)

To this end, we first observe that ψ(σ) := g(σ)− g′(σ) satisfies

ψ′ = g′ − g′′

= g′ −
g − g′

gp

= g − ψ −
ψ

gp

≥ −
(

1 +
1

gp

)

· ψ on (0,∞).

Upon an ODE comparison argument, this guarantees that if ψ(σ1) ≥ 0 for some σ1 ∈
(0,∞) then ψ ≥ 0 on (σ1,∞). Thus, if (2.16) was false then ψ ≡ gpg′′ would be nonnegative
on the whole interval (0,∞), so that we would obtain g′ > g and therefore g(σ) > aeσ

on (0,∞). Since we have already verified the right inequality in (2.15), this yields a
contradiction and thereby proves (2.16). Consequently,

g(σ) ≥ g(σ0) + g′(σ0) · (σ − σ0) for all σ > σ0,

which easily leads to the left inequality in (2.15). ////

Combining the above two lemmata in a straightforward manner, we can complete the
construction of solutions to (2.1).

Corollary 2.3 Let p > 2 and α > 0. Then there exist positive constants c0, c1, d0 and d1
and a positive solution Gα ∈ C∞(R) of

Gp
αG

′′
α =

1

p
Gα −

1

pα
G′

α, ξ ∈ R, (2.17)

that satisfies G′
α > 0 on R and (0.16) as well as (0.17).
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Proof. We first apply Lemma 2.1 to obtain a positive solution g̃ ∈ C2((−∞, 0]) of
g̃pg̃′′ = g̃ − g̃′ for which (2.4) and (2.5) hold. In particular, both a := g̃(0) and b := g̃′(0)
are positive and hence Lemma 2.2 applies to extend g̃ to a positive solution g ∈ C2(R) of
the ODE gpg′′ = g − g′ on R which satisfies (2.5) and (2.15) and moreover g′ > 0 on R.
Letting

Gα(ξ) := (pα2)
− 1

p g(αξ), ξ ∈ R,

we thus obtain a positive function Gα ∈ C2(R) that solves (2.17) and fulfills G′
α > 0 on

R and, by (2.5) and (2.15), obviously has the properties (2.15) and (2.16) with suitable
positive c0, c1, d0 and d1. Finally, by elliptic regularity arguments, from the validity of
(2.17) and the positivity of Gα it follows that actually Gα ∈ C∞(R). ////

The proof of Theorem 0.4 is a direct consequence.

Proof of Theorem 0.4. Taking Gα as given by Corollary 2.3, we can copy almost word
by word the proof of Theorem 0.3, and so we can omit repeating details here. ////

For later use, let us also note that upon a small time shift, we immediately obtain ancient
solutions of (0.4), smooth up to t = 0, which approach zero as t→ −∞.

Corollary 2.4 Let p > 2 and α > 0. Then the problem

ut = upuxx, x ∈ R, t ≤ 0, (2.18)

has a smooth positive classical solution u ∈ C∞(R× (−∞, 0]) which has the property that
for all y ∈ R one can find C > 0 such that

‖u(·, t)‖L∞((−∞,y)) ≤ C(−t)
− 1

p ln(−t) for all t ∈ (−∞,−2). (2.19)

Furthermore, there exist positive constants c0, c1, d0 and d1 such that

c0e
αx ≤ u(x, 0) ≤ c1e

αx for all x ≤ 0 (2.20)

and
d0(x+ 1) ≤ u(x, 0) ≤ d1(x+ 1) for all x ≥ 0, (2.21)

and u has the uniform decay property

‖u‖L∞((−∞,y)×(−∞,0)) → 0 as y → −∞. (2.22)

Proof. Letting uα denote the slowly traveling wave solution provided by Theorem 0.4,
we fix an arbitrary τ > 0 and define u(x, t) := uα(x, t − τ) for x ∈ R and t ∈ (−∞, 0].
Then (2.18) is obvious from the solution property of uα, and (2.19) is a consequence of
the formula (0.15) and the right inequality in (0.17). Moreover, the estimates (2.20) and
(2.21) immediately result from (0.16) and (0.17), so that it remains to verify (2.22). To
this end, according to (0.17) let us take d̃1 > 0 such that

