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Abstract
We consider the chemotaxis-fluid system
ne+u-Vn = V-(D(n)Vn)—V-(nS(z,n,c)-Ve),
a+u-Ve = Ac—nf(e),
u + VP = Au+nVg,
Veu = 0,

(0.1)

in a bounded convex domain 2 C R?® with smooth boundary, where ¢ € W>°(Q2) and D, f and S
are given functions with values in [0, 00), [0, 00) and R**3, respectively.

In the existing literature, the derivation of results on global existence and qualitative behavior
essentially relies on the use of energy-type functionals which seem to be available only in special
situations, necessarily requiring the matrix-valued S to actually reduce to a scalar function of ¢
which, along with f, in addition should satisfy certain quite restrictive structural conditions.

The present work presents a novel a priori estimation method which allows for removing any such
additional hypothesis: Besides appropriate smoothness assumptions, in this paper it is only required
that f is locally bounded in [0, 00), that S is bounded in  x [0,00)?, and that D(n) > kpn™~!
for all n > 0 with some kp > 0 and some

> —.
6
It is shown that then for all reasonably regular initial data, a corresponding initial-boundary value
problem for (0.1) possesses a globally defined weak solution.

The method introduced here is efficient enough to moreover provide global boundedness of all
solutions thereby obtained in that, inter alia, n € L (€ x (0,00)). Building on this boundedness
property, it can finally even be proved that in the large time limit, any such solution approaches
the spatially homogeneous equilibrium (7ig,0,0) in an appropriate sense, where g := Wll fQ ng,
provided that merely ng # 0 and f > 0 on (0,00). To the best of our knowledge, these are the first
results on boundedness and asymptotics of large-data solutions in a three-dimensional chemotaxis-
fluid system of type (0.1).
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1 Introduction

We consider the chemotaxis-Stokes system

n+u-Vn = V- (D(n)Vn) -V (nS(x,n,c)-Vc), zeN, t>0,
ca+u-Ve = Ac—nf(c), zeN, t>0, (1.2)

uy = Au—VP+nVo, reQ, t>0,

V-u = 0, rze, t>0,

in a bounded domain  C RY where the main focus of this work will be on the case N = 3. Systems
of this type arise in the modeling of populations of aerobic bacteria when suspended into sessile drops
of water ([5], [31]). In this setting, n = n(x,t) and ¢ = ¢(z,t) denote the density of the cell popula-
tion and the oxygen concentration, respectively, and v = u(z,t) and P = P(x,t) represent the fluid
velocity and the associated pressure. The essential modeling hypotheses underlying (1.2) are that
cell movement is partially directed by gradients of the chemical which they consume, that convection
transports both cells and oxygen, and that the presence of bacteria, which are slightly heavier than
water, influences the fluid motion through buoyant forces in an external gravitational potential ¢. The
additional assumption that the fluid flow be comparatively slow is reflected in the fact that in (1.2)
its evolution is described by the Stokes equations rather than the full Navier-Stokes system ([21]).
Related mechanisms of chemotaxis-fluid interaction also arise in different biological contexts such as
biomixing-based fertilization strategies of certain benthic invertebrates ([14], [15]).

Approaches based on a natural energy functional. According to the model specification
underlying the numerical simulations in the original work [31], analytical studies in the existing math-
ematical literature concentrate on the particular version of (1.2) obtained on considering

n+u-Vn=V- (nmﬂVn) -V- (nx(c)Vc), reQ, t>0, (1.3)

as the first equation therein, with m > 1 and a scalar chemotactic sensitivity function x : [0, 00) — R.
Here an essential step forward in the analysis was marked by the observation that under suitable
structural assumptions linking y to the oxygen consumption rate f, this class of versions of (1.2)
admits for certain natural quasi-Lyapunov functionals which involve the logarithmic entropy fQ nlnn.
Indeed, when tracking the time evolution of the latter, the appearing crucial cross-diffusion-related
integral fQ x(¢)Ve-Vn can precisely be cancelled upon adding the result of a suitable testing procedure
in the second equation in (1.2), where further integrals arising during the latter can be controlled
conveniently under certain conditions on the relationship between y and f. In the prototypical case
m=1,x =1 and f(c) = ¢, for instance, this gives rise to an inequality of the form

d 1 2
{/ lnn+/ }+/ [V +/c]D21nc]2§C/ lul*, t>0, (1.4)
dt { Ja 2 Ja Q n Q Q

with some C' > 0 ([35]). Appropriate a priori estimates gained from such energy-type inequalities may
allow for the construction of global-in-time solutions, and thereby for going significantly beyond the
outcome of the approach in [21], where local-in-time weak solutions were found for various boundary
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value problems associated with (1.2)-(1.3) without making use of such structural properties: In [6],
energy-based arguments were applied to establish global existence of weak solutions, under certain
technical conditions, in the case Q = R? when m = 1. The particular requirement therein that
[coll oo (r2y be small was later removed in [20] at the cost of additional structural hypotheses on x
and f. That also the latter restriction can actually be relaxed was one of the results in [35], where a
corresponding boundary value problem was considered in bounded convex domains (cf. the boundary
conditions in (1.6) below) under milder assumptions on x and f, without imposing any smallness
condition on the initial data. A refined use of energy inequalities was performed there to derive state-
ments on global existence of weak solutions in the three-dimensional setting and of smooth solutions
in the case N = 2, even in the situation when the fluid evolution is governed by the full incompressible
Navier-Stokes equations; recently, a further refinement of this analysis allowed for the construction
of certain global weak solutions also in the corresponding three-dimensional semilinear chemotaxis-
Navier-Stokes system ([37]). The powerfulness of this energy-based approach is further underlined by
its ability to moreover yield information on the large time behavior of solutions if exploited properly:
For instance, a generalized version of (1.4) was used in [36] as a starting point to show that in the latter
two-dimensional chemotaxis-Navier-Stokes system all solutions stablilize to the spatially homogeneous
equilibrium (72g,0,0) in the large time limit, where 7y := ﬁ Jomo > 0 (see also [41] for an estimate

on the rate of convergence, and [38] for a partial extension to the three-dimensional analogue).

As an apparently inherent drawback, any such type of energy-based reasoning seems to require quite
inflexible properties of the parameter functions in (1.2), thereby possibly excluding even small per-
turbations of the latter. For instance, the mentioned results in [20] were inter alia built on the strong
condition that (%)” < 0 be valid on (0, 00). This could only slightly be relaxed in [35], where merely

(%)” < 0 on (0,00) was required; after all, this allowed for the choices x = const. and f(c¢) = ¢ in
(1.3). Alternative structural conditions can be found in the more recent work [3], in which for the
Navier-Stokes variant of (1.2) associated with (1.3) in Q = R?, a slightly modified version of the Lya-
punov functional in (1.4) is analyzed to prove global existence of classical solutions for nonnegative
and noncecreasing x and f under the additional condition that ||x — sf| 1 ((0,5)) be small for some
u > 0. Even more drastically, for the construction of global weak solutions to the corresponding
Cauchy problem in = R3 it is required there that  precisely coincides with a fixed multiple of
f. Only under appropriate smallness assumptions on the initial data, establishing global solutions
seems to be achievable without any substantial structural restrictions on the parameter functions, by
means of independent arguments essentially making use of the persiting negligibility of all nonlinear
ingredients ([16]).

In the case of degenerate cell diffusion of porous medium type, that is, when m > 1 in (1.3), the
above procedure yields an inequality quite similar to (1.4), again under essentially the same structural
assumptions on y and f. Correspondingly obtained a priori estimates can then be exploited to derive
global existence of bounded weak solutions when N = 2 and m > 1 is arbitrary ([28]), of global weak
but possibly unbounded solutions in the case N = 3 for any m > 1 ([7]), and of global weak solutions,
locally bounded in Q x [0,00), when N = 3 and m > & ([29]), thereby going significantly beyond

results achieved without making explicit use thereof ([4], [32]).

Analysis beyond natural energies. = More recent experimental findings and corresponding model-



ing approaches suggest that chemotactic migration need not necessarily be directed exclusively toward
increasing signal concentrations, but can rather have rotational components, especially near the phys-
ical boundary of the domain, and that accordingly the chemotactic sensitivity should actually be
considered as a tensor with possibly nontrivial off-diagonal entries ([40]). In light of the observation
that spontaneous emergence of structures indeed seems to occur mainly near droplet boundaries ([31]),
it thus appears adequate to allow the parameter function S in (1.2) to attain values in RY*¥ and to
thereby depart from the particular structure in (1.3). In this general situation, however, it seems no
longer possible to derive inequalities of type (1.4) by means of any procedure which in a subtle way
cancels contributions stemming from cross-diffusive interaction as described above.

Accordingly, the goal of the present work will be to develop an alternative a priori estimation method
which is sufficiently robust so as to apply to (1.2) under very mild conditions on all parameter func-
tions appearing therein. In fact, it turns out that our approach will provide integral estimates which
will not only allow for the construction of global solutions to (1.2) that remain bounded for all times
in a suitable sense, but which beyond this will also serve as a fundament for determining the large
time behavior of these solutions.

Main results. In order to formulate our main results in this direction, let us specify the precise
evolution problem addressed in the sequel by considering (1.2) along with the initial conditions

n(x,0) =no(x), c(z,0)=co(x) and wu(z,0)=up(z), x €, (1.5)

and under the boundary conditions

(D(n)Vn —nS(z,n,c)- Vc) v =0, gz =0 and u=0 on 012, (1.6)

in a bounded convex domain € C R? with smooth boundary, where throughout this paper we assume
for convenience that

ng € C*(2) for some k > 0 with ng > 01in €2, that
co € WH(Q)  satisfies g > 0in Q, and that (1.7)
up € D(A)  for some ag € (2,1) and all r € (1, 00).

with A, denoting the Stokes operator with domain D(A4,) := W?2"(Q) N WOI’T(Q) N L (), where
L7(2):={peL"(Q)| V-p=0}for r € (1,00) (cf. also Section 3.1 below).

As for the diffusion coefficient in (1.2), we shall assume that D generalizes the porous-medium-like
prototype D(n) = mn™"! by satisfying

D e P .([0,00)) for some 6 > 0, (1.8)

as well as
D(n) > kpn™ ! foralln >0 (1.9)

with some m > 1 and kp > 0, noting that this includes both degenerate and non-degenerate diffusion
at n = 0.
Apart from this, we shall merely suppose that

S e C? (Q % [0, oo)2;R3X3> (1.10)

4



satisfies

|S(z,n,c)| < So(c) for all (z,n,c) € Q x [0,00)? with some nondecreasing Sy : [0,00) — R,

(1.11)
that
f e C(0,0)) is nonnegative, (1.12)
and that
b€ WhHe(Q), (1.13)

underlining that unlike most previous studies, we do not require any monotonicity property of neither
f nor S.

In the context of these assumptions, the first of our main results asserts global existence of a bounded
solution in the following sense.

