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Abstract

This paper is concerned with radially symmetric solutions of the parabolic-elliptic version of the
Keller-Segel system with flux limitation, as given by







ut = ∇ ·
( u∇u
√

u2 + |∇u|2
)

− χ∇ ·
( u∇v
√

1 + |∇v|2
)

,

0 = ∆v − µ+ u,

(⋆)

under the initial condition u|t=0 = u0 > 0 and no-flux boundary conditions in a ball Ω ⊂ R
n, where

χ > 0 and µ := 1
|Ω|

∫

Ω
u0. A previous result[8] has asserted global existence of bounded classical

solutions for arbitrary positive radial initial data u0 ∈ C3(Ω̄) when either n ≥ 2 and χ < 1, or
n = 1 and

∫

Ω
u0 <

1√
(χ2−1)+

.

This present paper shows that these conditions are essentially optimal: Indeed, it is shown that if
the taxis coefficient satisfies χ > 1, then for any choice of

{

m > 1√
χ2−1

if n = 1,

m > 0 is arbitrary if n ≥ 2,

there exist positive initial data u0 ∈ C3(Ω̄) satisfying
∫

Ω
u0 = m which are such that for some

T > 0, (⋆) possesses a uniquely determined classical solution (u, v) in Ω× (0, T ) blowing up at time
T in the sense that lim suptրT ‖u(·, t)‖L∞(Ω) = ∞.

This result is derived by means of a comparison argument applied to the doubly degenerate scalar
parabolic equation satisfied by the mass accumulation function associated with (⋆).
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1 Introduction

Flux-limited Keller-Segel systems. This paper presents a continuation of the analytical study
[8] of a flux limited chemotaxis model recently derived as a development of the classical pattern
formation model proposed by Keller and Segel ([30]) to model collective behavior of populations
mediated by a chemoattractant. In a general form, this model describes the spatio-temporal evolution
of the cell density u = u(x, t) and the chemoattractant concentration v = v(x, t) by means of the
parabolic system



















ut = ∇ ·
(

Du(u, v)
u∇u

√

u2 + |∇u|2
− S(u, v)

u∇v
√

1 + |∇v|2

)

+H1(u, v),

vt = Dv∆v +H2(u, v),

(1.1)

where Du and Dv denote the respective diffusivity terms, S represents the chemotactic sensitivity and
H1 and H2 account for mechanisms of proliferation, degradation, and possibly also interaction. In
comparison to the original Keller-Segel system, besides including cell diffusivity inhibited at small den-
sities and hence supporting finite propagation speeds, the main innovative aspect in (1.1) apparently
consists in the choice of limited diffusive and cross-diffusive fluxes in the first equation by a dynamics
which sensitive to gradients.

The heuristic interpretation of the flux limited nonlinearity in the diffusion terms is induced by the
ability that living entities, in general self-propelled particles, show to perceive not only local density,
but also gradients. This particular feature characterizes cells ([41]), but also human crowds ([5], [4]).
This special sensitivity can be introduced in the modeling at the microscopic scale, namely at the
scale of cells, thus leading to the description of multicellular systems by equations obtained by suit-
able generalizations of the approach of the mathematical kinetic theory.

The state of the system is, in this approach, defined by a probability one particle distribution function
over the microscopic state, which includes position and velocity, of the interacting enties, while cell-cell
interactions are modeled by theoretical tools of stochastic game theory. Interactions are nonlinearly
addititive, generally nonlocal, and can include the aforementioned sensitivity ability. Once the kinetic-
type model has been derived, the study developed in [6] has shown that the particular mathematical
structure in (1.1) can be derived by asymptotic limits and time-space scaling. The devlopment of
these asymptotic limits are inspired by the classical Hilbert method known in the kinetic theory of
classical particles ([18]).

The interest in the qualitative analysis of solutions to phenomenologically derived models for taxis
processes ([25]) has generated a variety of interesting analytical results reviewed in [26] and more
recently in [7]. Within this general framework the role of nonlinear diffusion and, specifically, of flux
limited diffusion, has posed some challenging problems at various levels. Experimental activity to-
ward a thorough understanding of this specific type of mechanism is deeply analyzed in [41], while so
far the mathematical literature apparently has concentrated on studying such flux-limited diffusion
processes either without any interaction with futher processes, or with comparatively mild couplings
such as to zero-order source terms e.g. of Fisher-KPP type; corresponding results on existence and on
propagation properties can be found in [1], [2], [3], [14], [15] and [16], for instance (cf. also the survey
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[13]).

Blow-up in semilinear and quasilinear chemotaxis systems. The goal of the present work is
to clarify to what extent the introduction of such flux limitations may suppress phenomena of blow-
up, as known to constitute one of the most striking characteristic features of the classical Keller-Segel
system

{

ut = ∆u−∇ · (u∇v),
vt = ∆v − v + u,

(1.2)

and also of several among its derivatives. Indeed, the Neumann initial-boundary value problem for
(1.2) is known to possess solutions blowing up in finite time with respect to the spatial L∞ norm of u
when either the spatial dimension n satisfies n ≥ 3 ([45]), or when n = 2 and the initially present – and
thereafter conserved – total mass

∫

u(·, 0) of cells is suitably large ([24], [34]). On the other hand, in
the case n = 2 appropriately small values of

∫

u(·, 0) warrant global existence of bounded solutions [36],
whereas if n ≥ 3 then global bounded solutions exist under alternative smallness conditions involving
the norms of (u(·, 0), v(·, 0)) in L

n
2 ×W 1,n ([17], [42]). In the associated spatially one-dimensional

problem, global bounded solutions exist for all reasonably regular initial data, thus reflecting absence
of any blow-up phenomenon in this case ([38]).

