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Abstract

This paper deals with the chemotaxis system



















ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v + wz, x ∈ Ω, t > 0,

wt = −wz, x ∈ Ω, t > 0,

zt = ∆z − z + u, x ∈ Ω, t > 0,

in a smoothly bounded domain Ω ⊂ R
n, n ≤ 3, that has recently been proposed as a model for

tumor invasion in which the role of an active extracellular matrix is accounted for.

It is shown that for any choice of nonnegative and suitably regular initial data (u0, v0, w0, z0), a
corresponding initial-boundary value problem of Neumann type possesses a global solution which is
bounded. Moreover, it is proved that whenever u0 6≡ 0, these solutions approach a certain spatially
homogeneous equilibrium in the sense that as t→ ∞,

u(x, t) → u0, v(x, t) → v0 + w0, w(x, t) → 0 and z(x, t) → u0,

uniformly with respect to x ∈ Ω, where u0 := 1

|Ω|

∫

Ω
u0, v0 := 1

|Ω|

∫

Ω
v0 and w0 := 1

|Ω|

∫

Ω
w0.
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1 Introduction

This paper is concerned with the chemotaxis system



















ut = ∆u−∇ · (u∇v),

vt = ∆v + wz,

wt = −wz,

zt = ∆z − z + u,

(1.1)

which has been proposed in [5] as a modification of the tumor invasion model originally introduced
by Chaplain and Anderson in [2]. A particular focus of the model (1.1) consists in accounting for a
chemotactic attraction induced by a so-called active extracellular matrix, ECM∗, which is produced by
a biological reaction between the extracellular matrix, ECM, and a matrix-degrading enzyme, MDE.
Accordingly, besides the densities u, w and z of tumor cells, ECM and MDE, a fourth relevant quantity
becomes the concentration of ECM∗, which is represented by the function v in (1.1).

In the past two decades, a large variety of mathematical models describing tumor invasion phenomena
has been developed by focusing on different aspects. Besides models purely based on reaction-diffusion
equations ([6]), most of these models at their core assume taxis mechanisms which are of haptotaxis
type, meaning that the respective attractant is non-diffusible (see e.g. [2] and [1] or also the discussion
in [5]). Analytical results on such haptotaxis systems, essentially containing certain memory-type
evolution problems as subsystems, are yet quite fragmentary, so far mainly concentrating on issues
such as global existence and boundedness ([13], [14], [19], [20], [22], [27]); more detailed answers have
been given only in certain special cases ([4], [8], [9], [12]). After all, certain global existence results
can be achieved for such haptotaxis systems even when expanded to more realistic models ([3]) by
including additional mechanisms ([21], [23], [24], [25], [26]).

As compared to this, cross-diffusion in (1.1) is of chemotaxis type in that it is directed toward the
diffusible ECM∗, the latter being produced by the static ECM in conjunction with the chemical MDE.
From a mathematical point of view, one might expect this additional influence of diffusion to entail
certain improved regularity properties of solutions. On the other hand, the literature shows that also
such chemotactic cross-diffusion may have a strong destabilizing effect: For instance, in the Keller-
Segel system

{

ut = ∆u−∇ · (u∇z),

zt = ∆z − z + u,
(1.2)

widely considered as a prototypical model for chemoattractive processes, it is known that solutions
are global and remain bounded if either n = 1 ([17]), or n ≥ 2 and the initial data are suitably small
([16], [28]), but that some large-data solutions become unbounded even within finite time in the cases
n = 2 ([7], [15]) and n ≥ 3 ([29]), where n denotes the space dimension.

Main results. As opposed to (1.1), in (1.2) the substance secreted by the cells is immediately
directing chemoattraction, whereas in (1.1) this chemical only has an indirect taxis effect by stimulating
the signal production. It is the purpose of the present paper to clarify how far this indirect chemotactic
feedback may enhance the regularity and boundedness properties of solutions. Indeed, we shall see
that any type of blow-up is thereby entirely suppressed in the physically relevant case n ≤ 3, and that

2



furthermore basically all solutions approach a spatially homogeneous equilibrium in the large time
limit.

In order to precisely formulate our results in this direction, let us specify the full problem setting by
considering the initial-boundary value problem







































ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v + wz, x ∈ Ω, t > 0,

wt = −wz, x ∈ Ω, t > 0,

zt = ∆z − z + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

(1.3)

in a bounded domain Ω ⊂ R
n with smooth boundary, where throughout this paper we shall assume

that














u0 ∈ C0(Ω̄) is nonnegative,
v0 ∈W 1,∞(Ω) is nonnegative,
w0 ∈ C2(Ω̄) is nonnegative and
z0 ∈ C0(Ω̄) is nonnegative.

(1.4)

The first of our main results asserts that under this condition, (1.3) admits for global existence of a
bounded classical solution when n ≤ 3. We underline that the following statement on this does not
require any smallness condition on the initial data, such as necessary for global boundedness in the
Keller-Segel system.

Theorem 1.1 Let n ≤ 3, and suppose that (1.4) holds. Then there exists a uniquely determined
quadruple (u, v, w, z) of nonnegative functions

u ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

v ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞))∩L∞
loc([0,∞);W 1,∞(Ω)),

w ∈ C0(Ω̄× [0,∞)) ∩ C0,1(Ω̄× (0,∞)) and

z ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

which solve (1.3) classically in Ω× (0,∞). Moreover the solution (u, v, w, z) of (1.3) is bounded in the
sense that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) ≤ C for all t > 0.

