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Abstract. We study the asymptotic behaviour near extinction of positive
solutions of the Cauchy problem for the fast diffusion equation with a critical
exponent. We improve a previous result on slow convergence to Barenblatt
profiles.

1. Introduction. We consider the Cauchy problem for the fast diffusion equation,
{

uτ = ∇ · (um−1∇u), y ∈ R
n, τ ∈ (0, T ),

u(y, 0) = u0(y) ≥ 0, y ∈ R
n,

(1)

where n ≥ 3, T > 0 and m = (n − 4)/(n − 2). It is known that for m < mc :=
(n−2)/n all solutions with initial data in some suitable space, such as Lp(Rn) with
p = n(1−m)/2, extinguish in finite time. We shall consider solutions which vanish
in a finite time τ = T and study their behaviour near τ = T .

For the extinction range m < mc there are (infinite-mass) solutions of the self-
similar form

UD,T (y, τ) :=
1

R(τ)n

(

D +
β(1 −m)

2

∣

∣

∣

∣

y

R(τ)

∣

∣

∣

∣

2
)− 1

1−m

, (2)

where D ≥ 0 and

R(τ) := (T − τ)−β , β :=
1

n(1 −m)− 2
=

1

n (mc −m)
> 0.

We will call these solutions Barenblatt solutions.
Many papers ([2, 3, 4, 6, 9], for example) are concerned with the convergence of

solutions of (1) to the Barenblatt solutions as τ → T . More precisely, the decay
rates of

R(τ)n(u(τ, y)− UD,T (y, τ))

as τ → T are discussed there when D > 0. The case when D = 0 has been
considered in [7, 8, 10].

2000 Mathematics Subject Classification. Primary: 35K65; Secondary: 35B40.
Key words and phrases. Fast diffusion, extinction in finite time, nonlinear Fokker-Planck equa-

tion, slow convergence to Barenblatt profiles.

1



2 MAREK FILA AND MICHAEL WINKLER

The reasons why the critical exponent

m∗ :=
n− 4

n− 2
< mc ,

plays a very important role in the results of [2, 3, 4, 6, 7, 8, 9, 10] will be explained
below. If n = 3, 4 then m∗ ≤ 0 which is a case treated in some more detail in [3].

To study the asymptotic profile as τ → T , it is useful to rewrite (1) in similarity
variables:

t :=
1

µ
ln

(

R(τ)

R(0)

)

and x :=

√

β

µ

y

R(τ)
, µ :=

2

1−m
,

with R as above, and the rescaled function

v(x, t) := R(τ)n u(y, τ)

satisfies then the nonlinear Fokker-Planck equation

vt = ∇ · (vm−1∇v) + µ∇ · (x v), x ∈ R
n, t > 0. (3)

The Barenblatt solutions UD,T (y, τ) are mapped onto Barenblatt profiles VD(x),
which are stationary solutions of (3):

VD(x) := (D + |x|2)−1/(1−m), x ∈ R
n . (4)

The convergence of solutions of (1) to UD,T corresponds to the stabilization of
solutions of (3) to nontrivial equilibria VD.

The critical exponent m∗ has the property that the difference of two Barenblatt
profiles is integrable for m ∈ (m∗,mc), while it is not integrable for m ≤ m∗.
Furthermore, m∗ is the unique value ofm such that the linearization of the operator
∇·(vm−1∇v)+µ∇·(x v) around VD (on a natural weighted L2-space) has no spectral
gap, see [3]. This is the reason why one can expect that the rate of convergence to
VD is exponential for m 6= m∗ and algebraic for m = m∗.

In [2, 3, 8, 9] one can find several sufficient conditions under which v(·, t) converges
to vD exponentially if m < mc, m 6= m∗. The case m = m∗ was first treated in [4]
by functional analytic methods. A suitable linearization of the nonlinear Fokker-
Planck equation (3) was viewed as the plain heat flow on a suitable Riemannian
manifold and then nonlinear stability was studied by entropy methods. Later, the
case m = m∗ was considered in [6, 7]. One of the main results in [6] says that
convergence to VD from below cannot occur at any rate faster than t−1/2 which
is the fastest decay rate of positive solutions of the linear one-dimensional heat
equation. Upper bounds of the rate of convergence to VD were also established in
[6]. More precisely, the following was shown there:

Theorem 1.1. Let n > 2, m = m⋆ and D > 0. Assume that ψ0 is a continuous
nonnegative function on R

n, ψ0 6≡ 0. Let v be the solution of (3) with the initial
condition

v(x, 0) = v0(x) :=
(

|x|2 +D + ψ0(x)
)−n−2

2

, x ∈ R
n. (5)

If there are B > 0 and γ ≥ 1 such that

ψ0(x) ≤ B ln−γ |x|, |x| > 2, (6)

then there is c > 0 and for any ε ∈ (0, 1) there exists Cε > 0 such that

ct−
1
2 ≤ ‖VD − v(·, t)‖L∞(Rn) ≤ Cεt

− 1−ε
2 , t ≥ 1.
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The aim of this paper is to show that the rate t−1/2 indeed occurs if γ > 1.

Theorem 1.2. Let n > 2, m = m⋆ and D > 0. Assume that ψ0 is a continuous
nonnegative function on R

n, ψ0 6≡ 0. Let v be the solution of (3) with the initial
condition (5). If there are B > 0 and γ > 1 such that (6) holds then there are
C > c > 0 such that

ct−
1
2 ≤ ‖VD − v(·, t)‖L∞(Rn) ≤ Ct−

1
2 , t ≥ 1.

We prove our result by constructing a suitable supersolution. In Section 2 we
give some estimates for solutions of the linear heat equation. In Sections 3 and 4
we construct suitable supersolutions in an outer and inner region, respectively. In
Section 5 we prove the upper bound from Theorem 1.2.

2. Some estimates for solutions of the one-dimensional heat equation. In
this section we collect some properties of positive solutions χ to the Cauchy problem
for the one-dimensional heat equation,

{

χt = χξξ, ξ ∈ R, t > 0,

χ(ξ, 0) = χ0(ξ), ξ ∈ R,
(7)

where the initial data χ0 are nonnegative and integrable on R, with our main focus
being on the particular case when

χ0(ξ) := (1 + aξ2)−
γ
2 , ξ ∈ R, (8)

with γ > 1 and appropriate a > 0.
Let us first invoke a simple comparison argument to make sure that in this

framework, at any positive time the spatial decay of the solution of (7) cannot be
significantly faster than that of the initial data.

Lemma 2.1. Let a > 0 and γ > 0, and let χ denote the solution of (7) with χ0

given by (8). Then for all t0 > 0 there exists c(t0) > 0 such that

χ(ξ, t0) ≥ c(t0)(1 + ξ)−γ for all ξ ∈ R. (9)

Proof. We let

χ(ξ, t) = (1 + aξ2 + 2at)−
γ
2 for ξ ∈ R and t ≥ 0.

Then

χ
t
(ξ, t)− χ

ξξ
(ξ, t) = −a2γ(γ + 2)ξ2(1 + aξ2 + 2at)−

γ
2 −2 ≤ 0

for ξ ∈ R and t > 0. Since clearly χ(ξ, 0) = χ0(ξ) for all ξ ∈ R, the comparison
principle guarantees that χ ≥ χ on R× (0,∞), whence in particular

χ(ξ, t0) ≥ χ(ξ, t0) = (1 + 2at0 + aξ2)−
γ
2 for all ξ ∈ R.

Writing c1(t0) := max{a, 1 + 2at0} and estimating

1 + 2at0 + aξ2 ≤ c1(t0) + c1(t0)ξ
2 ≤ c1(t0)(1 + ξ2) for all ξ ∈ R,

we therefore obtain (9) by choosing c(t0) := c
−γ/2
1 (t0), for instance.

Next, for suitably small a > 0 in (8), another comparison argument yields non-
positivity of the term χξξ + (n− 2)χξ appearing in (24).



4 MAREK FILA AND MICHAEL WINKLER

Lemma 2.2. Let γ > 1 and a > 0 be such that

a ≤ 4(n− 2)2

(γ + 1)2
, (10)

and let χ0 be as given by (8). The the solution χ of (7) satisfies

χξξ(ξ, t) + (n− 2)χξ(ξ, t) ≤ 0 for all ξ > 0 and t > 0. (11)

Proof. From (8) we first obtain that for each t > 0, the function χ(·, t) is symmetric
with respect to ξ = 0 and nonincreasing for ξ ≥ 0. In particular, this implies that
χξ(0, t) = 0 and χξξ(0, t) ≤ 0 for all t > 0, so that

z(ξ, t) := χξξ(ξ, t) + (n− 2)χξ(ξ, t), ξ ≥ 0, t ≥ 0,

satisfies

z(0, t) ≤ 0 for all t > 0. (12)