The knowledge on corresponding features of quasilinear relatives of (1.2) seems most developed for
models involving density-dependent variants in the diffusivity and the chemotactic sensitivity. For
instance, if Du and S are smooth positive functions on [0,∞), then the Neumann problem for

{

ut = ∇ · (Du(u)∇u)−∇ · (S(u)∇v),
vt = ∆v − v + u,

(1.3)

possesses some unbounded solutions whenever S(u)
Du(u)

≥ Cu
2
n
+ε for all u ≥ 1 and some C > 0 and ε > 0

([44]); beyond this, refined studies have given additional conditions on Du and S under which this
singularity formation must occur within finite time, and have moreover identified some particular cases
of essentially algebraic behavior of both Du and S in which these explosions must occur in infinite time
only ([20], [21], [22], see also [19] for a related example on finite-time blow-up). The optimality of the
above growth condition is indicated by a result in [40] and [28] asserting global existence of bounded

solutions in the case when S(u)
Du(u)

≤ Cu
2
n
−ε for u ≥ 1 with some C > 0 and ε > 0, provided that Du

decays at most algebraically as u→ ∞ (cf. e.g. [32], [27], [46] and [39] for some among the numerous
precedents in this direction). Besides this, a considerable literature has identified several additional
mechanisms as capable of suppressing explosions in Keller-Segel-type systems. These may consist in
certain saturation effects in the signal production process at large densities ([33], [11]) or in further
dissipation due to superlinear death effects in frameworks of logistic-type cell proliferation ([37], [43]),
for instance. A recent deep result has revealed that even the mere inclusion of transport effects by
appropriately constructed incompressible vector fields can prevent blow-up in otherwise essentially
unchanged Keller-Segel systems in spatially two- and three-dimensional settings ([31]).

As compared to this, the literature on variants of (1.2) involving modifications of the dependence of
fluxes on gradients seems quite thin. Moreover, the few results available in this direction mainly seem
to concentrate on modifications in the cross-diffusive term, essentially guided by the underlying idea
to rule out blow-up by suitable regularization of the taxis term in (1.2), as apparently justified in
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appropriate biological contexts (see the discussion in [25] as well as the analytical findings reported
there). In particular, we are not aware of any result detecting an explosion in any such context; this
may reflect the evident challenges connected to rigorously proving the occurrence of blow-up in such
complex chemotaxis systems.

Main results: Detecting blow-up under optimal conditions. The present work will reveal
that actually also the introduction of flux limitations need not necessarily suppress phenomena of
chemotactic collapse in the sense of blow-up. In order to make this manifest in a particular setting,
let us concentrate on the case when in (1.1) we have Du ≡ 1 and S ≡ const. as well as H1 ≡ 0, and in
order to simplify our analysis let us moreover pass to a parabolic-elliptic simplification thereof, thus
focusing on a frequently considered limit case of fast signal diffusion ([29]). Here we note that e.g. in
the previously discussed situations of (1.2) and (1.3), up to few exceptions ([10]) such parabolic-elliptic
variants are known to essentially share the same properties as the respective fully parabolic model
with regard to the occurrence of blow-up ([35], [9], [12], [23]).

We shall thus subsequently be concerned with the initial-boundary value problem


























ut = ∇ ·
(

u∇u√
u2+|∇u|2

)

− χ∇ ·
(

u∇v√
1+|∇v|2

)

, x ∈ Ω, t > 0,

0 = ∆v − µ+ u, x ∈ Ω, t > 0,
(

u∇u√
u2+|∇u|2

− χ u∇v√
1+|∇v|2

)

· ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.4)

in a ball Ω = BR(0) ⊂ R
n, n ≥ 1, where χ > 0 and the initial data are such that

u0 ∈ C3(Ω̄) is radially symmetric and positive in Ω̄ with ∂u0

∂ν
= 0 on ∂Ω, (1.5)

and where

µ :=
1

|Ω|

∫

Ω
u0(x)dx (1.6)

denotes the spatial average of the latter.

In fact, it has been shown in [8] that this problem is well-posed, locally in time, in the following sense.

Theorem A Let n ≥ 1, χ > 0 and Ω := BR(0) ⊂ R
n with some R > 0, and suppose that u0 complies

with (1.5). Then there exist Tmax ∈ (0,∞] and a uniquely determined pair (u, v) of positive radially
symmetric functions u ∈ C2,1(Ω̄× [0, Tmax)) and v ∈ C2,0(Ω̄× [0, Tmax)) which solve (1.4) classically
in Ω× (0, Tmax), and which are such that

if Tmax <∞ then lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (1.7)

Now in order to formulate our results and put them in perspective adequately, let us moreover recall
the following statement on global existence and boundedness in certain subcritical cases which has
been achieved in [8].

Theorem B Let Ω := BR(0) ⊂ R
n with some R > 0, and assume that u0 satisfies (1.5), and that

either
n ≥ 2 and χ < 1, (1.8)
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or

n = 1, χ > 0 and

∫

Ω
u0 < mc, (1.9)

where in the case n = 1 we have set

mc :=

{ 1√
χ2−1

if χ > 1,

+∞ if χ ≤ 1.
(1.10)

Then the problem (1.4) possesses a unique global classical solution (u, v) ∈ C2,1(Ω̄× [0,∞))×C2,0(Ω̄×
[0,∞)) which is radially symmetric and such that for some C > 0 we have

‖u(·, t)‖L∞(Ω) ≤ C and ‖v(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.11)

It is the purpose of the present work to complement the above result on global existence by showing
that in both cases n ≥ 2 and n = 1, the conditions (1.8) and (1.9) are by no means artificial and of
purely technical nature, but that in fact they are essentially optimal in the sense that if appropriate
reverse inequalities hold, then finite-time blow-up may occur. To be more precise, the main results of
this paper can be formulated as follows.

Theorem 1.1 Let n ≥ 1 and Ω := BR(0) ⊂ R
n with some R > 0, and suppose that

χ > 1, (1.12)

and that
{

m > mc if n = 1,

m > 0 is arbitrary if n ≥ 2,
(1.13)

where mc is as in (1.10). Then there exists a nondecreasing function Mm ∈ C0([0, R]) fulfilling

supr∈(0,R)
Mm(r)
|Br(0)| <∞ and Mm(R) ≤ m, which is such that whenever u0 satisfies (1.5) as well as

∫

Br(0)
u0(x)dx ≥Mm(r) for all r ∈ [0, R], (1.14)

the solution (u, v) of (1.4) blows up in finite time in the sense that in Theorem A we have Tmax <∞
and

lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (1.15)

Indeed the set of all initial data leading to explosions in (1.4) is considerably large in that it firstly
contains an open subset with respect to the norm in L∞(Ω), and that it secondly possesses some
density property within the set of all initial data admissible in the sense of (1.5).