Theorem 1.1 Let (1.10), (1.11), (1.12) and (1.13) hold, and suppose that D satisfies (1.8) and (1.9)
with some

m > g (1.14)

Then for any choice of ng,co and ug fulfilling (1.7), the problem (1.2), (1.5), (1.6) possesses at least
one global weak solution (n,c,u, P) in the sense of Definition 4.1 below. This solution is bounded in
2 x (0,00) in the sense that with some C' > 0 we have

175 )l Lo (@) + el Dllwree @) + [lul ) llwroo@) <€ for all £ > 0. (1.15)
Furthermore, ¢ and u are continuous in {2 x [0, 00) and
n € Cy.([0,00); L()); (1.16)
that is, n is continuous on [0,00) as an L>®(Q)-valued function with respect to the weak-x topology.

We note here that as compared to the global existence result in [29], the admissible range for m indi-
cated by (1.14) is slightly smaller. However, besides requiring significantly less conditions on S and f,
the statement in Theorem 1.1 goes considerably beyond the outcome in [29] in that, inter alia, global
boundedness, rather than merely local boundedness, of solutions is obtained here. A further example
for a lack of global boundedness in a system of type (1.2) can be found in [2], where global existence
of possibly unbounded classical solutions is proved for the three-dimensional variant of (1.2) obtained
on specifying D = 1 and f(c) = ¢ for ¢ > 0, and requiring that instead of (1.11), S decays for large
values of n in the sense that [S(z,n,c)| < C(1 4 n~) for all n > 0 and some C' > 0 and a > #.

We can moreover show that all the above solutions approach the unique spatially homogeneous equilib-
rium corresponding to the bacterial mass fQ ng in the large time limit, provided that ng is nontrivial,
and that the condition f > 0 on (0, 00) is satisfied, which is evidently necessary for such a behavior:

Theorem 1.2 Let (1.10), (1.11), (1.12) and (1.13) hold, suppose that D satisfies (1.8) and (1.9)
with some m > %, and assume that in addition

fle)>0 for all ¢ > 0. (1.17)



Then whenever (ng, co, ug) satisfies (1.7) with ng # 0, the global weak solution constructed in Theorem
1.1 satisfies

n(-,t) 2w in L(K), c(,t) >0 in L™®(Q) and  u(,t) =0 an L=(Q) (1.18)
as t — 0o, where ng = ﬁ Jo m0-

In particular, Theorem 1.1 and Theorem 1.2 provide some progress also in the fluid-free subcase of
(1.2) obtained on letting ¢ = 0 and u = 0. Indeed, for the correspondingly gained chemotaxis system
with matrix-valued sensitivity the literature so far only contains very few results: Global classical
solutions are known to exist in the case N = 2 but for small values of |[col|re ) only ([18]); in
the same two-dimensional setting, global bounded weak solutions for large initial data can be found
whenever m > 1 ([1]); in the case m = 1, certain global generalized solutions, possibly unbounded,
have recently been constructed for any N > 1 and arbitrarily large initial data ([39]). If this two-
component system is further simplified by moreover choosing the sensitivity to be a constant scalar,
again some energy arguments become available so as to yield much more comprehensive results on
global existence of solutions and even on their large time behavior ([27]).

Our approach underlying the derivation of Theorem 1.1 consists at its core in an analysis of the
functional

o(t) ::/an(-,t)+/ﬂvc(-,t)|%+/ﬂ\,4%u(.,t)|2, £>0, (1.19)

for solutions of certain regularized versions of (1.2) (see Section 2), where we eventually intend to
choose p > 1 arbitrarily large. For this purpose, in Section 3.2 we shall first follow standard testing
procedures to gain some basic information on the time evolution of each of the summands in (1.19)
separately. It will turn out in Section 3.3 and in Section 3.4 that under suitable conditions on the
relationship between the exponents p > 1 and ¢ > 1 herein it is possible to estimate the respective
ill-signed contributions appropriately, and thereby establish an ODI for y containing an absorptive
linear term and thus implying an upper bound for y (see Lemma 3.14 and also Lemma 3.13).

Since boundedness of y even for large p and ¢ does not directly entail sufficient regularity properties
of u, our reasoning will involve a two-step bootstrap argument: In the first step thereof we shall
only rely on the natural mass conservation property (2.4) and the smoothing action of the Stokes
semigroup (Section 3.1) to gain a first integral bound for the Jacobian Du (cf. Lemma 3.15 and also
Corollary 3.4); since such bounds allow for estimating certain integrals stemming from the signal-fluid
interaction, provided that ¢ in (1.19) is not too large (Lemma 3.11 and Lemma 3.12), this primary
information can be used to derive a bound on y for certain small p and ¢ (Lemma 3.15). The latter
in turn implies higher regularity features of Du and thus enables us to treat y for arbitrarily large p
and ¢ in a second step (Lemma 3.16).

In deriving the convergence properties asserted in Theorem 1.2 in Section 5, we shall essentially make
use of the boundedness statement from Theorem 1.1: In fact, the latter will enable us to exploit
the finiteness of [;° [onf(c) and [° [, |Ve[* (Lemma 3.20) to firstly obtain boundedness also of
1% Jo IVn®[* for some @ > 1 (Lemma 3.21), and to secondly prove that as a consequence of these
three integral inequalities, all our solutions asymptotically become homogeneous in space and thus
satisfy (1.18) (Lemma 5.1, Lemma 5.2 and Lemma 5.3).



2 Approximation by non-degenerate problems

Our goal is to construct solutions of (1.2) as limits of solutions to appropriately regularized problems.
To achieve this, we approximate the diffusion coefficient function in (1.2) by introducing a family
(De)ze(o,1) of functions

D. € C*([0,00)) such that D.(n)>e foralln>0ande € (0,1) and
D(n) < D.(n) < D(n)+2¢ foralln>0ande e (0,1).

Next, it will be convenient to deal with homogeneous Neumann boundary conditions for both n and
¢ rather than with the nonlinear no-flux relation in (1.6). In order to achieve this at least during our
approximation procedure, following [18] we moreover fix families (p:).c(0,1) and (Xe)z¢(0,1) of functions

pe €CE() with 0<p.<1inQ and p. 1inQase\0
and
Xe € C5°([0,00)) satisfying 0<yx.<1in[0,00) and x. 71in [0,00) ase \,0,
and define smooth approximations S. € C?(Q x [0, 00)%; R3*3) of S by letting
Se(x,n,c) = pe(x) - xe(n) - S(x,n,c), zeN, n>0, ¢c>0, (2.1)

for € € (0,1). Then for any such ¢, the regularized problems

( Oine +u. - Vn. =V - (Dg(nE)VnE> -V (neSg(x, Ne,y Ce) * ch>, zeQ, t>0,
Opce + ue - Vee = Ace —ngf(ce), zeQ, t>0,
Osue + VP: = Au. +n-Vo, re, t>0, (2.2)
V- u. =0, re, t>0,
G =5 =0, u.=0, 2 e, t>0,
ne(x,0) =no(x), c(x,0) =co(x), u(zr,0)=u(x), z € ),

are globally solvable in the classical sense:

Lemma 2.1 Let ¢ € (0,1). Then there exist functions

ne € C%(Q x [0,00)) N C%L(Q x (0,00)),
c. € C%Q x [0,00)) N C?1(Q x (0,00)),
us € C%(Q x [0,00)) N C%HQ x (0,00)),
P. € CH0(Q x (0,00)),

such that (ng, ce,us, P:) solves (2.2) classically in  x (0,00), and such that n. and c. are nonnegative
in 2 x (0,00).



PROOF. By an adaptation of well-established fixed point arguments, one can readily verify the
existence of a local-in-time smooth solution, nonnegative in its first two components by the maximum
principle, and extensible up to a maximal time T}, € (0, 00] which in the case Tj,40c < 00 has the
property that

timsup (e Dl ey + lee (- Dll ey + (D ey ) = o0 (23)
t/Tmaz,E

(cf. [35, Lemma 2.1] and [25, Lemma 2.1], for instance). Since (2.1) ensures that for fixed ¢ € (0, 1)
the function Sc(x,n, c) vanishes for all sufficiently large n, one may apply standard a priori estimation
techniques to infer that for any such € and each 7" > 1 there exists C'(e,T") > 0 such that

HnE('7t)HCQ(Q) + HCE('at)||C2(Q) + ||u5('>t)”02(ﬁ) <C(eT) for all ¢ € (T, Tmax,s)?

where 7 := min{1, 1T}4,} and Trnaze := min{T, Trnazc} (cf. e.g. [35, Sect. 5], [13] and [26]). As a
consequence of this and (2.3), we actually must have T},4, . = 00, as desired. O

The following basic properties of solutions to (2.2) are immediate.

Lemma 2.2 The solution of (2.2) satisfies

[ne(, D)l L) = /Qno for allt >0 (2.4)

as well as
llee(-st) [ Loe () < llcollzoe () for all t > 0. (2.5)

PROOF.  The mass conservation property (2.4) directly follows by integrating the first equation in
(2.2) over Q. Moreover, using that both n. and f are nonnegative we can readily derive the inequality
(2.5) by applying a parabolic comparison argument to the second equation in (2.2). ]

3 A priori estimates

We proceed to derive e-independent estimates for the approximate solutions constructed above. Through-
out this section, for € € (0,1) we let (n., ce, ue, P-) denote the global solution of (2.2).

3.1 WU regularity of u implied by L regularity of n

Our first goal is to draw a consequence of a supposedly known bound for n. in L*((0, c0); LP(2)) on
the regularity of the spatial derivative Du. of u.. Since in view of (2.4) we intend to apply this inter
alia to the case p = 1 in a first step (cf. Lemma 3.15), applying smoothing estimates for the Stokes
semigroup seems not fully straightforward in our situation.

In order to prepare our results in this direction, let us recall that for each r € (1, 00), the Helmholtz
projection acts as a bounded linear operator P, from L"(2) onto its subspace L] (Q2) = {¢ € L"(R?) | V-
¢ = 0} of all solenoidal vector fields. Moreover, the realization A, of the Stokes operator A in L] (2)
with domain D(4,) = W2"(Q) N VVO1 T(Q) N LY (Q) is sectorial in L (£2) and hence possesses closed
fractional powers A7 with dense domains D(A;/?) ) for any 5 € R ([9]), and A, generates an analytic
semigroup (e7t47);>o in L7(2). In the sequel, since P.1) and ALy as well as e *rg are actually



independent of r € (1,00) for each ¢ € C§°(R?) and ¢ € C°(Q) N LL(Q), 5 € R and ¢t > 0, we may
suppress the subscript r in P, A,@ and e~ 4 whenever there is no danger of confusion.

Then among well-known embedding and regularity estimates we will especially need the following in
the sequel.

