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Rate of convergence to Barenblatt profiles for the fast diffusion
equation with a critical exponent

M. Fila, J. R. King and M. Winkler

Abstract

We study the asymptotic behaviour near extinction of positive solutions of the Cauchy problem
for the fast diffusion equation with a critical exponent. After a suitable rescaling that yields
a nonlinear Fokker–Planck equation, we find a continuum of algebraic rates of convergence to
a self-similar profile. These rates depend explicitly on the spatial decay rates of initial data.
This improves a previous result on slow convergence for the critical fast diffusion equation and
provides answers to some open problems.

1. Introduction

We consider the Cauchy problem for the fast diffusion equation,{
uτ = ∇ · (um−1∇u), y ∈ R

n, τ ∈ (0, T ),
u(y, 0) = u0(y) � 0, y ∈ R

n,
(1.1)

where n � 3, T > 0 and m = (n− 4)/(n− 2). It is known that, for m < mc := (n− 2)/n,
all solutions with initial data in some suitable space, such as Lp(Rn) with p = n(1 −m)/2,
extinguish in finite time. We shall consider solutions that vanish in a finite time τ = T and
study their behaviour near τ = T .

For the extinction range m < mc there are (infinite-mass) solutions of the self-similar form

UD,T (y, τ) :=
1

R(τ)n

(
D +

β(1 −m)
2

∣∣∣∣ y

R(τ)

∣∣∣∣
2
)−1/(1−m)

, (1.2)

where D � 0 and

R(τ) := (T − τ)−β , β :=
1

n(1 −m) − 2
=

1
n(mc −m)

> 0.

We will call these solutions Barenblatt solutions.
Many papers ([3–7], for example) are concerned with the convergence of solutions of (1.1)

to the Barenblatt solutions as τ → T . More precisely, the decay rates of

R(τ)n(u(τ, y) − UD,T (y, τ))

as τ → T are discussed there.
The reasons why the critical exponent

m∗ :=
n− 4
n− 2

< mc,
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plays a very important role in the results of [3–7] will be explained below. If n = 3, 4, then
m∗ � 0, which is a case treated in some more detail in [4].

To study the asymptotic profile as τ → T , it is convenient to rewrite (1.1) in similarity
variables:

t :=
1
μ

ln
(
R(τ)
R(0)

)
and x :=

√
β

μ

y

R(τ)
, μ :=

2
1 −m

,

with R as above, and the rescaled function

v(x, t) := R(τ)nu(y, τ)

satisfies then the nonlinear Fokker–Planck equation

vt = ∇ · (vm−1∇v) + μ∇ · (xv), x ∈ R
n, t > 0. (1.3)

The Barenblatt solutions UD,T (y, τ) are thereby transformed into Barenblatt profiles VD(x),
which have the advantage of being stationary:

VD(x) := (D + |x|2)−1/(1−m), x ∈ R
n. (1.4)

In the new variables, the convergence of solutions of (1.1) to UD,T takes the form of stabilization
of solutions of (1.3) to non-trivial equilibria VD.

The critical exponent m∗ has the property that the difference of two Barenblatt profiles is
integrable for m ∈ (m∗,mc), while it is not integrable for m � m∗. Furthermore, m∗ is the
unique value of m such that the linearization of the operator ∇ · (vm−1∇v) + μ∇ · (xv) around
VD (on a natural weighted L2-space) has no spectral gap, see [4]. This is why one can expect
that the rate of convergence to VD is exponential for m �= m∗ and algebraic for m = m∗.

In [3, 4, 6, 7], one can find several sufficient conditions under which v(·, t) converges to vD

exponentially if m < mc, m �= m∗. The case m = m∗ was treated in [5] by functional analytic
methods. A suitable linearization of the nonlinear Fokker–Planck equation (1.3) was viewed
as the plain heat flow on a suitable Riemannian manifold, and then nonlinear stability was
studied by entropy methods. Theorem 3.1 in [5] (which can be viewed as the main result of
[5]) gives algebraic upper bounds for the decay rate of the entropy functional and for the
convergence rate to VD. One can expect the rates to be sharp since the linearization decays
at those rates, but in [5] there is no rigorous proof of optimality. In fact, no lower bounds for
the rates are established in [5]. One of the main aims of the present paper is to prove optimal
lower bounds for the convergence rates for a large class of initial data. Our first main result
says that convergence to VD from below cannot occur at any rate faster than t−1/2, which is
the fastest decay rate of positive solutions of the linear one-dimensional heat equation.

Theorem 1.1. Let n > 2, m = m� and D > 0. Assume that v0 is continuous and non-
negative on R

n, v0 � VD, v0 �≡ VD, with VD given by (1.4). Then there exists c > 0 such that
the solution v of (1.3) with the initial condition v(·, 0) = v0 satisfies

v(0, t) � VD(0) − ct−1/2 for t > 1.

If v0 intersects VD, then we expect that a faster rate of convergence may occur, similarly as
for sign-changing solutions of the linear heat equation.

Next, we discuss upper bounds for the convergence rate. Corollary 3.2 in [5] says (among
other things) that if 0 < D1 < D0, D ∈ [D1,D0] and

VD0(x) � v0(x) � VD1(x), x ∈ R
n, (1.5)

|v0(x) − VD(x)| � f(|x|), x ∈ R
n, f(| · |) ∈ L1(Rn), (1.6)
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then, for the solution v of (1.3) with the initial condition v(x, 0) = v0(x), it holds that

‖v(·, t) − VD‖L∞(Rn) � Kt−1/4, t � 1, (1.7)

for some K > 0.
The question of whether the rates obtained in [5] are optimal for a class of data was posed

in [5] as an open problem together with the question of whether one can prove convergence,
maybe with worse rates or without rates, for more general initial data (see [5, Subsection 8.2]).