Proposition 1.2 Let n ≥ 1, R > 0, Ω := BR(0) ⊂ R
n and χ > 1.

i) Let m > 0 satisfy (1.13). Then there exists a radially symmetric positive um ∈ C∞(Ω̄) wich is such
that ∂um

∂ν
= 0 on ∂Ω and

∫

Ω um = m, and for which it is possible to choose ε > 0 with the property
that whenever u0 satisfies (1.5) as well as ‖u0 − um‖L∞(Ω) ≤ ε, the corresponding solution of (1.4)
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blows up in finite time.

ii) Given any u0 fulfilling (1.5), one can find functions u0k, k ∈ N, which satisfy (1.5) and u0k → u0
in Lp(Ω) as k → ∞ for all p ∈ (0, 1), and which are such that for all k ∈ N the solution of (1.4)
emanating from u0k blows up in finite time.

In comparison to the classical Keller-Segel system (1.2), these results in particular mean that when
n ≥ 2, the possible occurrence of blow-up does not go along with a critical mass phenomenon, but
that there rather exists a critical sensitivity parameter, namely χ = 1, which distinguishes between
existence and nonexistence of blow-up solutions. On the other hand, if n = 1, then for any χ > 1,
beyond this there exists a critical mass phenomenon, in quite the same flavor as present in (1.2) when
n = 2.

Plan of the paper. Due to the apparent lack of an adequate global dissipative structure, a blow-up
analysis for (1.4) cannot be built on the investigation of any energy functional, as possible in both the
original Keller-Segel system (1.2) and its quasilinear variant (1.3) ([45], [34], [20]). Apart from this,
any reasoning in this direction needs to adequately cope with the circumstance that as compared to
(1.2), in (1.4) the cross-diffusive flux is considerably inhibited wherever |∇v| is large, which seems to
prevent access to blow-up arguments based on tracking the evolution of weighted L1 norms of u such
as e.g. the moment-like functionals considered in [35].

That blow-up may occur despite this strong limitation of cross-diffusive flux will rather be shown by a
comparison argument. Indeed, it can readily be verified (Lemma 2.1) that given a radial solution u of
(1.4) in BR × (0, T ), the mass accumulation function w = w(s, t), as defined in a standard manner by

introducing w(s, t) :=
∫ s

1
n

0 rn−1u(r, t)dr, (s, t) ∈ [0, Rn] × [0, T ), satisfies a scalar parabolic equation
which is doubly degenerate, both in space as well as with respect to the variable ws, but after all allows
for an appropriate comparison principle for certain generalized sub- and supersolutions (Lemma 5.1).

Accordingly, at the core of our analysis will be the construction of suitable subsolutions to the respec-
tive problem; in fact, we shall find such subsolutions w which undergo a finite-time gradient blow-up at
the origin in the sense that for some T > 0 we have sups∈(0,Rn)

w(s,t)
s

→ ∞ as tր T , implying blow-up
of u before or at time T whenever w(·, 0) lies above w(·, 0). These subsolutions will have a composite
structure to be described in Lemma 3.2, matching a nonlinear and essentially parabola-like behavior
in a small ball around the origin to an affine linear behavior in a corresponding outer annulus, the
latter increasing so as to coincide with the whole domain BR at the blow-up time of w. The technical
challenge, to be addressed in Section 3, will then consist in carefully adjusting the parameters in the
definition of w in such a manner that the resulting function in fact has the desired blow-up property,
where the cases n ≥ 2 and n = 1 will require partially different arguments (Lemma 3.11 and Lemma
3.12). The statement from Theorem 1.1 will thereafter result in Section 4.

2 A parabolic problem satisfied by the mass accumulation function

Throughout the sequel, we fix R > 0 and consider (1.4) in the spatial domain Ω := BR(0) ⊂ R
n, n ≥ 1.

Then following a standard procedure ([29]), given a radially symmetric solution (u, v) = (u(r, t), v(r, t))
of (1.4) in Ω× [0, T ) for some T > 0, we consider the associated mass accumulation function w given
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by

w(s, t) :=

∫ s
1
n

0
rn−1u(r, t)dr for s ∈ [0, Rn] and t ∈ [0, T ). (2.1)

In order to describe a basic property of w naturally inherited from (u, v) through (1.4), let us further-
more introduce the parabolic operator P formally given by

(Pw̃)(s, t) := w̃t − n2 · s2−
2
n w̃sw̃ss

√

w̃2
s + n2s2−

2
n w̃2

ss

− nχ · (w̃ − µ
n
s) · w̃s

√

1 + s
2
n
−2
(

w̃ − µ
n
s
)2
. (2.2)

We note here that for T > 0, the above expression Pw̃ is indeed well-defined for all t ∈ (0, T ) and
a.e. s ∈ (0, Rn) if, for instance, w̃ ∈ C1((0, Rn)×(0, T )) is such that ws > 0 throughout (0, Rn)×(0, T )
and w̃(·, t) ∈W 2,∞((0, Rn)) for all t ∈ (0, T ).
Now the function w in (2.1), which clearly complies with these requirements due to smoothness and
positivity of u, in fact solves an appropriate initial-boundary value problem associated with P:

Lemma 2.1 Let n ≥ 1 and χ > 0, and suppose that (u, v) is a positive radially symmetric classical
solution of (1.4) in Ω× (0, T ) for some T > 0 and some nonnegative radially symmetric u0 ∈ C0(Ω̄).
Then the function w defined in (2.1) satisfies















(Pw)(s, t) = 0, s ∈ (0, Rn), t ∈ (0, T ),

w(0, t) = 0, w(Rn, t) = m
ωn
, t ∈ (0, T ),

w(s, 0) =
∫ s

1
n

0 rn−1u0(r)dr, s ∈ [0, Rn],

(2.3)

where m :=
∫

Ω u0(x)dx, and where ωn denotes the (n− 1)-dimensional measure of the unit sphere in
R
n.