Moreover, since clearly χ ∈ C∞(R× [0,∞)), we may use (8) to compute the initial
distribution of z: In fact, since

χ0ξ(ξ) = −aγξ(1 + aξ2)−
γ
2 −1

and

χ0ξξ(ξ) = −aγ(1 + aξ2)−
γ
2 −1 + a2γ(γ + 2)ξ2(1 + aξ2)−

γ
2 −2

for all ξ ∈ R, we have

z(ξ, 0) = χ0ξξ(ξ) + (n− 2)χ0ξ(ξ)

= aγ(1 + aξ2)−
γ
2 −2
{

− 1− (n− 2)ξ + a(γ + 1)ξ2 − (n− 2)aξ3
}

(13)

for all ξ > 0. Here the positive term in brackets can be estimated using Young’s
inequality according to

a(γ + 1)ξ2 ≤ (n− 2)ξ +
1

4(n− 2)
[a(γ + 1)]2ξ3 for all ξ > 0, (14)

where our smallness assumption (10) on a guarantees that

1

4(n− 2)
[a(γ + 1)]2 ≤ (n− 2)a.

Therefore, (13) and (14) show that

z(ξ, 0) ≤ 0 for all ξ > 0, (15)

so that since clearly zt = zξξ for ξ > 0 and t > 0, the comparison principle asserts
that the ordering properties in (12) and (15) indeed extend to all ξ > 0 and t > 0,
as claimed.

The proof of Lemma 5.1 below will essentially rely on the fact that the solution
of (7) with χ0 as in (8) has its spatial gradient decaying in time at least as fast as
specified in the following one-sided estimate. Of particular importance for us will
be the circumstance that by choosing ξ0 large we can generate an arbitrarily large
factor in (16). In fact, the following statement is valid for rather general integrable
initial data having some symmetry and monotonicity properties.
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Lemma 2.3. Let χ0 ∈ C0(R) ∩ L1(R) be symmetric with respect to ξ = 0 and
decreasing on [0,∞). Then there exists K > 0 such that the solution of (7) satisfies

χξ(ξ0, t) ≤ −Kξ0t−
3
2 for all ξ0 ≥ 2 and t ≥ ξ20

4
, (16)

where

K :=
χ0(1)− χ0(2)

8
√
πe

. (17)

Proof. We differentiate the identity

χ(ξ0, t) =
1√
4πt

∫ ∞

−∞
e−

(ξ0−ξ)2

4t χ0(ξ)dξ, ξ0 ∈ R,

to see that

−χξ(ξ0, t) =
1

4
√
πt

3
2

∫ ∞

−∞
(ξ0 − ξ)e−

(ξ0−ξ)2

4t χ0(ξ)dξ.

Here we split the integral on the right and substitute z = ξ0 − ξ when ξ < ξ0, and
z = ξ − ξ0 when ξ > ξ0, to obtain

− χξ(ξ0, t) =
1

4
√
πt

3
2

∫ ∞

0

ze−
z2

4t

[

χ0(ξ0 − z)− χ0(ξ0 + z)
]

dz. (18)

Now our symmetry and monotonicity assumptions on χ0 ensure that

χ0(ξ0 − z)− χ0(ξ0 + z) ≥ 0 for all ξ0 ≥ 0 and z ≥ 0; (19)

indeed, in the case z ≤ ξ0 we have 0 ≤ ξ0 − z ≤ ξ0 + z and hence χ0(ξ0 − z) ≤
χ0(ξ0 + z) by monotonicity of χ0 on [0,∞), whereas if z > ξ0 we first use the
symmetry of χ0 to infer that χ0(ξ0 − z) = χ0(z − ξ0) ≤ χ0(z + ξ0), the latter
inequality again relying on the nonincreasing of χ0 on [0,∞) and the fact that
ξ0 ≥ 0.

In view of (19), for each fixed ξ0 ≥ 2 we may estimate the right-hand side in (18)
from below by restricting the integration interval to find that

− χξ(ξ0, t) ≥
1

4
√
πt

3
2

∫ ξ0

ξ0−1

ze−
z2

4t

[

χ0(ξ0 − z)− χ0(ξ0 + z)
]

dz. (20)

Here once more by monotonicity, we can refine (19) according to

χ0(ξ0 − z)− χ0(ξ0 + z) ≥ χ0(1)− χ0(2) for all z ∈ [ξ0 − 1, ξ0], (21)

and moreover eliminate the time variable in the integral in (20) in estimating

e−
z2

4t ≥ e−
ξ20
4t ≥ e−1 for all z ∈ [0, ξ0] and t ≥

ξ20
4
.

