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Abstract

A degenerate fourth-order parabolic equation modeling condensation phenomena related to Bose-
Einstein particles is analyzed. The model is a Fokker-Planck-type approximation of the Boltzmann-
Nordheim equation, only keeping the leading order term. It maintains some of the main features
of the kinetic model, namely mass and energy conservation and condensation at zero energy. The
existence of a local-in-time nonnegative continuous weak solution is proven. If the solution is not
global, it blows up with respect to the L∞ norm in finite time. The proof is based on approximation
arguments, interpolation inequalities in weighted Sobolev spaces, and suitable a priori estimates
for a weighted gradient L2 norm.
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1 Introduction

The dynamics of weakly interacting quantum particles like bosons can be described by the homoge-
neous Boltzmann-Nordheim equation for the distribution function f(x, t) depending on the energy
x = x1 ≥ 0 and time t > 0 [17],

ft(x1, t) =
1√
x1

∫

D
S[f(x3, t)f(x4, t)(1 + f(x1, t))(1 + f(x2, t))

− f(x1, t)f(x2, t)(1 + f(x3, t))(1 + f(x4, t))]dx3dx4, (1.1)

where x2 = x3 + x4 − x1, D = {x3 + x4 > x1}, and the transition rate S in the energy space depends
on x1, . . . , x4. Nordheim [23] proposed 1928 a Boltzmann-like quantum kinetic theory for Bosons and

∗juengel@tuwien.ac.at
#michael.winkler@math.uni-paderborn.de

1



Fermions, describing the dynamics of the momentum distribution. Equation (1.1) holds under the
simplifying assumptions that the Boson fluid is spatially homogeneous, its momentum distribution is
isotropic, and the Bose particles interact only through s-wave scattering [17, 25].

The main feature of (1.1) is the existence of finite-time blow-up solutions if the initial density is
sufficiently dense, modeling the condensation process [12]. The post-nucleation self-similar solution
was investigated in detail by Spohn [25]. Due to the high complexity of the Boltzmann-Nordheim
equation, approximate Fokker-Planck-type equations modeling condensation phenomena related to
Bose-Einstein particles were studied in the literature.

For instance, if the energy exchange of each collision is small, the Fokker-Planck approximation of the
Nordheim equation in the non-relativistic regime leads to the so-called Kompaneets equation [22]. It
was originally suggested to describe the evolution of a homogeneous plasma when radiation interacts
with matter via Compton scattering. Escobedo et al. [11] showed that this equation develops singu-
larites at zero energy.

Another Fokker-Planck model was studied by Kaniadakis and Quarati [20, 21], proposing a nonlinear
correction to the linear drift term to account for the presence of quantum indistinguishable particles
(bosons and fermions). The model was derived in [1] from a Boltzmann Bose-Einstein model in the
crazing collision limit. Toscani [26] proved that the limit equation possesses global-in-time solutions if
the initial mass is sufficiently small and the solutions blow up in finite time if the initial mass is large
enough.

A Fokker-Planck-type equation, only containing the superlinear drift term, was analyzed recently by
Carrillo et al. [9]. The existence of a unique measure-valued solution, which concentrates the mass at
the origin, was proven. Moreover, all mass concentrates in the long-time limit t→ ∞.

All these Fokker-Planck equations are of first or second order. A higher-order Fokker-Planck approx-
imation of the Boltzmann-Nordheim equation was motivated by Josserand et al. [17]. This model
is the subject of this paper. Assuming that the main contribution to the collision operator on the
right-hand side of (1.1) comes from the neighborhood of x ≈ x1 ≈ x2 ≈ x3 ≈ x4, the integrand of the
collision operator can be expanded to second order, leading to the fourth-order parabolic equation

ut = x−1/2
(

x13/2(u4(u−1)xx − u2(log u)xx)
)

xx
, x ∈ (0,∞), t > 0, (1.2)

where u(x, t) denotes the energy distribution. This approximation maintains some of the features
of the original Boltzmann equation. Indeed, assuming no-flux-type boundary conditions at x = 0
and x → ∞, this equation conserves the total mass N =

∫∞
0 x1/2udx and the kinetic energy E =

∫∞
0 x3/2udx. Furthermore, the entropy S =

∫∞
0 ((1 + u) log(1 + u) − u log u)x1/2dx is nondecreasing,

and the equilibrium is reached at the Bose-Einstein distribution u = (e(x−µ)/T − 1)−1, where µ and T
are some parameters [17].

We expect that the local approximation (1.2) contains the relevant information on the finite-time
collapse of the distribution function. For such a study, it is reasonable to keep only the leading-
order cubic term in (1.2). Furthermore, we restrict ourselves to the finite energy interval (0, L) for
an arbitrarily large L > 0 to avoid some technicalities due to infinite domains. In fact, some of our
estimates will depend on the interval length L > 0, and it is not clear if the limit L → ∞ can be
taken. However, the probability of finding particles with extremely large energy will be arbitrarily
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low, and we believe that the restriction to a finite energy interval is not essential from a modeling
view point. (It is important from a view point of mathematical analysis.) Because of the condensation
at energy x = 0, we expect that the density essentially vanishes at large energy values which makes
Neumann-type boundary conditions at x = L plausible.

More precisely, in this paper we shall subsequently consider the slightly generalized problem given by































ut = x−β
(

xαun+2(u−1)xx

)

xx
, x ∈ Ω, t > 0,

xαun+2(u−1)xx =
(

xαun+2(u−1)xx

)

xx
= 0, x = 0, t > 0,

ux = uxxx = 0, x = L, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

where α ≥ 0, β ∈ R, n > 0, and Ω = (0, L) ⊂ R, with a given nonnegative function u0.
The boundary conditions at x = 0 correspond to those imposed in [17, Formulas (13)-(14)]. In the
original equation, we have α = 13/2, β = 1/2, and n = 2. The approximate equation in (1.3) still con-
serves mass and energy. Moreover, it admits the stationary solutions u(x) = x−σ with σ ∈ {0, 1, 76 , 32},
containing the same Kolmogorov-Zkharov spectra as the full Boltzmann-Nordheim equation [17, Sec-
tion 3.3]. This indicates that there is condensation at zero energy x = 0.

From a mathematical point of view, significant challenges for the analysis stem from the fact that the
parabolic equation in (1.3) degenerates both at u = 0 and at x = 0; accordingly, the literature does
not yet provide any result for this equation, except for the heuristic study on self-similar solutions
in [17]. It will turn out that this double degeneracy drastically distinguishes the solution behavior
in (1.3) from that in related well-studied degenerate fourth-order parabolic equations such as the
thin-film equation ut + (unuxxx)x = 0 [3, 2, 10]. Whereas e.g. the Neumann problem for the latter
equation always possesses a globally defined continuous weak solution which remains bounded [5, 6],
we shall see in the forthcoming paper [19] that the particular interplay of degeneracies in (1.3) can
enforce solutions to blow up with respect to their spatial norm in L∞(Ω) within finite time. More
generally, quite various types of higher-order diffusion equations such as e.g. the quantum diffusion or
Derrida-Lebowitz-Speer-Spohn equation [15, 18], equations of epitaxial thin-film growth [27], or also
some nonlinear sixth-order equations [8, 13, 24] have recently attracted considerable interest. To the
best of our knowledge, however, such effects of spontaneous singularity formation, only due to a pure
diffusion mechanism without any presence of external forces, have not been detected in any of these
examples.

Against this background, the furthest conceivable outcome of any existence theory can only address
local solvability. The goal of the present work is to establish an essentially optimal result in this
direction, asserting local existence of a continuous weak solution u that conserves mass and that can
be extended up to a maximal existence time Tmax ∈ (0,∞] at which ‖u(·, t)‖L∞(Ω) must blow up
whenever Tmax <∞.

Before we state our main result, we introduce some notation. We define for γ ∈ R the weighted
Sobolev space

W 1,2
γ (Ω) = {v ∈W 1,2

loc (Ω) : ‖v‖L2(Ω) + ‖xγ/2vx‖L2(Ω) <∞}
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with norm ‖v‖γ = (‖v‖2L2(Ω) + ‖xγ/2vx‖L2(Ω))
1/2. We denote by χQ the characteristic function on the

set Q ⊂ R
n. The space C4,1(Ω̄ × (0, T )) consists of all functions u such that uxxxx and ut exist and

are continuous on Ω̄ × (0, T ). Furthermore, for any (not necessarily open) subset Q ⊂ R
n, C∞

0 (Q) is
the space of all functions such that supp(f) ⊂ Q is compact.

Definition 1.1 Let n, α, β ∈ R, and T > 0, and suppose that u0 ∈ C0(Ω̄) is nonnegative. Then by
a continuous weak solution of (1.3) in Ω× (0, T ) we mean a nonnegative function u ∈ C0(Ω̄× [0, T ))
with the properties u ∈ C4,1(((0, L]× (0, T )) ∩ {u > 0}) as well as

χ{u>0}x
αunuxx ∈ L1

loc(Ω̄× [0, T )) and χ{u>0}x
αun−1u2x ∈ L1

loc(Ω̄× [0, T )), (1.4)

for which u(·, t) is differentiable with respect to x at x = L for a.e. t ∈ (0, T ) with

ux(L, t) = 0 for a.e. t ∈ (0, T ), (1.5)

and which satisfies the integral identity

−
∫ T

0

∫

Ω
xβuφtdxdt−

∫

Ω
xβu0φ(·, 0)dx =

∫ T

0

∫

Ω
χ{u>0}[−xαunuxx + 2xαun−1u2x]φxxdxdt (1.6)

for all φ ∈ C∞
0 (Ω̄× [0, T )) fulfilling φx(L, t) = 0 for all t ∈ (0, T ).

Note that if u is a positive classical solution in the sense of this definition and α > 1, then partial
integration in (1.6) shows that u satisfies the boundary conditions in (1.3). Our main result reads as
follows.

Theorem 1.1 (Local existence of solutions) Let n ∈ (n∗, 3), where n∗ = 1.5361 . . . is the unique
positive root of the polynomial n 7→ n3 + 5n2 + 16n − 40. Let α > 3 and β ∈ (−1, α − 4). Then for
any γ ∈ (5 − α + β, 1) and each nonnegative function u0 ∈ W 1,2

γ (Ω), there exists Tmax ∈ (0,∞] such
that (1.3) possesses a continuous weak solution u ∈ L∞

loc([0, Tmax);W
1,2
γ (Ω)). Furthermore,

if Tmax <∞ then lim sup
t→Tmax

‖u(·, t)‖L∞(Ω) = ∞, (1.7)

and the solution conserves the mass in the sense that
∫

Ω
xβu(x, t)dx =

∫

Ω
xβu0(x)dx for a.e. t ∈ (0, Tmax). (1.8)

Note that the physical values α = 13
2 , β = 1

2 , and n = 2 are admissible choices in the theorem.
We do not know whether the existence of local-in-time nonnegative solutions can be shown for n <
n∗ = 1, 5361 . . . or n > 3. One crucial question is whether the equation still preserves nonnegativity
of solutions in these parameter regimes. This question, supported by numerical experiments, is the
subject of future work.
We also note that Lemma 3.7 shows that if Tmax <∞ then

lim sup
t→Tmax

‖xγ/2ux(·, t)‖L2(Ω) = ∞,
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which along with (1.8) implies that our solution is maximal also in the weighted space W 1,2
γ (Ω).