Our first step in answering these questions is the following:

Theorem 1.2. Assume that n > 2, m = m∗ and D > 0, and that VD is as defined in (1.4).
Let v be the solution of (1.3) with the initial condition

v(x, 0) = v0(x) := (|x|2 +D + ψ0(x))−(n−2)/2, x ∈ R
n, (1.8)

where ψ0 is continuous and non-negative on R
n, ψ0 �≡ 0. If there are B > 0 and γ ∈ (0, 1) such

that

ψ0(x) � B ln−γ |x|, |x| > 2, (1.9)

then there exists C > 0 such that

VD(x)(1 − CV
2/(n−2)
D (x)t−γ/2) � v(x, t) � VD(x), x ∈ R

n, t � 1.

This theorem yields convergence with rates for a class of data that do not satisfy (1.6), but
also for data that belong to the class considered in [5]. Namely, if ψ0 satisfies (1.9) with γ > 1,
then (1.9) also holds with γ = 1 − ε, ε ∈ (0, 1), and some B = B(ε) > 0.

As an immediate consequence of Theorems 1.1 and 1.2 we obtain:

Corollary 1.3. Let n > 2, m = m� and D > 0. Assume that ψ0 is continuous and non-
negative on R

n, ψ0 �≡ 0. Let v be the solution of (1.3) with the initial condition (1.8). If there
are B > 0 and γ � 1 such that (1.9) holds, then there is c > 0 and, for any ε ∈ (0, 1), there
exists Cε > 0 such that

ct−1/2 � ‖VD − v(·, t)‖L∞(Rn) � Cεt
−(1−ε)/2, t � 1.

If γ > 1, then the initial data from Corollary 1.3 satisfy (1.5) and (1.6), and fill a large
part of the range of applicability of the entropy method from [5]. The wrong power of time
appearing in (1.7) is due to interpolation. It was shown in [5] that, in the linearized situation,
the heat kernel decay has a one-dimensional behaviour in the sense that its rate is t−1/2 (see
[5, Corollaries 4.4 and 4.5]), but the consequent smoothing effect between L1 and L2 yields a
t−1/4 decay only (see [5, Section 4.4]). The L1 − L2 bounds allow one to recover the correct
L1 − L∞ decay in the linear situation, but the lack of such functional analytic tools in the
nonlinear situation causes the appearance of the wrong power of time for the L∞-norm.

In this paper, we work with the PDE directly, without any use of functional analysis. Our
next result implies that Theorem 1.2 is sharp.

Theorem 1.4. Assume that n > 2, m = m∗ and D > 0. Let VD be as defined in (1.4) and
let v be the solution of (1.3) with the initial condition (1.8). If there are b > 0 and γ ∈ (0, 1)
such that

ψ0(x) � b ln−γ |x|, |x| > 2,
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then there exists c > 0 such that

v(0, t) � VD(0) − ct−γ/2, t > 1.

Theorems 1.2 and 1.4 yield that if VD(x) − v0(x) behaves like |x|−n ln−γ |x| for |x| large
and some γ ∈ (0, 1), then ‖v(·, t) − VD‖L∞(Rn) behaves like t−γ/2 for t large. Hence, we obtain
a continuum of algebraic rates for initial data that do not satisfy (1.6). These rates are the
same as for ut = uxx, x ∈ R, with positive initial data decaying as |x|−γ . Hence, the long-time
behaviour of solutions of (1.3) is one-dimensional, while the short-time behaviour of solutions
of the linearized equation is n-dimensional (cf. [5, Corollary 4.4]).

We prove our results by constructing suitable sub- and super-solutions. In order not to make
the paper unnecessarily long, we consider only initial data below VD, but one can modify the
arguments to prove analogous results for initial data above VD.

In Section 2, we establish the lower bound from Theorem 1.2, and in Section 3 the upper
bound from Theorem 1.4. Section 4 is devoted to the proof of Theorem 1.1.

2. Lower bound. Proof of Theorem 1.2

To construct a suitable super-solution, we shall use the following:

Lemma 2.1. Let γ ∈ (0, 1). Then the solution of the problem{
Φ′′(z) +

z

2
Φ′(z) +

γ

2
Φ(z) = 0, z > 0,

Φ(0) = 1, Φ′(0) = 0,
(2.1)

is positive and decreasing on [0,∞), and there exist c > 0 and C > 0 such that

cz−γ � Φ(z) � Cz−γ for all z � 1 (2.2)

and

− Cz−γ−1 � Φ′(z) � −cz−γ−1 for all z � 1 (2.3)

as well as

|Φ′′(z)| � Cz−γ−2 for all z � 1. (2.4)

Proof. The solution Φ of (2.1) can be written explicitly in the form

Φ(z) = e−ζM
(

1 − γ

2
,
1
2
, ζ

)
, ζ :=

z2

4
,

where M is Kummer’s function (see [1])

M(a, b, ζ) := 1 +
a

b
ζ + · · · + a(a+ 1) · · · (a+ k)

b(b+ 1) · · · (b+ k)k!
ζk + · · ·

and

ζb−a e−ζM(a, b, ζ) −→ Γ(b)
Γ(a)

as ζ −→ ∞, (2.5)

which yields (2.2).
If we now rewrite the equation in (2.1) as

Φ′′(z) + 1
2z

1−γ(zγΦ(z))′ = 0
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and use the identity

ζ
d

dζ
(ζb−a e−ζM(a, b, ζ)) = (b− a)ζb−a e−ζM(a− 1, b, ζ)

(see [1]) together with (2.5), then we obtain that

| 12z1−γ(zγΦ(z))′| � Cz−γ−2, z � 1,

which implies (2.4).
Since Φ cannot have any local minimum, one can see that Φ′ is negative and (2.3) follows

from (2.4).