Moreover, whenever u0 is nontrivial, the above solution approaches a certain spatially homogeneous
steady state:

Theorem 1.2 Let n ≤ 3. Assume that u0, v0, w0 and z0 comply with (1.4), and that u0 6≡ 0. Then
the solution (u, v, w, z) of (1.3) satisfies

‖u(·, t)− u0‖L∞(Ω) → 0,

‖v(·, t)− (v0 + w0)‖L∞(Ω) → 0,

‖w(·, t)‖L∞(Ω) → 0 and

‖z(·, t)− u0‖L∞(Ω) → 0
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as t→ ∞, where the constants u0, v0 and w0 are given by

u0 :=
1

|Ω|

∫

Ω
u0, v0 :=

1

|Ω|

∫

Ω
v0, and w0 :=

1

|Ω|

∫

Ω
w0. (1.5)

In consequence, the indirect mechanism of signal production in (1.3) is apparently insufficient to
generate any significant instability of homogeneous distributions: In fact, the results from Theorem
1.1 and Theorem 1.2 indicate that at least when n ≤ 3, the cross-diffusive term in the first equation
in (1.3) is substantially overbalanced by diffusion, and that hence the overall behavior of the model,
with respect to both global solvability and asymptotic behavior, is essentially the same as that of the
correspondingly modified system obtained on fully disregarding this taxis mechanism.

This paper is organized as follows. After collecting some preliminary facts including local existence in
Section 2, we shall establish Theorem 1.1 in Section 3 by deriving suitable a priori estimates through
a two-step bootstrap argument which eventually yields a bound for the crucial component u with
respect to the norm in L∞(Ω) (Lemma 3.5). The large time behavior will be addressed in Section 4,
as a starting point using the integrability property

∫ ∞

0

∫

Ω
w(x, t)z(x, t)dxdt <∞

(Lemma 4.1). Thanks to global regularity estimates implied by the boundedness of solutions (Lemma
3.6), this will entail convergence of v to some nonnegative constant L in W 1,∞(Ω) (Lemma 4.3). This
in turn warrants stabilization of u (Lemma 4.4) and then of z (Lemma 4.5) in the sense claimed by
Theorem 1.2, where the latter property along with the assumption u0 > 0 enforces decay of w (Lemma
4.6) and thereupon allows for determining L (Lemma 4.7), thus completing the proof of Theorem 1.2.

2 Preliminaries. Local existence and basic estimates

The following statement on local existence and uniqueness is contained in [5, Theorem 3.1].

Lemma 2.1 Let n ≥ 1, and assume that u0, v0, w0 and z0 satisfy (1.4). Then there exist Tmax ∈ (0,∞]
and a unique classical solution (u, v, w, z) of (1.3) in Ω× (0, Tmax) which is such that

0 ≤ u ∈ C0(Ω̄× [0, Tmax)) ∩ C
2,1(Ω̄× (0, Tmax)),

0 ≤ v ∈ C0(Ω̄× [0, Tmax)) ∩ C
2,1(Ω̄× (0, Tmax))∩L

∞
loc([0, Tmax);W

1,∞(Ω)),

0 ≤ w ∈ C0(Ω̄× [0, Tmax)) ∩ C
0,1(Ω̄× (0, Tmax)) and

0 ≤ z ∈ C0(Ω̄× [0, Tmax)) ∩ C
2,1(Ω̄× (0, Tmax)),

and such that

if Tmax <∞ then lim
tրTmax

(

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖z(·, t)‖L∞(Ω)

)

= ∞. (2.1)

Throughout the sequel, we suppose that (u0, v0, w0, z0) is given such that (1.4) holds, and let (u, v, w, z)
and Tmax ∈ (0,∞] denote the corresponding solution of (1.3) and its maximal existence time as
specified in Lemma 2.1.

The following statement on conservation of the total mass
∫

Ω u of cells is obvious but essential to our
analysis.
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Lemma 2.2 The first solution component u satisfies

∫

Ω
u(x, t)dx =

∫

Ω
u0(x)dx for all t ∈ (0, Tmax). (2.2)

Proof. This can immediately be seen upon integrating the first equation in (1.3) over Ω × (0, t)
for t ∈ (0, Tmax). �

Likewise, it is evident from (1.3) that w is nonincreasing with time. We shall frequently use the
following implication thereof.

Lemma 2.3 The third solution component w fulfills

‖w(·, t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω) for all t ∈ (0, Tmax).

Proof. Since both w and z are nonnegative, this is obvious from the third equation in (1.3). �

The particular structure of the nonlinearities in the second and third equations in (1.3) moreover
enables us to derive boundedness of v with respect to the norm in L1(Ω).

Lemma 2.4 The second solution component has the property that

∫

Ω
v(x, t)dx ≤

∫

Ω
v0(x)dx+

∫

Ω
w0(x)dx for all t ∈ (0, Tmax). (2.3)

Proof. We add the third to the second equation in (1.3) and integrate with respect to x ∈ Ω to
obtain

d

dt

∫

Ω
(v + w) =

∫

Ω
∆v = 0 for all t ∈ (0, Tmax),

because ∂v
∂ν

= 0 on ∂Ω. Thus,

∫

Ω
v(x, t)dx+

∫

Ω
w(x, t)dx =

∫

Ω
v0(x)dx+

∫

Ω
w0(x)dx for all t ∈ (0, Tmax), (2.4)

from which (2.3) follows by nonnegativity of w. �

3 Boundedness. Proof of Theorem 1.1

Throughout our subsequent analysis, we shall frequently make use of well-known smoothing properties
of the Neumann heat semigroup (et∆)t≥0 in Ω. Unless stated otherwise, corresponding proofs can be
carried out in a standard manner such as reported in [18] mainly for the neighboring case of Dirichlet
boundary conditions; a precise demonstration for the particular case of Neumann boundary data can
be found e.g. in [28, Lemma 1.3].

Let us first use these regularization properties to derive the following estimate for the solution com-
ponent z under an appropriate boundedness assumption on u.

5



Lemma 3.1 Let p ≥ 1 and
{

q ∈ [1, np
n−2p) if p ≤ n

2 ,

q ∈ [1,∞] if p > n
2 .