Gα(ξ) ≤ d̃1(ξ + 1) for all ξ > 0. (2.23)
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Given ε > 0, we can pick tε < 0 such that

d̃1(τ − t)
− 1

p ·
(

1 +
1

pα
ln(τ − t)

)

< ε for all t < tε (2.24)

and then take xε < 0 fulfilling

xε < −
1

pα
ln(τ − tε) (2.25)

and
c1e

αxε < ε, (2.26)

where c1 is as in (0.16). To see that this choice guarantees that

u(x, t) ≤ ε for all x < xε and t < 0, (2.27)

we fix such x and t and let ξ := x + 1
pα

ln(τ − t). Then in the case ξ < 0, (0.16) tells us
that

u(x, t) ≤ c1(τ − t)
− 1

p eαξ = c1e
αx ≤ c1e

αxε < ε.

If, conversely, ξ ≥ 0, then we necessarily have t ≤ tε, because (2.25) asserts that if t < tε
and x < xε then ξ < xε +

1
pα

ln(τ − tε) < 0. Therefore, (2.23) and (2.24) apply to yield

u(x, t) ≤ (τ − t)
− 1

p · d̃1

(

xε + 1 +
1

pα
ln(τ − t)

)

≤ d̃1(τ − t)
− 1

p · (1 +
1

pα
ln(τ − 1)

)

< ε

for such (x, t). This establishes (2.22). ////

3 The Cauchy problem for t > 0

3.1 Construction of minimal solutions

In this section we consider the forward Cauchy problem associated with (0.4),

{

ut = upuxx, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(3.1)

where u0 > 0 on R and, for simplicity, we assume that u0 belongs to C
3(R). A comprehen-

sive solution theory for (3.1) with p > 2 was developed in [ERV] and [RV], where actually
the transformed version (0.5) was addressed in the corresponding range m ∈ (−1, 0). In
particular, it was shown there that even positive classical solutions are never unique, which
excludes any hope for a comparison principle without imposing further conditions on the
solutions to be compared. We therefore briefly track a straightforward construction of one
particular solution of (3.1) by a suitable approximation process. This stepwise procedure
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will enable us to safely apply comparison arguments, because they are valid at the level
of approximations.

To be more precise, we consider the problems

{

uMt = u
p
MuMxx, x ∈ R, t > 0,

uM (x, 0) = u0M (x), x ∈ R,
(3.2)

with u0M ∈W
1,∞
loc (R) given by

u0M (x) := min {u0(x),M}, x ∈ R,

forM > 0. These problems in turn can be approximated by the family of initial-boundary
value problems











uMRt = u
p
MRuMRxx, x ∈ BR, t > 0,

uMR(±R, t) = 0, x = ±R, t > 0,

uMR(x, 0) = u0MR(x), x ∈ BR,

(3.3)

where R > 0 and BR := (−R,R). Here,

u0MR(x) := χ
( |x|

R

)

· u0M (x), x ∈ [−R,R],

with a fixed nonincreasing function χ ∈ C∞([0, 1)) satisfying χ > 0 in [0, 1), χ(1) = 0
and χ ≡ 1 on [0, 12 ]. Consequently, u0R belongs to W 1,∞(B̄R), is positive inside BR and
vanishes on ∂BR.

Let us first assert solvability of (3.2) through the approximation (3.3).

Lemma 3.1 Let p > 0 and u0 ∈ C3(R) be positive. Then (3.2) possesses a positive
classical solution uM which is global in time and satisfies uM ≤ M in R × (0,∞). This
solution can be obtained as the limit in C0

loc(R × [0,∞)) ∩ C2,1
loc (R × (0,∞)) of solutions

uMR of (3.3) as R→ ∞.