For m = m∗ and radial solutions v = v(r, t), (1.3) becomes

vt = (v−2/(n−2)vr)r +
n− 1
r

v−2/(n−2)vr + (n− 2)(rvr + nv), r > 0, t > 0.

If we further transform v via

v(r, t) = (r2 +D + ϕ(r, t))−(n−2)/2, r � 0, t � 0,

then, after some computation, it can be checked that ϕ satisfies, for r > 0 and t > 0, the
equation

Pϕ := ϕt − (r2 +D + ϕ)
(
ϕrr +

n− 1
r

ϕr

)
+ (n− 2)rϕr +

n− 2
2

ϕ2
r = 0. (2.6)

The change of variables

χ(ξ, t) := ϕ(r, t), ξ := ln r, r > 0, t � 0,

yields that

Qχ := χt − χξξ − e−2ξ

{
(D + χ)[χξξ + (n− 2)χξ] − n− 2

2
χ2

ξ

}
= 0 (2.7)

for ξ ∈ R and t > 0.
In a region where r is appropriately large, we shall use functions of the form

χ(ξ0,t0,A)(ξ, t) := A(t+ t0)−γ/2Φ((ξ + ξ0)(t+ t0)−1/2), ξ � 0, t � 0, (2.8)

as (upper) comparison functions. For clarity of notation, we consider ξ0 > 0, t0 � 1 and A > 0
as free parameters here. We shall fix ξ0, t0 in Lemma 2.7 and A > 0 in the proof of Lemma 2.8.

Lemma 2.2. Let γ ∈ (0, 1). For t0 � 1, ξ0 ∈ R and A > 0, the function χ = χ(ξ0,t0,A)

defined in (2.8) satisfies

χt = χξξ for ξ > 0 and t > 0. (2.9)

Moreover, there exists t� > 1 with the property that, whenever t0 > t�, for any choice of ξ0 > 0
and A > 0 we have

χξξ + (n− 2)χξ � 0 for all ξ > 0 and t > 0. (2.10)

Proof. Since

χξ = A(t+ t0)−γ/2−1/2Φ′(z), χξξ = A(t+ t0)−γ/2−1Φ′′(z) (2.11)
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and

χt = −1
2
A(t+ t0)−γ/2−1zΦ′(z) − γ

2
A(t+ t0)−γ/2−1Φ(z)

with z := (ξ + ξ0)(t+ t0)−1/2, the identity (2.9) is immediate from (2.1).
To verify (2.10), we observe that, since Φ′′(0) < 0 by (2.1), there exists z0 > 0 such that

Φ′′(z) � 0 for all z ∈ [0, z0]. (2.12)

Then (2.3) and (2.4) ensure that, with some c1 > 0 and c2 > 0, we have

Φ′(z) � −c1z−γ−1 for all z > z0 (2.13)

and

Φ′′(z) � c2z
−γ−2 for all z > z0. (2.14)

We now let t� > 1 be large enough such that

t� �
(

c2
(n− 2)c1z0

)2

, (2.15)

and claim that (2.10) holds whenever t0 > t�, ξ0 > 0 and A > 0. Indeed, recalling (2.11), (2.12)
and the monotonicity of Φ, we easily see that in the region where z = (ξ + ξ0)(t+ t0)−1/2 � z0,
both χξξ and χξ are non-positive, and hence clearly χξξ + (n− 2)χξ � 0. On the other hand,
if z > z0, then from (2.11), (2.13) and (2.14) it follows that

χξξ(ξ, t)
−(n− 2)χξ(ξ, t)

=
Φ′′(z)

−(n− 2)
√
t+ t0Φ′(z)

� c2
(n− 2)c1(ξ + ξ0)

.

Since ξ + ξ0 > z0
√
t+ t0, (2.15) implies that

χξξ(ξ, t)
−(n− 2)χξ(ξ, t)

<
c2

(n− 2)c1z0
√
t+ t0

<
c2

(n− 2)c1z0
√
t�

� 1

holds at any such point, as claimed.

Lemma 2.3. Let D > 0 and γ ∈ (0, 1). Then there exists t� > 1 such that, for any choice
of t0 > t�, ξ0 > 0 and A > 0, the function χ(ξ0,t0,A) in (2.8) satisfies

Qχ(ξ0,t0,A) � 0 for all ξ > 0 and t > 0, (2.16)

where Q is the operator defined in (2.7).

Proof. We take t� as given by Lemma 2.2 and assume that t0 > t�. Then, writing χ :=
χ(ξ0,t0,A) and using (2.9) and (2.10), we obtain

Qχ = −e−2ξ

{
(D + χ)[χξξ + (n− 2)χξ] − n− 2

2
χ2

ξ

}

� e−2ξ n− 2
2

χ2
ξ � 0 for all ξ > 0 and t > 0,

because D + χ � 0 according to the non-negativity of χ asserted by Lemma 2.1, and because
n � 3.

The function we shall use as a super-solution near the origin (cf. (2.22) below) will have a
certain self-similar structure. As a preparation, let us state the following lemma.
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Lemma 2.4. Let D > 0 and γ > 0. For λ := (1/D)(γ/2 + 1), let ρ denote the solution of⎧⎨
⎩ρ

′′(σ) +
1
σ
ρ′(σ) + λρ(σ) = 0, σ > 0,

ρ(0) = 1, ρ′(0) = 0.
(2.17)

Then there exists σ0 ∈ (0, 1) such that ρ is positive and decreasing on [0, σ0].