Proof. Omitting the arguments r, t and s := rn in expressions like u(r, t) and w(s, t), upon an
integration in the radial version of the first equation in (1.4) we obtain

wt =

∫ s
1
n

0
rn−1ut(r, t)dr

=

∫ s
1
n

0

{

(

rn−1 uur
√

u2 + u2r

)

r
− χ

(

rn−1 uvr
√

1 + v2r

)

r

}

dr

= (s
1
n )n−1 · uur

√

u2 + u2r
− χ · u · (rn−1vr)

√

1 + v2r
(2.4)

for s ∈ (0, Rn) and t ∈ (0, T ). Here in order to replace vr, we integrate the second equation in (1.4),
that is, the identity (rn−1vr)r = µrn−1 − rn−1u, to see that

rn−1vr =
µ

n
· rn −

∫ r

0
ρn−1u(ρ, t)dρ =

µ

n
· s− w.
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Furthermore (2.1) can be used to derive

u = nws and ur = n2s1−
1
nwss,

to infer from (2.4) that

wt = s1−
1
n · nws · n2s1−

2
nwss

√

n2w2
s + n4s2−

2
nw2

ss

− χ · nws · (µns− w)
√

1 +
(

µ
n
s

1
n − s

1
n
−1w

)2

= n2 · s2−
2
nwswss

√

w2
s + n2s2−

2
nw2

ss

+ nχ · (w − µ
n
s) · ws

√

1 +
(

s
1
n
−1w − µ

n
s

1
n

)2

for s ∈ (0, Rn) and t ∈ (0, T ). This proves the parabolic equation in (2.3), whereas the statemets
therein concerning boundary and initial conditions can easily be checked using (2.1) and the mass
conservation property

∫

Ω u(x, t)dx =
∫

Ω u0(x)dx = m for t ∈ (0, T ).

3 Construction of subsolutions for (2.3)

The goal of this section is to construct subsolutions w for the parabolic operator introduced in (2.2)
which after some finite time T exhibit a phenomenon of gradient blow-up in the strong sense that

sup
s∈(0,Rn)

w(s, t)

s
→ +∞ as tր T.

Since by means of a suitable comparison principle (cf. Lemma 5.1 in the appendix) we will be able to
assert that w ≥ w in [0, Rn] × [0, T ), this will entail a similar conclusion for w and hence prove that
u cannot exist as a bounded solution in Ω̄× [0, T ].

Our comparison functions will be chosen from a family of explicitly given functions w, the general
form of which will be described in Section 3.1. These functions will exhibit a two-component coarse
structure, as reflected in substantially different definitions in a temporally shrinking inner region near
the spatial origin, and a corresponding outer part. According to a further fine structure in the inner
subdomain, our verification of the desired subsolution properties will be split into three parts, to be
detailed in Section 3.2, Section 3.3 and Section 3.4, respectively.

3.1 Constructing a family of candidates

Our construction will involve several parameters. The first of these is a number λ ∈ (0, 1) which
eventually, as we shall see later, can be chosen arbitrarily when n ≥ 2 (see Lemma 3.12), but needs
to be fixed appropriately close to 1 in the case n = 1, depending on the size of the mass m =

∫

Ω u0
(Lemma 3.11). Leaving this final choice open at this point, given any λ ∈ (0, 1) we abbreviate

aλ :=
(1− λ)2

2λ
and bλ :=

3λ− 1

2λ
(3.1)
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and introduce

ϕ(ξ) :=

{

λξ2 if ξ ∈ [0, 1],

1− aλ
ξ−bλ

if ξ > 1.
(3.2)

It can then easily be verified that ϕ belongs to C1([0,∞)) ∩W 2,∞((0,∞)) ∩ C2([0,∞) \ {1}) with

ϕ′(ξ) =

{

2λξ if ξ ∈ [0, 1),
aλ

(ξ−bλ)2
if ξ > 1,

(3.3)

and

ϕ′′(ξ) =

{

2λ if ξ ∈ [0, 1),

− 2aλ
(ξ−bλ)3

if ξ > 1,
(3.4)

whence in particular ϕ′(ξ) > 0 for all ξ ≥ 0.

Let us furthermore introduce a collection of time-dependent parameter functions which play a crucial
role throughout the sequel.

Lemma 3.1 Let n ≥ 1, m > 0, λ ∈ (0, 1), K > 1, T > 0 and B ∈ C1([0, T )) be such that B(t) ∈ (0, 1)
and K

√

B(t) < Rn for all t ∈ [0, T ), and that moreover

B(t) ≤ K2

4(aλ + bλ)2
for all t ∈ [0, T ), (3.5)

where aλ and bλ are as in (3.1). Then

A(t) :=
m

ωn
· K

2 − 2bλK
√

B(t) + b2λB(t)

N(t)
, t ∈ [0, T ), (3.6)

as well as
D(t) :=

m

ωn
· aλ

N(t)
, t ∈ [0, T ), (3.7)

and

E(t) :=
m

ωn
−RnD(t) ≡ m

ωn
· K

2 − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

N(t)
, t ∈ [0, T ), (3.8)

with
N(t) := K2 + aλR

n − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t), t ∈ [0, T ), (3.9)

are all well-defined, and we have

A′(t) =
m

ωn
·

(

K√
B(t)

− bλ

)

·
(

aλK
2 − aλbλR

n
)

·B′(t)

N2(t)
(3.10)

and

D′(t) =
m

ωn
·
aλ(aλ + bλ) ·

(

K√
B(t)

− bλ

)

·B′(t)

N2(t)
(3.11)

for all t ∈ (0, T ).
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Proof. Firstly, thanks to (3.5) we have

2(aλ + bλ)

K

√

B(t) ≤ 1 for all t ∈ [0, T ),

which in particular guarantees that the denominators in (3.6), (3.7) and (3.8) are all positive and
hence all these functions well-defined throughout [0, Rn]× [0, T ). Moreover, differentiating in (3.6) we
can compute

ωn

m
·N2(t)A′(t)

=

{

− bλKB
′(t)

√

B(t)
+ b2λB

′(t)

}

·
{

K2 + aλR
n − 2(aλ + bλ)K

√

B(t) + (aλ + bλ)bλB(t)

}

−
{

K2 + 2bλK
√

B(t) + b2λB(t)

}

·
{

− (aλ + bλ)KB
′(t)

√

B(t)
+ (aλ + bλ)bλB

′(t)

}

= B′(t) ·
{

K
√

B(t)
− bλ

}

·
{

− bλ ·
{

K2 + aλR
n − 2(aλ + bλ)K

√

B(t) + (aλ + bλ)bλB(t)

}

+(aλ + bλ) ·
{

K2 − 2bλK
√

B(t) + b2λB(t)

}

}

= B′(t) ·
{

K
√

B(t)
− bλ

}

·
{

aλK
2 − aλbλR

n

}

for all t ∈ (0, T ),

which establishes (3.10). Similarly, differentiation in (3.7) readily yields (3.11). �

With these definitions, we can now specify the basic structure of our comparison functions w to be
used in the sequel. Here a second parameter K enters, to be chosen suitably large finally, as well as
a parameter function B depending on time. In combination, these two ingredients determine a line
s = K

√

B(t) in the (s, t)-plane which will separate an inner from an outer region and thereby imply
a composite structure of w as follows.