Lemma 3.1 i) Letr > 1. Then for all 3 > § one can find C = C(r,3) > 0 such that
ID¢ll ) < CllA @l ey for all p € D(AP). (3.1)

ii) There exists u > 0 with the following property: For all r € (1,00) and p € (1,r] and each > 0
there exists C = C(p,r, 3) such that whenever ¢ € L5(Q), we have

AP g iy < CEP 26 Ve 0] 1y for all t > 0. (3.2)

PrOOF. i) The inequality (3.1) can be derived from [8, Lemma I1.17.1] by adapting the argument
in [8, Lemma I1.17.2] in a straightforward manner.

ii) For (3.2), we may refer the reader to [10, p.201], noting that the exponentially decaying factor
on the right-hand side can be justified by precisely following the reasoning in [23, Proposition 48.5];
cf. also [34, Lemma 1.3]). O

Evidently, the regularity properties for u. are linked to those of the forcing term g. := P[n.V¢]
appearing in the version dyu. + Au. = P[n-V¢| of the Stokes subsystem of (2.2) when projected to
the respective spaces of divergence-free functions. Since in a first step, our basic information (2.4)
only asserts a bound for g. with respect to the norm in L'(€), and since standard results apparently
do not apply directly to this non-reflexive situation, we briefly include the following two lemmata to
prepare an adequate estimation of g..

Firstly, a further embedding property of the domains of fractional powers of A allows us to control,
upon a slight lifting through a negative fractional power of A, the norm of functions in the space
LPo(Q) by the norm of the unlifted function in LP(£2) with some p smaller than py. In Lemma 3.3, the
case po = oo will be of particular importance for treating the L' situation mentioned above.

Lemma 3.2 Suppose that 1 < p < py < oo, and that 6 € (0,1) is such that 20 — % > —p%. Then there
exists C' > 0 such that

IA™ Y| oo () < CllYllr) — for all ¢ € LP(Q). (3.3)

PrROOF.  According to [9, Theorem 3] and [12, Theorem 1.6.1], our assumption on § ensures that
D(Af,) < LPo(Q2), which means that there exists C; > 0 such that

ol Leo (@) < C'1||A5g0HLp(Q) for all ¢ € D(Ag).
Thus, if we fix 1) € C$°(Q) and apply this to ¢ := A%, we see that the inequality in (3.3) holds with
C := C). For arbitrary ¢ € LP(2), (3.3) easily follows from this by completion. O

By means of a straightforward duality argument, we can thereby indeed use a knowledge on the size
of a function in L!(Q) to control a slightly lifted variant of its solenoidal part in a reflexive LP space.
More generally, we have the following.



Lemma 3.3 Assume that 1 < p < pg < 00, and that § € (0,1) is such that 26 —% > —p%. Then there
exists C' > 0 such that

IAPY|lro) < Clltllo)  for all yp € CF°(). (34)

Consequently, the operator A=9P possesses a unique extension to all of LPo(Q) with norm controlled
according to (3.4).

PrROOF.  Let ¢ € C3°(Q). Then since both A=9P1 and A~9P¢p are divergence free and A~° is
symmetric, we have

[ apoo= [ 47Ps- P [ Po-azpo= [ 4 a-ipy.

Now with p' := 1% € (1,00] and pj := pg’ﬂl we have 1 < pj < p/ < oo, and the assumption
20 — % > —p% ensures that 20 — ;’—, —]%. Therefore we may invoke Lemma 3.2 and use the
0

boundedness of the projection P in LP0(Q) to find C; > 0 and Cy > 0 such that

[ a7Pue| < Wl 147 Pl
CillYll e ) - ||77<P||Lpg(g)
< CollYlle(o) - HSOH[}’()(Q) for all p € C§°(Q).

IN

By a standard duality argument, this implies (3.4). O

An application of this to the Stokes equations in (2.2) now yields the following implication of some
presupposed boundedness property of n. to the regularity features of u..

Corollary 3.4 Let p € [1,00) and r € [1,00] be such that

3 .
{r<3pp if p <3,

) (3.5)
r < oo if p> 3.

Then for all K > 0 there exists C = C(p,r, K) such that if for some € € (0,1) and T' > 0 we have

(- t) || Lr() < K for all t € (0,7T), (3.6)

then
[ Due (-, t)||Lr) < C for allt € (0,T). (3.7)

PROOF.  In view of (3.5), it is evidently sufficient to consider the case r > p only, in which we can

fix ro € (p,r) such that with 8 as in (1.7) we have

+ ,(i - 1) <B. (3.8)

DN | =
[\

Since (3.5) moreover ensures that

LAPE PRI U T B S R TA
2 2\rg r 2\p 7o 2 2\p r ’



we can thus choose 3y € (3, 8) fulfilling

(5D <wer-3G-D)

then pick ¢ € (0,1) small enough such that still

3,1 1
5<1—7(7—7), 3.10
Bo + 2\p " 7o (3.10)
and finally fix some py > p sufficiently close to p such that
3 3
20 —— > ——. (3.11)
p Po

Then in the variation-of-constants representation
t
e (-, t) = e g + / e UDADPIn (- s)\Velds,  te (0,T), (3.12)
0

with A = A,, and P = P,,, we apply A% on both sides and use Lemma 3.1 i) along with the left
inequality in (3.9) to find C > 0 such that

[Duc(t)llzr) < CillAPuc(-, 1)l Lroe)

IN

ds (3.1
L70(Q) 5 (3.13)

¢
Ci | A% e g pro ey + Cr / |47 #0440 P (-, 5) V)
0
for all t € (0,T). Here since ug € D(A%) by (1.7) and the fact that Sy < 3, we have
AP0 e™ A || pro ) = lle AP ug|| pro() < C2 for all t € (0,T)

with some Cy > 0. Furthermore, since pyp > p > 1, Lemma 3.1 ii) applies to show that there exist
Cs > 0 and p > 0 fulfilling

1

e O e I A

Pl 5) V4|

Lro(Q) Lo (Q)

forall t € (0,7") and s € (0,t), where thanks to Lemma 3.3 and the boundedness of V¢, we can use
(3.6) to see that

| AP 5)v9) < Cyllne(, )Vl Loy < Csllne(-,)lloi) < C5K - for all s € (0,T)

L70(Q)

with some Cy > 0 and Cs > 0. Therefore, from (3.13) we altogether obtain that

|Duc(s )@y £ C1Ca+ C1C3C5K / TG enlt=ogy
< 10y + C1C3C5C K forallt € (0,T),
where
Cs ::/ o030 770 1 gy
0
is finite according to (3.10). This proves (3.7). O
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3.2 Standard testing procedures

We now turn to the analysis of the coupled functional in (1.19). Here we first apply standard testing
procedures to gain the inequalities in the following three lemmata. Further estimating the respective
right-hand sides therein will then be done separately in the sequel.

Let us begin by testing the first equation in (2.2) against powers of n..

Lemma 3.5 Letp> 1. Then for all e € (0,1),
1d ptm1 (
- p Vne 2 2 <
pdt Qn€+ m+p—1 /’ <

where kp is as in (1.9) and

)Sl / ntTm Ve, 2 forallt >0, (3.14)
Q

St := So(llcoll ()
with Sy taken from (1.11).

PRrROOF. We multiply the first equation in (2.2) by nf~! and integrate by parts over . Since
Se(x,ne, c.) vanishes whenever = € 9€) according to (2.1), this yields

1d

—— [ n?+(p— 1)/ P 2D (n)|Vne)? = (p — 1)/ nt~'Vn, - (Sa(x,ne,cs) . Vca> for all t > 0.
pdt Jo Q Q

(3.15)
Here we use the definition of D, and (1.9) to see that

(p— 1)/ nP~2D.(n.)|Vn.|* > (p — I)k:D/ nPtm=31Vn, 2 for all t > 0,
Q )
and next combine (2.1) with (1.11) and (2.5) to obtain

|Se(x,ne,ee)| <51 in 2 x (0,00),

so that using (1.9) and Young’s inequality we can estimate
(p— 1)/ nP~1Vn, - (Sg(x,ng,cs) . ch) < (p—1)% / nP | Vne| - | Ve
Q Q

— 1k —1)8?
< (p ) D/n€+m3‘vn62+(p )Sl /n§+1m|vca‘2
2 Q 2kp Q

for all ¢ > 0, whence (3.14) readily follows from (3.15). O

In order to obtain a first information on the time evolution also of [, |Ve-[*?, we make use of the
convexity of € in the following lemma.

Lemma 3.6 Let g > 1 ande € (O 1). Then

aoip Ve 28 [lowep] o L [ vepr2ipe

-2
(2¢ ;— \[) fi / n?|Ve. |22 —I—/ |Vee % - | Du,| for allt >0, (3.16)
Q Q

where
Jr =11 oo (0, leoll oo ey - (3.17)

12



ProOF.  Differentiating the second equation in (2.2) and using that A|Ve.|> = 2Ve. - VAc. +
2|D%c.|?, we obtain the pointwise identity

(), = e vfan e -veove)

1
= §A|V65’2 — |D?¢c.|* = Ve - V(nef(ce)) — Vee - V(ue - Vo) in Q x (0,00). (3.18)

We multiply this by (|Vec.|?)9~! and integrate by parts over 2. Since aclf = 0 on 0f) along with the

convexity of  ensures that 8WC€‘ < 0 on 09 ([19, Lemma I.1, p.350]), this results in the inequality

soii L Velr+ T [ 9ePrvive] + [ [vepiniep

—/ Ve |72Ve, - V(naf(c.)) — / Ve |22Ve, - V(ue - Ve.) for all t > 0. (3.19)
Q Q

Here in the first integral on the right we again integrate by parts to estimate, using that
[flea)l < f1 inQ2x(0,00)
by (2.5) and (3.17),

/ Ve P12V, - V(n. f(c2))

/ ngf(CE)IVC5|2q_2ACE + / ’I’Lgf(CE)VCE : v|vcs|2q_2
Q Q
< g [ nlVePr2aal + i [ neive - [VVe |

for all ¢ > 0. Since |Ac.| < v/3|D?c| by the Cauchy-Schwarz inequality, and since
V|V 272 = 2(q — 1)|Ve: 271 D?c. - Ve. in Q x (0, 00),

in view of Young’s inequality this implies that

—/Q Ve 72Ve, - V(naf(c.)) < \/gfl/gng\VCEPq_Q\chg\ +2(q — l)fl/ﬂngVcs\zq_?’\ch6 -Veg|
< (o=24 V) [ nlVe ¥ D

% /Q Ve 2|2 4 P2 VETHE /QnEIVcaI“’q‘Z (3.20)

IN

2

for all ¢ > 0. As for the rightmost integral in (3.19), we first differentiate u. - Ve to gain the
decomposition

—/ Ve |*172Ve, - V(ue - Ve:) = / Ve |*"2Ve, - (Du. - Ve.) — / Ve %72V e, - (D?c. - u.)(3.21)
Q
for all ¢ > 0, and then use the pointwise identity

|Vee|?72Ve, - (D%c. -ue) = ue- (|Vc€|2q_2D20€ . ch>

1
= ?que-V\Vca\zq in 2 x (0, 00)

13



to infer on integrating by parts that
1
_/ |VCE|2q_2VC€ : (DQCE “ue) = _/ Ue - v|vce|2q
Q 2q Jo

= — [ (V- -u)|Ve |
g [, (7 ue)lve
=0 for all t > 0,

because u,. is solenoidal. Therefore, (3.21) entails that

—/ Ve | 2Ve, - V(ue - Ve,) = —/ Ve |*92Ve, - (Du,. - V)
Q Q

IN

/ Ve % - | Du,| for all ¢ > 0,
Q

which combined with (3.20) and (3.19) yields (3.16). O
Finally, the following basic inequality for [, |A%u€|2 is standard.