The existence analysis of (1.3) is facing two main challenges. The first challenge is to find suitable
a priori estimates for u. In contrast to other nonlinear fourth-order equations, like the thin-film [5]
or DLSS equation [18], we cannot expect to find Lyapunov-type estimates for all times because of
blow-up phenomena [19]. After all, it turns out that at least a local existence analysis can be based on
tracking the time evolution of the functional

∫

Ω x
γu2x(x, t)dx, at a first stage resulting in an a priori

estimate of the form

d

dt

∫

Ω
xγu2xdx + c

∫

Ω
xα−β+γunu2xxxdx+ c

∫

Ω
xα−β+γun−2u2xu

2
xxdx

+ c

∫

Ω
xα−β+γ−2unu2xxdx+ c

∫

Ω
xα−β+γ−2un−2u4xdx

≤ C

∫

Ω
xα−β+γ−6un+2dx (1.9)

for suitable c > 0 and C > 0, which can formally be derived from (1.3) for n ∈ (n⋆, 3), α > 0, β ∈ R,
and γ ∈ R. Approaches of this type have been pursued in related problems such as, e.g., the thin
film equation ut + (unuxxx)x = 0, where a basic solution theory could be built on a uniform-in-time
bound obtained for

∫

Ω u
2
x by a exploiting a corresponding entropy-like inequality [5]. In the present

case, however, the appearance of a superlinear source term on the right of (1.9) seems not only
technically inevitable, but in view of the announced result on the existence of exploding solutions [19]
this might reflect a substantially destabilizing feature naturally inherent to the nonlinear diffusion
mechanism in (1.3). Accordingly, a particular challenge will consist in estimating the right-hand
side in (1.9) adequately, and indeed it turns out that under the restrictions on α, β and γ made in
Theorem 1.1, by means of interpolation arguments, it is possible to derive from (1.9) the autonomous
ordinary differential inequality for

∫

Ω x
γu2xdx. Despite a superlinear source term appearing therein,

upon integration this will imply appropriate weighted integral estimates for u and its derivatives at
least on small time intervals, and inter alia yield the inequality

∫

Ω
xγu2x(x, t)dx ≤ C̃ for all t ∈ (0, T ) (1.10)

for some C̃ > 0 and suitably small T > 0. A rigorous variant of (1.9) is shown in Lemmas 4.1
and 4.2. In view of the degeneracies in (1.3), our analysis will rely on a suitable regularization. To
achieve this, we shall replace x−β and xα by (x + ε)−β and gε(x), respectively, where ε > 0, gε is
positive in Ω, and gε,x vanishes on the boundary. The latter condition ensures that the approximate
flux J = −gε(x)(−unuxx + 2un−1u2x) vanishes on the boundary as well.

The second challenge is to show that these regularized problems preserve positivity of the solutions
uε. This is achieved by proving the estimate

sup
0<t<T

∫

Ω

dx

u2ε(x, t)
≤ C(ε, T, L); (1.11)

see Lemma 5.2. We note that a related approach was employed for the thin-film equation, where
solutions uε of appropriately regularized non-degenerate equations ut+(fε(u)uxxx)x = 0, with suitably
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chosen uniformly positive fε, enjoy an entropy-type estimate of the form supt>0

∫

ΩGε(u)dx ≤ Cε with
G′′

ε(y) = 1/fε(y) [5, 7]. A subtle use of this inequality, in the formal limit ε → 0 reducing to the
estimate supt>0

∫

Ω u
2−ndx ≤ C similar to (1.11), yields various results on nonnegativity and also

on positivity of u when n > 2 [5, 3]. We emphasize that in contrast to this thin-film problem, the
situation is significantly more involved in the present context, which is mainly due to the additional
x-dependent degeneracy at zero energy x = 0, but also due to the different structure in the nonlinear
dependence of the diffusivity in (1.3) on the solution u. In consequence, our approach toward the
local existence result in Theorem 1.1, in particular with regard to the derivation of our entropy-type
estimate (1.9), requires arguments which substantially differ from those in [5, 7].

The limit process ε→ 0 will finally be carried out on the basis of a spatio-temporal Hölder estimate for
the approximate solutions, which thanks to the fact that γ < 1 can be derived from (1.10) along with
the adaptation of a well-known argument from parabolic theory, which turns this into an appropriate
Hölder estimate with respect to time (Lemma 6.1). Unfortunately, the constant C(ε, T, L) depends
on the interval length L such that C(ε, T, L) → ∞ as L→ ∞. Consequently, the limit L→ ∞ might
require additional arguments.

We do not pursue here the mathematically very interesting question whether for suitably chosen
initial data the problem (1.3) possesses nontrivial solutions which exist even for all positive times. It
is conceivable that such global solutions might be found near the constant functions u ≡ c > 0 which
evidently solve (1.3). However, a corresponding perturbation analysis apparently requires a technical
setup different from the one considered here, and thereby goes beyond the scope of this work; in
addition, keeping in mind that (1.3) is intended to model condensation phenomena we do not know
about the physical relevance of such near-constant solutions, reflecting the presence of significantly
many large-energy particles for all times.

The paper is organized as follows. In Section 2, we introduce the family of approximate problems.
Interpolation inequalities in weighted spaces, which are needed for the existence analysis, are shown
in Section 3. The proof of the a priori estimates (Lemmas 4.1 and 4.2) is the subject of Section 4.
Then Section 5 is concerned with the local existence for the approximate problems and the absence of
dead core formation. A Hölder estimate for the approximate solutions is derived in Section 6. Finally,
the proof of Theorem 1.1 is presented in Section 7.

2 A family of approximate problems

We formulate a family of approximate problems in which the singularity at x = 0 is removed but
the boundary conditions in (1.3) hold at x = L and x = 0. To this end, we let ε0 = min{1,

√

L/2},
and for ε ∈ (0, ε0), we choose ζε ∈ C∞

0 (Ω) satisfying 0 ≤ ζε ≤ 1 and ζε(y) = 1 for y ∈ (ε2, L − ε2).
Furthermore, we set

zε(x) = ε+

∫ x

0
ζε(y)dy, x ∈ [0, L].

Then the function zε belongs to C∞([0, L]), zε(x) ≥ ε for all x ∈ [0, L], and it satisfies homogeneous
Neumann boundary conditions, zε,x(0) = zε,x(L) = 0. Then gε := zαε belongs to C∞([0, L]) and
satisfies gε ≥ εα on [0, L] and gε,x(0) = gε,x(L) = 0. Further pointwise estimates for gε are summarized
in the following lemma.
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Lemma 2.1 (Properties of gε) Let α > 0. Then the following properties hold:
(i) There exists a positive decreasing function Λ : [0, ε0) → (0, 1) such that inf(0,ε0) Λ > 0, Λ(0) = 1,
and for all ε ∈ (0, ε0),

Λ(ε)(x+ ε)α ≤ gε(x) ≤ (x+ ε)α, x ∈ [0, L].

(ii) There exists c > 0 such that for all ε ∈ (0, ε0),

0 ≤ gεx(x) ≤ c(x+ ε)α−1, x ∈ [0, L].

(iii) There exists c > 0 such that for all ε ∈ (0, ε0),

gεx(x)
2

gε(x)
≤ c(x+ ε)α−2, x ∈ [0, L].

Proof. (i) Since ζε ≤ 1, we have zε(x) ≤ ε + x for x ∈ [0, L]. This yields the second inequality,
gε(x) = zε(x)

α ≤ (x + ε)α. To prove the first one, we divide [0, L] into three subintervals. First, for
x ∈ [0, ε2] the property zε(x) ≥ ε yields

zε(x)

x+ ε
≥ ε

x+ ε
≥ ε

ε2 + ε
=

1

1 + ε
.

Next, if x ∈ (ε2, L− ε2) then ζε(x) = 1, whence using that zε(ε
2) ≥ ε, we obtain

zε(x)

x+ ε
=

1

x+ ε

(

zε(x) +

∫ x

ε2
ζε(y)dy

)

≥ ε+ (x− ε2)

x+ ε
≥ 1− ε2

ε2 + ε
=

1

1 + ε
.

We finally consider the case x ∈ [L− ε2, L], in which because of the nonnegativity of zε and the fact
that ζε = 1 on [ε2, L− ε2], we infer that

zε(x)

x+ ε
≥ zε(L− ε2)

x+ ε
=
ε+ (L− 2ε2)

x+ ε
≥ L+ ε− 2ε2

L+ ε
= 1− 2ε2

L+ ε
.

The claim hence follows by defining Λ(ε) = min{1/(1 + ε), 1− 2ε2/(L+ ε)}.
(ii) As 0 ≤ zε,x ≤ 1, we have gε,x = αzα−1

ε zε,x ≤ αzα−1
ε in [0, L]. Thus, (i) implies (ii).

(iii) This follows directly from (i) and (ii). �

With the above choices of ε0 > 0 and gε, we proceed to regularize the original problem appropriately.
The idea is to replace in the first equation in (1.3), rewritten in the form ut = x−β(−xαunuxx +
2xαun−1u2x)xx, the coefficients x−β and xα by (x + ε)−β and gε(x), respectively. Accordingly, for
ε ∈ (0, ε0), we shall consider the approximate problem

{

ut =
1

(x+ε)β
·
{

− gε(x)u
nuxx + 2gε(x)u

n−1uxx

}

xx
, x ∈ Ω, t > 0,

ux = uxxx = 0, x ∈ ∂Ω, t > 0.
(2.12)

The boundary behavior of gε guarantees that the flux

J(x, t) = −gε(x)unuxx + 2gε(x)u
n−1u2x (2.13)
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vanishes on ∂Ω = {0, L}. This results upon expanding Jx according to

Jx = −gε(x)unuxxx + (4− n)gε(x)u
n−1uxuxx + 2(n− 1)gε(x)u

n−2u3x

−gε,x(x)unuxx + 2gε,x(x)u
n−1u2x, (2.14)

and evaluating this expression on ∂Ω:

Lemma 2.2 (Boundary flux vanishes) Let n > 0, α > 0, β ∈ R, T > 0, and ε ∈ (0, ε0), and let
u ∈ C4,1(Ω × (0, T )) be a positive classical solution of (2.12). Then Jx(x, t) = 0 for all x ∈ ∂Ω and
t ∈ (0, T ), where J is defined in (2.13).

Proof. The statement is a consequence of (2.14) and the identities ux = uxxx = gε,x = 0 on ∂Ω. �

The above choice of boundary conditions ensures that the total mass is preserved.

Lemma 2.3 (Conservation of total mass) Under the assumptions of Lemma 2.2, we have

d

dt

∫

Ω
(x+ ε)βu(x, t)dx = 0 for all t ∈ (0, T ).

Proof. The claim immediately results by integrating (2.12) over Ω and using that Jx = 0 on ∂Ω.
�

3 Some interpolation inequalities

As a preparation for our subsequent analysis, let us collect some interpolation inequalities in weighted
spaces. The first of these reads as follows.

Lemma 3.1 Let n ∈ R \ {−1, 1}, α ∈ R, β ∈ R, and γ ∈ R. Then for any η > 0, one can find
C(η) > 0 such that for all positive functions u ∈ C2(Ω̄) satisfying ux = 0 on ∂Ω, we have
∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx+

∫

Ω
(x+ ε)α−β+γ−4unu2xdx

≤ η

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ η

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ C(η)

∫

Ω
(x+ ε)α−β+γ−6un+2dx (3.1)

for all ε > 0.

The proof of Lemma 3.1 will be achieved in a series of steps to be presented separately in Lemmas
3.2-3.4. We first estimate the last integral on the left-hand side of (3.1) by a sum involving a small
portion of the first term in (3.1).