(3.1)

Then for all M > 0 there exists Cz(p, q,M) > 0 such that if for some T ∈ (0, Tmax) we have

‖u(·, t)‖Lp(Ω) ≤M for all t ∈ (0, T ), (3.2)

then
‖z(·, t)‖Lq(Ω) ≤ Cz(p, q,M) for all t ∈ (0, T ). (3.3)

Proof. In view of the Hölder inequality, we may clearly assume that q > p. Then according to
standard Lp-Lq estimates for (et∆)t≥0, we can find c1 > 0 such that

‖eτ∆ϕ‖Lq(Ω) ≤ c1

(

1 + τ
−n

2
( 1
p
− 1

q
)
)

· ‖ϕ‖Lp(Ω) for all τ > 0 and any ϕ ∈ Lp(Ω),

and using the maximum principle for the heat equation, we easily obtain c2 > 0 fulfilling

‖eτ∆ϕ‖Lq(Ω) ≤ c2‖ϕ‖L∞(Ω) for all τ > 0 and arbitrary ϕ ∈ L∞(Ω).

Therefore, from the variation-of-constants representation of z,

z(·, t) = et(∆−1)z0 +

∫ t

0
e(t−s)(∆−1)u(·, s)ds for all t ∈ (0, T ),

we infer that the assumption (3.2) entails the inequality

‖z(·, t)‖Lq(Ω) ≤ e−t‖et∆z0‖Lq(Ω) +

∫ t

0
e−(t−s)‖e(t−s)∆u(·, s)‖Lq(Ω)ds

≤ c2e
−t · ‖z0‖L∞(Ω) + c1M

∫ t

0
e−(t−s) ·

(

1 + (t− s)
−n

2
( 1
p
− 1

q
)
)

ds for all t ∈ (0, T ).

Since (3.1) ensures that c3 :=
∫∞
0 (1 + σ

−n
2
( 1
p
− 1

q
)
) · e−σdσ is finite, this implies that

‖z(·, t)‖Lq(Ω) ≤ c2‖z0‖L∞(Ω) + c1c3M for all t ∈ (0, T )

and thereby proves (3.3). �

Next, a boundedness property of z of the above form entails a certain regularity for ∇v.

Lemma 3.2 Let q ≥ 1 and
{

r ∈ [1, nq
n−q ) if q ≤ n,

r ∈ [1,∞] if q > n.
(3.4)

Then for all M > 0 there exists Cv(q, r,M) > 0 with the property that if t ∈ (0, Tmax) is such that

‖z(·, t)‖Lq(Ω) ≤M for all t ∈ (0, T ), (3.5)

then

‖∇v(·, t)‖Lr(Ω) ≤ Cv(q, r,M) for all t ∈ (0, T ).
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Proof. Again in view of the Hölder inequality, we need to consider the case r ≥ q only, in which
according to known regularization properties of (et∆)t≥0, as contained in [28, Lemma 1.3], for all
s ∈ [1, q] we can find c1(s) > 0 such that

‖∇eτ∆ϕ‖Lr(Ω) ≤ c1(s)
(

1 + τ−
1
2
−n

2
( 1
s
− 1

r
)
)

‖ϕ‖Ls(Ω) for all τ > 0 and each ϕ ∈ Ls(Ω), (3.6)

and moreover there exists c2 > 0 satisfying

‖∇eτ∆ϕ‖Lr(Ω) ≤ c2‖ϕ‖W 1,∞(Ω) for all τ > 0 and any ϕ ∈W 1,∞(Ω). (3.7)

We now fix a nonnegative integer k and represent v(·, t) according to

v(·, t) = e(t−k)∆v(·, k) +

∫ t

k

e(t−s)∆w(·, s)z(·, s)ds for all t ∈ (k,∞) ∩ (0, T ). (3.8)

Here if k ≥ 1, we may apply (3.6) to s := 1 and use Lemma 2.4 to estimate

‖∇e(t−k)∆v(·, k)‖Lr(Ω) ≤ c1(1)
(

1 + (t− k)−
1
2
−n

2
(1− 1

r
)
)

‖v(·, k)‖L1(Ω)

≤ c1(1)c3

(

1 + (t− k)−
1
2
−n

2
(1− 1

r
)
)

≤ 2c1(1)c3 for all t ∈ [k + 1,∞) ∩ (0, T ) (3.9)

with c3 :=
∫

Ω v0 +
∫

Ωw0. In the case k = 0, we instead employ (3.7) to obtain

‖∇e(t−k)∆v(·, k)‖Lr(Ω) = ‖∇et∆v0‖Lr(Ω) ≤ c2‖v0‖W 1,∞(Ω) for all t > 0. (3.10)

In the second summand on the right of (3.8) we use (3.6) with s := q to see that

∥

∥

∥

∥

∇

∫ t

k

e(t−s)∆w(·, s)z(·, s)ds

∥

∥

∥

∥

Lr(Ω)

≤ c1(q)

∫ t

k

(

1 + (t− s)
− 1

2
−n

2
( 1
q
− 1

r
)
)

‖w(·, s)z(·, s)‖Lq(Ω)ds

for all t ∈ (k,∞) ∩ (0, T ), (3.11)

where thanks to our hypothesis (3.5) and Lemma 2.3 we know that

‖w(·, s)z(·, s)‖Lq(Ω) ≤ ‖w(·, s)‖L∞(Ω)‖z(·, s)‖Lq(Ω) ≤ c4M for all s ∈ (0, T )

with c4 := ‖w0‖L∞(Ω). Therefore, (3.11) entails that

∥

∥

∥

∥

∇

∫ t

k

e(t−s)∆w(·, s)z(·, s)ds

∥

∥

∥

∥

Lr(Ω)

≤ c1(q)c4M

∫ t

k

(

1 + (t− s)
− 1

2
−n

2
( 1
q
− 1

r
)
)

ds

≤ c1(q)c4M · c5 for all t ∈ (k, k + 2) ∩ (0, T ), (3.12)

where the assumption (3.4) on r warrants that

c5 :=

∫ 2

0

(

1 + σ
− 1

2
−n

2
( 1
q
− 1

r
)
)

dσ

7



is finite. Hence, in the case t ∈ (0, 2) ∩ (0, T ) we infer from (3.8), (3.10) and (3.12) that

‖∇v(·, t)‖Lr(Ω) ≤ c2‖v0‖W 1,∞(Ω) + c1(q)c4c5M,

whereas whenever t ∈ (0, T ) is such that t ≥ 2, we can pick an integer k ≥ 1 such that t ∈ [k+1, k+2)
and thereupon obtain from (3.8), (3.9) and (3.12) that

‖∇v(·, t)‖Lr(Ω) ≤ c1(1)c3 + c1(q)c4c5M.