Lemma 3.7 For any e € (0,1), we have

d 1
dt/ |A2u€]2+/ Aucl? < Hv¢||§oo(m./n§ for all t > 0. (3.22)
Q Q Q

Proor.
We apply the Helmholtz projection P to the third equation in (2.2) and test the resulting identity

Oruz+Aue. = P(n-V¢) by Au.. Using that Az i self-adjoint in L2(2) and that P acts as an orthogonal
projection in this Hilbert space, by Young’s inequality we obtain that

1d
th/’Aéuaﬁ"’_/‘Aua‘Z = /AUE'P(HEV¢)
Q Q Q
1 1
< 5 [l [ Peevo)?
Q Q

1 1
< 5 [ 1w g [ nvep
Q Q
1 1
< / |Au€|2-|-||V¢H%OO(Q)/n§ for all ¢ > 0,
2 Ja 2 Q
and thereby precisely arrive at (3.22). O

3.3 Estimating the right-hand sides in (3.14), (3.16) and (3.22)

We next plan to estimate the right-hand sides in the above inequalities appropriately by using suitable
interpolation arguments along with the basic a priori information provided by Lemma 2.2. Here the
following auxiliary interpolation lemma, extending a similar statement known in the two-dimensional
case ([18]) to the present framework, will play an important role in making efficient use of the known
L*> bound (2.5) for c,.

14



Lemma 3.8 Suppose that Q C R? is a bounded domain with smooth boundary, that ¢ > 1 and that
A€ [2g + 2,4q + 1]. (3.23)

Then there exists C > 0 such that for all ¢ € C?*(Q) fulfilling ¢ - 8—“’ on 0L we have

20—
(29— 1)>\

196l < C||IVel™ D2 ||¢H;;(;;; + Cllgllz (o (3.24)
Proor. We integrate by parts to rewrite
IVl == [ Vel 280 = (=2) [ oIVl Vi (D% Vi), (3.25)

where by the Cauchy-Schwarz inequality we see that

1
2
} - (=2 [ eiTel v <D%-w>\ < (=2l ey - I ( / |W|”—2q—2> (3.26)
with

Ii= ||1Velt'D?

Likewise, using that |Ay| < v/3|D?p| we can estimate

'— / gorwﬁ-%go' < Valele [ [V6P2ID%l

1
2
< VBllel - [ 9o e2) (3.27)
Now by the Gagliardo-Nirenberg inequality, there exist C; > 0 and Cy > 0 such that
% A—g—1
(/ ’V80’2A2q2> = HW‘P\q‘ 30—q-1)
Q 7 (Q)
A—g—1, (1 a A—g—1
< alfewar] g, “Iwerl, i aliver], s
< GVIVelT L g !«P\Lq(m +OIVel| g,
u (A—q—1)(1—a —g—
< Oy T Vel Y + il Vel i)
with
3g(N—2q—2

(A=q—1)(6g =)
so that combining (3.25)-(3.27) yields C3 > 0 fulfilling

(A—=¢g—1)(1—a A—g—
IVelng < Callolim - I 9@l 4+ Callpllioeqey - 1 - VI35
Pty g1
— ol I3 - IVelpatey + Collleiey - T+ IVelSly) . (3:28)
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Here we invoke Young’s inequality to find Cy > 0 and C5 > 0 such that

(4q;rl AA)A 1 e _? 27=6
Csllell Lo (o) - T8 ||V A @) ZHV@HLA o)+ Callell ficiq) - 1271 (3.29)
and
A— 1
Csllellzee@) - I Vel Triy: HWHLA +CsH<qu“ S (3.30)
where by the same token,
(2q—1)X
A 6g—\ IA—6 W (3X—6g—6) A
Collel 2y 17 = Ca- (el - 15F) P I
5= 22-6 A
< Csllell iy - T30 + sl oy (3.31)
In consequence, (3.28)-(3.31) prove (3.24). O

A first application thereof will appear in the following lemma which estimates the integral on the right
of (3.14) under a smallness assumption on the integrability exponent p arrearing therein.

Lemma 3.9 Let m > 1,q > 1 and p > max{1l,m — 1} be such that
4
p< <2m—§>q+m—1. (3.32)
Then for all n > 0 there exists C = C(p,q,n) > 0 with the property that for all € € (0,1),

/np“ ™Ve,|? < n/ Vns B2 +77/ Ve 2D P + C for all t > 0. (3.33)
Q

PrOOF.  We apply the Hélder inequality with exponents q“ and ¢ + 1 to obtain

(p1—m)(g+1) Tl 5
/n£+1—m|v65’2 </n8 q q /|VC ‘2q+2)q
Q Q

p+m—1 2(p:-1—rln) 9
= |ne 2 | D s D) . ”VCEHLQ(H_Q(Q) for all t > 0. (3.34)
L (tm-ba (Q)

IN

In view of the Gagliardo-Nirenberg inequality (see [33] for a version involving integrability exponents
less than one) and (2.4), we can find C; = Cy(p,q) > 0 and Cy = Ca(p, q) > 0 such that

p+m—1 2(P++141n) p+l—m 2(p;r1 7171) p+m—1 2(17:1*7171),(1 a) p+m—1 2(P++141n)
m— m m— m—
[ne = | g(p+1—m)(q+1) < Clens : ||Lp Hns S +Cillne 2 || 775
~ (pFm—-1)q Fm—1

L (Fm=Da (Q) Lptm=T1(Q)

pt+m—1 2(pt1-—m)

CollVne 2 Il by ™ "+ G forall ¢ >0, (3.35)

IN

where a € (0,1) is determined by the relation

Bp+m—1g 3y Bptm-1)
_2(p+1—m)(q+1)_<1 ) (1—a). (3.36)



. 192 2(pt1=—m)(g+1)
Here we note that indeed W+4(Q2) < L G@tm=ba (), because

6(p+m—1)g—2(p+1—-m)(g+1) = 6pg+6(m—1)qg—2pg—2p+2(m—1)g+2(m —1)
= (4¢—2)p+8(m—1)g+2(m—1)
> 0
and hence %H_—W < 6. On solving (3.36) with respect to a, we see that (3.35) becomes
(p+m—1)q
ptm—1 2(p+1771n) ptm—1 W
[ne 2 | z;J(ZiI—m)(qul) < Gof|Vne 2 HL o + O

L (ptm—1)g (Q)
3l(p+1—m)(g+1)—q]

9 (3p+3m—4)(q+1)
Cs - /|Vn5 21241 for all t >0 (3.37)

IN

with some C3 = C3(p, q) > 0.
As for the term on the right of (3.34) involving c., we invoke Lemma 3.8, which in conjunction with
(2.5) provides Cy = Cy(q) > 0 and C5 = C5(q) >0 satisfying

IN

C4Hyvc€|qflp%

IVeelZaoe2(q) i H qu“ )+ Calleell7oo o

IN

1
+1
Cs - {/ \Vcefqu\DZCeQ-l-l}q for all t > 0.
Q

Together with (3.37) and (3.34), by Young’s inequality this shows that for each n > 0 we can find
Cs = Cs(p,q,n) > 0 such that

3[((P+1*m)(‘§z‘1)*)‘ﬂ 1
3p+3m—4)(q+1 q+1
: {/ Ve 272 D% |* + 1}
Q

3[(p+1—m)(q+1)—q]

T (3p+3m—4)q
< - {/\vc 29-2| D2, \2+1}+C6 {/yvm 2 \2+1} ’ "(3.38)

for all t > 0. Since our hypothesis (3.32) warrants that

9 p+m—1 9
/ngﬂ_m]ch\ < CgC5-H/ |Vne 2 | —1—1‘
Q Q

3[(p+1—m)(g+1)—q—Bp+3m—4)g=3p—6mqg+4¢g—3m+3<0
and thus

(p+1-m)(g+1)—dq
(3p+3m —4)q

another application of Young’s inequality shows that with some C7 = C7(p, q,n) > 0 we have

<1,

3l(p+1-—m)(g+1)—d]
9 (3p+3m—4)q m— 2
Cg - {/|Vn€2 |+1} <n- {/|Vn€2 |+1}—|—C7 for all ¢ > 0.
The claimed inequality (3.33) thus results from (3.38). O

By pursuing quite a similar strategy, under the assumption that p is suitably large as related to ¢
we can estimate the first integral on the right of (3.16), even when enlarged by a further zero-order
integral, as follows.
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Lemma 3.10 Let m > 1 and q > 1, and suppose that p > 1 satisfies

3¢ —3m+4
p>%. (3.39)

Then for all n > 0 there exists C(p,q,n) > 0 such that
/ng|ch\2q 2+ /n <n/ V. . |2+77/ \Vee? 72| D%c.* + O forallt >0. (3.40)

Once more by the Holder inequality,

2 g=1
/n?!Vc€|2q2 S (/ng+1> g+l (/ |V65’2q+2> q+1
Q Q Q

PROOF.

p+m—1 4
= ne 21175, IVellfhtyg,  forall¢>0. (3.41)
Lrtm=T(Q)
Here we observe that (3.39) in particular ensures that
2(g+1) 76p—2q+6m—8>(6q 6m +8) —2¢+6m —8 4q >0
p+m—1 p+m—1

6 — -
p+m—1 p+m—1
< 6. We thus may invoke the Gagliardo-Nirenberg inequality, which combined with

2(g+1)
+
= Cs(p, q) > 0 such that

and hence —-——5
(2.4) provides C} =

C1(p,q) > 0 and Cy

4

L’S‘l +j:171 +7§ +m T L_?_l +7i71'(1*a) L_Zz_l Tm—1
(|72 17 2(g+1) < C1f|Vne ”22(9 ”ns 177 + C1||ne 177
Lptm=T(Q) Lrtm=1(Q) Lp+m=1(Q)
ptm=1 Wiﬁ'“
< 02-{/ [Vne 2| —1—1} forallt >0 (3.42)
Q
with
SStm D) (123 2 m ) gy
2(g+1) 2 2 ’
that is, with
q 3(p+m-—1)
= . 0,1). 3.43
g+1 3p+3m—4 €.1) (343)
Likewise, Lemma 3.8 along with (2.5) warrants that
2q—2
Vel < CofIVerl® 1D2cs H ol f iy + CslleelFiy
(3.44)

IN

g—1
F1
CZ'{/WV%A%_ﬂD%H2+1}q for all £ > 0
Q
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with appropriate positive constants C3 = C3(q) and Cy = Cy(q).
In light of (3.42), (3.43) and (3.44), we may use Young’s inequality in (3.41) to see that given n > 0
we can find C5 = C5(p, q,n) > 0 fulfilling

6q g—1
ptm—1 @t D(@Bpram—1) a1
/”glvcg|2q—2 0204,{/ Vn. 2 |2+1} {/ |Vca|2q—2|D208‘2+1}
Q Q Q

3q
3p+3m—4
{/ Ve |29~ 2|D2cg|2—|—1}+C’5 {/ yvng 2 |2+1} ' for all £ > 0.