Proof. According to standard parabolic theory ([LSU]), for each ε ∈ (0, 1) the problem











uMRεt = u
p
MRεuMRεxx, x ∈ BR, t > 0,

uMRε(±R, t) = ε, x = ±R, t > 0,

uMRε(x, 0) = u0MRε(x) := u0MR(x) + ε, x ∈ BR,

(3.4)

has a positive classical solution uMRε ∈ C0(B̄ × [0,∞))∩C2,1(B̄ × (0,∞)) which satisfies
ε ≤ uMRε ≤M+ε in BR×(0,∞) by comparison. Moreover, using that u0 is positive on R,
we have cR := infx∈BR

u0(x) > 0, and thus it is easily checked that u0MR(x) ≥ c̃RΘR(x)
holds for all x ∈ BR with ΘR(x) := cos πx

2R and c̃R := 2RcR
π

. Since the separated function

u(x, t) := y(t) ·ΘR(x), y(t) :=

(

c̃
−p
R +

( π

2R

)2
pt

)− 1

p

, x ∈ B̄R, t ≥ 0,
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can easily be verified to satisfy ut ≤ upuxx in BR× (0,∞), another comparison thus yields
the two-sided ε-independent estimate

y(t) ·ΘR(x) ≤ uMRε(x, t) ≤M + 1 for all x ∈ B̄R and t ≥ 0,

which allows for an application of parabolic regularity theory to yield uniform estimates for

(uMRε)ε∈(0,1) in C
θ, θ

2

loc (B̄R × [0,∞)) and in C
2+θ,1+ θ

2

loc (BR × (0,∞)) for some θ > 0 ([LSU]).
Along with the evident ordering property of (uMRε)ε∈(0,1), this implies that as ε ց 0 we

have uMRε → uMR in C0
loc(B̄R × [0,∞)) ∩ C2,1

loc (BR × (0,∞)) for some positive uMR that
solves (3.3) classically.

Now from the properties of χ it follows that uMR is nondecreasing with respect to R and
hence approaches a limit uM from below. Since evidently uMR ≤ M for all R, again
invoking parabolic regularity theory we infer that actually the convergence uMR → uM
takes place in the asserted topology. ////

Using suitable slowly traveling wave solutions as comparison functions, we now obtain
that any smooth initial data that are dominated by some exponential lead to solutions of
(3.1) decaying to zero as t→ +∞.

Theorem 3.2 Let p > 2, and assume that u0 ∈ C3(R) is positive on R and fulfills

u0(x) ≤ ceαx for all x ∈ R (3.5)

with some positive constants α and c. Then (3.1) possesses a global positive classical
solution u ∈ C2,1(R× [0,∞)) which satisfies

u(x, t) ≤ t
− 1

p · Fα

(

x+ x0 +
1

pα
ln t
)

for all x ∈ R and t > 0 (3.6)

with some sufficiently large x0 ∈ R, where Fα is as provided by Theorem 0.3.
In particular, for all y ∈ R one can find Cy > 0 such that

‖u(·, t)‖L∞((−∞,y)) ≤ Cy · t
− 1

p ( ln t)
2

p for all t ≥ 2, (3.7)

and moreover u enjoys the uniform decay property

‖u‖L∞((−∞,y)×(0,∞)) → 0 as y → −∞. (3.8)

Remark. Let us emphasize a caveat that is implicitly contained in the above statement:
It shows that even strictly convex initial data do not enforce solutions of (3.1) to be
monotone increasing in time. This effect, which is in close accordance with the results
in [RV] on non-uniqueness in (0.4) for p > 2, clearly stems from the degeneracy in (0.4):
In the corresponding problem for the heat equation ut = uxx, for instance, it can easily
be seen from the explicit representation formula for solutions that the condition u0xx ≥ 0
ensures ut ≥ 0 in R× (0,∞) (provided that u lies in the commonly used solutions class of
functions which for all T > 0 do not exceed ceαx

2

in R× (0, T ) for some c > 0 and α > 0.)
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Proof (of Theorem 3.2.) With Fα, c0, c1, d0, d1 and uα taken from Lemma 1.3 and
Theorem 0.3, respectively, we fix x0 ∈ R large enough such that

c0e
αx0 > c, (3.9)

and then, given R > 0, let
τR := e−pα(x0+R). (3.10)