The proof is thus complete. �

In the proof of Lemma 3.4 below we shall need the following extension of a regularization estimate for
(et∆)t≥0, as contained in [28, Lemma 1.3], to the case of the space L∞(Ω).

Lemma 3.3 Let p ∈ (1,∞]. Then there exists C > 0 such that for all ϕ ∈ C1(Ω̄;Rn) fulfilling ϕ·ν = 0
on ∂Ω we have

‖et∆∇ · ϕ‖L∞(Ω) ≤ Ct
− 1

2
− n

2p ‖ϕ‖Lp(Ω) for all t > 0. (3.13)

Proof. According to known smoothing properties of (et∆)t≥0, there exists c1 > 0 such that for all
ψ ∈ C∞

0 (Ω) we have

‖∇et∆ψ‖Lp′ (Ω) ≤ c1t
− 1

2
−n

2
(1− 1

p′
)
‖ψ‖L1(Ω) for all t > 0,

where p′ ∈ [1,∞) is such that 1
p
+ 1

p′
= 1. By the duality characterization of the norm in L∞(Ω) ≃

(L1(Ω))⋆, and by density of C∞
0 (Ω) in L1(Ω), we thus obtain on integrating by parts and using the

self-adjointness of et∆ in L2(Ω) that

‖et∆∇ · ϕ‖L∞(Ω) = sup
ψ∈C∞

0 (Ω)
‖ψ‖

L1(Ω)≤1

∣

∣

∣

∣

∫

Ω
(et∆∇ · ϕ) · ψ

∣

∣

∣

∣

= sup
ψ∈C∞

0 (Ω)
‖ψ‖

L1(Ω)≤1

∣

∣

∣

∣

∫

Ω
ϕ · ∇et∆ψ

∣

∣

∣

∣

≤ ‖ϕ‖Lp(Ω) · sup
ψ∈C∞

0 (Ω)
‖ψ‖

L1(Ω)≤1

‖∇et∆ψ‖Lp′ (Ω)

≤ ‖ϕ‖Lp(Ω) · c1t
− 1

2
−n

2
(1− 1

p′
)

for all t > 0.

Since 1− 1
p′

= 1
p
, this proves (3.13). �

We can now prepare a closure of our regularity reasoning by deriving an estimate for u from a sup-
posedly present appropriate boundedness property of ∇v.

Lemma 3.4 Suppose that r > n. Then for all M > 0 there exists Cu(r,M) > 0 such that if

‖∇v(·, t)‖Lr(Ω) ≤M for all t ∈ (0, T ) (3.14)

with some T ∈ (0, Tmax), then

‖u(·, t)‖L∞(Ω) ≤ Cu(r,M) for all t ∈ (0, T ).
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Proof. Since r > n, we can fix a number θ such that

θ >
r

r + 1
(3.15)

and
n < θ < r. (3.16)

Then according to Lemma 3.3 there exists c1 > 0 fulfilling

‖eτ∆∇ · ϕ‖L∞(Ω) ≤ c1τ
− 1

2
− n

2θ ‖ϕ‖Lθ(Ω) for all ϕ ∈ C1(Ω̄;Rn) such that ϕ · ν = 0 on ∂Ω. (3.17)

Moreover, standard Lp − Lq estimates yield c2 > 0 satisfying

‖eτ∆ϕ‖L∞(Ω) ≤ c2τ
−n

2 ‖ϕ‖L1(Ω) for all τ > 0 and each ϕ ∈ L1(Ω) such that

∫

Ω
ϕ = 0. (3.18)

Now proceeding in a way similar to that in the proof of Lemma 3.2, for a given integer k ≥ 0 we use
a variation-of-constants representation of u to estimate

‖u(·, t)‖L∞(Ω) =

∥

∥

∥

∥

e(t−k)∆u(·, k)−

∫ t

k

e(t−s)∆∇ ·
(

u(·, s)∇v(·, s)
)

ds

∥

∥

∥

∥

L∞(Ω)

≤ ‖e(t−k)∆u(·, k)‖L∞(Ω) +

∫ t

k

∥

∥

∥
e(t−s)∆∇ · (u(·, s)∇v(·, s)

∥

∥

∥

L∞(Ω)
ds (3.19)

for all t > k. Here when k = 0, by the maximum principle we obtain

‖e(t−k)∆u(·, k)‖L∞(Ω) = ‖et∆u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) for all t > 0, (3.20)

while in the case k ≥ 1 we use (3.18) and recall (2.2) to see that

‖e(t−k)∆u(·, k)‖L∞(Ω) ≤ ‖e(t−k)∆(u(·, k)− u0)‖L∞(Ω) + u0

≤ c2(t− k)−
n
2 ‖u(·, k)− u0‖L1(Ω) + u0

≤ 2c2(t− k)−
n
2 ‖u0‖L1(Ω) + u0

≤ 2c2‖u0‖L1(Ω) + u0 for all t ≥ k + 1, (3.21)

due to the relation et∆u0 ≡ u0 for all t > 0. In the rightmost integral in (3.19), we invoke (3.17) to
find that