Lemma 3.2 Let n ≥ 1, m > 0, λ ∈ (0, 1) and K > 1, and suppose that T > 0 and that B ∈ C1([0, T ))
is such that (3.5) holds as well as B(t) ∈ (0, 1) and K

√

B(t) < Rn for all t ∈ [0, T ). Let

w(s, t) :=

{

win(s, t) if t ∈ [0, T ) and s ∈ [0,K
√

B(t)],

wout(s, t) if t ∈ [0, T ) and s ∈ (K
√

B(t), Rn],
(3.12)

where
win(s, t) := A(t)ϕ(ξ), ξ = ξ(s, t) :=

s

B(t)
, t ∈ [0, T ), s ∈ [0,K

√

B(t)], (3.13)

with ϕ as in (3.2) and A as in (3.6), and where

wout(s, t) := D(t)s+ E(t) for t ∈ [0, T ) and s ∈ (K
√

B(t), Rn], (3.14)
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with D and E taken from (3.7) and (3.8).
Then w is well-defined and continuously differentiable in [0, Rn] × [0, T ) and in addition satisfies
w(·, t) ∈W 2,∞((0, Rn)) ∩ C2([0, Rn] \ {B(t),K

√

B(t)}) for all t ∈ [0, T ) as well as

w(0, t) = 0 and w(Rn, t) =
m

ωn
for all t ∈ (0, T ). (3.15)

Proof. We first note that for each t ∈ [0, T ), both intervals [0,K
√

B(t)] and (K
√

B(t), Rn] in
(3.12) are not empty due to our assumptions that B(t) > 0 and K

√

B(t) < Rn, and that furthermore
both statements in (3.15) are direct consequences of (3.8) and the fact that ϕ(0) = 0 according to
(3.2).

To establish the claimed regularity properties of w, in view of the above observation that ϕ ∈
C1([0,∞)) ∩ W 2,∞((0,∞)) ∩ C2([0,∞) \ {1}) we only need to make sure that w, ws and wt are
continuous along the line where s = K

√

B(t), which amounts to showing that

A(t) · ϕ
( K
√

B(t)

)

= D(t) ·K
√

B(t) + E(t) for all t ∈ [0, T ) (3.16)

and
A(t)

B(t)
· ϕ′
( K
√

B(t)

)

= D(t) for all t ∈ [0, T ) (3.17)

as well as

A′(t) ·ϕ
( K
√

B(t)

)

− KA(t)B′(t)
√

B(t)
3 ·ϕ′

( K
√

B(t)

)

= D′(t) ·K
√

B(t) +E′(t) for all t ∈ [0, T ). (3.18)

To derive (3.16), we use (3.2) to see that

A(t) · ϕ
( K
√

B(t)

)

+
(

Rn −K
√

B(t)
)

·D(t)

=
m

ωn
· (K − bλ

√

B(t))2

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)
·

K√
B(t)

− aλ − bλ

K√
B(t)

− bλ

+(Rn −K
√

B(t)) · m
ωn

· a

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

=
m

ωn
·
K−(aλ+bλ)

√
B(t)

K−bλ
√

B(t)
· (K − bλ

√

B(t))2 + aλ(R
n −K

√

B(t))

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

=
m

ωn
· K

2 − bλK
√

B(t)− (aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t) + aλR
n − aλK

√

B(t)

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

=
m

ωn
for all t ∈ [0, T ),
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which due to (3.8) means that indeed

A(t) · ϕ
( K
√

B(t)

)

−D(t) ·K
√

B(t)− E(t) = A(t) · ϕ
( K
√

B(t)

)

+ (Rn −K
√

B(t))D(t)− m

ωn
= 0

for all t ∈ [0, T ). Next, from (3.7) and (3.6) it immediately follows that

D(t)

A(t)
=

1

K2
· aλ

1− 2bλ
K

√

B(t) +
b2
λ

K2B(t)

=
aλ

K2 − 2bλK
√

B(t) + b2λB(t)

=
aλ

B(t)
(

K√
B(t)

− bλ

)2

=
1

B(t)
· ϕ′
( K
√

B(t)

)

for all t ∈ [0, T ),

which establishes (3.17).
Finally, in verifying (3.18) we make use of (3.16) and (3.17) as well as (3.6), (3.7), (3.8), (3.10) and
(3.11) to see that

A′(t) · ϕ
( K
√

B(t)

)

− KA(t)B′(t)
√

B(t)
3 · ϕ′

( K
√

B(t)

)

−D′(t) ·K
√

B(t) + E′(t)

= A′(t) ·
m
ωn

−
(

Rn −K
√

B(t)
)

·D(t)

A(t)
− KA(t)B′(t)

√

B(t)
3 · B(t)D(t)

A(t)
+
(

Rn −K
√

B(t)
)

·D′(t)

=
m

ωn
·

(

K√
B(t)

− bλ

)

· (aλK2 − aλbλR
n) ·B′(t)

N2(t)
·
{

m

ωn
· K

2 − 2bλK
√

B(t) + b2λB(t)

N(t)

}−1

×

×
{

m

ωn
−
(

Rn −K
√

B(t)
)

· m
ωn

· aλ

N(t)

}

−KB
′(t)

√

B(t)
· m
ωn

· aλ

N(t)

+
(

Rn −K
√

B(t)
)

· m
ωn

·
aλ(aλ + bλ)

(

K√
B(t)