3q - 3q _q
3p+3m—4 " 3.303mH gy g 7

IN

IN

Now by (3.39) we have

so that another application of Young’s inequality yields Cs = Cg(p, g¢,n7) > 0 such that
/ n2|Ve. |22 < ’27/ Ve |22 D22 + / Vil F 2+ Cs forall £ > 0.
Q Q
Since the integral fQ n2 can be estimated similarly upon a straightforward simplification of the above

argument, this establishes (3.40). g

As for the rightmost integral in (3.16), in order to avoid later repetitions in bootstrapping arguments
we find it convenient to estimate this quantity on the basis of a supposedly known bound for Du. in
L>((0,00); L™(2)) for some r > 1. In the more favorable case when r is large, under a comparatively
mild restriction on ¢ we then obtain the following.

Lemma 3.11 Letm > 1 and r > %, and suppose that ¢ > r — 1 is such that
(4—2r)g<r—1. (3.45)

Then for all p > 0 and each K > 0 there exists C = C(q,r,n, K) > 0 such that if for some € € (0,1)
and T > 0 we have
[ Due (-, )l r) < K for allt € (0,7, (3.46)

then
/ |Vee|? - |Du.| < 17/ Ve 72| D%c.|? + C for allt € (0,7). (3.47)
Q Q

Proor.  We invoke the Hélder inequality with exponents -5 and r to see that

m ot ;
[ e 1o / e #) (] 1pver)
Q Q

||vc5||2q2qr ” for all ¢t € (0,7) (3.48)

IN

IN

due to (3.46). Since g > r — 1 ensures that A := rz% satisfies

2qr —(2q+2)(r—1) 2¢—2r+2 2(q—r+1) _—-

A= (2a+2) = r—1 N r—1 N r—1 -

)
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and since (3.45) warrants that

4 H(r—1)—2 2qr — 4 -1 —1—-(4-2
(4q+1)—)\:(Q+ Jr—1)—2¢r 2qr—4q+r—1 (4=2r)g
r—1 r—1 r—1

we may apply Lemma 3.8 and (2.5) to see that with some C; = Ci(q,r) > 0 and Cy = Cs(q,7) > 0
we have

2q 12 2(‘12(11%1*)?) 2(q2(6q17))/\\) 2q
- - a—
Vel < O Ieelt D% 7 0 fleel 2+ Chleelfhy
2q(A—=3)
20212, 2 | ®*
< Oy (Ve |14 D¢, | + Cs for all t € (0,7), (3.49)
Q

because clearly A < 6¢q. As

2q()\—3)_2q(1—§) _2q—M _2qr—3r+3_2qr—3r+3<

T

= = 1
(2¢g — 1)\ 2q — 1 2 — 1 (2¢g — 1)r 2qr —r

thanks to our assumption r > %, by means of Young’s inequality we can easily derive (3.47) from
(3.48) and (3.49). O

Also when 7 is small, however, we can arrive at a similar conclusion, albeit under a slightly stronger
assumption on gq.

Lemma 3.12 Let m > 1, and suppose that r € (1, %] and

c <172r;—3).

Then for allm > 0 and K > 0 one can find C = C(q,r,n,K) > 0 such that if there exist € € (0,1)
and T > 0 fulfilling

[ Due (-, )| pr) < K for allt € (0,7, (3.50)
then

/ |Vee|* - |Dug| < n/ V|22 D% |* + 7]/ |Auc|* + C for allt € (0,T). (3.51)
Q Q Q
PrRoOOF. By the Holder inequality,

/Q ‘VC€|2q : |Du€| < ||VC€Hiq2q+2(Q)||Du€||Lq+1(Q) for all t € (OaT)> (352)

where an application of Lemma 3.8 to A := 2¢ + 2 in combination with (2.5) yields positive constants
Cy = C1(q) and Cy = Ca(q) satisfying

) % 2q[69—(29+2)] 9
—1 112 - 2g—1)(2q+2
IVeel Py < Cif|[ Vel "D iy el )+ Gl o
_q
20-212. 12 | 7!
< Oy Ve 2972 D2, | +Cy  forallte(0,T). (3.53)
Q
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Moreover, using the Gagliardo-Nirenberg inequality and (3.50), since ¢+ 1 < % +1 < 6 we can find
C3 = C3(q,r) > 0 and Cy = Cy(q,r) > 0 such that

6(g+1—r) (5—q)r

HDUEHL‘ZH(Q) < C3HU6H1(/1%12)(6 7)” EHI(/{q/tlr(G Y
6(g+l-r) _(—gr _
< C4||A E||(q+1)(6 r)HD 5||[(,qr+8)(6 ™)
6(q+1—7)
< C4K<q+1>(<> r)|| Au| g;g;ﬁ R for all t € (0,7), (3.54)

because by known regularity estimates for the Stokes operator in bounded domains (see [11, p.82], [24]
and the references given there) and the Poincaré inequality we know that [|A(-)[|z2(q) and [ D(-)|| 1)
define norms equivalent to || - [|y2.2(q) and || - [ly1.r(q), respectively, in D(As).

Now given 1 > 0, we combine (3.52), (3.53) and (3.54) and invoke Young’s inequality to find C5 =
C5(q,r,m, K) > 0 such that

q

6(q+1 r)
/ Ve |Du| < CoCuK T imtos - { / Ve 72| D2, \2} - Awe | o
Q
6(g+1—r)
+02(14K<q+1><6 0 || Au 5||<q+1><6 ")
2q—21 12 . 12 Slopiov)
< 77/ Ve %72 D¢, | +C’5||Au€||L2€5)T
6(g+1—7)
+C2C4K<q+1><6 7 || Au 6\\@*”(6 7 forallt € (0,T). (3.55)

Since here our assumption ¢ < @ entails that

6(g+1—r) 6(g+1—r)
(q+1)(6—7) 6_r 7

a second application of Young’s inequality yields Cs = Cs(q, 7,1, K) > 0 fulfilling

6(g+1—r)

Osl| Aue | g™ < 1l Auc 2y + Co

and
6(g+1—r1) 77
CQC4K(q+1)(6 7n) HAuEH Q+1)(6 ™) §HAu5HL2 + CG
for all t € (0, 7). Therefore, (3.55) implies (3.51). O

3.4 Combining previous estimates

Now if m > %, then the conditions on p in Lemma 3.9 and Lemma 3.10 can be fulfilled simultaneously
for any choice of ¢ > 1. Thus, resorting to such m allows for combining the above results to derive an
ODI for the functional in (1.19) which contains a favorable absorptive term.
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Lemma 3.13 Let m > %. Let r > 1 and q > 1 satisfy

¢ <75 yr<s, (3.56)
(4—-2r)g<r-—1 ifr>%,
and assume that p > max{1l,m — 1} be such that
3qg—3 4 4
%<p<(2m—§)q+m—l. (3.57)

Then for all K > 0 one can find a constant C = C(p,q,r, K) > 0 such that if for some € € (0,1) and
T > 0 we have

[ Due (-, )l pr) < K for allt € (0,7, (3.58)
then
il [ [iverrs [t} o S f Loy [vapepep + [ e
dt ( Ja Q Q ¢
< C for allt € (0,T). (3.59)

PROOF.  We only need to add suitable multiples of the differential inequalities in Lemma 3.5, Lemma
3.6 and Lemma 3.7 and estimate the terms on the respective right-hand sides by applying Lemma 3.9,
Lemma 3.10 and either Lemma 3.12 or Lemma 3.11 with appropriately small n > 0. O

Assuming the above boundedness property of Du., upon a further analysis of (3.59) we can estimate
ne in L°((0, 00); LP(§2)) for certain p € (1, 00).

Lemma 3.14 Let m > %, and assume that v > 1 and p > max{1,m — 1} are such that there exists
q > 1 for which (3.56) and (3.57) hold. Then for all K > 0 there exists C = C(p,q,r, K) > 0 with the
property that if € € (0,1) and T > 0 are such that

[ Due (-, )l pr) < K for allt € (0,7, (3.60)

then we have
/ nf(,t) <C for allt € (0,T). (3.61)
Q

PROOF.  We only need to derive from (3.59) an autonomous ODI for the function y € C°([0,7))) N
C1((0,T)) defined by

mw:éﬁmwﬁémmmW+Am%4mﬁ teo,T)

with an appropriate dampening term essentially dominated by

/|Vn5 1 + /\Vcs )22 D2ey( t)]z—l—/Q|Au€(-,t)]2, te (0,7).
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To this end, we first use Young’s inequality, the Poincaré inequality and (2.4) to find positive constants
Cy = Ci(p),Cy = Ca(p) and C3 = C3(p) such that

/TLE:7 S 01/n£+m_1+01
Q

Q
Lm—lz ptm—1 9
cg.{/\wg R P, el
o LFT ()

IN

pt+m

-1
< Cg/ |Vne 2 |2+ Cs for all t € (0,7). (3.62)
Q

Next, from Young’s inequality, Lemma 3.8 and (2.5) we obtain C5 = C3(q) > 0,Cy = C4(q) > 0 and
C5 = C5(q) > 0 satisfying

/yvcﬁq < 03/ Vel 202 1
Q Q
2
< o {wetrintel, el +lediE b+ oo
< 05/Q|v(;gy2q2|p2c€|2+c5 for all t € (0, 7). (3.63)

Finally, again by the Poincaré inequality we find Cg > 0 fulfilling

/yA%u£|2 :/ |Du.|* < 06/ |Auc|*>  forallt € (0,T), (3.64)
Q Q Q

which when added to (3.62) and (3.63) shows that
y(t) < C7-h(t)+ Cr for all t € (0,T)

with C7 := max{C3,C5,Cgs}.
In consequence, an application of Lemma 3.13 yields Cg = Cs(p, ¢, 7, K) > 0 and Cy = Cy(p, q,r, K) >
0 such that

y'(t) + Csy(t) < Cy  forallt € (0,T). (3.65)
By a comparison argument, this in particular entails that
C
y(t) < Cyp := max {y(()) , 69} for all t € (0,7), (3.66)
8
and thereby proves (3.61). O

Now in light of the mass identity (2.4), a first application of Corollary 3.4 warrants that the hypothesis
(3.60) in the above lemma is satisfied for some suitably small » > 1. Adjusting the parameter ¢
properly, we thereby arrive at the following result which may be viewed as an improvement of the
regularity property implied by (2.4), because the number 5m — % appearing in (3.67) is larger than 1.