∫ t

k

∥

∥

∥
e(t−s)∆∇ ·

(

u(·, s)∇v(·, s)
)∥

∥

∥

L∞(Ω)
ds ≤ c1

∫ t

k

(t− s)−
1
2
− n

2θ ‖u(·, s)∇v(·, s)‖Lθ(Ω)ds

for all t ∈ (k,∞) ∩ (0, T ), (3.22)

where an application of the Hölder inequality combined with our hypothesis (3.14) shows that

‖u(·, s)∇v(·, s)‖Lθ(Ω) ≤ ‖∇v(·, s)‖Lr(Ω) · ‖u(·, s)‖
L

rθ
r−θ (Ω)

≤ M · ‖u(·, s)‖
L

rθ
r−θ (Ω)

for all s ∈ (0, T ). (3.23)
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Since the property (3.15) ensures that rθ
r−θ > 1 and that hence κ := r−θ

rθ
∈ (0, 1), we may once again

use the Hölder inequality and (2.2) to estimate

‖u(·, s)‖
L

rθ
r−θ (Ω)

≤ ‖u(·, s)‖κL1(Ω) · ‖u(·, s)‖
1−κ
L∞(Ω)

= ‖u0‖
κ
L1(Ω) · ‖u(·, s)‖

1−κ
L∞(Ω) for all s ∈ (0, T ),

so that (3.22) and (3.23) imply that

∫ t

k

∥

∥

∥
e(t−s)∆∇ ·

(

u(·, s)∇v(·, s)
)∥

∥

∥

L∞(Ω)
ds ≤ c1M · ‖u0‖

κ
L1(Ω) ·

∫ t

k

(t− s)−
1
2
− n

2θ ‖u(·, s)‖1−κ
L∞(Ω)ds

for all t ∈ (k,∞) ∩ (0, T ). (3.24)

Thus, writing

K ≡ K(T ) := sup
t∈(0,T )

‖u(·, t)‖L∞(Ω),

from (3.19), (3.20) and (3.24) we obtain that if t ∈ (0, 2) ∩ (0, T ) then

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c1M‖u0‖
κ
L1(Ω) ·K

1−κ ·

∫ t

0
(t− s)−

1
2
− n

2θ ds

≤ ‖u0‖L∞(Ω) + c1c3M‖u0‖
κ
L1(Ω) ·K

1−κ (3.25)

holds with c3 :=
∫ 2
0 σ

− 1
2
− n

2θ dσ being finite due to the left inequality in (3.16). On the other hand, if
t ∈ (0, T ) is such that t ≥ 2 then for some integer k ≥ 1 we have t ∈ [k + 1, k + 2) and hence infer
from (3.19), (3.21) and (3.24) that

‖u(·, t)‖L∞(Ω) ≤ 2c2‖u0‖L1(Ω) + u0 + c1M‖u0‖
κ
L1(Ω) ·K

1−κ ·

∫ t

k

(t− s)−
1
2
− n

2θ ds

≤ 2c2‖u0‖L1(Ω) + u0 + c1c3M‖u0‖
κ
L1(Ω) ·K

1−κ. (3.26)

Combining (3.25) with (3.26) thus shows that if we let c4 := max{‖u0‖L∞(Ω), 2c2‖u0‖L1(Ω) + u0} and
c5 := c1c3‖u0‖

κ
L1(Ω), then

K ≤ c4 + c5MK1−κ,

from which upon an elementary argument we conclude that

K ≤ max

{

(2c5M)
1
κ ,

( c4

c5M

)
1

1−κ

}

,

as desired. �

Combining Lemma 3.1, Lemma 3.2 and Lemma 3.4 and using the mass conservation property (2.2)
as a starting point, we can now prove that u in fact must be bounded when n ≤ 3.
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Lemma 3.5 Suppose that n ≤ 3. Then there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.27)

Proof. Since n ≤ 3, we have n
2 <

n
(n−2)+

, so that it is possible to find q ∈ [1, n] satisfying

n

2
< q <

n

(n− 2)+
. (3.28)

Here the left inequality warrants that nq
n−q > n, whence we can pick a number r fulfilling

n < r <
nq

n− q
. (3.29)

We now write M1 := ‖u0‖L1(Ω), let

M2 := Cz(1, q,M1)

be as provided by Lemma 3.1 and

M3 := Cv(q, r,M2)

be as given by Lemma 3.2, and claim that then for any choice of T ∈ (0, Tmax) we have

‖u(·, t)‖L∞(Ω) ≤ Cu(r,M3) for all t ∈ (0, T ) (3.30)

with Cu(r,M3) taken from Lemma 3.4. Indeed, for any such T , thanks to the right inequality in (3.28)
we may apply Lemma 3.1 which in view of (2.2) and our definitions of M1 and M2 shows that

‖z(·, t)‖Lq(Ω) ≤M2 for all t ∈ (0, T ).

Due to the right inequality in (3.29), we thus obtain from Lemma 3.2 that

‖∇v(·, t)‖Lr(Ω) ≤M3 for all t ∈ (0, T ),

whereupon Lemma 3.4 implies (3.30), because r > n by (3.29). Since T ∈ (0, Tmax) was arbitrary, this
directly yields (3.27). �

In light of the extensibility statement in Lemma 2.1, the above readily shows that the local solution
actually exists globally in time and has some further boundedness properties.