From (20) and (21) we thus conclude that

−χξ(ξ0, t) ≥ χ0(1)−χ0(2)
4
√
πet3/2

∫ ξ0
ξ0−1

zdz = χ0(1)−χ0(2)
8
√
πet3/2

(2ξ0 − 1).

Since 2ξ0 − 1 ≥ ξ0 for any such ξ0, this proves (16) with K as in (17).

We finally assert that nonnegativity of χ0 ensures nonnegativity of the sum χt+
1
2tχ. This information will be useful in Lemma 4.2.

Lemma 2.4. Suppose that χ0 ∈ C0(R) ∩ L1(R) is nonnegative. Then the solution
χ of (7) satisfies

χt(ξ0, t) +
1

2t
χ(ξ0, t) ≥ 0 for all ξ0 ∈ R and t > 0. (22)
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Proof. This follows from the Aronson-Bénilan inequality. We give a simple proof
here for readers’ convenience.

Abbreviating the Gaussian kernel as

G(η, t) := (4πt)−
1
2 exp

(

−η
2

4t

)

for η ∈ R and t > 0, we represent χ according to the formula

χ(ξ0, t) =

∫ ∞

−∞
G(ξ − ξ0, t)χ0(ξ)dξ

for ξ0 ∈ R and t > 0. A time differentiation thereof shows that

χt(ξ0, t) +
1

2t
χ(ξ0, t) =

∫ ∞

−∞

{

Gt(ξ − ξ0, t) +
1

2t
G(ξ − ξ0, t)

}

χ0(ξ)dξ

for all ξ0 ∈ R and t > 0. Since

Gt(η, t) +
1

2t
G(η, t) =

1

8
√
π
t−

5
2 η2 e−

η2

4t > 0

for all η ∈ R, t > 0, and χ0 ≥ 0 this implies (22).

3. Supersolution in an outer region. For m = m∗ and radial solutions v =
v(r, t), (3) becomes

vt = (v−
2

n−2 vr)r +
n− 1

r
v−

2
n−2 vr + (n− 2)(rvr + nv), r > 0, t > 0.

If we further transform v via

v(r, t) =
(

r2 +D + ϕ(r, t)
)−n−2

2

, r ≥ 0, t ≥ 0,

then ϕ satisfies for r > 0 and t > 0 the equation

Pϕ := ϕt − (r2 +D + ϕ)
(

ϕrr +
n− 1

r
ϕr

)

+ (n− 2)rϕr +
n− 2

2
ϕ2
r = 0. (23)

The one-dimensional structure is then reflected in the equation

χt = χξξ + e−2ξ
{

(D + χ)
(

χξξ + (n− 2)χξ

)

− n− 2

2
χ2
ξ

}

(24)

obtained upon the further transformation

χ(ξ, t) := ϕ(r, t), ξ = ln r, r > 0, t > 0.

To begin our construction of a supersolution of (23), let us first consider the region
where r > 1 and define a family of corresponding supersolutions, yet involving the
free parameters ξ0, t0 and A which will be fixed step by step in the sequel. The
following lemma accomplishes this by using Lemma 2.2.

Lemma 3.1. Let γ > 1 and a > 0 be such that (10) holds, and let χ denote the
solution of (7) with χ0 as given by (8). Then for any choice of D > 0 and all ξ0 > 0,

t0 > 0 and A > 0, the function ϕ
(ξ0,t0,A)
out defined by

ϕ
(ξ0,t0,A)
out (r, t) := Aχ(ln r + ξ0, t+ t0), r > 0, t ≥ 0, (25)

satisfies

Pϕ(ξ0,t0,A)
out (r, t) ≥ 0 for all r > 1 and t > 0. (26)



CRITICAL FAST DIFFUSION EQUATION 7

Proof. We write ϕ := ϕ
(ξ0,t0,A)
out and compute

ϕt(r, t) = Aχt(ln r + ξ0, t+ t0), ϕr(r, t) =
A

r
χξ(ln r + ξ0, t+ t0),

ϕrr(r, t) =
A

r2

{

χξξ(ln r + ξ0, t+ t0)− χξ(ln r + ξ0, t+ t0)
}

for r > 0 and t > 0. Recalling that µ = n− 2 and omitting the arguments ln r + ξ0
and t+ t0, we thus obtain