Lemma 3.2 Let n ∈ R \ {−1} and α, β, and γ be arbitrary real numbers. Then for all η > 0, there
exists C(η) > 0 such that whenever ε > 0 and u ∈ C2(Ω̄) is positive with ux = 0 on ∂Ω, the inequality
∫

Ω
(x+ ε)α−β+γ−4unu2xdx ≤ η

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+ C(η)

∫

Ω
(x+ ε)α−β+γ−6un+2dx (3.2)

holds.
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Proof. Using ux = 0 on ∂Ω, we may integrate by parts and use Young’s inequality to find that

Γ :=

∫

Ω
(x+ ε)α−β+γ−4unu2xdx

= − 1

n+ 1

∫

Ω
(x+ ε)α−β+γ−4un+1uxxdx− α− β + γ − 4

n+ 1

∫

Ω
(x+ ε)α−β+γ−5un+1uxdx

≤ η

2

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+

1

2(n+ 1)2η

∫

Ω
(x+ ε)α−β+γ−6un+2dx

+
1

2
Γ +

(α− β + γ − 4)2

2(n+ 1)2

∫

Ω
(x+ ε)α−β+γ−6un+2dx.

Rearranging yields (3.2). �

Using the above preparation, we can control the first term in (3.1) as desired:

Lemma 3.3 Let n ∈ R \ {−1} and α, β, γ ∈ R. Then for all η > 0, one can find C(η) > 0 with the
property that any positive function u ∈ C3(Ω̄) with ux = 0 on ∂Ω satisfies

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx ≤ η

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ η

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ C(η)

∫

Ω
(x+ ε)α−β+γ−6un+2dx (3.3)

for each ε > 0.

Proof. Since ux = 0 on ∂Ω, an integration by parts shows that

Γ :=

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx = −

∫

Ω
(x+ ε)α−β+γ−2unuxuxxxdx (3.4)

− n

∫

Ω
(x+ ε)α−β+γ−2un−1u2xuxxdx− (α− β + γ − 2)

∫

Ω
(x+ ε)α−β+γ−3unuxuxxdx,

where by Young’s inequality we find that

−
∫

Ω
(x+ ε)α−β+γ−2unuxuxxxdx ≤ η

2

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ c1

∫

Ω
(x+ ε)α−β+γ−4unu2xdx

and

−n
∫

Ω
(x+ ε)α−β+γ−2un−1u2xuxxdx ≤ η

4

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c2

∫

Ω
(x+ ε)α−β+γ−4unu2xdx

as well as

−(α− β + γ − 2)

∫

Ω
(x+ ε)α−β+γ−3unuxuxxdx ≤ η

4

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c3

∫

Ω
(x+ ε)α−β+γ−6un+2dx

9



with c1 :=
1
2η , c2 :=

n2

η and c3 :=
(α−β+γ−2)2

η . Since Lemma 3.2 provides c4 > 0 such that

(c1 + c2)

∫

Ω
(x+ ε)α−β+γ−4unu2xdx ≤ 1

2
Γ + c4

∫

Ω
(x+ ε)α−β+γ−6un+2dx,

(3.4) thereby proves (3.3). �

Now the latter allows us to also estimate the second term in (3.1) in the claimed manner.

Lemma 3.4 Let n ∈ R \ {−1, 1} and α, β, γ ∈ R. Then for all η > 0, we can pick C(η) > 0 such
that if u ∈ C3(Ω̄) is positive and satisfies ux = 0 on ∂Ω, then for all ε > 0, we have

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx ≤ η

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ η

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ C(η)

∫

Ω
(x+ ε)α−β+γ−6un+2dx. (3.5)

Proof. Once more integrating by parts and using Young’s inequality, we see that

Γ :=

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx

= − 3

n− 1

∫

Ω
(x+ ε)α−β+γ−2un−1u2xuxxdx− α− β + γ − 2

n− 1

∫

Ω
(x+ ε)α−β+γ−3un−1u3xdx

≤ 1

4
Γ + c1

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+

1

4
Γ + c2

∫

Ω
(x+ ε)α−β+γ−6un+2dx

with c1 :=
9

(n−1)2
and c2 :=

(α−β+γ−4)2

(n−1)2
. Thus,

Γ ≤ 2c1

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+ 2c2

∫

Ω
(x+ ε)α−β+γ−6un+2dx,

whence invoking Lemma 3.3, we readily arrive at (3.5). �

Proof of Lemma 3.1. We only need to combine Lemmas 3.2, 3.3, and 3.4. �

The following inequality is closely related to those used in the context of the thin-film equation
ut + (unuxxx)x = 0 [4].

Lemma 3.5 Let n ∈ R \ {3} and α, β, γ ∈ R. Then for all η ∈ (0, 1) and any positive u ∈ C2(Ω̄)
fulfilling ux = 0 on ∂Ω, the inequality

∫

Ω
(x+ ε)α−β+γun−4u6xdx ≤ 25

(1− η)(n− 3)2

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+
(α− β + γ)2

η(1− η)(n− 3)2

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx (3.6)

is valid for all ε > 0.

10



Proof. We integrate by parts using ux = 0 on ∂Ω and apply Young’s inequality to obtain the
estimate

Γ :=

∫

Ω
(x+ ε)α−β+γun−4u6xdx

= − 5

n− 3

∫

Ω
(x+ ε)α−β+γun−3u4xuxxdx− α− β + γ

n− 3

∫

Ω
(x+ ε)α−β+γ−1un−3u5xdx

≤ 1

2
Γ +

1

2
· 25

(n− 3)2

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+
η

2
Γ +

1

2η
· (α− β + γ)2

(n− 3)2

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx,

which can readily be checked to be equivalent to (3.6). �

The following two lemmas are concerned with estimates on the Hölder and L∞ norms of functions in
W 1,2

loc (Ω).

Lemma 3.6 Let γ ∈ (−∞, 1). Then there exists c = c(γ) > 0 such that for any ε ∈ [0, 1) and any
u ∈W 1,2

loc (Ω),

|u(x2)− u(x1)| ≤ c

(
∫

Ω
(x+ ε)γu2xdx

)
1
2

|x2 − x1|θ for all x1, x2 ∈ Ω,

where θ := min{1
2 ,

1−γ
2 }.

Proof. Let 0 < x1 < x2 < L and suppose first that γ ∈ [0, 1). Then by the Cauchy-Schwarz
inequality,

|u(x2)− u(x1)| =
∣

∣

∣

∣

∫ x2

x1

ux(x)dx

∣

∣

∣

∣

≤
(
∫

Ω
(x+ ε)γu2xdx

)
1
2
(
∫ x2

x1

(x+ ε)−γdx

)
1
2

.

Employing the Hölder continuity of x 7→ x1−γ , we obtain

∫ x2

x1

(x+ ε)−γdx =
1

1− γ
((x2 + ε)1−γ − (x1 + ε)1−γ) ≤ c1

1− γ
|x2 − x1|1−γ .

The result thus follows with c = (c1/(1− γ))
1
2 .

If γ ∈ (−∞, 0), we replace γ by −γ in the above arguments and use the Lipschitz continuity of
x 7→ x1+|γ|. �

Lemma 3.7 Let γ ∈ (−∞, 1) and β ∈ R. Then there exists c = c(β, L) > 0 such that for all ε ∈ [0, 1)
and any u ∈W 1,2

loc (Ω),

‖u‖L∞(Ω) ≤ c

(

∫

Ω
(x+ ε)β |u|dx+

(
∫

Ω
(x+ ε)γu2xdx

)1/2
)

.

11



Proof. Assuming that B =
∫

Ω(x + ε)β |u|dx is finite, we see that there exists x0 ∈ (L2 , L) such

that (x0 + ε)β |u(x0)| ≤ 2B
L , for otherwise the inequality B ≥

∫ L
L
2
(x + ε)β |u|dx > L

2 · 2B
L = B gives a

contradiction. Since L
2 ≤ x0 + ε ≤ L+ 1, we infer that

|u(x0)| ≤ c1

∫

Ω
(x+ ε)β |u|dx,

where c1 =
2
L ·max{(L2 )−β , (L+ 1)−β}. The conclusion thus follows from Lemma 3.6. �

Note that if β > −1, which will be assumed in all our subsequent applications of this lemma, the
above constant c(β, L) can be chosen to be bounded as L→ ∞.

4 A differential inequality for
∫

Ω x
γ
u
2
x

A key role in our analysis will be played by the following a priori estimate for the functional y(t) :=
∫

Ω(x+ ε)βu2xdx in terms of a weighted norm of u in Ln+2(Ω). In Lemma 4.2 below, we shall turn this
into an autonomous differential equation for y(t), which will be essential for our local existence proof.

Lemma 4.1 (A priori estimate in terms of a weighted Ln+2 norm) Let n⋆ = 1.5361 . . . be the
unique positive root of n 7→ P (n) := n3+5n2+16n−40, and let n ∈ (n⋆, 3), α > 0, β ∈ R, and γ ∈ R.
Then there exist ε⋆ ∈ (0, ε0), c > 0 (independent of L), and K > 0 such that if for some T > 0 and
ε ∈ (0, ε⋆), u ∈ C4,1(Ω̄× (0, T )) is a positive classical solution to (2.12), then

d

dt

∫

Ω
(x+ ε)γu2x(x, t)dx + c

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ c

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+ c

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx

≤ K

∫

Ω
(x+ ε)α−β+γ−6un+2dx for all t ∈ (0, T ). (4.1)

Proof. With the notation (2.13), we can write the first equation in (2.12) as ut = (x + ε)−βJxx.
Since ux = Jx = 0 on ∂Ω by Lemma 2.2, an integration by parts gives

1

2

d

dt

∫

Ω
(x+ ε)γu2xdx = −

∫

Ω
((x+ ε)γux)xutdx = −

∫

Ω
((x+ ε)γux)x(x+ ε)−βJxxdx

=

∫

Ω

[

(x+ ε)−β+γuxx + γ(x+ ε)−β+γ−1ux

]

x
Jxdx

for all t ∈ (0, T ). Computing

[

(x+ ε)−β+γuxx + γ(x+ ε)−β+γ−1ux

]

x

= (x+ ε)−β+γuxxx + (2γ − β)(x+ ε)−β+γ−1uxx + γ(γ − β − 1)(x+ ε)−β+γ−2ux

12



and expanding Jx by means of (2.14), we thus obtain the identity

1

2

d

dt

∫

Ω
(x+ ε)γu2xdx = −

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx

+ (4− n)

∫

Ω
(x+ ε)−β+γgε(x)u

n−1uxuxxuxxxdx

+ 2(n− 1)

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u3xuxxxdx

−
∫

Ω
(x+ ε)−β+γgεx(x)u

nuxxuxxxdx

+ 2

∫

Ω
(x+ ε)−β+γgεx(x)u

n−1u2xuxxxdx

− (2γ − β)

∫

Ω
(x+ ε)−β+γ−1gε(x)u

nuxxuxxxdx

+ (2γ − β)(4− n)

∫

Ω
(x+ ε)−β+γ−1gε(x)u

n−1uxu
2
xxdx

+ 2(2γ − β)(n− 1)

∫

Ω
(x+ ε)−β+γ−1gε(x)u

n−2u3xuxxdx

− (2γ − β)

∫

Ω
(x+ ε)−β+γ−1gεx(x)u

nu2xxdx

+ 2(2γ − β)

∫

Ω
(x+ ε)−β+γ−1gεx(x)u

n−1u2xuxxdx

− γ(γ − β − 1)