− bλ

)

·B′(t)

N2(t)

=
m

ωn
· aλB

′(t)
√

B(t)N2(t)
·
{

(

K − bλ
√

B(t)
)

·
(

K2 − bλR
n
)

(

K − b
√

B(t)
)2 ·

[

N(t)−
(

Rn −K
√

B(t)
)

· aλ
]

−KN(t) + (aλ + bλ)
(

Rn −K
√

B(t)
)

·
(

K − bλ
√

B(t)
)

}
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=
m

ωn
· aλB

′(t)
(

K − bλ
√

B(t)
)

√

B(t)N2(t)
·
{

(

K2 − bλR
n
)

·
[

K2 − (aλ + 2bλ)K
√

B(t) + (aλ + bλ)bλB(t)
]

−K
(

K − b
√

B(t)
)

·
[

K2 + aλR
n − 2(aλ + bλ)K

√

B(t) + (aλ + bλ)bλB(t)
]

+(aλ + bλ)
(

Rn −K
√

B(t)
)

·
(

K − bλ
√

B(t)
)2
}

for all t ∈ (0, T ). Since it can be checked in a straightforward manner that herein we have

(

K2 − bλR
n
)

·
[

K2 − (aλ + 2bλ)K
√

B(t) + (aλ + bλ)bλB(t)
]

−K
(

K − b
√

B(t)
)

·
[

K2 + aλR
n − 2(aλ + bλ)K

√

B(t) + (aλ + bλ)bλB(t)
]

+(aλ + bλ)
(

Rn −K
√

B(t)
)

·
(

K − bλ
√

B(t)
)2

= 0,

this shows (3.18) and thereby completes the proof. �

3.2 Subsolution properties: Outer region

Let us first make sure that if the function B entering the above definition of w is suitably small and
satisfies an appropriate differential inequality, then w becomes a subsolution in the corresponding
outer region addressed in (3.12).

Lemma 3.3 Let n ≥ 1, χ > 0,m > 0, λ ∈ (0, 1),K > 1 and B0 ∈ (0, 1) be such that K
√
B0 < Rn and

B0 ≤
K2

16(aλ + bλ)2
(3.19)

with aλ and bλ given by (3.1). Then if for some T > 0, B ∈ C1([0, T )) is positive and nonincreasing
and such that







B′(t) ≥ − nmχK

2(aλ+bλ)ωnRn

√

1+K
2
n−2 m2

ω2
n

·B1− 1
2n (t), t ∈ (0, T ),

B(0) ≤ B0,

(3.20)

the function wout defined in (3.14) satisfies

(Pwout)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn) (3.21)

with P given by (2.2).

Proof. Again using that E(t) = m
ωn

−RnD(t) for all t ∈ (0, T ) by (3.8), we have

wout(s, t) = D(t)s+E(t) =
m

ωn
−D(t) · (Rn − s) for all t ∈ (0, T ) and s ∈ (K

√

B(t), Rn), (3.22)
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so that recalling (3.11) we obtain

(wout)t(s, t) = −D′(t) · (Rn − s)

= −m

ωn
·
aλ(aλ + bλ) ·

{

K√
B(t)

− bλ

}

N2(t)
·B′(t) · (Rn − s) (3.23)

for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn), where N(t) is as in (3.9) for such t.
In order to compensate the positive contribution of this term (wout)t to Pwout by a suitably negative
impact of the rightmost term

I(s, t) := −nχ · (wout − µ
n
s) · (wout)s

√

1 + s
2
n
−2(wout − µ

n
s)2

, t ∈ (0, T ), s ∈ (K
√

B(t), Rn), (3.24)

in (2.2), we use (3.22) and (3.7) to rewrite

wout(s, t)−
µ

n
s =

( m

ωnRn
−D(t)

)

· (Rn − s)

=
m

ωnRn
·
(

1−Rn · ωn

m
·D(t)

)

· (Rn − s)

=
m

ωnRn
·
(

1− aλR
n

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

)

· (Rn − s)

=
m

ωnRn
· K2 − 2(aλ + bλ)K

√

B(t) + (aλ + bλ)bλB(t)

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)
· (Rn − s) (3.25)

for t ∈ (0, T ) and s ∈ (K
√

B(t), Rn). As

K2 − 2(aλ + bλ)K
√

B(t) ≥ 1

2
K2 for all t ∈ (0, T ) (3.26)

by (3.19), this in particular implies that

0 < wout(s, t)−
µ

n
s ≤ m

ωnRn
·Rn =

m

ωn

and hence

(

wout(s, t)−
µ

n
s
)2

≤ m2

ω2
n

for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn).

Since moreover 1 ≤ B
1
n
−1(t) for all t ∈ (0, T ) due to the fact that B0 < 1, we can thus estimate the

denominator in (3.24) in the considered outer region according to

√

1− s
2
n
−2
(

wout(s, t)−
µ

n
s
)2

≤
√

B
1
n
−1(t) +

(

K
√

B(t)
)

2
n
−2

· m
2

ω2
n

=

√

1 +K
2
n
−2 · m

2

ω2
n

·B 1
2n

− 1
2 (t) (3.27)

14



for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn). Using (3.27) and (3.25) and that

(wout)s(s, t) = D(t) =
m

ωn
· aλ

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

for t ∈ (0, T ) and s ∈ (K
√

B(t), Rn), we thereby find that

−I(s, t) ≥ nχ ·

(

wout(s, t)− µ
n
s
)

· (wout)s(s, t)
√

1 +K
2
n
−2 · m2

ω2
n
·B 1

2n
− 1

2 (t)

=
nχ

√

1 +K
2
n
−2 · m2

ω2
n

·B 1
2
− 1

2n (t)×

× m

ωnRn
· K2 − 2(aλ + bλ)K

√

B(t) + (aλ + bλ)bλB(t)

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)
· (Rn − s)×

×m

ωn
· aλ

K2 + aλRn − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

=
m

ωn
· aλ

N2(t)
· (Rn − s) · c1 ·

{

K2 − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)
}

·B 1
2
− 1

2n (t),

for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn), with N as defined in (3.9) and

c1 :=
nmχ

ωnRn ·
√

1 +K
2
n
−2 · m2

ω2
n

.