Then

uR(x, t) := uα(x+ x0, t+ τR)

≡ (t+ τR)
− 1

p · Fα

(

x+ x0 +
1

pα
ln(t+ τR)

)

, x ∈ R, t ≥ 0,

defines a smooth positive function on R× [0,∞) that solves (0.4) classically according to
Corollary 0.3. Moreover, if we restrict x to be contained in [−R,R], we see that

x+ x0 +
1

pα
ln τR = x−R ≤ 0,

so that by (0.13),

uR(x, 0) = τ
− 1

p

R · Fα

(

x+ x0 +
1

pα
ln t
)

≥ τ
− 1

p

R · c0e
α(x+x0+

1

pα
ln τR)

= c0e
αx0eαx

> ceαx for all x ∈ [−R,R].

Consequently, uR(·, 0) > u0MR holds in (−R,R) for any M > 0, whence the comparison
principle says that uR > uMR in (−R,R) × (0,∞). Taking R → ∞ shows that for the
solution uM = limR→∞ uMR of (3.2) constructed in Lemma 3.1 we have

uM (x, t) ≤ t
− 1

p · Fα

(

x+ x0 +
1

pα
ln t
)

for all x ∈ R and t > 0. (3.11)

Thus, given y ∈ R and T > 0, for all (x, t) ∈ (−∞, y)× (0, T ) we find that ξ := x+ x0 +
1
pα

ln t ≤ ξy,T := y + x0 +
1
pα

lnT , and hence for small ξ we obtain from (0.13) that

uM (x, t) ≤ t
− 1

p · c1e
α(x+x0+

1

pα
ln t)

= c1e
α(x+x0) if ξ ≤ 0,

whereas if ξ > 0 then t > e−pα(y+x0), so that

uM (x, t) ≤ (e−pα(y+x0))
− 1

p · Fα(ξy,T ) if ξ > 0,

because Fα is increasing. All in all, this implies that (uM )M>0 is locally bounded in
R× [0,∞), and since uM evidently increases with M , we may once more invoke parabolic
regularity theory to infer that (uM )M>0 is relatively compact and hence convergent in
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C0
loc(R × [0,∞)) ∩ C2,1

loc (R × (0,∞)) to a limit u which is a positive classical solution of
(3.1) that satisfies (3.6).
Going back to (3.11), from the right inequality in (0.14) we moreover obtain C > 0 such
that

u(x, t) ≤ C · t
− 1

p ·
(

x+
1

pα
ln t
)

2

p
for all (x, t) ∈ R× (0,∞) with x+

1

pα
ln t ≥ C,

which clearly implies (3.7). Finally, the proof of (3.8) can be accomplished using (0.13)
and (0.14) by repeating the argument from the proof of Corollary 2.4. ////

3.2 Spatial monotonicity

As we have seen in Theorem 3.2, spatial convexity of u0 need not be inherited by solutions
of (3.1). The question whether at least spatial monotonicity is preserved during evolution
therefore appears not to be obvious. In order to prepare an affirmative answer, let us
provide a comparison principle for sub- and supersolutions to (3.1) with sublinear growth
as |x| → ∞ in an appropriate sense. Our proof uses a well-established method involving
smooth approximations of the function sgn+.

Lemma 3.3 Let −∞ < t0 < t1 <∞ and u and u be two positive functions from C2,1(R×
[t0, t1]) satisfying

ut − upuxx ≤ 0 ≤ ut − upuxx in R× (t0, t1) (3.12)

and
u(x, t0) ≤ u(x, t0) for all x ∈ R (3.13)

as well as
1

R

∫ t1

t0

u(±R, t)dt→ 0 as R→ ∞. (3.14)

Then

u ≤ u in R× (t0, t1).