Pϕ(r, t) = Aχt − (r2 +D + ϕ)

{

A

r2
(χξξ − χξ) +

n− 1

r

A

r
χξ

}

+µAχξ +
µ

2

{

A

r
χξ

}2

= A

{

χt − χξξ −
D + ϕ

r2

[

χξξ + (n− 2)χξ

]

}

+
n− 2

2
A2χ2

ξ

for all r > 0 and t > 0, where the last term is nonnegative since n > 2. As by
definition of χ we have χt = χξξ for all ξ ∈ R and t > 0, and since Lemma 2.2
warrants that

χξξ(ln r + ξ0, t+ t0) + (n− 2)χξ(ln r + ξ0, t+ t0) ≤ 0

for all r > 1 and t > 0 because we assume that ξ0 > 0.

4. Supersolution in an inner region. In the corresponding inner region where
r < 1, our supersolution will essentially be of self-similar structure. In order to
warrant compatibility with the above outer supersolution at the matching boundary
r = 1, similar to the procedure in [6] we shall introduce a correcting factor f (ξ0,t0) =
f (ξ0,t0)(t) which at each fixed t ≥ 0 is adjusted properly so as to yield continuity of
the composed global supersolution. Specifically, our inner supersolution will be of
the form

ϕ
(ξ0,t0,A)
in (r, t) := Af (ξ0,t0)(t)(t+ t0)

− 1
2 ρ
(

r(t+ t0)
− 1

2

)

, r ∈ [0, 1], t ≥ 0, (27)

with ξ0 >, t0 > 0 and A > 0 to be fixed below. Here our choice of the profile
function ρ is described in the following lemma containing an evident observation
which is essentially the same as formulated in [6, Lemma 2.4].

Lemma 4.1. For D > 0 and γ > 0, let ρ denote the solution of
{

ρ′′(σ) + 1
σρ

′(σ) + 1
Dρ(σ) = 0, σ > 0,

ρ(0) = 1, ρ′(0) = 0.
(28)

Then there exists σ0 ∈ (0, 1) such that ρ > 0 on [0, σ0] and ρ
′ < 0 on (0, σ0].

Now our correcting factor f (ξ0,t0) is defined and characterized in the following
lemma.

Lemma 4.2. Let γ > 1 and a > 0 be such that (10) holds, and let χ denote the
solution of (7) with χ0 given by (8). Moreover, let D > 0 and ρ and σ0 be as in
Lemma 4.1. Then the function f (ξ0,t0), as defined for ξ0 > 0 and t0 > σ−2

0 by
setting

f (ξ0,t0)(t) :=
(t+ t0)

1
2χ(ξ0, t+ t0)

ρ
(

(t+ t0)−
1
2

) , t ≥ 0, (29)
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has the following properties:

i) For all ξ0 > 0 one can find k0(ξ0) > 0 such that whenever t0 > 0, we have

f (ξ0,t0)(t) ≥ k0(ξ0) for all t ≥ 0. (30)

ii) There exists k1 > 0 such that

f (ξ0,t0)(t) ≤ k1 for all t ≥ 0 (31)

holds for any choice of ξ0 and t0 > 0.

iii) There exists C > 0 such that for each ξ0 > 0 and t0 > 0 we have the one-sided
estimate

(f (ξ0,t0))′(t) ≥ − C

(t+ t0)2
for all t > 0. (32)

Proof. i) Since χ0 ∈ L1(R) due to the fact that γ > 1, according to well-known
decay properties of solutions to the one-dimensional heat equation we can fix c1 > 0
such that

χ(ξ, s) ≤ c1s
− 1

2 for all ξ ∈ R and s > 0. (33)

Moreover, writing c2 := ρ(σ0) > 0, we know from the monotonicity of ρ on [0, σ0]
that

ρ(σ) ≥ c2 for all σ ∈ [0σ0]. (34)

Therefore,

f (ξ0,t0)(t) ≤ c1
c2

for all t > 0,

because t0 ≥ σ−2
0 .

ii) Using that χ0 is positive on R, for given ξ0 > 0 a standard argument based on
the positivity of the Gaussian heat kernel provides c3(ξ0) > 0 such that

χ(ξ0, s) ≥ c3s
− 1

2 for all s ≥ 1.