∫

Ω
(x+ ε)−β+γ−2gε(x)u

nuxuxxxdx

+ γ(γ − β − 1)(4− n)

∫

Ω
(x+ ε)−β+γ−2gε(x)u

n−1u2xuxxdx

+ 2γ(γ − β − 1)(n− 1)

∫

Ω
(x+ ε)−β+γ−2gε(x)u

n−2u4xdx

− γ(γ − β − 1)

∫

Ω
(x+ ε)−β+γ−2gεx(x)u

nuxuxxdx

+ 2γ(γ − β − 1)

∫

Ω
(x+ ε)−β+γ−2gεx(x)u

n−1u3xdx

=: I1 + · · ·+ I15 for all t ∈ (0, T ). (4.2)

Our goal is to adequately apply the interpolation inequalities in Lemma 3.1 and Lemma 3.5 and to
identify those integrals which absorb the O(η) contributions in (3.1) and (3.6) such that finally only
a possibly large multiple of the integral over (x+ ε)α−β+γ−6un+2 remains.
To achieve this, we observe that the integral I1 is nonpositive and thus can be used to absorb positive
contributions. Apart from this, the only absorptive contribution to be used in the sequel will result
from I3, which we therefore rearrange first: Namely, by two further integrations by parts, once more
relying on the fact that ux = 0 on ∂Ω, this term can be rewritten according to

I3 = −6(n− 1)

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx
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− 2(n− 1)(n− 2)

∫

Ω
(x+ ε)−β+γgε(x)u

n−3u4xuxxdx

− 2(γ − β)(n− 1)

∫

Ω
(x+ ε)−β+γ−1gε(x)u

n−2u3xuxxdx

− 2(n− 1)

∫

Ω
(x+ ε)−β+γgεx(x)u

n−2u3xuxxdx

= −6(n− 1)

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx

− 2

5
(n− 1)(n− 2)(3− n)

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx

+
2

5
(γ − β)(n− 1)(n− 2)

∫

Ω
(x+ ε)−β+γ−1gε(x)u

n−3u5xdx

+
2

5
(n− 1)(n− 2)

∫

Ω
(x+ ε)−β+γgεx(x)u

n−3u5xdx

− 2(γ − β)(n− 1)

∫

Ω
(x+ ε)−β+γ−1gε(x)u

n−2u3xuxxdx

− 2(n− 1)

∫

Ω
(x+ ε)−β+γgεx(x)u

n−2u3xuxxdx

=: I31 + · · ·+ I36 for all t ∈ (0, T ). (4.3)

In order to specify our choice of ε⋆, let us note that, according to our restriction on n and with P as
specified in the formulation of the lemma, we have P (n) > 0, which implies that when n < 2,

4(3− n)
{

6(n− 1)− (4− n)2

4
− 10(n− 1)(2− n)

3− n

}

= 24(3− n)(n− 1)− (3− n)(4− n)2 − 40(n− 1)(2− n)

= −24n2 + 96n− 72− 3n2 + 24n− 48 + n3 − 8n2 + 16n+ 40n2 − 120n+ 80

= P (n) > 0.

Since in the case n ∈ [2, 3) we clearly have

6(n− 1)− (4− n)2

4
≥ 6(2− 1)− (4− 2)2

4
= 5 > 0,

this entails that for any choice of n ∈ (n⋆, 3),

6(n− 1)− (4− n)2

4
− 10(n− 1)(2− n)+

3− n
> 0.

Consequently, with Λ(ε) as in Lemma 2.1, we can pick ε⋆ ∈ (0, ε0) such that with Λ⋆ := Λ(ε⋆), we
have

{

6(n− 1)− (4− n)2

4

}

Λ⋆ −
10(n− 1)(2− n)+

3− n
> 0,
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and thereupon fix a number µ ∈ (0, 1) sufficiently close to 1 and η > 0 suitably small such that still

{

6(n− 1)− (4− n)2

4µ

}

Λ⋆ −
10(n− 1)(2− n)+

3− n
−
{

Λ⋆ +
50

(3− n)2
+ 1
}

η > 0, (4.4)

and such that moreover
(1− µ− η)Λ⋆ − η > 0. (4.5)

Upon these choices, we first use Young’s inequality to estimate I2 according to

I2 ≤ µ

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx+
(4− n)2

4µ

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx. (4.6)

Next, recalling Lemma 2.1, we obtain

I4 ≤ η

2

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx+ c1

∫

Ω
(x+ ε)−β+γ g

2
εx(x)

gε(x)
· unu2xxdx

≤ η

2
|I1|+ c2Γ1, (4.7)

where

Γ1 :=

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx (4.8)

and c1 and c2, as all numbers c3, c4, . . . appearing below, denote positive constants depending on n,
α, β, and γ, but neither on ε ∈ (0, ε⋆) nor on the solution u.
Similarly, we find c3 > 0 and c4 > 0 such that

I5 ≤ η

4

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx+ c3

∫

Ω
(x+ ε)−β+γ g

2
εx(x)

gε(x)
· un−2u4xdx

≤ η

4
|I1|+ c4Γ2 (4.9)

with

Γ2 :=

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx, (4.10)

and then c5 > 0 and c6 > 0 satisfying

I6 ≤ η

8

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx+ c5

∫

Ω
(x+ ε)−β+γ−2gε(x)u

nu2xxdx

≤ η

8
|I1|+ c5Γ1 (4.11)

and

I7 ≤ η

2

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx+ c6

∫

Ω
(x+ ε)−β+γ−2gε(x)u

nu2xxdx

≤ η

2
Ĩ31 + c6Γ1 (4.12)
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where

Ĩ31 :=
I31

−6(n− 1)
=

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx. (4.13)

In much the same manner, we derive the inequalities

I8 ≤ η

4

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx+ c7

∫

Ω
(x+ ε)−β+γ−2gε(x)u

n−2u4xdx

≤ η

4
Ĩ31 + c7Γ2 (4.14)

and

I10 ≤ η

8

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx+ c8

∫

Ω
(x+ ε)−β+γ−2 g

2
εx(x)

gε(x)
· unu2xdx

≤ η

8
Ĩ31 + c9Γ3 (4.15)

for some positive c7, c8 and c9 and

Γ3 :=

∫

Ω
(x+ ε)α−β+γ−4unu2xdx, (4.16)

as well as

I11 ≤ η

16

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx+ c10

∫

Ω
(x+ ε)−β+γ−4gε(x)u

nu2xdx

≤ η

16
|I1|+ c10Γ3 (4.17)

and

I12 ≤ η

16

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx+ c11

∫

Ω
(x+ ε)−β+γ−4gε(x)u

nu2xdx

≤ η

16
Ĩ31 + c11Γ3 (4.18)

and

I14 ≤ η

32

∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx+ c12

∫

Ω
(x+ ε)−β+γ−4 g

2
εx(x)

gε(x)
· un+2dx

≤ η

32
Ĩ31 + c13Γ4, (4.19)

where

Γ4 :=

∫

Ω
(x+ ε)α−β+γ−6un+2dx (4.20)

and c10, c11, c12, and c13 are positive constants.
As for the remaining terms on the right of (4.2), we again apply Lemma 2.1 to find c14 > 0 and c15 > 0
such that

I9 ≤ c14Γ1 (4.21)
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and
I13 ≤ c15J2, (4.22)

whereas Young’s inequality provides c16 > 0 fulfilling

I15 ≤ c16

∫

Ω
(x+ ε)α−β+γ−3un−1|ux|3dx

≤ c16

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx+ c16

∫

Ω
(x+ ε)α−β+γ−6un+2dx

= c16Γ2 + c16Γ4. (4.23)

Finally, abbreviating

Ĩ32 :=

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx, (4.24)

using Young’s inequality we obtain constants c17, ..., c21 such that

I33 ≤ η

2

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx+ c17

∫

Ω
(x+ ε)−β+γ−2gε(x)u

n−2u4xdx

≤ η

2
Ĩ32 + c17Γ2 (4.25)

and

I34 ≤ η

4

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx+ c18

∫

Ω
(x+ ε)−β+γ g

2
εx(x)

gε(x)
· un−2u4xdx

≤ η

4
Ĩ32 + c18Γ2 (4.26)

as well as

I35 ≤ η

8

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx+ c19

∫

Ω
(x+ ε)−β+γ−2gε(x)u

nu2xxdx

≤ η

8
Ĩ32 + c19Γ1 (4.27)

and

I36 ≤ η

16

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx+ c20

∫

Ω
(x+ ε)−β+γ g

2
εx(x)

gε(x)
· unu2xxdx

≤ η

16
Ĩ32 + c21Γ1. (4.28)

In light of (4.6)-(4.28), (4.2) and (4.3) thus yield

1

2

d

dt

∫

Ω
(x+ ε)γu2xdx ≤ −(1− µ− η)

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx

−
{

6(n− 1)− (4− n)4

4µ
− η
}

·
∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx

+
{

− 2

5
(n− 1)(n− 2)(3− n) + η

}

·
∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx
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+ c22

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+ c22

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx

+ c22

∫

Ω
(x+ ε)α−β+γ−4unu2xdx+ c22

∫

Ω
(x+ ε)α−β+γ−6un+2dx (4.29)

for all t ∈ (0, T ) with some c22 > 0, where we have used that
∑N

j=1
η
2j
< η for all N ∈ N.

Now by means of Lemma 3.5 we can find c23 > 0 such that
{

− 2

5
(n− 1)(n− 2)(3− n) + η

}

∫

Ω
(x+ ε)−β+γgε(x)u

n−4u6xdx

≤
{2

5
(n− 1)(2− n)+(3− n) + η

}

∫

Ω
(x+ ε)α−β+γun−4u6xdx

≤ 25

(1− η)(3− n)2

{2

5
(n− 1)(2− n)+(3− n) + η

}

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c23

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx

≤ 25

(3− n)2

{2

5
(n− 1)(2− n)+(3− n) + 2η

}

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c23

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx.

The last inequality follows from the fact that for A := 2
5(n − 1)(2 − n)+(3 − n) < 1 (0 < n < 3), we

have (A + η)/(1 − η) ≤ A + 2η if 0 < η < 1
2(1 − A). Then applying Lemma 3.1, we obtain c24 > 0

satisfying

c22

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx + (c22 + c23)

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx

+ c22

∫

Ω
(x+ ε)α−β+γ−4unu2xdx

≤ η

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ η

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c24

∫

Ω
(x+ ε)α−β+γ−6un+2dx. (4.30)

Therefore, (4.29) shows that

1

2

d

dt

∫

Ω
(x+ ε)γu2xdx ≤ −(1− µ− η)

∫

Ω
(x+ ε)−β+γgε(x)u

nu2xxxdx

−
{

6(n− 1)− (4− n)2

4µ
− η
}

·
∫

Ω
(x+ ε)−β+γgε(x)u

n−2u2xu
2
xxdx

+ η

∫

Ω
(x+ ε)α−β+γunu2xxxdx

+

{

25

(3− n)2

[2

5
(n− 1)(2− n)+(3− n) + 2η

]

+ η

}
∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ (c22 + c24)

∫

Ω
(x+ ε)α−β+γ−6un+2dx for all t ∈ (0, T ).
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Since clearly 1− µ− η and 6(n− 1)− (4−n)2

4µ − η are both positive thanks to (4.5) and (4.4), we may
now use the lower estimate for gε established in Lemma 2.1 to infer that

1

2

d

dt

∫

Ω
(x+ ε)γu2xdx ≤ −

{

(1− µ− η)Λ⋆ − η
}

∫

Ω
(x+ ε)α−β+γunu2xxxdx

−
{

[

6(n− 1)− (4− n)2

4µ
− η
]

Λ⋆ −
10(n− 1)(2− n)+

3− n
− 50η

(3− n)2
− η

}

×
∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ (c22 + c24)

∫

Ω
(x+ ε)α−β+γ−6un+2dx for all t ∈ (0, T ),

because ε < ε⋆ and hence Λ(ε) ≥ Λ⋆ by the monotonicity of Λ asserted by Lemma 2.1. According to
(4.5) and (4.4), after another application of (4.30), this entails (4.1). �

Under additional assumptions on the parameters α, β, and γ, we are able to derive a priori estimates
for small times only depending on the initial data. More precisely, if the parameter γ is chosen large
enough, then the weight in the integral on the right-hand side of (4.1) is sufficiently regular, whence
from the above we can deduce a bound for

∫

Ω(x+ ε)γu2x(x, t)dx for all sufficiently small t > 0. Since
we plan to finally achieve a boundedness property for u itself with respect to the norm in L∞(Ω), we
require that γ < 1. This explains the restriction on β in the following lemma.