Proof. We fix ϕ ∈ C∞(R) such that ϕ ≡ 0 in (−∞, 0) and ϕ ≡ 1 in (1,∞) and
0 ≤ ϕ′ ≤ 2 on R, and set ϕδ(s) := ϕ( s

δ
) and Φδ(s) :=

∫ s

0 ϕδ(σ)dσ for s ∈ R and δ > 0.
Abbreviating H(s) := − 1

p−1s
1−p for s > 0, from (3.12) we see that

∂t(H(u)−H(u)) ≤ (u− u)xx in R× (t0, t1). (3.15)

We now fix t ∈ (t0, t1) and R > 0 and multiply (3.15) by ϕδ(u − u) · ΘR(x), where
ΘR(x) := cos πx

2R , x ∈ [−R,R]. On integration over (−R,R)× (t0, t) we obtain

I1(R, δ) :=

∫ t

t0

∫ R

−R

ϕδ(u− u) · ∂t(H(u)−H(u)) ·ΘR

≤

∫ t

t0

∫ R

−R

ϕδ(u− u) · (u− u)xx ·ΘR

=: I2(R, δ). (3.16)
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Since ΘR(±R) = 0 and ΘRx(±R) = ∓ π
2R , two integrations by parts with respect to x

yield

I2(R, δ) = −

∫ t

t0

∫ R

−R

ϕ′
δ(u− u) · (u− u)2x ·ΘR +

∫ t

t0

∫ R

−R

Φδ(u− u) ·ΘRxx

+
π

2R

∫ t

t0

{

Φδ(u(R, τ)− u(R, τ)) + Φδ(u(−R, τ)− u(−R, τ))
}

dτ.

Here we use that ϕ′
δ ≥ 0 and ΘR ≥ 0 and hence ΘRxx ≡ −( π

2R)
2ΘR ≤ 0, and that Φδ is

nonnegative and nondecreasing to verify that

I2(R, δ) ≤
π

2R

∫ t1

t0

{

Φδ(u(R, τ)) + Φδ(u(−R, τ))
}

dτ

≤
π

2R

∫ t1

t0

(u(R, τ) + u(−R, τ))dτ, (3.17)

because Φδ(s) ≤ s for s ≥ 0.
As to the term on the left of (3.16), we integrate by parts with respect to time to achieve
the identity

I1(R, δ) =

∫ t

t0

∫ R

−R

ϕ′
δ(u− u) · (H(u)−H(u)) · (ut − ut) ·ΘR

+

∫ R

−R

ϕδ(u− u)(·, t) · (H(u)−H(u))(·, t) ·ΘR

=: I11(R, δ) + I12(R, δ), (3.18)

for u ≤ u at time t0 by (3.13). Now the assumed positivity of u warrants the existence of
some c > 0 such that u ≥ c in (−R,R) × (t0, t). Observing that ϕ′

δ(u − u) = 0 whenever
u ≤ u or u ≥ u+ δ, and that 0 ≤ ϕ′

δ(u− u) ≤ 2
δ
, using the mean-value theorem we obtain

|ϕ′
δ(u− u) · (H(u)−H(u))| ≤ ϕ′

δ(u− u) · u−p · |u− u| ≤
2

δ
· c−p · δ in (−R,R)× (t0, t).

Therefore an application of the dominated convergence theorem ensures that for each fixed
R > 0,

I11(R, δ) → 0 as δ → 0, (3.19)

because according to our hypotheses, ut and ut are bounded in (−R,R)× (t0, t).
Finally, since ϕδ(s) ր 1 on (0,∞) as δ ց 0, invoking Beppo Levi’s theorem we infer that

I22(R, δ) →

∫ R

−R

(H(u)−H(u))+(·, t) ·ΘR as δ → 0 (3.20)

for each R > 0. Collecting (3.16)-(3.20), in the limit δ → 0 we arrive at the inequality

∫ R

−R

(H(u)−H(u))+(·, t) ·ΘR ≤
π

2R

∫ t1

t0

(u(R, t) + u(−R, t))dt
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for all R > 0. Taking R → ∞ here, in view of our assumption (3.14) we obtain that
H(u)(·, t) ≤ H(u)(·, t) in R and hence conclude from the strict monotonicity of H that
u ≤ u in R× (t0, t1), because t ∈ (t0, t1) was arbitrary. ////

As a straightforward consequence, we obtain the following.