Since evidently (wout)ss ≡ 0, combining this with (3.26) and (3.23) shows that

(Pwout)(s, t) ≤ m

ωn
· aλ

N2(t)
· (Rn − s) ·

{

{

− (aλ + bλ)K
√

B(t)
+ (aλ + bλ)bλ

}

·B′(t)

−c1 ·
{

K2 − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)
}

·B 1
2
− 1

2n (t)

}

≤ m

ωn
· aλ

N2(t)
· (Rn − s) ·

{

− (aλ + bλ)K
√

B(t)
·B′(t)− c1

2
K2B

1
2
− 1

2n (t)

}

, (3.28)

for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn), because (aλ+ bλ)bλB
′(t) ≤ 0 for all t ∈ (0, T ). In view of the

definition of c1, (3.20) warrants that herein

−(aλ + bλ)K
√

B(t)
·B′(t)− c1

2
K2B

1
2
− 1

2n (t) =
(aλ + bλ)K
√

B(t)
·
{

−B′(t)− c1K

2(aλ + bλ)
·B1− 1

2n (t)

}

≤ 0 for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn),

so that (3.21) results from (3.28). �
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3.3 Subsolution properties: Inner region

We proceed to study under which assumptions on the parameters the function w defines a subsolution
in the corresponding inner domain. To prepare our analysis, let us first compute the action of the
operator P on w in the respective region as follows.

Lemma 3.4 Let n ≥ 1, χ > 0, m > 0, λ ∈ (0, 1),K > 1 and T > 0, and suppose that B ∈ C1([0, T ))
is positive and satisfies (3.5) as well as K

√

B(t) < Rn for all t ∈ [0, T ). Then the function win defined
in (3.13) has the property that

(Pwin)(s, t) = A′(t)ϕ(ξ) +
A(t)ϕ′(ξ)
B(t)

·
{

− ξB′(t) + J1(s, t) + J2(s, t)
}

(3.29)

for all t ∈ (0, T ) and s ∈ (0,K
√

B(t)) \ {B(t)}, where ξ = ξ(s, t) = s
B(t) , P is as in (2.2) and

J1(s, t) := −n2 · ξ2−
2
nϕ′′(ξ)

√

B
4
n
−2(t)ϕ′2(ξ) + n2B

2
n
−2(t)ξ2−

2
nϕ′′2(ξ)

(3.30)

and

J2(s, t) := −nχ · A(t)ϕ(ξ)− µ
n
B(t)ξ

√

1 +B
2
n
−2(t)ξ

2
n
−2 ·

(

A(t)ϕ(ξ)− µ
n
B(t)ξ

)2
(3.31)

for t ∈ (0, T ) and s ∈ (0,K
√

B(t)) \ {B(t)}.

Proof. Since ξt = − sB′(t)
B2(t)

= − ξB′(t)
B(t) and ξs =

1
B(t) , we can compute

(win)t = A′(t)ϕ(ξ)− A(t)ξB′(t)
B(t)

· ϕ′(ξ) (3.32)

as well as

(win)s =
A(t)

B(t)
· ϕ′(ξ) and (win)ss =

A(t)

B2(t)
· ϕ′′(ξ)

for all t ∈ (0, T ) and s ∈ (0,K
√

B(t)) \ {B(t)}. Therefore,

n2 · s2−
2
n (win)s(win)ss

√

(win)2s + n2s2−
2
n (win)2ss

= n2 ·
(B(t)ξ)2−

2
n · A(t)

B(t)ϕ
′(ξ) · A(t)

B2(t)
ϕ′′(ξ)

√

(

A(t)
B(t)ϕ

′(ξ)
)2

+ n2(B(t)ξ)2−
2
n ·
(

A(t)
B2(t)

ϕ′′(ξ)
)2

=
n2A(t)ϕ′(ξ)

B(t)
· ξ2−

2
nϕ′′(ξ)

√

B
4
n
−2(t)ϕ′2(ξ) + n2B

2
n
−2(t)ξ2−

2
nϕ′′2(ξ)

=
A(t)ϕ′(ξ)
B(t)

· J1(s, t) (3.33)
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and

nχ ·

(

win − µ
n
s
)

(win)s
√

1 + s
2
n
−2
(

win − µ
n
s
)2

= nχ ·

(

A(t)ϕ(ξ)− µ
n
·B(t)ξ

)

· A(t)
B(t)ϕ

′(ξ)
√

1 + (B(t)ξ)
2
n
−2 ·

(

A(t)ϕ(ξ)− µ
n
·B(t)ξ

)2

=
A(t)ϕ′(ξ)
B(t)

· J2(s, t) (3.34)

for any such t and s. By definition (2.2) of P, (3.32)-(3.34) prove (3.29). �

In further examining (3.29), it will be convenient to know that the factor A appearing in (3.13) is
nonincreasing with time, meaning that the first summand on the right-hand side in (3.29) will be
nonpositive. It is the objective of the following lemma to assert that this can indeed be achieved by
choosing the function B to be nonincreasing and appropriately small throughout [0, T ).

Lemma 3.5 Let n ≥ 1,m > 0, λ ∈ (0, 1) and K > 1 be such that K ≥
√
bλRn, and suppose that

B0 ∈ (0, 1) satisfies

B0 ≤
K2

4(aλ + bλ)2
. (3.35)

Then if T > 0 and B ∈ C1([0, T )) is a positive and nonincreasing function fulfilling B(0) ≤ B0, for
the function A in (3.6) we have

A′(t) ≤ 0 for all t ∈ (0, T ). (3.36)

In particular,

A(t) ≥ AT :=
m

ωn
· 1

1 + aλRn

K2

for all t ∈ (0, T ). (3.37)

Proof. We recall that by (3.10), with N given by (3.9) we have

ωn

m
·N2(t)A′(t) =

( K
√

B(t)
− bλ

)

·
(

aλK
2 − aλbλR

n
)

·B′(t) for all t ∈ (0, T ). (3.38)

Here since our assumption (3.35) implies that B0 ≤ K2

b2
λ

, by monotonicity of B we obtain that

K
√

B(t)
− bλ ≥ K√

B0
− bλ ≥ 0 for all t ∈ (0, T ),

whereas the inequality K ≥
√
bλRn ensures that

aλK
2 − aλbλR

n ≥ 0.