Again by monotonicity of ρ, this implies the lower estimate

f (ξ0,t0)(t) ≥ c3(ξ0) for all t > 0,

because ρ(0) = 1 and t0 ≥ σ−2
0 ≥ 1.

iii) By differentiation,

(f (ξ0,t0))′(t) =
(t+ t0)

1
2

ρ
(

(t+ t0)−
1
2

)

{

χt(ξ0, t+ t0) +
1

2(t+ t0)
χ(ξ0, t+ t0)

}

+
χ(ξ0, t+ t0)ρ

′((t+ t0)
− 1

2

)

2(t+ t0)ρ2
(

(t+ t0)−
1
2

) for all t > 0, (35)

where Lemma 2.4 asserts that

χt(ξ0, t+ t0) +
1

2(t+ t0)
χ(ξ0, t+ t0) ≥ 0 for all t > 0. (36)

In order to estimate the last term in (35), we use the fact that ρ′(0) = 0 to find
c4 > 0 such that

|ρ′(σ)| ≤ c4σ for all σ ∈ [0, σ0].
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Again using (33), (34) and our restriction t0 ≥ σ−2
0 , we therefore obtain

∣

∣

∣

∣

∣

χ(ξ0, t+ t0)ρ
′((t+ t0)

− 1
2

)

2(t+ t0)ρ2
(

(t+ t0)−
1
2

)

∣

∣

∣

∣

∣

≤ c1c4
2c22(t+ t0)2

for all t > 0. (37)

Combining (35) with (36) and (37) thus establishes (32).

After these preparations, we can now verify that the function defined in (27)
indeed has the desired supersolution property if the parameter t0 therein is chosen
suitably large.

Lemma 4.3. Let D > 0 and γ > 1, and let ρ and σ0 be as introduced in Lemma 4.1.
Then for each ξ0 > 0 one can find t⋆ = t⋆(ξ0) > σ−2

0 with the property that whenever

t0 > t⋆ and A > 0, the function ϕ
(ξ0,t0,A)
in defined by (27), with f (ξ0,t0) given by (29),

satisfies

Pϕ(ξ0,t0,A)
in (r, t) ≥ 0 for all r ∈ (0, 1) and t > 0. (38)

Proof. We fix ξ0 > 0 and let C > 0 and k0(ξ0) be as provided by Lemma 4.2. We
moreover pick t⋆ > σ−2

0 such that

t⋆ ≥ C

2k0(ξ0)
, (39)

and let t0 > t⋆ and A > 0. Then for ϕ = ϕ
(ξ0,t0,A)
in as given by (27), writing

f = f (ξ0,t0) and σ = σ(r, t) = r(t + t0)
−1/2 we compute

ϕt(r, t) = Af(t)(t+ t0)
− 3

2

{

− σ

2
ρ′(σ)− 1

2
ρ(σ) +

f ′(t)

f(t)
(t+ t0)ρ(σ)

}

and

ϕr(r, t) = Af(t)(t+ t0)
−1ρ′(σ)

as well as

ϕrr(r, t) = Af(t)(t+ t0)
− 3

2 ρ′′(σ)

for r ∈ (0, 1) and t > 0. Since µ = n− 2 > 0, we thus obtain

Pϕ(r, t) = Af(t)(t+ t0)
− 3

2

{

− σ

2
ρ′(σ) − 1

2
ρ(σ) +

f ′(t)

f(t)
(t+ t0)ρ(σ)

−(r2 +D + ϕ)
(

ρ′′(σ) +
n− 1

σ
ρ′(σ)

)

+ (n− 2)r2
1

σ
ρ′(σ)

}

+
n− 2

2
ϕ2
r(r, t) for all r ∈ (0, 1) and t > 0. (40)

Here in the sum of the terms in the second line of (40) we recall the identity

ρ′′(σ) = − 1

σ
ρ′(σ)− 1

D
ρ(σ)
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for σ ∈ (0, σ0) to see that with σ = σ(r, t) we have

−(r2 +D + ϕ)
(

ρ′′(σ) +
n− 1

σ
ρ′(σ)

)

+ (n− 2)r2
1

σ
ρ′(σ)

= −(r2 +D + ϕ)
(

− 2

D
ρ(σ) +

n− 2

σ
ρ′(σ)

)

+ (n− 2)r2
1

σ
ρ′(σ)

=
2(r2 +D + ϕ)

D
ρ(σ)− (n− 2)(D + ϕ)

σ
ρ′(σ)

≥ ρ(σ) for all r ∈ (0, 1) and t > 0, (41)

because according to the fact that t⋆ > σ−2
0 , for any such r and t we have σ(r, t) =

r(t+t0)
−1/2 < t

−1/2
0 < t

−1/2
⋆ < σ0 and hence ρ(σ) ≥ 0 and ρ′(σ) ≤ 0 by Lemma 4.1.