Lemma 3.15 Let m > %. Then for all p > max{1,m — 1} fulfilling

11
p < bm — 3 (3.67)
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one can find C = C(p) > 0 such that whenever € € (0,1), we have

(- t) | o) < C for allt > 0. (3.68)
PrROOF.  We first observe that since m > 1, we have m — 1 < 5m — % and also % —m < 5m — %,
whence without loss of generality we may assume that besides (3.67), p satisfies p > m — 1 and
7
D> 3 M (3.69)
Now since p < 5m — & by (3.67), we have 2 - (6m —4) > 3p — 3m + 3 and hence
3p—m+1)
—_— <2 3.70
6m —4 ( )
Moreover, our assumption m > % ensures that
7 7 1
o= Dp<ss(on- Do)
) VAN
that is,
(21 — 18m)p < 18m? — 27Tm + 7,
which is equivalent to the inequality
3(p— 1 3p+3m—4
(p=m+1) 3p+3m-4 (3.71)

6m — 4 3
According to (3.70), (3.71) and the fact that

3p+3m—4
3

by (3.69), we can now fix ¢ € (1,2) fulfilling

>1

3(p—m+1) 3p+3m—4
6m—4 1% 3

where the left inequality asserts that
4
p < (2m—§)q+m—1,

and the right inequality guarantees that
3¢g—3m+4
3 )
altogether meaning that (3.57) is satisfied. Since ¢ < 2, we can finally pick r € [1, %) sufficiently close

to % such that r > 3‘172_3, so that

- 2r+3
3 )
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ensuring that also (3.56) is valid. Then in view of (2.4), Corollary 3.4 asserts that
HDUE('vt)HLT(Q) < (i forall t >0

with some C7 > 0, whence according to our choices of r,q and p we may apply Lemma 3.14 to find
Cy = Cy(p) > 0 such that

/n’a’(-,t) < (Cy for all ¢ > 0.
Q

This proves the lemma. ]

In a second step, on the basis of the knowledge just gained we may again apply Corollary 3.4 and
once more combine the outcome theoreof with Lemma 3.14 to obtain bounds for n. in any space
L%((0, 00); LP(92)).

Lemma 3.16 Let m > %. Then for all p > 1 there exists C = C(p) > 0 such that for each € € (0,1)
we have
(- )| o) < C for allt > 0. (3.72)

PRrROOF. It is evidently sufficient to show that for any py > max{1,m — 1} we can find some p > py
such that (3.72) holds with some C' > 0.
For this purpose, given such pg we first fix ¢ > 1 satisfying

3(po+1—m)
q> e— (3.73)
and observe that then since m > % we have
3 —3m 44— (6m—4)q+3m—3} = (T—6m)g+7—6m<0
and hence
3¢g—3m+4 (6m —4)g+3m —3
< .
3 3
As (3.73) ensures that moreover
(6m—4)g+3m—3 _ 3(po+1—m)+3m—3
> = Do,
3 3
we can therefore pick some p > pg fulfilling
3q—3 4 6m — 4 3m—3
fa-dmad ), Onoderins (3.74)

Now in order to verify (3.72) for these choices of p and ¢, we first use the fact that 5m— % > %5 — % = %3

to infer from Lemma 3.15 that there exists C > 0 such that

e (5Ol 3 gy < C1 - forall >0,
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13
Since 337‘{73 = ? > 7, Corollary 3.4 thereupon yields C > 0 fulfilling
6

||Du5(-,t)HL7(Q) < (s for all t > 0.

As with r := 7, the condition (4 —2r)q < r —1in (3.56) is trivially satisfied, thanks to (3.74) we may
thus invoke Lemma 3.14 to establish (3.72). O

By means of a Moser-type iteration in conjunction with standard parabolic regularity arguments, we
can achieve the following boundedness results.

Lemma 3.17 Let m > L. Then there exists C > 0 such that for all e € (0,1) the solution of (2.2)
satisfies

[1e(, )| oo () < C forallt >0 (3.75)
and
e (5 Dllwroe @) < C forallt >0 (3.76)
as well as
e (s ) lwreo) < C for allt > 0. (3.77)

PrROOF.  First, the validity of estimate (3.72) in Lemma 3.16 for any p > 3 allows for an application
of Corollary 3.4 to 7 := oo to infer that (Duc)cc(,1) is bounded in L>°(Q x (0,00)), and that hence
(3.77) holds.

Next, using the outcome of Lemma 3.16 with suitably large p and ¢ as a starting point, we may invoke
Lemma A.1 in [26] which by means of a Moser-type iteration applied to the first equation in (2.2)
establishes (3.75).

Thereupon, (3.76) finally can be derived from (3.75) and (3.77) by well-known arguments from
parabolic regularity theory for the second equation in (2.2) (cf. the reasoning in [13, Lemma 4.1],
for instance). O

As one further class of a priori estimates, let us finally also note straightforward consequences of
Lemma 3.17 for uniform Hoélder regularity properties of ¢., Ve and wu..

Lemma 3.18 Let m > %. Then there exists 6 € (0,1) such that for some C' > 0 we have

<C for allt >0, (3.78)

||Ca||co,%(ﬁ><[t,t+1}) -

and such that for each T > 0 we can find C(71) > 0 such that

Vel <C forallt > 7. (3.79)

% (Qx[ti+1]) =
Proor.  Writing the second equation in the form
Oice = Ace + ge(z, 1), reQ, t>0,

with g.(z,t) := —nef(c:) — ue - Ve, we immediately obtain both estimates (3.78) and (3.79) e.g. from
standard parabolic regularity theory ([17]), because (ge).¢(0,1) is bounded in L°°(£2 x (0, 00)) according
to Lemma 3.17. O
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Lemma 3.19 Let m > %. Then there exist 6 € (0,1) and C > 0 such that

14l o8 oy SC - Jorall t 2 0. (3.80)

PrOOF.  Starting from the variation-of-constants representation

t
us(+,t) = e Hug +/ e =)ADPIn (-, 8)Velds, >0, e € (0,1), (3.81)
0

we fix a € (2, ap) with ap taken from (1.7), so that the latter ensures that ug € D(A3°) < D(AS) —
CP(Q) for any B € (0,2a — 3) ([12], [9]), and apply A* to both sides of (3.81). Then performing
standard semigroup estimation techniques ([8]), in view of the boundedness of (n:).c(,1) in L>(Q x

(0,00)) guaranteed by Lemma 3.17 we infer the existence of C; > 0 and £ > 0 such that for all
e € (0,1),

1A% ()| 2y < C1 forall £ >0
and
AU (-, t) — A% (-, to)|| 2y < C1(t —to)®  for all to > 0 and each ¢ > to.

This implies (3.80) with some appropriately small 6 € (0, 1). O

3.5 Some temporally global integrability properties

Let us next derive three estimates involving integrability over the whole positive time axis. They
implicitly contain some weak decay properties of the respective integrands, and these properties will
constitute a starting point for our stabilization proof below.

The first two of these estimates result from (2.2) in a straightforward manner.

Lemma 3.20 Let m > %. Then the inequalities

[ [rerer= [ o 32)
/OOO/QNCEP < ;/ch (3.83)

PROOF.  We test the second equation in (2.2) by 1 and c. to obtain that for all £ € (0,1) and ¢ > 0,

/ . //nesz—/
;/ //,v%e //ngcgf . _/co,

respectively. From these identities, (3.82) and (3.83) immediately follow. O

and

are valid for each ¢ € (0,1).

and

A corresponding spatio-temporal integrability property of Vn. can be obtained from (3.14) upon using
(3.83) along with the L*° bound for n. from Lemma 3.17.
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Lemma 3.21 Assume that m > %, and that p > 1 is such that p > m — 1. Then there exists C' > 0
with the property that

o0 p+m—1 9
/0 v = pc (3.84)

for all e € (0,1).

PROOF.  Due to Lemma 3.17, there exists C7 > 0 such that for all € € (0,1) we have n. < C in
2 x (0,00). Since p > m — 1, we can thereby estimate the integral on the right of (3.14) according to

/ P Ve |? < C{’H_m/ Ve |? forall ¢ > 0 and € € (0,1).
Q Q
Hence, an integration of (3.14) shows that
2(p — Dkp /t pmgml s 1 / =187 _prim [ 2
— Vne 2 <- [ nh+—"""=.0C7 Ve
(p+m—1)%J Q| ) | pla? 2kp ! 0 Q| g
for any such t and ¢, from which (3.84) results by an application of Lemma 3.20. O

3.6 Regularity properties of time derivatives

In order to pass to the limit in the first equation in (2.2), we shall need an appropriate boundedness
property of the time derivatives of certain powers of n.. On time intervals of a fixed finite length, this
can be achieved in a straightforward way by making use of the a priori bounds derived so far.

Lemma 3.22 Suppose that m > %, and let v > m satisfy v > 2(m — 1). Then for all T > 0 there
exists C(T') > 0 such that

T
/0 9m2(1) | gy oyyoydt < CT)  for all e € (0,1), (3.85)

ProOOF.  On differentiation and integration by parts in (2.2), we see that for each fixed ¢ € C§°(€2)
we have

1/ onl(-,t)-p = / ng_l . {V- (DE(nE)VnE) - V- (n€S€($,n5,cE) . ch) — U - Vns} X
YJa Q
= —(y—- 1)/ n?iQDg(nE)\Vné-]Zw — / ngleE(ng)Vng -V
Q Q
+(y — 1)/ n;’_lvne . (Ss(:v,ne,ce) . V05)¢ + / nJ (Se(x,ng,cs) . Vce) -V
Q Q
+1/ nlue - Vip for all t > 0. (3.86)
Y Ja

In order to estimate the integrals on the right appropriately, we first apply Lemma 3.17 to fix positive
constants (7, Cy and C5 such that

ne < Cq, |Ve| <Cy and |ue| < Cs in © x (0,00) for all e € (0,1), (3.87)
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whence due to the fact that D. < D + 2¢ in (0, 00), we also have

De(ne) < Cy = || Dol oo ((0,c1)) + 2 in 2 x (0,00) for all e € (0,1).

(3.88)

Moreover, since v > m and v > 2(m — 1), the number p := v — m + 1 satisfies p > 1 and p > m — 1,

so that Lemma 3.21 becomes applicable so as to yield Cs > 0 fulfilling

oo o
/ / n) 2| Vn|* = / / nPtm 3|\ Vn 2 < Cs for all e € (0,1).
0o Ja o Ja

Now using (3.87), (3.88) and Young’s inequality, in (3.86) we find that

-~ =) [ 2DV < 6= 0 ([ a9 - ol

as well as

‘—/Qng_lDE(ns)Vne-Vw’ < o </an_1|Vn€|> Ve ey

IN

IN

and, similarly,
‘(7 - 1)/ ”z_IVns : (Ss(xﬂ%a CE) : VC5>¢‘
Q
< =0 ([ nz19nd) - SiCallelim
< G-sic{ [ vnt o} Wl
whereas by means of (3.87) and (2.5) we can estimate
‘An?(é}(m,na,cg) : ch) 'w‘ < C7 81|V | e

and 1 1
‘ [ W‘ < ~CYC31Q V4 o=
7 Jo v

for all € € (0,1).