Lemma 4.2 (A priori estimate for small times) Let n∗ = 1.5361 . . . and ε⋆ ∈ (0, 1) be as in
Lemma 4.1, let α > 0, β ∈ (−1, α− 4), and

γ ∈ (5− α+ β, 1). (4.31)

Then one can find c = c(L) > 0 such that for all A > 0 and B > 0, there exists T0(A,B) ∈ (0, 1) with
the following property: If for some ε ∈ (0, ε⋆) and T ∈ (0, T0(A,B)), u ∈ C4,1(Ω̄ × [0, T )) is positive
and solves (2.12) in Ω× (0, T ) with

∫

Ω
(x+ ε)γu2x(x, 0)dx ≤ A and

∫

Ω
(x+ ε)βu(x, 0)dx ≤ B, (4.32)

then

sup
t∈(0,T )

∫

Ω
(x+ ε)γu2x(x, t)dx ≤ c

∫ T

0

∫

Ω
(x+ ε)α−β+γunu2xxxdxdt (4.33)

+ c

∫ T

0

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdxdt+ c

∫ T

0

∫

Ω
(x+ ε)α−β+γun−4u6xdxdt

+ c

∫ T

0

∫

Ω
(x+ ε)α−β+γ−2unu2xxdxdt+ c

∫ T

0

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdxdt

≤ A+ 1. (4.34)

In particular, in that case there exists C(A,B,L) > 0 such that the flux J , defined in (2.13), satisfies
∫ T

0

∫

Ω
(x+ ε)−α−β+γJ2

xdxdt ≤ C(A,B,L). (4.35)
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Proof. Let us first note that our hypothesis β ∈ (−1, α− 4) entails the inequality 5− α+ β < 1,
whence the assumption γ ∈ (5 − α + β, 1) indeed is meaningful. Then with T0(A,B) ∈ (0, 1) to be
fixed below, we assume that T ∈ (0, T0(A,B)) and that u has the properties listed above. Thus, for
each t ∈ (0, T ), by (4.32) and Lemma 2.3, we have

∫

Ω(x+ ε)βu(x, t)dx ≤ B, so that Lemma 3.7 says
that

u(x, t) ≤ c1B + c1

(

∫

Ω
(x+ ε)γu2x(x, t)dx

)
1
2

for all x ∈ Ω (4.36)

with some c1 > 0, where we have used that γ < 1. Consequently, thanks to (4.31), the integral on the
right-hand side of (4.1) can be estimated according to

∫

Ω
(x+ ε)α−β+γ−6un+2(x, t)dx ≤ 2n+2(c1B)n+2

(

∫

Ω
(x+ ε)α−β+γ−6dx

)n+2

+ 2n+2 · L · cn+2
1

(

∫

Ω
(x+ ε)γu2x(x, t)dx

)
n+2
2

≤ c2(B) + c3

(

∫

Ω
(x+ ε)γu2x(x, t)dx

)
n+2
2

with appropriate constants c2(B) > 0 and c3 > 0. From Lemmas 4.1 and 3.5, we thus obtain c4 > 0,
c5(B) > 0, and c6 > 0 such that

d

dt

∫

Ω
(x+ ε)γu2xdx + c4

∫

Ω
(x+ ε)α−β+γunu2xxxdx+ c4

∫

Ω
(x+ ε)α−β+γun−2u2xu

2
xxdx

+ c4

∫

Ω
(x+ ε)α−β+γun−4u6xdx

+ c4

∫

Ω
(x+ ε)α−β+γ−2unu2xxdx+ c4

∫

Ω
(x+ ε)α−β+γ−2un−2u4xdx

≤ c5(B) + c6

(

∫

Ω
(x+ ε)γu2x

)
n+2
2
dx for all t ∈ (0, T ). (4.37)

With the above constants being fixed, we consider the solution y ≡ yA,B of the initial-value problem

{

y′(t) = c5(B) + c6y
n+2
2 (t), t > 0,

y(0) = A.

It is then clearly possible to fix some sufficiently small T0(A,B) ∈ (0, 1) such that y(t) ≤ A + 1 for
all t ∈ (0, T0(A,B)), and a comparison argument for ordinary differential equations, applied to (4.37),
shows that

∫

Ω
(x+ ε)γu2x(x, t)dx ≤ A+ 1 for all t ∈ (0, T ), T < T0(A,B).

Inserting this into (4.37) and integrating, we readily arrive at (4.33).
From this, the estimate (4.35) easily follows upon recalling (2.14), (4.36), and Lemma 2.1 and applying
Lemma 3.7 and Lemma 3.1. �
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5 Local existence in the approximate problems

The a priori estimate of Lemma 4.2 allows us to prove the local existence of a classical solution to the
approximate problem (2.12) for smooth initial data u0 with compactly supported derivative u0x.

Lemma 5.1 (Local existence for smooth data) Let ε0 = min{1,
√

L
2 } and ε ∈ (0, ε0), and let

u0 ∈ C∞(Ω) be positive and such that u0x ∈ C∞
0 (Ω). Then there exist Tmax ∈ (0,∞] and a unique

positive classical solution u ∈ C4,1(Ω̄ × [0, Tmax)) of (2.12) in Ω × (0, Tmax) with u(x, 0) = u0(x) for
all x ∈ Ω. Moreover, Tmax has the property that

if Tmax <∞ then either lim inf
tրTmax

(

inf
x∈Ω

u(x, t)
)

= 0 or lim sup
tրTmax

(

sup
x∈Ω

u(x, t)
)

= ∞. (5.1)

Proof. For k ∈ N, we let fk ∈ C∞(R) be a smooth nondecreasing truncation function on R such
that fk(s) = s for all s ∈ [ 1k , k] and

1
2k ≤ fk ≤ 2k on R. Then each of the problems











ukt =
1

(x+ε)β
·
{

− gε(x)f
n
k (uk)ukxx + 2gε(x)f

n−1
k (uk)u

2
kx

}

xx
, x ∈ Ω, t > 0,

ukx = ukxxx = 0, x ∈ ∂Ω, t > 0,

uk(x, 0) = u0(x), x ∈ Ω,

(5.2)

is non-degenerate, and since u0x has compact support in Ω, standard parabolic theory [14] yields a
uniquely determined global solution u ∈ C4.1(Ω̄× [0,∞)).
Now for sufficiently large k0 ∈ N and each k ≥ k0, it follows from the continuity of uk and the positivity
of u0 in Ω̄ that

Tk := sup
{

T > 0
∣

∣

∣

1

k
≤ uk ≤ k in Ω× (0, T )

}

is a well-defined element of (0,∞], and by uniqueness in (5.2), it is clear that the sequence (Tk)k≥k0

is nondecreasing, and that uk2 ≡ uk1 in Ω × (0, Tk1) whenever k2 ≥ k1 ≥ k0. Consequently, the
definition Tmax := limk→∞ Tk ∈ (0,∞] is meaningful, and the trivially existing pointwise limit
u(x, t) := limk→∞ uk(x, t), (x, t) ∈ Ω̄ × [0, Tmax), satisfies u ≡ uk in Ω × (0, Tk) for each k ≥ k0.
It is therefore evident from (5.2) and the definition of fk that u actually solves (2.12) in Ω× (0, Tmax)
with u|t=0 = u0 in Ω.
It remains to verify (5.1). To this end, we assume on the contrary that Tmax < ∞, but that both
lim inftրTmax(infx∈Ω u(x, t)) > 0 and lim suptրTmax

(supx∈Ω u(x, t)) < ∞. Then for some k ≥ k0, we

would have 2
k ≤ u ≤ k

2 in Ω×(0, Tmax), implying that u ≡ uk in Ω×(0, Tmax) by uniqueness. But since
uk is continuous at t = Tmax, this would entail that Tk > Tmax and hence contradict the definition of
Tmax. �

The following result rules out the occurrence of the first alternative in (5.1); that is, solutions to the
approximate problem (2.12) cannot develop a dead core within finite time.

Lemma 5.2 (Absence of dead core formation) Let n > 1, α > 0, and β ∈ R. Then for all
ε ∈ (0, ε0), δ > 0,M > 0, and T > 0 there exists C(ε, δ,M, T, L) > 0 such that if u ∈ C4,1(Ω̄× [0, T ))
is a positive classical solution of (2.12) in Ω× (0, T ) satisfying

u(x, 0) ≥ δ for all x ∈ Ω (5.3)
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and
u(x, t) ≤M for all x ∈ Ω and t ∈ (0, T ), (5.4)

we have the inequality

∫

Ω

1

u2(x, t)
dx ≤ C(ε, δ,M, T, L) for all t ∈ (0, T ). (5.5)

Proof. Our goal is to conclude (5.5) from a differential inequality for
∫

Ω(x+ε)
βu−2 which we shall

thus derive first. To this end, we twice integrate by parts over Ω to compute, using J as defined in
(2.13),

d

dt

∫

Ω
(x+ ε)β

1

u2
dx = −2

∫

Ω
(x+ ε)β

ut
u2
dx = −2

∫

Ω

1

u3
Jxxdx

= −6

∫

Ω

ux
u4
Jxdx = 6

∫

Ω

(ux
u4

)

x
Jdx

= 6

∫

Ω

[uxx
u4

− 4
u2x
u5

][

− gε(x)u
nuxx + 2gε(x)u

n−1u2x

]

dx

= −6

∫

Ω
gε(x)u

n−4u2xxdx+ 36

∫

Ω
gε(x)u

n−5u2xuxxdx− 48

∫

Ω
gε(x)u

n−6u4xdx

for all t ∈ (0, T ), because ux = Jx = 0 on ∂Ω according to Lemma 2.2. Since one more integration by
parts yields

36

∫

Ω
gε(x)u

n−5u2xuxxdx = 12(5− n)

∫

Ω
gε(x)u

n−6u4xdx− 12

∫

Ω
gεx(x)u

n−5u3xdx,

this shows that

d

dt

∫

Ω
(x+ ε)β · 1

u2
dx = −6

∫

Ω
gε(x)u

n−4u2xxdx− 12(n− 1)

∫

Ω
gε(x)u

n−6u4xdx

− 12

∫

Ω
gεx(x)u

n−5u3xdx (5.6)

for all t ∈ (0, T ). Here, since n > 1, the second term on the right-hand side is nonpositive, and by
means of Young’s inequality and Lemma 2.1, we can find c1 > 0 and c2 > 0 fulfilling

−12

∫

Ω
gεx(x)u

n−5u3xdx ≤ 12(n− 1)

∫

Ω
gε(x)u

n−6u4xdx+ c1

∫

Ω

g4εx(x)

g3ε(x)
· un−2dx

≤ c2

∫

Ω
(x+ ε)α−4un−2dx,

whence (5.6) in particular entails that

d

dt

∫

Ω
(x+ ε)β · 1

u2
dx ≤ c2

∫

Ω
(x+ ε)α−4un−2dx for all t ∈ (0, T ). (5.7)
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Now if n ≥ 2, writing c3(ε) :=
∫

Ω(x+ ε)α−4dx and using (5.4), from (5.7) we obtain

d

dt

∫

Ω
(x+ ε)β · 1

u2
dx ≤ c2c3(ε)M

n−2 for all t ∈ (0, T ),

which after integration implies that

∫

Ω
(x+ ε)β · 1

u2(x, t)
dx ≤

∫

Ω
(x+ ε)β · 1

u2(x, 0)
dx+ c2c3(ε)M

n−2T for all t ∈ (0, T ).