Moreover, in the first line in (40) we can use Lemma 4.2 i) and iii) along with
our restriction (39) on t⋆ to estimate

f ′(t)

f(t)
(t+ t0)ρ(σ) ≥ − C

k0(ξ0)(t+ t0)
ρ(σ) ≥ − C

k0(ξ0)t⋆
ρ(σ)

≥ −1

2
ρ(σ) for all r ∈ (0, 1) and t > 0. (42)

Once more since ρ′ ≤ 0 on (0, σ0), upon dropping two nonnegative terms in (40) we
infer using (41) and (42) that

Pϕ(r, t) ≥ 1

2
Af(t)(t+ t0)

− 3
2 ρ(σ) ≥ 0 for all r ∈ (0, 1) and t > 0,

as desired.

5. Construction of a global supersolution. We next glue together the above
inner and outer functions in order to obtain a globally defined supersolution of (23)
in the Nagumo sense. To accomplish this, we need to fix ξ0 and t0 > 0 conveniently
large, but the parameter A is still at our disposal.

Lemma 5.1. Let D > 0, and suppose that χ solves (7) with χ0 given by (8) for
some γ > 1 and some a > 0 complying with (10). Then with σ0 as in Lemma 4.1,
there exist ξ0 > 0 and t0 > σ−2

0 such that for any choice of A > 0, the function

ϕ(A) defined by

ϕ(A)(r, t) :=

{

ϕ
(ξ0,t0,A)
in (r, t), r ∈ [0, 1], t ≥ 0,

ϕ
(ξ0,t0,A)
out (r, t), r > 1, t ≥ 0,

(43)

with ϕ
(ξ0,t0,A)
in and ϕ

(ξ0,t0,A)
out as given by (27) and (25), respectively, is continuous

for r ≥ 0 and t ≥ 0 and satisfies

Pϕ(A)(r, t) ≥ 0 for all r ∈ (0,∞) \ {1} and t > 0 (44)

as well as

lim inf
rր1

ϕ(A)
r (r, t) > lim sup

rց1
ϕ(A)
r (r, t) for all t > 0. (45)

Proof. We let k1 > 0 and K > 0 be as found in Lemma 4.2 ii) and Lemma 2.3,
respectively. Furthermore, taking ρ from Lemma 4.1, from the fact that ρ′(0) = 0
we obtain the existence of c1 > 0 such that

ρ′(σ) ≤ −c1σ for all σ ∈ (0, σ0). (46)
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We thereupon fix ξ0 > 0 large enough fulfilling

ξ0 >
c1k1
K

, (47)

and after that apply Lemma 4.3 to find t⋆ = t⋆(ξ0) > σ−2
0 with the properties listed

there. We finally choose any

t0 > max
{

t⋆(ξ0) ,
ξ20
4

}

(48)

and let ϕ(A) be given by (43) with arbitrary A > 0.
It is then immediate from Lemma 4.3 and Lemma 3.1 that the parabolic inequal-

ity in (44) is valid both for (r, t) ∈ (0, 1) × (0,∞) and for (r, t) ∈ (1,∞) × (0,∞),
so that it remains to verify (45). For this purpose, we first evaluate

lim inf
rր1

ϕ
(ξ0,t0,A)
in,r (r, t) = Af(t)(t+ t0)

−1ρ′
(

(t+ t0)
− 1

2

)

for all t > 0

and

lim sup
rց1

ϕ
(ξ0,t0,A)
out,r (r, t) = Aχξ(ξ0, t+ t0) for all t > 0.

Here due to the fact that (t + t0)
−1/2 < t

−1/2
0 < t

−1/2
⋆ (ξ0) < σ0 for t > 0 by (48),

we may use (46) which in conjunction with Lemma 4.2 ii) implies that

lim inf
rր1

ϕ
(ξ0,t0,A)
in,r (r, t) ≥ −Ak1c1(t+ t0)

− 3
2 for all t > 0. (49)

On the other hand, (48) moreover warrants that for t > 0 we have t+t0 > t0 > ξ20/4,
whence Lemma 2.3 applies to show that

lim sup
rր1

ϕ
(ξ0,t0,A)
out,r (r, t) ≤ −AKξ0(t+ t0)

− 3
2 for all t > 0. (50)

In light of our restriction (47) on ξ0, combining (49) with (50) yields (45).