Lemma 3.6 Let n ≤ 3. Then the solution (u, v, w, z) of (1.3) is global in time; that is, Tmax = ∞.
Moreover, there exist α ∈ (0, 1) and C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) ≤ C for all t > 0 (3.31)

as well as

‖u‖
C2+α,1+α

2 (Ω̄×[t,t+1])
+ ‖v‖

C2+α,1+α
2 (Ω̄×[t,t+1])

+ ‖z‖
C2+α,1+α

2 (Ω̄×[t,t+1])
≤ C for all t ≥ 1. (3.32)
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Proof. From Lemma 3.5 we know that supt∈(0,Tmax) ‖u(·, t)‖L∞(Ω) is finite, whence applying Lemma
3.1 to some conveniently large p ≥ 1 and then Lemma 3.2 to suitably large q ≥ 1 we infer that also
supt∈(0,Tmax) ‖z(·, t)‖L∞(Ω) and supt∈(0,Tmax) ‖∇v(·, t)‖L∞(Ω) are finite. In conjunction with Lemma 2.3
and the extensibility criterion (2.1) in Lemma 2.1, this shows that Tmax = ∞ and, by independence
of the obtained estimate with respect to t ∈ (0, Tmax) = (0,∞), establishes (3.31). Thereupon,
straightforward bootstrap arguments involving standard interior parabolic regularity theory ([11])
readily yield (3.32). �

Now the proof of our main result on global well-posedness and boundedness is obvious.

Proof of Theorem 1.1. We only need to combine Lemma 2.1 with Lemma 3.6. �

4 Large time behavior. Proof of Theorem 1.2

The core of our proof of the stabilization result in Theorem 1.2 consists in the following observation.

Lemma 4.1 The solution of (1.3) has the property that

∫ ∞

0

∫

Ω
w(x, t)z(x, t)dxdt <∞. (4.1)

Proof. For arbitrary t > 0, integrating the third equation in (1.3) over Ω× (0, t) we obtain

∫ t

0

∫

Ω
w(x, s)z(x, s)dxds =

∫

Ω
w0(x)dx−

∫

Ω
w(x, t)dx.

Since w is nonnegative, this implies (4.1). �

When combined with appropriate compactness properties such as e.g. implied by Lemma 3.6, the
above integrability statement can step by step be turned into the convergence results from Theorem
1.2. We first derive a weak version of the claimed stabilization property of v.

Lemma 4.2 There exists a constant L ≥ 0 such that

‖v(·, t)− L‖L1(Ω) → 0 as t→ ∞. (4.2)

Proof. According to Lemma 3.6 and e.g. the Arzelà-Ascoli theorem, we can find (tk)k∈N ⊂ (1,∞)
and a nonnegative function v∞ ∈ C0(Ω̄) such that tk → ∞ and

v(·, tk) → v∞ in L1(Ω) (4.3)

as k → ∞. To show that we actually have

v(·, t) → v∞ :=
1

|Ω|

∫

Ω
v∞ in L1(Ω) as k → ∞, (4.4)

we let ε > 0 be given. Then in view of (4.3) and Lemma 4.1 we can fix k ∈ N large enough such that

‖v(·, tk)− v∞‖L1(Ω) <
ε

3
(4.5)
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and
∫ ∞

tk

∫

Ω
w(x, t)z(x, t) dxdt <

ε

3
. (4.6)

Moreover, using the well-known fact that for any ϕ ∈ L1(Ω) we have eτ∆ϕ → 1
|Ω|

∫

Ω ϕ in L1(Ω) as
τ → ∞, we can choose some suitably large τ0 > 0 fulfilling

‖eτ∆v∞ − v∞‖L1(Ω) <
ε

3
for all τ > τ0. (4.7)

Then by means of the variation-of-constants representation of v we see that

v(·, t)− v∞ = e(t−tk)∆
(

v(·, tk)− v∞

)

+
(

e(t−tk)∆v∞ − v∞

)

+

∫ t

tk

e(t−s)∆w(·, s)z(·, s)ds for all t > tk, (4.8)

where from (4.7) we obtain

‖e(t−tk)∆v∞ − v∞‖L1(Ω) <
ε

3
for all t > tk + τ0. (4.9)

Next, since eτ∆ acts as a contraction on L1(Ω), we can use (4.5) to estimate

∥

∥

∥
e(t−tk)∆

(

v(·, tk)− v∞

)
∥

∥

∥

L1(Ω)
≤ ‖v(·, tk)− v∞‖L1(Ω) <

ε

3
for all t > tk, (4.10)

and invoke (4.6) to infer that

∥

∥

∥

∥

∫ t

tk

e(t−s)∆w(·, s)z(·, s)ds

∥

∥

∥

∥

L1(Ω)

≤

∫ t

tk

‖w(·, s)z(·, s)‖L1(Ω)ds

≤

∫ ∞

tk

∫

Ω
w(x, s)z(x, s) dxds

<
ε

3
. (4.11)

Collecting (4.8)-(4.11) shows that

‖v(·, t)− v∞‖L1(Ω) < ε for all t > tk + τ0,

which establishes (4.4) and thereby proves (4.2) with L := v∞ ≥ 0. �

According to Lemma 3.6 and the Arzelà-Ascoli theorem, the above convergence actually takes place
in the space W 1,∞(Ω).

Lemma 4.3 With L ≥ 0 as in Lemma 4.2, we have

‖v(·, t)− L‖W 1,∞(Ω) → 0 as t→ ∞. (4.12)

In particular,
‖∇v(·, t)‖L∞(Ω) → 0 as t→ ∞. (4.13)
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Proof. Since Lemma 3.6 asserts that (v(·, t))t≥1 is bounded in C2(Ω̄) and hence relatively compact
in C1(Ω̄) thanks to the Arzelà-Ascoli theorem, (4.12) and thus also (4.13) immediately result from
Lemma 4.2. �

Having thus asserted appropriate decay of the gradient responsible for cross-diffusion in (1.3), we can
proceed to make sure that u approaches its spatial mean in the large time limit.

Lemma 4.4 The first component of the solution of (1.3) satisfies

‖u(·, t)− u0‖L∞(Ω) → 0 as t→ ∞.

where u0 is given by (1.5).