Lemma 3.4 Suppose that u0 meets the requirements of Theorem 3.2 and moreover fulfils
u0x ≥ 0 in R. Then the global positive solution of (3.1) constructed in Theorem 3.2 satisfies
ux ≥ 0 in R× (0,∞).

Proof. For fixed h > 0 and t1 > 0, we intend to apply Lemma 3.3 to

u(x, t) := u(x, t) and u(x, t) := u(x+ h, t) in R× (0, t1). (3.21)

For this purpose, we observe that both u and u are solutions of the PDE vt = vpvxx in
R× (0, t1), and the assumption u0x ≥ 0 implies that u ≤ u at t = 0. In order to conclude
that u ≤ u in R × (0, t1), it is thus sufficient to verify (3.14), which amounts to showing
that

I1(R) :=
1

R

∫ t1

0
u(R, t)dt andI2(R) :=

1

R

∫ t1

0
u(−R, t)dt, R > 0,

both vanish in the limit R→ ∞. To this end, we recall that Theorem 3.2 provides x0 > 0
such that

u(R, t) ≤ t
− 1

p · Fα

(

R+ x0 +
1

pα
ln t
)

for all t > 0 (3.22)

with Fα taken from Theorem 0.3.
Assuming without loss of generality that t1 > t⋆ := e−pα(R+x0), we can split I1(R) and
use (3.22) to obtain

I1(R) ≤
1

R

∫ t⋆

0
t
− 1

p · Fα

(

R+ x0 +
1

pα
ln t
)

dt+
1

R
·

∫ t1

t⋆

t
− 1

p · Fα

(

R+ x0 +
1

pα
ln t
)

dt

=: I11(R) + I12(R)

for all R > 0. According to (0.13), since R+ x0 +
1
pα

ln t ≤ 0 for t ≤ t⋆ we have

I11(R) ≤
1

R

∫ t⋆

0
t
− 1

p · c1 e
α(R+x0+

1

pα
ln t)

dt =
c1

R
· eα(R+x0) · t⋆ =

c1

R
· e−(p−1)α(R+x0)

→ 0 as R→ ∞,

becasue p ≥ 1. As to I12(R), from (0.14) and the monotonicity of t 7→ ln t we infer that

I12(R) ≤
1

R

∫ t1

t⋆

t
− 1

p · d1

(

R+ x0 + 1 +
1

pα
ln t
)

2

p
dt

≤
d1

R
·
(

R+ x0 + 1 +
1

pα
ln t
)

2

p
·

∫ t1

0
t
− 1

pdt
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for all R > 0. Since p > 2, this proves that I12(R) and hence also I1(R) converges to zero
as R → ∞, and repeating the above argument we also obtain that I2(R) → 0 as R → ∞.
Therefore Lemma 3.3 applies to yield u(x+ h, t)− u(x, t) ≥ 0 for all x ∈ R and t ∈ (0, t1).
Upon division by h, in the limit h ց 0 this shows that ux ≥ 0 in R× (0, t1) and thereby
completes the proof, because t1 > 0 was arbitrary. ////

4 Proofs of the main results on homoclinic orbits

We are now in the position to prove our main result concerning the existence of homoclinic
orbits for (0.4).