04-{ [+ [ nz} Ve

{04 J C4C¥IQ\} NVl
Q

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

As in the considered three-dimensional setting we have WO?’ 2(Q) — WLe2(Q), collecting (3.90)-(3.94)

we infer the existence of Cs > 0 such that

H@tnz(-,t)ﬂ(wg,z(m)* < Cq- { / n? 2| Vn.|* + 1} for all t > 0 and any € € (0, 1).
Q
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According to (3.89), for each T > 0 we therefore have
T
/ |0 (-, )H ydt < C5C + C6T for all e € (0,1),
0

which proves (3.85). O

In proving that the limit function n gained below approaches its spatial mean not only along certain
sequences of times but in fact along the entire net ¢ — oo, we will rely on an additional regularity
estimate for dyn. which, in contrast to that in Lemma 3.22, is uniform with respect to time.

Lemma 3.23 Let m > %. Then there exists C > 0 such that
H@tng(-,t)H(Woz,a(Q))* <C for allt >0 and ¢ € (0,1). (3.95)
In particular,
lne(-,t) — na(-, )H W22(0)) < C|t — s for allt >0,s>0 and e € (0,1). (3.96)

Proor.  We fix ¢ € C§°(€2) and multiply the first equation in (2.2) by 1. Integrating by parts we
find that

/Q(‘)tng(-,t)l/) = /V - (ng)Vng)yp — / . (x,ne,ce) - ch)w—/ﬂ(ue‘ana)w
= / H.(n:)Ay —|—/ Mg (Ss(x,ne,ca) . Vc€> -V —|—/ Nette - VY (3.97)
Q Q Q
for all ¢ > 0, where we have set H.( f D.(o)do for s > 0. Here since by Lemma 3.17 we can

find C; > 0 such that n. < Cj in Q X (O 00) for all e € (0,1), recalling that D. < D + 2¢ on (0, c0)
we can estimate

H.(no) < Cy:=C - (HDHLoo((Opl)) n 2) in Qx (0,00) for all £ € (0,1).
If moreover we invoke Lemma 3.17 once again to pick C5 > 0 and C4 > 0 fulfilling
Ve <C35 and  |ue| < Cy in Qx (0,00) forallee(0,1),
then from (3.97), (1.11) and (2.5) we can derive the inequality

‘/&ms(-,t)-w‘ gcz/ 1A¢y+clcgsl/ yv¢y+clc4/ V| forall >0 and ¢ € (0,1),
Q Q Q Q

where Sy := So(|col[ (). This readily establishes (3.95) and thus also (3.96). O
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4 Passing to the limit. Proof of Theorem 1.1

Our generalized solution concept reads as follows.

Definition 4.1 Suppose that (ng,co,up) satisfies (1.7), and let T > 0. Then by a weak solution of
(1.2) in Q x (0,T) we mean a triple of functions

n € Ly, (Qx [0,T)),
¢ € Lis,(Q x [0,T)) N L, ([0, T); WH(9)),

u € Lige([0,T); WHH(9)), (4.1)
such thatn >0 and ¢ > 0 in Q x (0,T) and
H(n), n|Ve| and n|ul belong to Li,.(Q x [0,T)), (4.2)
that V - u = 0 in the distributional sense in £ X ( , and such that

_/ /ngot—/nogo //H A<p+// S(a.n.c)-Ve) w+/ /nuw(43>

for all ¢ € C(Q x [0,T)) fulfilling 32 = 0 on 9 x (0,T), that

/ /ccpt /Qcm,o /0 /ch.v{p_/o /an(c)go%—/oT/ch~Vg0 (4.4)

for all p € C°(Q x [0,T)), and that

//ugpt /u0<p //Vchp+//nV¢<p (4.5)

for all p € C(Q x [0,T); R3) such that Vi =0 in Q x (0,T), where we have set
= / D(o)do for s > 0.
0
If (n,c,u) : Q x (0,00) — R® is a weak solution of (1.2) in Q x (0,T) for all T > 0, then we call
(n,c,u) a global weak solution of (1.2).

In this framework, (1.2) is indeed globally solvable. This can be seen by making use of the above a
priori estimates and extracting suitable subsequences in a standard manner.

Lemma 4.1 Let m > . Then there exists (¢j)jen C (0,1) such that €; \, 0 as j — oo and that

Ne —n a.e. in Q x (0,00), (4.6)
ne =n in L>(9 x (0, 00)), (4.7)
Ne — N in CZ%C([O, 00); (Wg’Q(Q))*>, (4.8)
ce —c in CP.(Q x [0,00)), (4.9)
Ve. — Ve in Cp(Q x (0,00)), (4.10)
Ve. 2 Ve  in L®(Q x (0,00)), (4.11)
Ue — U in CP.(Q x [0,00)) and (4.12)
Du. = Du in L>(2 x (0,00)) (4.13)
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with some triple (n,c,u) which is a global weak solution of (1.2) in the sense of Definition 4.1. More-
over, n satisfies
n € Cp_,([0,00); L®(R)) (4.14)

as well as

/ n(x,t)dr = / no(x)dx for allt > 0. (4.15)
Q Q

PrOOF. In view of Lemma 3.18 and Lemma 3.19, the Arzela-Ascoli theorem along with a standard
extraction procedure yields a sequence (g;)jen C (0,1) with £; N\, 0 as j — oo such that (4.9), (4.10)
and (4.12) hold with some limit functions ¢ and u belonging to the indicated spaces. Passing to a
subsequence if necessary, by means of Lemma 3.17 we can achieve that for some n € L>(€ x (0, 00))
we moreover have (4.7), (4.11) and (4.13).

We next fix v > m such that v > 2(m — 1) and combine Lemma 3.22 with the estimate asserted by
Lemma 3.21 for p := 2y—m+1 to see that for each T > 0, (€7).¢(q,1) is bounded in L*((0,T); W'2(Q2))
with (9ynd).c(0,1) being bounded in L'((0,T); (W032(Q))*) Therefore, an Aubin-Lions lemma ([30])
applies to yield strong precompactness of (ng)ee(o’l) in L2(Q x (0,T)), whence along a suitable sub-
sequence we have n — 27 and hence n. — z a.e. in Q x (0,00) for some nonnegative measurable
z: Q2 x (0,00) = R. By Egorov’s theorem, we know that necessarily z = n, so that (4.6) follows.
Finally, as the embedding L(Q) < (WZ*())* is compact, the Arzela-Ascoli once more applies to say
that the equicontinuity property (3.96) together with the boundedness of (n:).¢(g,1) in C°([0, 00); L=(Q2))
ensures that (4.8) holds after a further extraction of an adequate subsequence.

The additional regularity property (4.14) thereafter is a consequence of (4.8) and the fact that
C1 = |[nf[zox(0,00)) is finite: First, from the latter property it follows that there exists a null
set N C [0, 00) such that for all ¢ € [0,00) \ N we have n(-,t) € L*(Q) with [|n(-,t)||r=q) < C1. As
[0,00) \ N is dense in [0,00), for an arbitrary to € [0,00) we can find (¢;)jen C [0,00) \ N such that
tj — to as j — 0o, and extracting a subsequence if necessary we can also achieve that n(-,t;) X @ in
L>(2) as j — oo with some 1 € L>(Q) satisfying 7| o) < C1. Since (4.8) asserts that moreover
n(-,t;) = n(-,to) in (W02’2(Q))* as j — oo, this allows us to identify n = n(-,#y) and to conclude
that thus actually n(-,t) € L*>(Q) for all £ € [0,00), with [[n(-,t)|fec) < C1 for all > 0. The
property (4.14) can now be verified by partially repeating this argument: Given any ¢y > 0 and
(tj)jen C [0,00) such that t; — ¢y as j — oo we know that (n(-,%;))jen is bounded in L*°(2), and
that for all ¥ € C3°(Q2) we have [, n(-,t;)1) = [on(-,to)Y as j — oo by (4.8). By density of C5°(Q)
in L'(0), this proves that indeed n(-,t;) = n(-,to) in L®(Q) as j — oc.

Now the verification of the claimed weak solution property of (n,c,u) is straightforward: Whereas
the nonnegativity of n and ¢ and the integrability requirements in (4.1) and (4.2) are immediate from
(4.6), (4.7), (4.9), (4.11) and (4.12), the integral identities (4.3), (4.4) and (4.5) can be derived by
standard arguments from the corresponding weak formulations in the approximate system (2.2) upon
letting € = ¢; \, 0 and using (4.6) and (4.7) as well as (4.9)-(4.13). O

PrROOF of Theorem 1.1. We only need to combine Lemma 4.1 with Lemma 3.17. U
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5 Large time behavior. Proof of Theorem 1.2

In this section we shall assume that D,.S and f satisfy the assumptions in Theorem 1.2, and we will
establish the convergence statements therein separately for the solution components n, ¢ and u.

Here proving stabilization of n will require a comparatively subtle reasoning, which is due to the fact
that our knowledge on compactness properties of (n(-,t));>o, and of temporal continuity features of
n, is rather limited. The core of the following argument lies in an appropriate combination of the
decay information implied by Lemma 3.21 with the continuity property contained in Lemma 3.23.
The nonlinearity of diffusion in the first equation in (1.2), reflected in the appearance of a nontrivial
function of n in the integral in (3.84), requires the use of certain powers of n in the following proof.

Lemma 5.1 Let m > %. Then with (n,c,u) as given by Theorem 1.1, we have
n(-,t) 2wy in L®(Q) as t — oo. (5.1)

PROOF.  Let us assume that the conclusion of the lemma does not hold. Then we can find a sequence
(tj)jen C (0,00) such that t; — 0o as j — oo, and such that for some ¢ € L*(Q) we have

/ n(x, t;)(x)ds — / noY(z)dz > C;  forall j €N (5.2)

Q Q

with some C > 0. To exploit his appropriately, according to Lemma 3.17 we take Cs > 0 fulfilling
n(x,t) < Cy for a.e. (z,t) € 2 x (0,00), (5.3)

and then use the density of C§°(2) in LY(Q) in choosing ¢ € C§°(Q) such that ||¢) — JHLl(Q) < 4%2,
so that by (5.2),

/ n(z,t;)(x)dr — / noY(x)dr > / n(:r,tj)@Z(w)d:U — / noY(z)dx
Q Q Q Q
~{lnCt5) o + 76} - I = Dl
> % for all j € N. (5.4)
Now since by Lemma 3.23 there exists C's > 0 such that for all € € (0,1) we have
|ne(-,t) — ne(-,s)H(Woz,z(Q))* < Cslt — 5] forall ¢ > 0 and s > 0,
recalling the convergence property (4.8) from Lemma 4.1 we see that

In(-,t) — n(, S)‘|(W§’2(Q))* < Cs|t — 5| forallt >0 and s > 0,

In particular, this implies that if we let 7 € (0,1) be such that

T < —Cl
o 4C3||17Z}||W02’2(Q)7
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then for all j € N and each t € (¢j,t; + 7) we have

n(z,t;)Y(@)de — [ n(z,t)p(z)dz] < [In(, ;) - n('7t)||(W2’2(Q))* ‘ ||¢||W272(Q)
Q Q 0 0
< 03|tj - t‘ : H¢HW02’2(Q)
. a
- 4
and hence (5.4) entails that
_ Ch .
n(x,t)y(z)de — | ngy(z)dr > vE for all t € (t;,t; + 7) and each j € N. (5.5)
Q Q
To see that this contradicts the outcome of Lemma 3.21, we fix any p > 1 such that p > m — 1 and
p > 3 —m, and abbreviate vy := %ﬁ > 1. Then taking a Poincaré constant Cy > 0 such that

[ low@) gl < [ (9o forallp e Wi (@),
Q Q

again with @ := ﬁ fQ @, from Lemma 3.21 we obtain C5 > 0 such that

/ / I3 (2, 1) — a2(B)Pdedt < Cy / /|Vnz|2
0 9] 0 9]

Cs for all e € (0,1), (5.6)

IN

IN

where

1

as(t) == <ng(~,t)>; = {Klz’/gnz(x,t)dx}; for e € (0,1) and ¢t > 0.