As a consequence of (5.3), we thereby find that

∫

Ω

1

u2(x, t)
dx ≤ c4(ε)

∫

Ω
(x+ ε)β · 1

u2(x, t)
dx

≤ c4(ε)
{c5(ε)

δ2
+ c2c3(ε)M

n−2T
}

for all t ∈ (0, T )

with c4(ε) := max{ε−β , (L+ ε)−β} and c5(ε) :=
∫

Ω(x+ ε)βdx.
In the remaining case n < 2, we first apply the Hölder inequality with p = 2

n and p′ = 2
2−n to the

right-hand side in (5.7) to obtain

d

dt

∫

Ω
(x+ ε)β · 1

u2
dx ≤ c2

∫

Ω
(x+ ε)α−4−(2−n)β

2 ((x+ ε)βu−2)
2−n
2 dx

≤ c2c6(ε)
(

∫

Ω
(x+ ε)β · 1

u2
dx
)

2−n
2

for all t ∈ (0, T )

with

c6(ε) :=
(

∫

Ω
(x+ ε)

2(α−4)−(2−n)β
n dx

)
n
2
.

Integrating this in time shows that in this case,

∫

Ω
(x+ ε)β · 1

u2(x, t)
dx ≤

{

∫

Ω
(x+ ε)β · 1

u2(x, 0)
dx+

n

2
c2c6(ε)T

}
2
n

for all t ∈ (0, T ),

and hence,

∫

Ω

1

u2(x, t)
dx ≤ c4(ε) ·

{c5(ε)

δ2
+
n

2
c2c6(ε)T

}
2
n

for all t ∈ (0, T ),

according to (5.4). �

6 Hölder continuity

We next derive a spatio-temporal Hölder estimate for the above solutions to the approximate problems.
This will allow us to construct a continuous weak solution of (1.3) along a uniformly convergent
sequence of appropriate solutions of (2.12) as ε→ 0.
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Lemma 6.1 (Hölder estimate) With n⋆ as in Lemma 4.1, assume that n ∈ (n⋆, 3) and that α > 0,
β < α − 4, and γ < 1 are such that α − β + γ > 5. Moreover, let A > 0 and B > 0, and let
ε⋆ and T0(A,B) ∈ (0, 1) be as given by Lemma 4.1 and Lemma 4.2, respectively. Then there exists
C(A,B) > 0 such that, whenever u ∈ C4,1(Ω̄ × [0, T )) is a positive classical solution of (2.12) in
Ω̄× (0, T ) for some T ∈ (0, T0(A,B)) with

∫

Ω
(x+ ε)γu2x(x, 0)dx ≤ A and

∫

Ω
(x+ ε)βu(x, 0)dx ≤ B,

the estimate
|u(x2, t2)− u(x1, t1)| ≤ C(A,B) ·

(

|x2 − x1|θ + |t2 − t1|
θ

2θ+3

)

(6.1)

holds for all x1, x2 ∈ Ω and t1, t2 ∈ (0, T ) with θ := min{1
2 ,

1−γ
2 }.

Proof. According to Lemma 4.2, we can pick c1, as well as all constants c2, . . . below, possibly
depending on n, α, β, γ, A, B, and L but independent from ε and u, such that

∫

Ω
(x+ ε)γu2x ≤ c1 for all t ∈ (0, T ).

Hence, Lemma 3.6 provides c2 > 0 such that we have the spatial Hölder estimate

|u(x2, t0)− u(x1, t0)| ≤ c2|x2 − x1|θ for all x1, x2 ∈ Ω and t0 ∈ (0, T ). (6.2)

Using this, a corresponding Hölder estimate with respect to the time variable, that is, the inequality

|u(x0, t2)− u(x0, t1)| ≤M |t2 − t1|
θ

2θ+3 for all x0 ∈ Ω and t1, t2 ∈ (0, T ) (6.3)

with suitably large M > 1, can be derived by adapting a standard technique due to Gilding and
Kružkov ([16], cf. also [5] for a related procedure in a fourth-order setting). Indeed, following [5], let
us assume that (6.3) be false, meaning that for some x0 ∈ Ω and t1, t2 ∈ (0, T ) we have

u(x0, t2)− u(x0, t1) > M |t2 − t1|
θ

2θ+3 , (6.4)

where for definiteness we may suppose that t1 < t2. We then fix any ζ ∈ C∞
0 (R) such that 0 ≤ ζ ≤ 1

on R, ζ ≡ 1 in [−1
2 ,

1
2 ] and ζ ≡ 0 in R \ [−1, 1], and let

ψ(x) := ζ
(x− x0

η

)

, x ∈ Ω̄,

with

η :=
( M

16c2

)
1
θ
(t2 − t1)

1
2θ+3 . (6.5)

Furthermore, we introduce the functions ξδ, δ > 0, given by

ξδ(t) :=
1

δ

∫ t

−∞

{

ζ
(s− t2

δ

)

− ζ
(s− t1

δ

)}

ds, t ∈ (0, T ), (6.6)
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which belong to C∞
0 ((0, T )) and satisfy 0 ≥ ξδ ≥ −c3 with c3 :=

∫ t
−1 ζ(σ)dσ, provided that δ < δ0 :=

min{t1, T − t2} (this ensures that ξδ(0) = ξδ(T ) = 0). Therefore, testing (2.12) against ψ(x)ξδ(t),
(x, t) ∈ Ω× (0, T ), we obtain
∫ T

0

∫

Ω
u(x, t)ψ(x)ξ′δ(t)dxdt =

∫ T

0

∫

Ω

[

(x+ ε)−βψ(x)ξδ(t)
]

x
Jx(x, t)dxdt for all δ ∈ (0, δ0) (6.7)

with J as defined in (2.13), where we again have used that Jx = 0 on ∂Ω by (2.14).
We insert the definition of ξ′δ(t), substitute σ = t−ti

δ , i ∈ {1, 2}, and perform the limit δ → 0, to
estimate the left-hand side in (6.7) from below according to

1

c3
lim
δց0

∫ T

0

∫

Ω
u(x, t)ψ(x)ξ′δ(t)dxdt =

1

c3
lim
δց0

∫

Ω

∫ 1

−1

[

u(x, t2 + δσ)− u(x, t1 + δσ)
]

· ζ(σ)dσ · ψ(x)dx

=

∫

Ω

[

u(x, t2)− u(x, t1)
]

· ψ(x)dx

≥
∫

Ω

[

u(x0, t2)− u(x0, t1)
]

· ψ(x)dx

−
∫

Ω

[

|u(x, t2)− u(x0, t2)|+ |u(x0, t1)− u(x, t1)|
]

· ψ(x)dx,

whence using (6.4) and (6.2) yields

1

c3
lim
δց0

∫ T

0

∫

Ω
u(x, t)ψ(x)ξ′δ(t)dxdt ≥ M(t2 − t1)

θ
2θ+3

∫

Ω
ψ(x)dx− 2c2

∫

Ω
|x− x0|θ · ψ(x)dx

≥ M(t2 − t1)
θ

2θ+3 · η
2
− 2c2 · ηθ · 2η

=
η

2
·
{

M(t2 − t1)
θ

2θ+3 − 8c2η
θ
}

=
η

2
· 1
2
M(t2 − t1)

θ
2θ+3

= c4M
1+ 1

θ (t2 − t1)
θ+1
2θ+3 (6.8)

with c4 := [4 · (16c2)
1
θ ]−1. On the right-hand side of (6.7), by the Cauchy-Schwarz inequality and

Lemma 4.2, we find c5 > 0 fulfilling
∣

∣

∣

∣

∫ T

0

∫

Ω

[

(x+ ε)−βψ(x)ξδ(t)
]

x
· Jxdxdt

∣

∣

∣

∣

≤
(
∫ T

0

∫

Ω
(x+ ε)−α−β+γJ2

xdxdt

)
1
2
(
∫ T

0
ξ2δ (t)dt

)
1
2
(
∫

Ω
(x+ ε)α+β−γ

[

(x+ ε)−βψ(x)
]2

x
dx

)
1
2

≤ c5c3(t2 − t1 + 2δ)
1
2 ·
(
∫

Ω
(x+ ε)α+β−γ

[

(x+ ε)−βψ(x)
]2

x
dx

)
1
2

, (6.9)

since ξδ(t) = 0 for t ≤ t1− δ or t ≥ t2+ δ and ξ
2
δ ≤ c23. We use α−β−γ > 5−2γ > 3 according to our

assumptions and ζ ′ ≡ 0 on R\[−1, 1], and we recall the definition (6.5) of η to find c6 > 0 satisfying
∫

Ω
(x+ ε)α+β−γ · (x+ ε)−2βψ2

x(x)dx =
1

η2

∫

Ω
(x+ ε)α−β−γ · ζ

(x− x0
η

)

dx
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≤ 1

η2
· (L+ 1)α−β−γ · 2η · ‖ζ ′‖L∞(R)

= c6M
− 1

θ (t2 − t1)
− 1

2θ+3

≤ c6(t2 − t1)
− 1

2θ+3 ,

because of M > 1 and thus M− 1
θ < 1. Similarly, with some c7 > 0 we have

∫

Ω
(x+ ε)α+β−γ · (x+ ε)−2β−2ψ2(x)dx =

∫

Ω
(x+ ε)α−β−γ−2ψ2(x)dx

≤ (L+ 1)α−β−γ−2 · 2η
= c7 ·M

1
θ (t2 − t1)

1
2θ+3 ,

whence altogether

(
∫

Ω
(x+ ε)α+β−γ

[

(x+ ε)−βψ(x)
]2

x
dx

)
1
2

≤ c8

{

(t2 − t1)
− 1

2(2θ+3) +M
1
2θ (t2 − t1)

1
2(2θ+3)

}

holds with some c8 > 0. Therefore, (6.7), (6.8), and (6.9) in the limit δ ց 0 yield c9 > 0 such that

c3
4
M1+ 1

θ (t2 − t1)
θ+1
2θ+3 ≤ c9

{

(t2 − t1)
1
2
− 1

2(2θ+3) +M
1
2θ (t2 − t1)

1
2
+ 1

2(2θ+3)

}

= c9

{

(t2 − t1)
θ+1
2θ+3 +M

1
2θ (t2 − t1)

θ+2
2θ+3

}

,

which implies the inequality

c4M
1+ 1

θ ≤ c9

{

1 +M
1
2θ (t2 − t1)

1
2θ+3

}

≤ c9

{

1 +M
1
2θ (T0(A,B))

1
2θ+3

}

.