Proof. Both statements are obvious from (2.17).

In order to match inner and outer functions appropriately, we shall need a correcting factor
that is time-dependent, but approaches one in the large time limit.

Lemma 2.5. Given D > 0 and γ ∈ (0, 1), let Φ, ρ and σ0 be as in Lemmas 2.1 and 2.4.
Then, for ξ0 > 0 and t0 > σ−2

0 , the function f (ξ0,t0) defined by

f (ξ0,t0)(t) :=
Φ(ξ0(t+ t0)−1/2)
ρ((t+ t0)−1/2)

, t � 0, (2.18)

satisfies

f (ξ0,t0)(t) −→ 1 as t −→ ∞. (2.19)

Furthermore, for any ξ0 > 0 there exists C(ξ0) > 0 such that whenever t0 > 1, we have

|(f (ξ0,t0))′(t)| � C(ξ0)
(t+ t0)2

for all t > 0. (2.20)

Proof. Since Φ(0) = ρ(0) = 1, (2.19) is obvious. As for (2.20), we for t > 0 compute

(f (ξ0,t0))′(t) =
1
2
(t+ t0)−3/2

(
−ξ0 Φ′(ξ0(t+ t0)−1/2)

ρ((t+ t0)−1/2)
+

Φ(ξ0(t+ t0)−1/2)ρ′((t+ t0)−1/2)
ρ2((t+ t0)−1/2)

)
.

(2.21)

Since ρ is positive on [0, σ0] and Φ′(0) = ρ′(0) = 0, we can choose c1 > 0, c2 > 0 and c3 > 0
such that

ρ(σ) � c1 for all σ ∈ [0, σ0]

as well as

|Φ′(z)| � c2z for all z ∈ [0, ξ0] and |ρ′(σ)| � c3σ for all σ ∈ [0, σ0].

We thereby obtain from (2.21) that, for any choice of t0 > σ−2
0 , one has

|(f (ξ0,t0))′(t)| �
(
c2ξ

2
0

2c1
+

c3
2c21

)
(t+ t0)−2 for all t > 0,

because Φ � 1 on [0,∞) by Lemma 2.1.

We can now introduce a family of functions, one of which will serve as a super-solution in
the region where r < 1. To this end, for D > 0 and γ ∈ (0, 1) we let ρ, σ0 and f (ξ0,t0) as in
Lemmas 2.4 and 2.5, and given ξ0 > 0, t0 > σ−2

0 and A > 0, we define, for r ∈ [0, 1] and t � 0,
the function

ϕ(ξ0,t0,A)(r, t) := Af (ξ0,t0)(t)(t+ t0)−γ/2ρ(r(t+ t0)−1/2). (2.22)

We then have the following lemma.
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Lemma 2.6. Let D > 0 and γ ∈ (0, 1), and let ρ and σ0 be as in Lemma 2.4. Then, for each
ξ0 > 0 there exists t� > σ−2

0 such that, for any choice of t0 > t� and any A > 0, the function
ϕ(ξ0,t0,A) given by (2.22) satisfies

Pϕ(ξ0,t0,A) � 0 for all r ∈ (0, 1) and t > 0. (2.23)

Proof. Given ξ0 > 0, we take C(ξ0) as provided by Lemma 2.5, and claim that (2.23) is
valid whenever t0 > t� and

t� > max
{

1
σ2

0

,
C(ξ0)
Φ(ξ0)

}
, (2.24)

where Φ is from Lemma 2.1.
To see this, we fix any such t0 and, writing ϕ = ϕ(ξ0,t0,A), f = f (ξ0,t0) and σ = r(t+ t0)−1/2,

compute
ϕr = Af(t)(t+ t0)−γ/2−1/2ρ′(σ), ϕrr = Af(t)(t+ t0)−γ/2−1ρ′′(σ) (2.25)

and
ϕt = − 1

2Af(t)(t+ t0)−γ/2−1(σρ′(σ) + γρ(σ)) −Af ′(t)(t+ t0)−γ/2ρ(σ)

for r ∈ (0, 1) and t > 0. Now, since t0 > t� > σ−2
0 , in the region where r < 1 and t > 0 we

have σ < t
−1/2
0 < σ0, so that Lemma 2.4 guarantees that ρ(σ) > 0 and ρ′(σ) � 0, and hence

ρ′′(σ) + (1/σ)ρ′(σ) = −λρ(σ) < 0. In particular, if we write (2.6) as

Pϕ = ϕt − (D + ϕ)
(
ϕrr +

n− 1
r

ϕr

)
− r2ϕrr − rϕr +

n− 2
2

ϕ2
r,

and use (2.25), we obtain

−(D + ϕ)
(
ϕrr +

n− 1
r

ϕr

)
= −(D + ϕ)Af(t)(t+ t0)−γ/2−1

(
ρ′′(σ) +

n− 1
σ

ρ′(σ)
)

= −(D + ϕ)Af(t)(t+ t0)−γ/2−1

(
−λρ(σ) +

n− 2
σ

ρ′(σ)
)

� λ(D + ϕ)Af(t)(t+ t0)−γ/2−1ρ(σ)

� λDAf(t)(t+ t0)−γ/2−1ρ(σ),

because n � 3. Moreover,

−r2ϕrr − rϕr = −Af(t)(t+ t0)−γ/2−1r2
(
ρ′′(σ) +

1
σ
ρ′(σ)

)
= λAf(t)(t+ t0)−γ/2−1r2 � 0

for r < 1 and t > 0. Since ((n− 2)/2)ϕ2
r � 0, we therefore have

Pϕ � ϕt + λDAf(t)(t+ t0)−γ/2−1ρ(σ)