Finally, by choosing A appropriately large we can achieve that ϕ(A) initially
dominates any function ϕ0 with the decay as in Theorem 1.2.

Lemma 5.2. Let D > 0. Suppose that ϕ0 is continuous on [0,∞) and such that
we have

ϕ0(r) ≤ B(ln r)−γ for all r > 2 (51)

with some γ > 1 and B > 0. Then there exists C > 0 such that the solution ϕ of
(23) emanating from ϕ(·, 0) = ϕ0 satisfies

ϕ(r, t) ≤ C(t+ 1)−
1
2 for all r ≥ 0 and t ≥ 0. (52)

Proof. We pick any a > 0 such that (10) holds, and let χ solve (7) with χ0 given by
(8). Moreover, we fix ρ and σ0 ∈ (0, 1) as in Lemma 4.1, take ξ0 > 0 and t0 > σ−2

0

as provided by Lemma 5.1, and let f = f (ξ0,t0) be as introduced in Lemma 4.2.
Then Lemma 2.1 guarantees that for some c1(t0) > 0 we have

χ(ξ, t0) ≥ c1(t0)(1 + ξ)−γ for all ξ ∈ R, (53)

whereas by continuity of ϕ0 we obtain c2 > 0 such that

ϕ0(r) ≤ c2 for all r ∈ [0, 2]. (54)

We claim that if we fix A > 0 large enough fulfilling

A ≥ max

{

Bcγ3
c1(t0)

,
c2

χ(ln 2 + ξ0, t0)

}

(55)



12 MAREK FILA AND MICHAEL WINKLER

with c3 := (1 + ln 2 + ξ0)/ ln 2, then the function ϕ(A) defined in (43) satisfies

ϕ(A)(r, 0) ≥ ϕ0(r) for all r ≥ 0. (56)

To verify this, we first consider the case r > 2, in which from (43) and (53) we know
that

ϕ(A)(r, 0) = ϕ
(ξ0,t0,A)
out (r, 0) = Aχ(ln r + ξ0, t0) ≥ Ac1(t0)(1 + ln r + ξ0)

−γ .

Since

1 + ln r + ξ0
ln r

≤ 1 +
1 + ξ0
ln 2

= c3 for all r > 2,

this entails that

ϕ(A)(r, 0) ≥ Ac1(t0)(c3 ln r)
−γ ≥ B(ln r)−γ ≥ ϕ0(r) for all r > 2 (57)

because of the first restriction on A implied by (55). We next observe that since ρ
is nonincreasing on (0, σ0) and t0 > σ−2

0 , and since χ is nonincreasing with respect
to ξ ∈ (0,∞) by the maximum principle, for each t > 0 we know that

ϕ(A)(·, t) is nonincreasing on [0,∞). (58)

In particular, by (43) we thus have

ϕ(A)(r, 0) ≥ ϕ(A)(2, 0) = ϕ
(ξ0,t0,A)
out (2, 0) = Aχ(ln 2 + ξ0, t0)

≥ c2 ≥ ϕ0(r) for all r ∈ [0, 2],

which combined with (57) establishes (56).
By parabolic comparison based on Lemma 5.1, we hence conclude that ϕ(A)(r, t) ≥
ϕ(r, t) for all r ≥ 0 and t ≥ 0, and that therefore, again in view of (58),

ϕ(r, t) ≤ ϕ(A)(0, t) = ϕ
(ξ0,t0,A)
in (0, t) = Af (ξ0,t0)(t)(t + t0)

− 1
2 ρ(0)

for all r ≥ 0 and t ≥ 0. With k1 as in Lemma 4.2, since ρ(0) = 1 we thus infer that

ϕ(r, t) ≥ Ak1(t+ t0)
− 1

2 for all r ≥ 0 and t ≥ 0,

which readily yields (52).

Proof of the upper bound from Theorem 1.2. If we choose a continuous function ϕ0

satisfying (51) such that ψ0(x) ≤ ϕ0(|x|) for x ∈ R
n, we obtain by comparison that

(

|x|2 +D + ϕ(|x|, t)
)−n−2

2 ≤ v(x, t) ≤ VD(x), x ∈ R
n, t ≥ 0.

Lemma 5.2 and the Mean Value Theorem yield then the result.
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