Since 1 + 1
θ >

1
2θ , this gives an upper bound for M and thus yields the desired contradiction if M has

been chosen suitably large initially. This proves the Hölder estimate (6.3) in time, and combining the
latter with (6.2) completes the proof. �

7 Proof of Theorem 1.1

Let u0 ∈W 1,2
γ (Ω), where γ < 1, and let (εj)j∈N ⊂ (0, 1) be a sequence satisfying εj → 0 as j → ∞. By

a standard approximation argument, we may construct a sequence of functions (u0εj )j∈N ⊂ C∞(Ω)
such that

u0ε > 0 in Ω̄ and u0εx ∈ C∞
0 (Ω) for all ε ∈ (εj)j∈N, (7.1)

and such that
u0ε → u0 in W 1,2

γ (Ω) as ε = εj ց 0. (7.2)

The following lemma asserts that under the assumptions on n, α, β, and γ required in Lemma 4.2,
the corresponding solutions of (2.12) emanating from u0εj have their maximal existence time bounded
from below for all sufficiently small ε ∈ (εj)j∈N, and moreover they accumulate at some continuous
weak solution of (1.3).
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Lemma 7.1 Let n, α, β, and γ be as in Theorem 1.1. Then for all A > 0 and B > 0, there exists
T (A,B) ∈ (0, 1) such that, whenever u0 ∈W 1,2

loc (Ω) is nonnegative and satisfies

∫

Ω
xγu20x(x)dx ≤ A and

∫

Ω
xβu0(x)dx ≤ B, (7.3)

the following holds: For any (εj)j∈N ⊂ (0, ε0) such that εj → 0 as j → ∞ and each (u0εj )j∈N ⊂ C∞(Ω̄)
fulfilling (7.1) and (7.2), the problem (2.12) possesses a unique positive classical solution uε ∈ C4,1(Ω̄×
[0, T (A,B)]) for all sufficiently small ε ∈ (εj)j∈N, and moreover, there exists a subsequence (εjl)l∈N
such that

uε → u in C0(Ω̄× [0, T (A,B)]) as ε = εjl → 0 (7.4)

with some continuous weak solution u of (1.3) in Ω× (0, T (A,B)).

Proof. We claim that the statement is valid if we let T ≡ T (A,B) := T0(A + 1, B + 1) with T0
as provided by Lemma 4.2. To verify this, we first note that, according to (7.3) and upon passing to
subsequences, we may assume that

∫

Ω
(x+ εj)

γu20εjx(x) ≤ A+ 1 for all j ∈ N (7.5)

and
∫

Ω
(x+ εj)

βu0εj (x)dx ≤ B + 1 for all j ∈ N. (7.6)

For ε ∈ (εj)j∈N, we then let uε denote the corresponding positive classical solution of (2.12), that is,
of the initial-boundary value problem











uεt =
1

(x+ε)β
·
{

− gε(x)u
n
εuεxx + 2gε(x)u

n−1
ε u2εx

}

xx
, x ∈ Ω, t > 0,

uεx = uεxxx = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

which according to Lemma 5.1 exists up to a maximal time Tε ∈ (0,∞] having the property stated in
(5.1). We divide the proof into four steps.

Step 1. We first show that actually Tε ≥ T .
To see this, we apply Lemma 4.2 to find, upon passing to a subsequence if necessary, that for some
c1 > 0 and all ε ∈ (εj)j∈N, we have

sup
t∈(0,T̂ε)

∫

Ω
(x+ ε)γu2εx(x, t)dx

+

∫ T̂ε

0

∫

Ω
(x+ ε)α−β+γun−2

ε u2εxu
2
εxxdxdt+

∫ T̂ε

0

∫

Ω
(x+ ε)α−β+γun−4

ε u6εxdxdt

+

∫ T̂ε

0

∫

Ω
(x+ ε)α−β+γ−2unεu

2
εxxdxdt+

∫ T̂ε

0

∫

Ω
(x+ ε)α−β+γ−2un−2

ε u4εxdxdt

≤ c1, (7.7)
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where T̂ε := min{Tε, T}. Since

sup
t∈(0,T̂ε)

∫

Ω
(x+ ε)βuε(x, t)dx =

∫

Ω
(x+ ε)βu0ε(x)dx ≤ B + 1

by Lemma 2.3, Lemma 3.7 yields c2 > 0 such that for all ε ∈ (εj)j∈N,

sup
t∈(0,T̂ε)

‖uε(·, t)‖L∞(Ω) ≤ c2. (7.8)

Moreover, for fixed ε ∈ (εj)j∈N we may apply Lemma 3.6 with γ replaced by 0 to see that (7.7) entails
that with some c3(ε) > 0, the spatial Hölder estimate

|uε(x, t)− uε(y, t)| ≤ c3(ε)|x− y| 12 (7.9)

is valid for all x, y ∈ Ω̄ and any t ∈ (0, T̂ε). Now assuming that Tε < T for some ε ∈ (εj)j∈N, in view
of the extensibility criterion in Lemma 5.1 and the inequality (7.8), we would have

uε(xk, tk) → 0 as k → ∞

with some (xk)k∈N ⊂ Ω and (tk)k∈N ⊂ (0, Tε), where we may assume that xk → x0 and tk ր Tε as
k → ∞ with some x0 ∈ Ω̄. According to (7.8), (7.9), and the Arzelà-Ascoli theorem, we may pass to
subsequences to achieve that with some v ∈ C0(Ω̄) we have

uε(·, tk) → v in C0(Ω̄) as k → ∞, (7.10)

and conclude that v(x0) = 0 and hence, again by (7.9), that

0 ≤ v(x) ≤ c3(ε)|x− x0|
1
2 for all x ∈ Ω. (7.11)

This, however, contradicts the outcome of Lemma 5.2: The latter, namely, along with (7.8) implies
that with some c4(ε) > 0 we have

∫

Ω

1

u2ε(x, tk)
dx ≤ c4(ε) for all k ∈ N,

so that Fatou’s lemma and (7.11) give

1

c23(ε)

∫

Ω

1

|x− x0|
dx ≤

∫

Ω

1

v2(x)
dx ≤ c4(ε),

which is impossible.

Step 2. We next construct the limit function u.

To achieve this, we observe that since Tε ≥ T according to the above arguments, we may replace T̂ε
by T in (7.7) and (7.8) and apply Lemma 6.1 to derive the ε-independent estimate

‖uε‖
C

θ, θ
2θ+3 (Ω̄×[0,T ])

≤ c5 for all ε ∈ (εj)j∈N
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with a certain c5 > 0. Therefore, the Arzelà-Ascoli theorem yields a subsequence, again denoted by
(εj)j∈N, and a nonnegative function u ∈ C0(Ω̄× [0, T ]) such that

uε → u in C0(Ω̄× [0, T ]) (7.12)

as ε = εj ց 0. Moreover, interior parabolic regularity theory [14] shows that (uεj )j∈N is relatively

compact in C4,1
loc (((0, L] × (0, T ]) ∩ {u > 0}), and hence we may assume that as ε = εj ց 0, we also

have
uε → u in C4,1

loc (P), where P :=
(

(0, L]× (0, T ]
)

∩ {u > 0}. (7.13)

Step 3. We proceed to verify that there exists a null set N ⊂ (0, T ) such that for all t ∈ (0, T ) \N ,
u(·, t) is differentiable at x = L with ux(L, t) = 0 for all t ∈ (0, T ) \N .
To this end, we note that (7.7) in particular implies that for some c6 > 0, we have

∫ T

0

∫ L

L
2

un−2
ε u2εxu

2
εxxdxdt+

∫ T

0

∫ L

L
2

un−4
ε u6εxdxdt ≤ c6 for all ε ∈ (εj)j∈N

and since
{

(

u
n+2
4

ε

)2

x

}2

x

=
(n+ 2

4

)4
·
{

2u
n−2
2

ε uεxuεxx +
n− 2

2
u

n−4
2

ε u3εx

}2

≤ 2
(n+ 2

4

)4
·
{

4un−2
ε u2εxu

2
εxx +

(n− 2

2

)2
un−4
ε u6εx

}

in Ω× (0, T ),

we thus find c7 > 0 fulfilling
∫ T

0

∫ L

L
2

{

(

u
n+2
4

ε

)2

x

}2

x

dxdt ≤ c7 for all ε ∈ (εj)j∈N. (7.14)

Since uεx(L, t) = 0 and hence (u
n+2
4

ε )x(L, t) = 0 for all t ∈ (0, T ) by (2.12), using the Cauchy-Schwarz
inequality, we obtain

(

u
n+2
4

ε

)2

x
(x, t) = −

∫ L

x

{

(

u
n+2
4

ε

)2

x

}

x

(y, t)dy

≤ (L− x)
1
2 · aε(t) for all x ∈

(L

2
, L
)

and t ∈ (0, T ), (7.15)

where

aε(t) :=

∫ L

L
2

{

(

u
n+2
4

ε

)2

x

}2

x

(y, t)dy, t ∈ (0, T ).

Again by the Cauchy-Schwarz inequality, (7.15) in turn implies that

∣

∣

∣
u

n+2
4

ε (L− x,−t)− u
n+2
4

ε (x, t)
∣

∣

∣
=

∣

∣

∣

∣

∫ L

x

(

u
n+2
4

ε

)

x
(y, t)dy

∣

∣

∣

∣

≤ (L− x)
1
2 ·
{
∫ L

x
(L− y)

1
2 · a

1
2
ε (t)dy

}
1
2

=

√

2

3
(L− x)

5
4 · a

1
4
ε (t) for all x ∈

(L

2
, L
)

and t ∈ (0, T ),
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by (7.14) and the definition of aε meaning that

∫ T

0
sup

x∈(L
2
,L)

∣

∣

∣
u

n+2
4

ε (L, t)− u
n+2
4

ε (x, t)
∣

∣

∣

4

(L− x)5
dt ≤ 4

9
c7.

Using (7.12) and Fatou’s lemma, from this we conclude that

∫ T

0
sup

x∈(L
2
,L)

∣

∣

∣
u

n+2
4 (L, t)− u

n+2
4 (x, t)

∣

∣

∣

4

(L− x)5
dt ≤ 4

9
c7,

so that in particular we can find a null set N ⊂ (0, T ) such that for all t ∈ (0, T ) \N ,

b(t) := sup
x∈(L

2
,L)

∣

∣

∣
u

n+2
4 (L, t)− u

n+2
4 (x, t)

∣

∣

∣

4

(L− x)5

is finite.
Now if t ∈ (0, T ) \ N is such that u(L, t) > 0, then from (7.13) we clearly infer the existence of
ux(L, t) = limε=εjց0 uεx(L, t) = 0. On the other hand, if t ∈ (0, T ) \N is such that u(L, t) = 0, then
according to the definition of b(t), we obtain

un+2(x, t) ≤ b(t) · (L− x)5 for all x ∈
(L

2
, L
)

,

that is,
∣

∣

∣

∣

u(L, t)− u(x, t)

L− x

∣

∣

∣

∣

=
u(x, t)

L− x

≤

{

b(t) · (L− x)5
}

1
n+2

L− x

= b
1

n+2 (t) · (L− x)
3−n
n+2 for all x ∈

(L

2
, L
)

,

so that, since n < 3, we infer that also in this case ux(L, t) exists and vanishes.