Here since from Lemma 4.1 and the Tonelli theorem we know that for a.e. t > 0 we have n.(-,t) — n(-,t)
a.e. in Q as e = ¢; \( 0, in view of the uniform boundedness of (n:).c(,1) in L*>(2 x (0,00)) we may
apply the dominated convergence theorem to infer that

a:(t) — a(t) for a.e. t >0 (5.7)

as € = g; \, 0, where

alt) = (m(t)) _ {‘;u/gnv(x,t)d:z:}i for ¢ > 0. (5.8)

Again using that n. — n a.e. in Q x (0,00) as € = €; \, 0, by means of Fatou’s lemma we can derive
from (5.6) and (5.7) that

/oo/ (@, 1) — o () Pdwdt < Cs. (5.9)
0 Q

34



Thanks to the fact that v > 1 ensures the validity of the elementary inequality

& —n _
>n’71

S/
and since by the Holder inequality, (4.15) and (5.8) we have

1
g = / n(x,t)dr < — / n’(x,t)dx . \Q]WT_I = a(t) for a.e. t > 0,
o] !QI Q

on the left of (5.9) we can estimate

for all £ > 0 and n > 0 such that £ # n,

/ |n7(x,t) — a”(t)|?dz > a®%(t) / In(z,t) — a(t)|*dx
Q

> g2 / |n(z,t) — a(t)|*dx for a.e. t > 0.
Therefore, (5.9) yields
o0 C
/ / In(z,t) — a(t)|*dedt < Cg := TE)_Q (5.10)
o Jo o~

We now introduce
nj(z,s) :=n(z,t; +s), (x,s) € Qx(0,7),

and
aj(s) == a(t; +s), s e (0,7), (5.11)

for j € N. Then (5.10) implies that

/OT/QMJ'(QC,S)—LLJ'(S)\dedS - /t”“/ iz, 1) — a(t) 2dzdt

— 0 as j — oo,
meaning that for
zj(x,s) == nj(z,s) — aj(s), (z,s) € Qx(0,7), jeN,

we have
zj — 0 in L*(Q x (0,7)) as j — 00. (5.12)

Again by (5.3), it follows from (5.8) and (5.11) that (a;);en is bounded in L*((0,7)), whence passing
to a subsequence if necessary we may assume that for some nonnegative as, € L?((0,7)) we have

a; = as in L*((0,7)) as j — 0o. (5.13)
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Therefore, in view of (4.15) we see that

/ /z] x,s)dxds = /OT/Q (nj(:n,s)—aj(s))dxds

.
— Q- |2 / a;(s)ds
0
.
—  7|QRg — Q] / (o (8)ds as j — 0o,
0
which combined with (5.12) allows us to determine the integral of the limit in (5.13) according to

/T Ao (8)ds = Thyg. (5.14)
0

On the other hand, rewriting (5.5) in terms of n; and integrating in time we see that

% < / /nj x,s) )da:ds—/ /now(m)dxds
= / /nj x, s)Y(z)drds — TTg - /@Z) for all j € N, (5.15)

where as a consequence of (5.12) and (5.13),

//njxs v)dads = /O/Q da:ds+//a] ©)dads
_ /O/sz da:ds—l—(/a] )(/zp da:)
R </0 aoo(s)>-</gw(x)dx> as j — oo,

Taking j — oo in (5.15) we thus arrive at the conclusion that

cif < (/OTaoo(s)> . (/ﬂzp(:ﬁ)dm‘> _mo./gd,(m)dx

which in light of (5.14) is absurd and hence proves that actually (5.1) is valid. O

Remark. Let us mention here that in the case m < 2 one may alternatively prove Lemma 5.1
by invoking standard Holder estimates for solutions of degenerate parabolic equations ([22]): In fact,
based on our previous estimates we can in this case obtain a bound for n, independent of ¢ > 1, in the
space C’a’%(ﬂ x [t,t + 1]) for some 6 > 0. This can be combined with the outcome of Lemma 3.21 to
see that actually n(-,t) — g in L>(Q) as t — co.

We next make essential use of the fact that f does not have positive zeroes to verify that ¢ decays in
the claimed sense.

Lemma 5.2 Let m > %, and assume (1.17). Then the solution of (1.2) constructed in Theorem 1.1
satisfies
c(t) =0 in L°(Q) as t — oo. (5.16)
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Proor.  If the claim was false, the for some C; > 0, some () eny C £ and some (¢;)jen C (0,00)

such that t; — oo as j — oo we would have

c(xj,tj) >y for all j € N,

where passing to subsequences we may assume that there exists 2o € € such that Tj — 00 as j — 00.

Since ¢ is uniformly continuous in (J;¢y <Q X [tj, t;+ 1]) by Lemma 3.18, this entails that on extracting

a further subsequence if necessary, we can find 6 > 0 and 7 € (0, 1) such that with B := Bs(xg) N Q2

we have

C
c(:lc,t)271 for all z € B,t € (tj,t;+7) and j € N,

so that since f > 0 on (0,00) by assumption (1.17), we see that

fle(x,t)) > Cy for all x € B,t € (tj,t;j+7) and j € N
with some C > 0. Now writing

nj(z,s) :=n(x,tj+s) and cj(z,s) = c(z,t; + s)

for x € Q,s € (0,7) and j € N, from Lemma 3.20 we obtain that

/[)T/an(w,s)f(cj(x,s))dxds = /tj”/ n(z,t)f(c(z, t))dzdt
< /t / n(x,t)f(c(x,t))dxdt

— as j — oo.

On the other hand, if we let ¢(x) := xp(x) for z € €2, then from Lemma 5.1 we obtain that

ti+T

n(x,t)y dxdt—noT\B]'

J

< T- sup
te(ty,tj+7)

— 0 as j — 0o,

and that hence .
/ / nj(x, s)drds — ngt|B| as j — 0o.

Therefore, (5.17) warrants that the expression on the left of (5.18) actually satisfies

liminf/ /nj(ac,s)f(cj(:v,s))dxds > liminf{Cz/ /nj(x,s)dxds}
J]—00 0 B J]—00

= CQ WOT|B‘7

\Y
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/Qn(a:,t)qﬁ(:n)d:v—/gm¢(m)d1:

(5.17)

(5.18)

(5.19)



which contradicts (5.18) and hence proves the lemma. O

Finally, decay of u will be a consequence of the stabilization property of n in Lemma 5.1. Since
the latter has been asserted in the weak-x sense in L*°(2) only, an argument based on the use of
appropriate linear functionals involving u seems adequate to derive this here.

Lemma 5.3 Let m > %. Then with (n,c,u) as given by Theorem 1.1, we have
u(-,t) >0 in L™(Q) as t — oo. (5.20)

PROOF.  Since the Hilbert space realization As of the Stokes operator is positive and self-adjoint
in L2(Q) with compact inverse, there exists a complete orthonormal basis (¢)ren of eigenfunctions
Yy of A corresponding to positive eigenvalues A, k € N. By density of |Jycyspan{ty | £ < N} in
L2(Q), in view of the uniform Hélder continuity of u in € x (0, 0), as asserted by Lemma 3.19 and
Lemma 4.1, to prove (5.20) it is sufficient to show that for each k£ € N we have

/ u(z,t) - Yp(x)de — 0 as k — oo. (5.21)
Q

For this purpose, we fix any such k and let

yelt) = /Q ue(e,t) - Gp(@)dz, 130,

for e € (0,1). Then from (2.2) and the eigenfunction property of ¥, we obtain that since V -1, = 0
and [, ne(-,t) =ng by (2.4),

) = = [ Auvis [ n50-u
=~ [ avt [ne-m)vo v [ Goou
_ _Ak/%wH/(ng—m)wwk
9} Q

= —\ye(t) + g (1) for allt >0
with
e\l) = (z,t) =g ) V- dr, 2 0.
g:(t) /ﬂ(n (z,1) no) ¢ - hy(z)dx t=

Upon integration, this shows that for any choice of tg > 0,

t
ye(t) = ye(to)e M(t—to) 4 / e =g (s)ds  for all t > to.
to

Since as £ = £; \, 0 we have u. — u in Cf) (Q x [0,00)) and n. = n in L=(Q x (0,00)) by Lemma

4.1, we may take € = £; \, 0 here to infer that with

y(t) = /Q u(et) - du(o)ds and gt)i= [ (nla,t) ) Vo ve@ds, ¢ 0

Q
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we have

t
y(t) = y(tg)e Mlt—t0) +/ e M=) g(s)ds for all ¢ty > 0 and any ¢ > to, (5.22)

to

where thanks to Lemma 5.1 we know that
g(t) =0 as t — oo.

Accordingly, if in order to prove (5.21) we let 6 > 0 be given, then we can pick ¢y > 0 large enough

fulfilling

A6
lg(t)] < % for all t > . (5.23)

As C1 := ||yl oo ((0,00)) s finite due to the boundedness of u in £ x (0, 00) guaranteed by Lemma 3.17
and Lemma 4.1, from (5.22) we thus infer that

t
)] < Cre Nl L 20 [t gg
to

)\ké 1— efAk(tftO)

—)xk(t—to)
Cie + 5 )\k

)
< C’lef’\’“(tfto) + 3 for all t > tg.

This implies that with ¢; := max{t, to + )\ik In %} we have
ly(t)| <  forall t > ¢,

which establishes (5.21) and thereby completes the proof. O

PROOF of Theorem 1.2. The claimed convergence properties are precisely asserted by Lemma 5.1,
Lemma 5.2 and Lemma 5.3. g

Acknowledgement. The author would like to thank the anonymous reviewer for numerous helpful
comments and suggestions.
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