Proof. In view of Lemma 3.6 and the Arzelà-Ascoli theorem, it is sufficient to show that

‖u(·, t)− u0‖L2(Ω) → 0 as t→ ∞. (4.14)

To accomplish this, we first recall that if λ1 > 0 denotes the first nonzero eigenvalue of the Neumann
Laplacian in Ω, then

‖eτ∆ϕ‖L2(Ω) ≤ e−λ1τ‖ϕ‖L2(Ω) for all τ > 0 and all ϕ ∈ L2(Ω) fulfilling

∫

Ω
ϕ = 0, (4.15)

because for any such ϕ, by the variational characterization of λ1 a standard testing procedure shows
that

d

dτ

∫

Ω
|eτ∆ϕ|2 = −2

∫

Ω
|∇eτ∆ϕ|2 ≤ −2λ1

∫

Ω
|eτ∆ϕ|2 for all τ > 0.

Moreover, with some c1 > 0 we have

‖eτ∆∇ · ϕ‖L2(Ω) ≤ c1(1 + τ−
1
2 ) · e−λ1τ · ‖ϕ‖L2(Ω) for all τ > 0 and any ϕ ∈ C1(Ω̄;Rn)

such that ϕ · ν = 0 on ∂Ω (4.16)

(cf. e.g. [28, Lemma 1.3]).
We next let h(x, t) := u(x, t)∇v(x, t) for x ∈ Ω̄ and t > 0, and note that according to Lemma 3.6 we
can find c2 > 0 such that

‖h(·, t)‖L2(Ω) ≤ c2 for all t > 0, (4.17)

whereas Lemma 3.6 combined with Lemma 4.3 entails that

‖h(·, t)‖L2(Ω) → 0 as t→ ∞. (4.18)

Now in order to prove (4.14) we let ε > 0 be given and can thereupon choose t0 > 0 large enough such
that

e−λ1t‖u0 − u0‖L2(Ω) <
ε

3
for all t > t0 (4.19)

as well as

c1c2 ·

∫ ∞

t
2

(1 + σ−
1
2 ) · e−λ1σdσ <

ε

3
for all t > t0, (4.20)
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and such that furthermore

c1‖h(·, t)‖L2(Ω) ·

∫ ∞

0
(1 + σ−

1
2 ) · e−λ1σdσ <

ε

3
for all t >

t0

2
, (4.21)

where in achieving the latter we make use of (4.18).
Then since constants are invariant under the action of et∆, we have et∆u0 ≡ u0 for all t > 0 and thus
can represent u according to

u(·, t)− u0 = et∆(u0 − u0)−

∫ t

0
e(t−s)∆∇ · h(·, s)ds, for all t > 0.

Here we apply (4.16) to estimate

‖u(·, t)−u0‖L2(Ω) ≤ ‖et∆(u0−u0)‖L2(Ω)+c1

∫ t

0

(

1+(t−s)−
1
2

)

·e−λ1(t−s)·‖h(·, s)‖L2(Ω)ds for all t > 0,

(4.22)
where due to (4.15) and (4.19) we have

‖et∆(u0 − u0)‖L2(Ω) ≤ e−λ1t‖u0 − u0‖L2(Ω) <
ε

3
for all t > t0. (4.23)

Moreover, (4.17) and (4.20) ensure that

c1

∫ t
2

0

(

1 + (t− s)−
1
2

)

· e−λ1(t−s) · ‖h(·, s)‖L2(Ω)ds ≤ c1c2

∫ t
2

0

(

1 + (t− s)−
1
2

)

· e−λ1(t−s)ds

= c1c2

∫ t

t
2

(1 + σ−
1
2 ) · e−λ1σdσ

<
ε

3
for all t > t0, (4.24)

while from (4.18) and (4.21) we infer that

c1

∫ t

t
2

(

1 + (t− s)−
1
2

)

· e−λ1(t−s) · ‖h(·, s)‖L2(Ω)ds

≤ c1 · sup
s> t

2

‖h(·, s)‖L2(Ω) ·

∫ t

t
2

(

1 + (t− s)−
1
2

)

· e−λ1(t−s)ds

= c1 · sup
s> t

2

‖h(·, s)‖L2(Ω) ·

∫ t
2

0
(1 + σ−

1
2 ) · e−λ1σdσ

≤ c1 · sup
s> t

2

‖h(·, s)‖L2(Ω) ·

∫ ∞

0
(1 + σ−

1
2 ) · e−λ1σdσ

≤
ε

3
for all t > t0.

Along with (4.23), (4.24) and (4.22), this shows (4.14) and thus completes the proof. �

Now the above convergence property has a straightforward consequence for z.
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Lemma 4.5 The fourth component of the solution of (1.3) satisfies

‖z(·, t)− u0‖L∞(Ω) → 0 as t→ ∞ (4.25)

with u0 determined by (1.5).

Proof. As a consequence of Lemma 3.6, we can find c1 > 0 such that

‖u(·, t)− u0‖L∞(Ω) ≤ c1 for all t > 0. (4.26)

Now Lemma 4.4 says that given ε > 0 we can fix some sufficiently large t0 > 0 such that

‖u(·, t)− u0‖L∞(Ω) <
ε

4
for all t >

t0

2
, (4.27)

where enlarging t0 if necessary we can also achieve that

‖z0‖L∞(Ω) · e
−t <

ε

4
for all t > t0 (4.28)

and
u0 · e

−t <
ε

4
for all t > t0 (4.29)

as well as
c1 · e

− t
2 <

ε

4
for all t > t0. (4.30)

By the variation-of-constants representation of z, we can write

z(·, t)− u0 = e−tet∆z0 +

∫ t

0
e−(t−s)e(t−s)∆

(

u(·, s)− u0

)

ds

+

∫ t

0
e−(t−s)e(t−s)∆u0ds − u0 for all t > 0, (4.31)

and use the maximum principle and (4.28) in estimating

‖e−tet∆z0‖L∞(Ω) ≤ e−t‖z0‖L∞(Ω) <
ε

4
for all t > t0. (4.32)

As e(t−s)∆u0 ≡ u0, by (4.29) we moreover have

∥

∥

∥

∥

∫ t

0
e−(t−s)e(t−s)∆u0ds − u0

∥

∥

∥

∥

L∞(Ω)