Step 4. We finally show that u furthermore satisfies the integral identity (1.6).
To prepare this, let us first derive two further estimates from (7.7): Namely, for any q ∈ [1, 2), (7.7)
along with Lemma 2.1 and the Hölder inequality implies that for all measurable Ω0 ⊂ Ω and any
measurable Q ⊂ Ω0 × (0, T ), we have
∫∫

Q

∣

∣

∣
gε(x)u

n
εuεxx

∣

∣

∣

q
dxdt ≤

∫∫

Q
(x+ ε)qαunqε |uεxx|qdxdt

≤
(

∫∫

Q
(x+ ε)α−β+γ−2unεu

2
εxxdxdt

)
q
2
(

∫∫

Q
(x+ ε)

q(α+β−γ+2)
2−q u

nq
2−q
ε dxdt

)
2−q
2

≤ c
q
2
1 T

2−q
2 ·

(

∫

Ω0

(x+ ε)
q(α+β−γ+2)

2−q dx
)

2−q
2 · ‖uε‖

nq
2

L∞(Q), (7.16)
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whereas similarly,

∫∫

Q

∣

∣

∣
gε(x)u

n−1
ε u2εx

∣

∣

∣

q
dxdt ≤

∫∫

Q
(x+ ε)qαu(n−1)q

ε |uεx|2qdxdt

≤
(

∫∫

Q
(x+ ε)α−β+γ−2un−2

ε u4εxdxdt
)

q
2

×
(

∫∫

Q
(x+ ε)

q(α+β−γ+2)
2−q u

nq
2−q
ε dxdt

)
2−q
2

≤ c
q
2
1 T

2−q
2 ·

(

∫

Ω0

(x+ ε)
q(α+β−γ+2)

2−q dx
)

2−q
2 · ‖uε‖

nq
2

L∞(Q). (7.17)

In view of our assumptions α > 3, β > −1, and γ < 1, we infer that α+β− γ+2 > 3. Hence, picking
any q ∈ (1, 2) we know that

c8 := sup
ε∈(0,1)

(

∫

Ω
(x+ ε)

q(α+β−γ+2)
2−q dx

)
2−q
2

is finite. Then (7.16) and (7.17), applied to Q := QT := Ω × (0, T ), show that because of q > 1, we
may pass to a further subsequence to achieve that

gε(x)u
n
εuεxx ⇀ w in Lq(Ω× (0, T ))

and

gε(x)u
n−1
ε u2εx ⇀ z in Lq(Ω× (0, T ))

as ε = εj → 0 with some w and z belonging to Lq(Ω × (0, T )). In view of the pointwise convergence
properties uεx → ux and uεxx → uxx inside P, as guaranteed by (7.13), we may identify these limits
to obtain that actually

gε(x)u
n
εuεxx ⇀ xαunuxx in Lq(P) (7.18)

and
gε(x)u

n−1
ε u2εx ⇀ xαun−1u2x in Lq(P), (7.19)

because n > 1.
Next, outside the set P, we may use that uε → 0 uniformly in QT \P to infer upon another application
of (7.13) and (7.16) to q := 1 that

∫∫

QT \P
gε(x)u

n
ε |uεxx|dxdt→ 0 (7.20)

and
∫∫

QT \P
gε(x)u

n−1
ε u2εxdxdt→ 0 (7.21)

as ε = εj → 0, noting here again that α+ β − γ + 2 > 0 by assumption.
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Now for the verification of (1.6), we fix any φ ∈ C∞
0 (Ω̄× [0, T )) such that φx = 0 at x = L. We then

approximate φ by letting

φδ(x, t) := φ(0, t) +

∫ x

0
ζδ(y)φx(y, t)dy, (x, t) ∈ Ω̄× [0, T ), (7.22)

for δ ∈ (0, L2 ), where

ζδ(x) := ζ
(x

δ

)

, x ∈ Ω̄,

with a fixed cut-off function ζ ∈ C∞
R) such that ζ ≡ 0 in (−∞, 1], ζ ≡ 1 in [2,∞) and 0 ≤ ζ ′ ≤ 2 on

R. This construction ensures that φδx vanishes at both x = L and x = 0, so that upon multiplying
(2.12) by (x+ ε)βφδ, we may integrate by parts, again using Lemma 2.2, to obtain

−
∫ T

0

∫

Ω
(x+ ε)βuεφδtdxdt −

∫

Ω
(x+ ε)βu0ε(x)φδ(x, 0)dx

=

∫ T

0

∫

Ω

[

− gε(x)u
n
εuεxx + 2gε(x)u

n−1
ε u2εx

]

· φδxxdxdt (7.23)

for all ε ∈ (εj)j∈N and all δ ∈ (0, L2 ). Here, from (7.12) and the fact that u0ε → u0 in C0(Ω̄) by (7.2)
and the restriction γ < 1, it is clear that

−
∫ T

0

∫

Ω
(x+ ε)βuεφδtdxdt→ −

∫ T

0

∫

Ω
xβuφtdxdt

and

−
∫

Ω
(x+ ε)βu0ε(x)φδ(x, 0)dx→ −

∫

Ω
xβu0(x)φδ(x, 0)dx

as ε = εj → 0, whereas (7.18)-(7.21) warrant that

∫ T

0

∫

Ω

[

− gε(x)u
n
εuεxx + 2gε(x)u

n−1
ε u2εx

]

· φδxxdxdt→
∫∫

P
[−xαunuxx + 2xαun−1u2x] · φδxxdxdt

as ε = εj → 0; hence, (7.23) yields

−
∫ T

0

∫

Ω
xβuφδtdxdt−

∫

Ω
xβu0(x)φδ(x, 0)dx =

∫∫

P
[−xαunuxx + 2xαun−1u2x] · φδxxdxdt (7.24)

for all δ ∈ (0, L2 ). Now, taking δ ց 0, we observe that by (7.22),

φδxx(x, t) = ζδ(x) · φxx(x, t) +
1

δ
ζ ′
(x

δ

)

· φx(x, t) for all (x, t) ∈ Ω× (0, T ),
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so that since 0 ≤ ζ ′ ≤ 2 we find that

∣

∣

∣

∣

∫∫

P
[−xαunuxx + 2xαun−1u2x] · φδxxdxdt−

∫∫

P
[−xαunuxx + 2xαun−1u2x] · φxxdxdt

∣

∣

∣

∣

≤ ‖φxx‖L∞(Ω×(0,T )) ·
∣

∣

∣

∣

∫∫

P
[−xαunuxx + 2xαun−1u2x] · (1− ζδ(x))dxdt

∣

∣

∣

∣

+
2

δ
‖φx‖L∞(Ω×(0,T )) ·

∫∫

Sδ

xαun|uxx|dxdt+
4

δ
‖φx‖L∞(Ω×(0,T )) ·

∫∫

Sδ

xαun−1u2xdxdt

=: I1(δ) + I2(δ) + I3(δ),

where Sδ := ((0, 2δ)× (0, T )) ∩ P. Clearly,

I1(δ) → 0 as δ ց 0

by the dominated convergence theorem in conjunction with the integrability property −xαunuxx +
2xαun−1u2x ∈ L1(P) asserted by (7.18) and (7.19). Moreover, applying (7.13) and (7.16) to Q :=
((0, 2δ)× (0, T )) ∩ P and q := 1 and once more recalling (7.18) and (7.19), we see that

∫∫

Sδ

xαun|uxx|dxdt ≤ c9

(

∫ 2δ

0
xα+β−γ+2dx

)
1
2 ≤ c10δ

α+β−γ+3
2

and similarly

∫∫

Sδ

xαun−1u2xdxdt ≤ c11δ
α+β−γ+3

2

for all δ ∈ (0, L2 ) with positive constants c9, c10, and c11. As our hypotheses α > 3, β > −1, and γ < 1

guarantee that α+β−γ+3
2 > 1, we thus obtain that also

I2(δ) + I3(δ) → 0 as δ ց 0,

so that, since clearly φδ → φ and φδt → φt uniformly in Ω× (0, t), we conclude from (7.24) that indeed
(1.6) is valid. �

We can now prove our main result.

Proof of Theorem 1.1. According to Lemma 7.1 with K > 0 as in (4.1), we know that there
exists T > 0 and a continuous weak solution u of (1.3) in Ω× (0, T ), which due to Lemma 4.1 and the
approximation statement in Lemma 7.1 has the additional regularity property

u ∈ L∞((0, T );W 1,2
γ (Ω)) (7.25)

and satisfies

∫

Ω
xγu2x(x, t)dx ≤

∫

Ω
xγu20x(x)dx+K

∫ t

0

∫

Ω
xα−β+γ−6un+2dxds for a.e. t ∈ (0, T ). (7.26)
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From Lemma 2.3 combined with Lemma 7.1, we infer that moreover
∫

Ω
xβu(x, t)dx = B0 :=

∫

Ω
xβu0(x)dx for all t ∈ (0, T ). (7.27)

Therefore,

Tmax := sup
{

T > 0
∣

∣

∣
There exists a continuous weak solution u of (1.3) in Ω× (0, T )

which satisfies (7.25), (7.26) and (7.27)
}

≤ ∞

is well-defined, and it remains to show that (1.7) holds.
Indeed, let us assume on the contrary that Tmax < ∞ but u ≤ M in Ω × (0, Tmax) for some M > 0.
Then (7.26) would imply that
∫

Ω
xγu2x(x, t)dx ≤ A0 :=

∫

Ω
xγu20x(x)dx+KMn+2Tmax

∫

Ω
xα−β+γ−6dx for a.e. t ∈ (0, Tmax),

where our assumption γ > 5− α+ β ensures that α− β + γ − 6 > −1 and hence A0 <∞. We could
thus pick some t0 ∈ (0, Tmax) such that

t0 > Tmax −
1

2
T (A0, B0) and

∫

Ω
xγu2x(x, t0)dx ≤ A0,

to see upon another application of Lemma 7.1 to A := A0, B := B0 and

v0(x) := u(x, t0), x ∈ Ω,

that the problem






















vt =
1
xβ ·

{

xα[−vnvxx + 2vn−1v2x]
}

xx
, x ∈ Ω, t > 0,

xα[−vnuxx + 2vn−1u2x] = xα[−vnvxx + 2vn−1v2x]x = 0, x = 0, t > 0,

vx = vxxx = 0, x = L, t > 0,

v(x, 0) = v0(x), x ∈ Ω,

would possess a continuous weak solution v in Ω× (0, T (A0, B0)) which, again by Lemma 4.1, Lemma
2.3, and Lemma 7.1, would satisfy v ∈ L∞((0, T (A0, B0));W

1,2
γ (Ω)) and

∫

Ω
xγv2x(x, t)dx ≤

∫

Ω
xγv20x(x)dx+K

∫ t

0

∫

Ω
xα−β+γ−6vn+2dxds for a.e. t ∈ (0, T (A0, B0))

as well as
∫

Ω
xβv(x, t)dx = B0 for all t ∈ (0, T (A0, B0)).

It can therefore easily be checked that

ũ(x, t) :=

{

u(x, t) if x ∈ Ω and t ∈ (0, t0),

v(x, t− t0) if x ∈ Ω and t ∈ [t0, t0 + T (A0, B0)),
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would define a continuous weak solution ũ of (1.3) in Ω × (0, t0 + T (A0, B0)), yet fulfilling (7.25),
(7.26), and (7.27). As t0 + T (A0, B0) > Tmax, this contradicts the definition of Tmax. �
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[8] M. Bukal, A. Jüngel, and D. Matthes. A multidimensional nonlinear sixth-order quantum diffusion
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