= Af(t)(t+ t0)−γ/2−1

{
−σ

2
ρ′(σ) − γ

2
ρ(σ) − f ′(t)

f(t)
(t+ t0)ρ(σ) + λDρ(σ)

}
for r ∈ (0, 1) and t > 0. (2.26)

Now, the monotonicity properties of Φ and ρ imply that, since t0 > 1, we obtain

f(t) � 1
ρ(0)

Φ(ξ0t
−1/2
0 ) � Φ(ξ0) for all t > 0,

so that, using (2.20), we obtain∣∣∣∣f ′(t)f(t)
(t+ t0)

∣∣∣∣ � C(ξ0)
Φ(ξ0)(t+ t0)

� C(ξ0)
Φ(ξ0)t0

for all t > 0.
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Thus, according to the fact that t� > C(ξ0)/Φ(ξ0) by (2.24), we have∣∣∣∣f ′(t)f(t)
(t+ t0)

∣∣∣∣ � 1 for all t > 0.

Hence, (2.26) entails that

Pϕ � Af(t)(t+ t0)−γ/2−1
{
−σ

2
ρ′(σ) +

(
λD − γ

2
− 1
)
ρ(σ)

}
= −Af(t)(t+ t0)−γ/2−1σ

2
ρ′(σ) � 0 for r ∈ (0, 1) and t > 0,

because of our choice of λ in (2.17) and, again, the monotonicity of ρ on (0, σ0). This completes
the proof.

Lemma 2.7. Let D > 0 and γ ∈ (0, 1). Then, with σ0 as in Lemma 2.4, there exist ξ0 > 0
and t0 > σ−2

0 such that, for any A > 0, the function ϕ̄(A) defined by

ϕ̄(A)(r, t) :=

{
ϕ(ξ0,t0,A)(r, t), r ∈ [0, 1], t � 0,
χ(ξ0,t0,A)(ln r, t), r > 1, t � 0,

(2.27)

is continuous in [0,∞)2 and satisfies

Pϕ̄(A) � 0 for all r ∈ (0,∞) \ {1} and t > 0, (2.28)

where P is as in (2.6), and such that

lim inf
r↗1

ϕ̄(A)
r (r, t) > lim sup

r↘1
ϕ̄(A)

r (r, t) for all t > 0. (2.29)

Proof. Given D > 0 and γ ∈ (0, 1), we let ρ and Φ be as defined by (2.17) and (2.1). Then,
since ρ′(0) = Φ′(0) = 0 and Φ′′(0) = −γ/2 < 0, we can find c1 > 0 and c2 > 0 fulfilling

ρ′(σ) � −c1σ for all σ ∈ (0, σ0) (2.30)

and

Φ′(z) � −c2z for all z ∈ (0, 1). (2.31)

We now first fix ξ0 > 0 large such that

ξ0 >
c1

c2ρ(σ0)
(2.32)

and then take t� and t� as provided by Lemmas 2.3 and 2.6, respectively, when applied to this
particular choice of ξ0. We finally pick some t0 > σ−2

0 satisfying

t0 > max{t�, t�, ξ20} (2.33)

and claim that these choices ensure that ϕ̄(A) is continuous, and that (2.28) and (2.29) are
valid whenever A > 0.

In fact, (2.28) is an immediate consequence of Lemmas 2.3 and 2.6, while the continuity
of ϕ̄(A) directly results from the definitions of ϕ(ξ0,t0,A), χ(ξ0,t0,A) and the function f (ξ0,t0)

introduced in Lemma 2.5. To verify (2.29), we recall (2.22) and (2.8) in computing

I1(t) := lim inf
r↗1

ϕ̄(A)
r (r, t) = ϕ(ξ0,t0,A)

r (1, t)

= Af (ξ0,t0)(t)(t+ t0)−γ/2−1/2ρ′((t+ t0)−1/2), t > 0, (2.34)
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and

I2(t) := lim sup
r↘1

ϕ̄(A)
r (r, t) = χ

(ξ0,t0,A)
ξ (0, t)

= A(t+ t0)−γ/2−1/2Φ′(ξ0(t+ t0)−1/2), t > 0. (2.35)

Here, we note that, by (2.18) and the monotonicity of Φ and ρ,

f (ξ0,t0)(t) � Φ(0)ρ−1(t−1/2
0 ) = ρ−1(t−1/2

0 ) � ρ−1(σ0) for all t > 0, (2.36)

because t0 > σ−2
0 . Furthermore, (2.30) and (2.31) assert that

ρ′((t+ t0)−1/2) � −c1(t+ t0)−1/2 for all t > 0 (2.37)

and
Φ′(ξ0(t+ t0)−1/2) � −c2ξ0(t+ t0)−1/2 for all t > 0, (2.38)

again since (t+ t0)−1/2 < σ0, and since ξ0(t+ t0)−1/2 < 1 due to (2.33). Using (2.36)–(2.38),
we obtain from (2.34) and (2.35) that

I1(t) − I2(t) � A(t+ t0)−γ/2−1(−c1ρ−1(σ0) + c2ξ0) for all t > 0,

so that our requirement (2.32) guarantees that (2.29) holds.