=

∣

∣

∣

∣

∫ t

0
e−(t−s)ds− 1

∣

∣

∣

∣

· u0

= e−tu0

<
ε

4
for all t > t0. (4.33)

Finally, again by means of the maximum principle we obtain

∥

∥

∥

∥

∫ t

0
e−(t−s)e(t−s)∆

(

u(·, s)− u0

)

ds

∥

∥

∥

∥

L∞(Ω)

≤

∫ t

0
e−(t−s)‖u(·, s)− u0‖L∞(Ω)ds for all t > 0, (4.34)
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where from (4.26) and (4.30) we know that

∫ t
2

0
e−(t−s)‖u(·, s)− u0‖L∞(Ω)ds ≤ c1

∫ t
2

0
e−(t−s)ds

= c1(e
− t

2 − e−t)

<
ε

4
for all t > t0, (4.35)

and where (4.27) guarantees that

∫ t

t
2

e−(t−s)‖u(·, s)− u0‖L∞(Ω)ds ≤
ε

4
·

∫ t

t
2

e−(t−s)ds

=
ε

4
· (1− e−

t
2 )

<
ε

4
for all t > t0. (4.36)

Inserting (4.32)-(4.36) into (4.31) yields (4.25). �

Whenever the limit in Lemma 4.5 is nontrivial, we can finally show that the monotone limit of w(·, t)
as t→ ∞ actually must be zero.

Lemma 4.6 Suppose that u0 6≡ 0. Then

‖w(·, t)‖L∞(Ω) → 0 as t→ ∞. (4.37)

Proof. Since
∫

Ω u0 > 0, the uniform stabilization of z, as asserted by Lemma 4.5, enables us to
find c1 > 0 and t0 > 0 such that

z(x, t) ≥ c1 for all x ∈ Ω and t > t0.

Integrating the third equation in (1.3) with respect to the time variable, in view of Lemma 2.3 we
thus infer that

w(x, t) = w(x, t0) · exp
(

−

∫ t

t0

z(x, s)ds
)

≤ ‖w0‖L∞(Ω) · e
−c1(t−t0) for all x ∈ Ω and t > t0,

which immediately implies (4.37). �

For completing our knowledge on the asypmtotics of solutions, it remains to determine the value of
the above number L. If u0 6≡ 0, this can easily be achieved by using Lemma 4.6 in conjunction with
(2.4) and Lemma 4.3.

Lemma 4.7 Suppose that u0 6≡ 0. Then the number L provided by Lemma 4.2 satisfies

L = v0 + w0, (4.38)

where v0 and w0 are given by (1.5).
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Proof. According to (2.4) and Lemma 4.6, we obtain that

∫

Ω
v(x, t)dx→

∫

Ω
v0(x)dx+

∫

Ω
w0(x)dx as t→ ∞.

On the other hand, Lemma 4.3 shows that

∫

Ω
v(x, t)dx→ |Ω|L as t→ ∞.

Combining these relations immediately yields (4.38). �

Now our main result on stabilization is evident.

Proof of Theorem 1.2. We only need to collect Lemma 4.4, Lemma 4.3, Lemma 4.7, Lemma 4.6
and Lemma 4.5. �

Remark 4.8 By straightforward adaptation, for the corresponding variant of (1.3) given by







































ut = d1∆u−∇ · (χu∇v), x ∈ Ω, t > 0,

vt = d2∆v + αwz, x ∈ Ω, t > 0,

wt = −βwz, x ∈ Ω, t > 0,

zt = d4∆z − γz + δu, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

(4.39)

with positive parameters d1, d2, d4, χ, α, β, γ, δ > 0, one can derive similar statements on global
existence and asymptotic stabilization. In this general setting, the convergence results then read

u(x, t) → u0, v(x, t) → v0 +
α

β
w0, w(x, t) → 0 and z(x, t) → δu0,

uniformly with respect to x ∈ Ω, whenever u0 6≡ 0.

Remark 4.9 An interesting question left open in this paper concerns the respective rates of conver-
gence in Theorem 1.2, which is basically due to the fact that our approach is based on a compactness
method. The only evident implication of our results concerns the solution component w, for which it
is clear that according to the uniform convergence property of z, given any ε > 0 one can find Cε > 0
such that

w(x, t) ≤ Cε · e
−(u0−ε)t for all t > t0.
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[20] Szymańska, Z., Morales-Rodrigo, C., Lachowicz, M., Chaplain, M.A.J.: Mathematical
modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models
Methods Appl. Sci. 19, 257-281 (2009)

[21] Tao, Y.: Global existence of classical solutions to a combined chemotaxis-haptotaxis model with
logistic source, J. Math. Anal. Appl. 354, 60-69 (2009)

[22] Tao, Y.: Global existence for a haptotaxis model of cancer invasion with tissue remodeling.
Nonlinear Anal. Real World Appl. 12, 418-435 (2011)

[23] Tao, Y., Wang, M.: A combined chemotaxis-haptotaxis system: The role of logistic source.
SIAM J. Math. Anal. 41, 1533-1558 (2009)

[24] Tao, Y., Winkler, M.: Boundedness and stabilization in a multi-dimensional chemotaxis-
haptotaxis model. Proc. Roy. Soc. Edinburgh Sect. A, 144, 1067-1084 (2014)

[25] Tao, Y., Winkler, M.: Dominance of chemotaxis in a chemotaxis-haptotaxis model. Nonlin-
earity 27, 1225-1239 (2014)

[26] Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional
chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differential Equa-
tions 257, 784-815 (2014)

[27] Walker, C., Webb, G.F.: Global existence of classical solutions for a haptotaxis model. SIAM
J. Math. Anal. 38, 1694-1713 (2007)

[28] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel
model. J. Differential Equations 248, 2889-2905 (2010)

[29] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel
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