Proof of Theorem 0.1. We fix any α > 0 and let u ∈ C∞(R× (−∞, 0]) be the ancient
solution provided by Corollary 2.4. Then u0 := u(·, 0) is smooth and positive on R and
satisfies u0(x) ≤ ceαx for all x ∈ R with some c > 0 by (2.20) and (2.21). Accordingly,
Theorem 3.2 makes sure that u can be extended for positive times so as to yield an entire
positive classical solution, which in fact belongs to C∞(R×R) due to parabolic regularity
theory. The decay estimates (0.7) and (0.8) directly result from (3.7) and (2.19), respec-
tively, and from Corollary 2.4 and Theorem 3.2 it is also clear that ‖u‖L∞((−∞,y)×R) → 0
as y → −∞. Finally, since clearly ux > 0 in R× (−∞, 0], Lemma 3.4 asserts that ux ≥ 0
in R × (0,∞). Therefore the strong maximum principle guarantees that we even have
ux > 0 in R× (0,∞), which completes the proof. ////

Remark. It is likely to be expected that along the lines presented above, certain an-
cient slowly traveling waves can also be constructed in the regime p ∈ (0, 2]. However, we
do not know how such solutions evolve for t > 0, and thus in particular have to leave open
the interesting question whether or not (0.4) possesses homoclinic orbits also in the less
degenerate case p ≤ 2.

Let us finally make sure that no bounded homoclinic connections from u ≡ 0 to itself exist
in the sense of Definition 0.1.

Proof of Proposition 0.2. Assuming on the contrary that such a homoclinic orbit u
exists, we let ε > 0, x0 ∈ R and t0 ∈ R be given and claim that

u(x0, t0) ≤ ε, (4.23)

which will evidently lead to the absurd conclusion that u ≡ 0.
To this end, we take x1 < x0 such that

u(x1, t) <
ε

2
for all t ∈ R, (4.24)

which is possible according to (0.9), and then pick a number a > 0 fulfilling

a >
x0 − 2

p

2x1

2
p

2 − 1
. (4.25)
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This enables us to choose a number τ > −t0 satisfying

1

ε
· (x0 + a)

2

p ≤
{2(p− 2)

p
· (t0 + τ)

}
1

p
≤

2

ε
· (x1 + a)

2

p . (4.26)

We finally fix T ∈ (0, t0+ τ) sufficiently close to t0+ τ and x2 > x0 large enough such that

2(p− 2)

p
· (t0 + τ − T ) ≤

(x1 + a)2

Mp
(4.27)

and

(x2 + a)
2

p ≥
{2(p− 2)

p
· (t0 + τ)

}
1

p
·M, (4.28)

where M := ‖u‖L∞(R×R) is finite according to our hypothesis. Now the function u : Q :=
[x1, x2]× [t0 − T, t0] → R defined by

u(x, t) := y(t) · (x+ a)
2

p , (x, t) ∈ Q,

with

y(t) :=
{2(p− 2)

p
· (t+ τ)

}− 1

p
, t ∈ [t0, T, t0],

is smooth and positive in Q and satisfies

ut − upuxx =
{

y′ +
2(p− 2)

p2
· yp+1

}

· (x+ a)
2

p = 0 in Q,

Moreover, at t = t0 − T we have

u(x, t0 − T ) =
{2(p− 2)

p
· (t0 + τ − T )

}− 1

p
· (x+ a)

2

p

≥
{2(p− 2)

p
· (t0 + τ − T )

}− 1

p
· (x1 + a)

2

p

≥ M for all x ∈ [x1, x2]

due to (4.27), whereas if x = x1 then

u(x1, t) =
{2(p− 2)

p
· (t+ τ)

}− 1

p
· (x1 + a)

2

p

≥
{2(p− 2)

p
· (t0 + τ)

}− 1

p
· (x1 + a)

2

p

≥
ε

2
> u(x1, t) for all t ∈ [t0 − T, t0]
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as a consequence of (4.26) and (4.24). Similarly, using (4.28) and the definition of M , we
see that on the right lateral boundary of Q,

u(x2, t) ≥
{2(p− 2)

p
· (t0 + τ)

}− 1

p
· (x2 + a)

2

p

≥ M

≥ u(x2, t) for all t ∈ [t0 − T, t0].

Therefore, the comparison principle shows that u ≤ u in Q. In view of the left inequality
in (4.26), this in particular implies that

u(x0, t0) ≤ u(x0, t0) =
{2(p− 2)

p
· (t0 + τ)

}− 1

p
· (x0 + a)

2

p ≤ ε

and thereby proves (4.23). ////
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