Lemma 2.8. Let D > 0. Assume that ϕ0 is continuous and non-negative on [0,∞), and
there exist γ ∈ (0, 1) and B > 0 such that

ϕ0(r) � B ln−γ r for all r > 2. (2.39)

Then there exists C > 0 such that the solution ϕ of (2.6) with ϕ(·, 0) = ϕ0 satisfies

ϕ(r, t) � C(t+ 1)−γ/2 for all r � 0 and t � 0. (2.40)

Proof. Given D > 0 and γ ∈ (0, 1), we fix σ0 ∈ (0, 1), ξ0 > 0 and t0 > σ−2
0 as in Lemmas 2.4

and 2.7, and take f = f (ξ0,t0) from Lemma 2.5. In order to define, with some specific A > 0, a
super-solution of the form (2.27) which initially dominates ϕ, we set z0 := (ln 2 + ξ0)t

−1/2
0 and

then obtain from Lemma 2.1 that, for some c1 > 0, the function Φ in (2.1) satisfies

Φ(z) � c1z
−γ for all z � z0. (2.41)

Moreover, since ϕ0 is bounded, we can pick c2 > 0 such that

ϕ0(r) � c2 for all r ∈ [0, 2]. (2.42)

We now fix any A > 0 fulfilling

A > max

{
c2t

γ/2
0

f(0)ρ(t−1/2
0 )

,
c2t

γ/2
0

Φ(z0)
,
B

c1

(
1 +

ξ0
ln 2

)γ
}

(2.43)

and claim that then the function ϕ̄(A) in (2.27) has the property

ϕ̄(A)(r, 0) > ϕ0(r) for all r � 0. (2.44)

To prove this, we first observe that, for small r, by (2.42) and (2.43) it holds that

ϕ̄(A)(r, 0)
ϕ0(r)

� ϕ̄(A)(r, 0)
c2

=
1
c2
Af(0)t−γ/2

0 ρ(rt−1/2
0 )

� 1
c2
Af(0)t−γ/2

0 ρ(t−1/2
0 ) > 1, r ∈ [0, 1],
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because ρ′ � 0 on (0, σ0) and t−1/2
0 < σ0. Similarly, in the intermediate region where 1 < r � 2,

(2.42), (2.43) and the monotonicity of Φ yield

ϕ̄(A)(r, 0)
ϕ0(r)

� 1
c2
At

−γ/2
0 Φ((ln 2 + ξ0)(t

−1/2
0 )) > 1, r ∈ (1, 2].

Finally, for large r we apply (2.41) to estimate

ϕ̄(A)(r, 0) = At
−γ/2
0 Φ((ln r + ξ0)(t

−1/2
0 )) � c1A(ln r + ξ0)−γ

� c1A

(
1 +

ξ0
ln 2

)−γ

(ln r)−γ , r > 2,

because ln r + ξ0 � ln r + ξ0 ln r/ ln 2 for such r. Along with (2.43) and (2.39), this guarantees
that also

ϕ̄(A)(r, 0) > ϕ0(r), r > 2.

Having thus found that (2.44) is true, we may invoke Lemma 2.7 combined with the comparison
principle to infer that ϕ � ϕ̄(A) in [0,∞)2. In particular, since ρ � 1,Φ � 1 and f � ρ−1(t−1/2

0 )
by monotonicity, this means that

ϕ(r, t) � Af(t)(t+ t0)−γ/2 � Aρ−1(t−1/2
0 )(t+ t0)−γ/2, r ∈ [0, 1], t � 0,

as well as

ϕ(r, t) � A(t+ t0)−γ/2 for all r > 1 and t � 0,

from which (2.40) clearly follows.

Proof of Theorem 1.2. If we choose ϕ0 satisfying (2.39) such that ψ0(x) � ϕ0(|x|) for
x ∈ R

n, then we obtain by comparison that

(|x|2 +D + ϕ(|x|, t))−(n−2)/2 � v(x, t) � VD(x), x ∈ R
n, t � 0.

Lemma 2.8 and the Mean Value Theorem yield then the result.

3. Upper bound. Proof of Theorem 1.4

Lemma 3.1. For γ > 0, let

Φ̂(z) :=
(

1 +
z2

4

)−γ/2

, z � 0. (3.1)

Then,

Φ̂′′(z) +
z

2
Φ̂′(z) +

γ

2
Φ̂(z) � γ

4

(
1 +

z2

4

)−γ/2−1

for all z > 0. (3.2)

Moreover,

Φ̂′(z) = −γ
4
z

(
1 +

z2

4

)−γ/2−1

for all z > 0 (3.3)

and

|Φ̂′′(z)| � γ(γ + 1)
4

(
1 +

z2

4

)−γ/2−1

for all z > 0. (3.4)

Proof. The statements can be verified by straightforward computations.
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Lemma 3.2. Let D > 0 and γ > 0. Then there exists ξ0 > 1 such that, for any choice of
a ∈ (0, 1), the function χ̂(a) given by

χ̂(a)(ξ, t) := a(t+ 1)−γ/2Φ̂
(
ξ − ξ0√
t+ 1

)
, ξ � ξ0, t � 0, (3.5)

satisfies

Qχ̂(a) � 0 for all ξ > ξ0 and t > 0, (3.6)

where Q is as defined in (2.7).

Proof. We abbreviate

z :=
ξ − ξ0√
t+ 1

and calculate

χ̂
(a)
ξ = a(t+ 1)−γ/2−1/2Φ̂′(z), χ̂

(a)
ξξ = a(t+ 1)−γ/2−1Φ̂′′(z)

and

χ̂
(a)
t = −1

2
a(t+ 1)−γ/2−1zΦ̂′(z) − γ

2
a(t+ 1)−γ/2−1Φ̂(z).

Therefore,

Qχ̂(a) = a(t+ 1)−γ/2−1

{
− z

2
Φ̂′(z) − γ

2
Φ̂(z) − Φ̂′′(z)

− e−2ξ[D + a(t+ 1)−γ/2Φ̂(z)][Φ̂′′(z) + (n− 2)
√
t+ 1Φ̂′(z)]

+
n− 2

2
e−2ξ(t+ 1)−γ/2Φ̂′2(z)

}
for ξ > ξ0 and t > 0.

Here, we recall (3.1) and our assumption a < 1 in estimating

|D + a(t+ 1)−γ/2Φ̂(z)| � D + 1

and use (3.2) to see that

−z
2
Φ̂′(z) − γ

2
Φ̂(z) − Φ̂′′(z) � −γ

4

(
1 +

z2

4

)−γ/2−1

at any point (ξ, t) ∈ (ξ0,∞) × (0,∞). Thus,

Qχ̂(a)

a(t+ 1)−γ/2−1
� −γ

4

(
1 +

z2

4

)−γ/2−1

+ (D + 1) e−2ξ|Φ̂′′(z)|

+ (n− 2) e−2ξ
√
t+ 1|Φ̂′(z)| + n− 2

2
e−2ξΦ̂′2(z)

=: −I1 + I2 + I3 + I4 for ξ > ξ0 and t > 0,

and we claim that this implies (3.6) if we pick ξ0 > 1 large enough such that

(γ + 1)(D + 1) e−2ξ < 1
3 for all ξ > ξ0 (3.7)

and

(n− 2)(D + 1)(ξ − ξ0) e−2ξ < 1
3 for all ξ > ξ0 (3.8)

as well as
(n− 2)γ

2
e−2ξ <

1
3

for all ξ > ξ0. (3.9)
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Indeed, in conjunction with (3.4), (3.7) implies that

I2
I1

=
4(D + 1)

γ
e−2ξ

(
1 +

z2

4

)γ/2+1

|Φ̂′′(z)|

� 4(D + 1)
γ

e−2ξ γ(γ + 1)
4

= (γ + 1)(D + 1) e−2ξ

<
1
3

for all ξ > ξ0 and t > 0. (3.10)

Since
√
t+ 1 = (ξ − ξ0)/z, (3.3) and (3.8) next guarantee that

I3
I1

=
4(n− 2)(D + 1)

γ
e−2ξ

√
t+ 1

(
1 +

z2

4

)γ/2+1

|Φ̂′(z)|

=
4(n− 2)(D + 1)

γ
(ξ − ξ0) e−2ξ (1 + z2/4)γ/2+1

z
|Φ̂′(z)|

= (n− 2)(D + 1)(ξ − ξ0) e−2ξ

<
1
3

for all ξ > ξ0 and t > 0. (3.11)

Finally, again by (3.3),

I4
I1

=
2(n− 2)

γ
e−2ξ(t+ 1)γ/2+1Φ̂′2(z)

=
(n− 2)γ

8
e−2ξz2

(
1 +

z2

4

)−γ/2−1

,

so that, since clearly z2(1 + z2/4)−γ/2−1 � 4, from (3.9) we infer that

I4
I1

� (n− 2)γ
2

e−2ξ <
1
3

for all ξ > ξ0 and t > 0.

Combined with (3.10) and (3.11), this establishes (3.6).

In view of the explicit definition (3.1) of Φ̂, the above function χ̂(a) can alternatively be
written in the fully explicit form

χ̂(a)(ξ, t) = a

(
t+ 1 +

(ξ − ξ0)2

4

)−γ/2

, ξ � ξ0, t � 0.

Lemma 3.3. Let D > 0 and γ > 0. Then there exists r0 > e such that, for all a ∈ (0, 1),

ϕ(a)(r, t) :=

{
a(t+ 1)−γ/2, r ∈ [0, r0], t � 0,
χ̂(a)(ln r, t), r > r0, t � 0,

(3.12)

defines a continuous function ϕ(a) on [0,∞)2 such that also ϕ(a)
r

is continuous on [0,∞)2, and
such that

Pϕ(a) � 0 for all r ∈ (0,∞) \ {r0} and t > 0. (3.13)

Here, χ̂(a) is as defined in Lemma 3.2 with ξ0 := ln r0, and P is as in (2.6).

Proof. With ξ0 > 1 as provided by Lemma 3.2, we let r0 := eξ0 > e and thereupon obtain
that (3.6) precisely yields Pϕ(a) � 0 for r > r0 and t > 0. To see the same for small r, we only
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need to note that clearly

ϕ(a)
r

= ϕ(a)
rr

≡ 0 for r < r0 and t > 0, (3.14)

so that
Pϕ(a) = ϕ(a)

t
= −aγ

2
(t+ 1)−γ/2−1 < 0 for r < r0 and t > 0.

Having thus established (3.13), we are left with proving the continuity of ϕ(a)
r

. In view of (3.14),
however, this immediately follows from the observation that

lim
r↘r0

ϕ(a)
r

(r, t) =
1
r0
χ̂(a)(ξ0, t) =

a

r0
(t+ 1)−γ/2Φ̂′(0) = 0 for all t > 0,

whereby the proof is completed.

Lemma 3.4. Let D > 0. Suppose that ϕ0 ∈ C0([0,∞)) is positive and such that

ϕ0(r) � b ln−γ r for all r > 2 (3.15)

with some positive constants b and γ. Then there exists c > 0 such that the solution ϕ of (2.6)
fulfilling ϕ(·, 0) = ϕ0 satisfies

ϕ(0, t) � c(t+ 1)−γ/2 for all t > 0. (3.16)

Proof. We let r0 > e be as given by Lemma 3.3. Then, since ϕ0 is continuous and positive,
we can find c1 > 0 such that

ϕ0(r) � c1 for all r ∈ [0, r0], (3.17)

and fix a ∈ (0, 1) small enough fulfilling

a < min{c1, bcγ/2
2 }, (3.18)

where

c2 := min
{

1
16
,

1
4ξ20

}

with ξ0 := ln r0 > 1. We claim that this choice ensures that, with ϕ(a) defined by (3.12), we
have

ϕ0(r) � ϕ(a)(r, 0) for all r � 0. (3.19)

In fact, if r is small, then by (3.17) and (3.18),

ϕ0(r) � c1 > a = ϕ(a)(r, 0) for all r ∈ [0, r0].

In order to show (3.19) for large r, we observe that, by (3.12), (3.5) and (3.1),

ϕ(a)(r, 0) = aΦ̂(ln r − ξ0) = a

(
1 +

(ln r − ξ0)2

4

)−γ/2

, r > r0,

because r0 > e > 2. Here, we estimate

1 +
(ln r − ξ0)2

4
� (ln r − ξ0)2

4
� (ln r)2

16
if ln r � 2ξ0

and

1 +
(ln r − ξ0)2

4
� 1 �

(
ln r
2ξ0

)2

if ln r < 2ξ0,

whence, by definition of c2, it follows that

ϕ(a)(r, 0) � a(c2(ln r)2)−γ/2 < b(ln r)−γ � ϕ0(r) for all r > 2.
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We have thereby verified (3.19), which in turn, on an application of the comparison principle,
entails that ϕ � ϕ(a) in [0,∞)2. Evaluated at r = 0, this implies in particular that

ϕ(0, t) � ϕ(a)(0, t) = a(t+ 1)−γ/2 for all t � 0,

and hence proves (3.16).

Proof of Theorem 1.4. We choose ϕ0 satisfying (3.15) such that ψ0(x) � ϕ0(|x|) for x ∈ R
n.

Then, we obtain by comparison that

(|x|2 +D + ϕ(|x|, t))−(n−2)/2 � v(x, t), x ∈ R
n, t � 0.

Lemma 3.4 and the Mean Value Theorem yield then the result.

4. Universal upper bound. Proof of Theorem 1.1

Lemma 4.1. Let ξ1 ∈ R, and suppose that α and β are smooth functions on (ξ1,∞) ×
(0,∞), for which there exist k > 0 and K > 0 such that

k � α(ξ, t) � K and |β(ξ, t)| � K for all ξ > ξ1 and t > 0.

Then, for any non-negative solution

0 �≡ w ∈ C2,1((ξ1,∞) × (0,∞)) ∩ C0([ξ1,∞) × [0,∞))

of

wt = α(ξ, t)wξξ + β(ξ, t)wξ, ξ > ξ1, t > 0,

one can find c > 0 such that

sup
ξ>ξ1

w(ξ, t) � c(t+ 1)−1/2 for all t > 0.

Proof. This lower bound follows from [2], for example.

Lemma 4.2. Let D > 0 and assume that ϕ0 is continuous and non-negative on [0,∞),
ϕ0 �≡ 0. Then there exists c > 0 such that the solution ϕ of (2.6) with ϕ(·, 0) = ϕ0 satisfies

sup
r>0

ϕ(r, t) � c(t+ 1)−1/2 for all t > 0. (4.1)

Proof. Passing to a suitable minorant of ϕ0 if necessary, in view of the comparison principle
we may assume that, for some r0 > 0, we have 0 �≡ ϕ0 ∈ C∞

0 ((r0,∞)) with 0 � ϕ0 � 1. Now,
conveniently rewritten in terms of χ(ξ, t) = ϕ(r, t), ξ = ln r, (2.6) becomes (cf. also (2.7))

χt = χξξ + e−2ξ

{
(D + χ)[χξξ + (n− 2)χξ] − n− 2

2
χ2

ξ

}

= [1 + (D + χ) e−2ξ]χξξ + e−2ξ

[
(n− 2)(D + χ) − n− 2

2
χξ

]
χξ

=: α(ξ, t)χξξ + β(ξ, t)χξ, ξ ∈ R, t > 0.

Let us next choose ξ0 ∈ R such that ξ0 < ln r0 − 2. Then, since 0 � χ � 1 in R × (0,∞), we
have

1 � α(ξ, t) � 1 + (D + 1) e−2ξ0 for all ξ > ξ0 and t > 0.
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Therefore, due to the fact that ϕ0 is smooth with compact support, interior parabolic Schauder
estimates [8] provide c1 > 0 such that

|χξ(ξ, t)| � c1 for all ξ > ξ1 and t > 0,

so that

|β(ξ, t)| � e−2(ξ0+1)

[
(n− 2)(D + 1) +

n− 2
2

c1

]
for all ξ > ξ1 and t > 0.

Since we already know that χ � 0 and that χ(·, 0) �≡ 0 in (ξ0 + 1,∞) according to our choices
of r0 and ξ0, we may now invoke Lemma 4.1 to conclude that there exists c2 > 0 such that

sup
ξ>ξ0+1

χ(ξ, t) � c2(t+ 1)−1/2 for all t > 0.

Restated using the variable ϕ, this immediately yields (4.1).

Proof of Theorem 1.1. We write the initial function v0 as

v0(x) = (|x|2 +D + ψ0(x))−(n−2)/2, x ∈ R
n,

where ψ0 is continuous and non-negative on R
n, ψ0 �≡ 0. We can assume, without loss of

generality, that ψ0(0) > 0. We choose ϕ0 such that ψ0(x) � ϕ0(|x|) for x ∈ R
n and ϕ0 �≡ 0 is

non-increasing. We then obtain by comparison that

(|x|2 +D + ϕ(|x|, t))−(n−2)/2 � v(x, t), x ∈ R
n, t � 0.

Since supr>0 ϕ(r, t) = ϕ(0, t), the result follows from Lemma 4.2 and the Mean Value
Theorem.
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