Again using that B′ ≤ 0, from (3.38) we thus conclude that (3.36) holds, whereupon (3.37) follows
upon taking tր T in (3.6). �
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3.4 Subsolution properties: Very inner region

Now in the part very near the origin where s < B(t) and hence ξ = s
B(t) < 1, the expression J2

in (3.29), originating from the chemotactic term in (1.4), need not be positive due to (3.2) and the
linear growth of the minuend µ

n
B(t)ξ in the numerator in (3.31). Fortunately, it turns out that the

respective unfavorable effect of this to Pwin in (3.29) can be overbalanced by a suitable contribution
of J1, which in fact is negative in this region due to the convexity of ϕ on (0, 1). Under an additional
smallness assumption on B, we can indeed achieve the following.

Lemma 3.6 Let n ≥ 1, χ > 0,m > 0, λ ∈ (0, 1),K > 1 and B0 ∈ (0, 1) be such that K
√
B0 < Rn and

B0 ≤
K2

4(aλ + bλ)2
(3.39)

as well as
B0 ≤

( n

4χµ

)n

. (3.40)

Suppose that T > 0, and that B ∈ C1([0, T )) is a positive and nonincreasing function satisfying
{

B′(t) ≥ −n
4B

1− 1
n (t), t ∈ (0, T ),

B(0) ≤ B0.
(3.41)

Then the function win defined in (3.13) has the property that

(Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (0, B(t)). (3.42)

Proof. Writing ξ = s
B(t) for t ∈ (0, T ) and s ∈ (0, B(t)), in (3.29) we can estimate the taxis term

from above according to

J2(s, t) = −nχ · A(t)ϕ(ξ)− µ
n
B(t)ξ

√

1 +B
2
n
−2(t)ξ

2
n
−2
(

A(t)ϕ(ξ)− µ
n
B(t)ξ

)2

≤ nχ ·
µ
n
B(t)ξ√

1

= χµB(t)ξ for all t ∈ (0, T ) and s ∈ (0, B(t)). (3.43)

We next recall that since ξ ∈ (0, 1) whenever s ∈ (0, B(t)), and hence ϕ′(ξ) = 2λξ and ϕ′′(ξ) = 2λ, we
have

B
4
n
−2(t)ϕ′2(ξ)

B
2
n
−2ξ

2
n
−2ϕ′′2(ξ)

= B
2
n (t) · ϕ′2(ξ)

ξ
2
n
−2ϕ′′2(ξ)

= B
2
n (t) · 4λ2ξ2

ξ
2
n
−2 · 4λ2

= B
2
n (t) · ξ4− 2

n

≤ B
2
n (t)

≤ 1 for all t ∈ (0, T ) and s ∈ (0, B(t)),

18



because B ≤ B0 ≤ 1 throughout (0, T ). Now since
√

ϕ′′2(ξ) = ϕ′′(ξ) thanks to the convexity of ϕ on
(0, 1), in (3.30) we therefore find that

−J1(s, t) = n2 · ξ2−
2
nϕ′′(ξ)

√

B
4
n
−2(t)ϕ′2(ξ) + n2B

2
n
−2(t)ξ

2
n
−2ϕ′′2(ξ)

≥ n2 · ξ2−
2
nϕ′′(ξ)

√

(1 + n2)B
2
n
−2(t)ξ

2
n
−2ϕ′′2(ξ)

=
n2√
1 + n2

·B1− 1
n (t)ξ1−

1
n for all t ∈ (0, T ) and s ∈ (0, B(t)).

As
√
1 + n2 ≤ 2n and hence n2√

1+n2
≥ n

2 , due to (3.43) we thereby obtain from (3.29), applying Lemma

3.5 on the basis of (3.39), that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t)− n

2
B1− 1

n (t)ξ1−
1
n + χµB(t)ξ

= −ξ ·
{

−B′(t)− n

2
B1− 1

n (t)ξ−
1
n + χµB(t)

}

(3.44)

for all t ∈ (0, T ) and s ∈ (0, B(t)). Here, using that ξ < 1 implies that ξ−
1
n ≥ 1, and that the

restriction (3.40) on B0 ensures that

χµB(t)
n
4B

1− 1
n (t)

=
4χµ

n
·B 1

n (t) ≤ 1,

we see that

−B′(t)− n

2
B1− 1

n (t)ξ−
1
n + χµB(t) ≤ −B′(t)− n

2
B1− 1

n (t) +
n

4
B1− 1

n (t)

= −B′(t)− n

4
B1− 1

n (t) for all t ∈ (0, T ) and s ∈ (0, B(t)).

As a consequence of (3.41), the claim therefore results from (3.44). �

3.5 Subsolution properties: Intermediate region

The crucial part of our analysis will be concerned with the remaining intermediate region, that is, the
outer part of the inner domain where B(t) < s < K

√

B(t). Here the term J1 in (3.29), reflecting the
diffusion mechanism in (1.4) and thus inhibiting the tendency toward blow-up, can be estimated from
above as follows.

Lemma 3.7 Let n ≥ 1,m > 0,K > 1 and T > 0, and suppose that B ∈ C1([0, T ) is positive and such
that (3.5) holds as well as K

√

B(t) < Rn for all t ∈ [0, T ). Then writing ξ = s
B(t) , for the function

J1 introduced in (3.30) we have

J1(s, t) ≤ nB1− 1
n (t)ξ1−

1
n for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)). (3.45)
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Proof. Since ξ > 1 and hence ϕ′′(ξ) < 0 by (3.4), we have |ϕ′′(ξ)| = −ϕ′′(ξ), so that we may use
the trivial estimate

B
4
n
−2(t)ϕ′2(ξ) + n2B

2
n
−2(t)ξ2−

2
nϕ′′2(ξ) ≥ n2B

2
n
−2(t)ξ2−

2
nϕ′′2(ξ)

to infer that

J1(s, t) = n2 · ξ2−
2
n |ϕ′′(ξ)|

√

B
4
n
−2(t)ϕ′2(ξ) + n2B

2
n
−2(t)ξ2−

2
nϕ′′2(ξ)

≤ n2 · ξ2−
2
n |ϕ′′(ξ)|

√

n2B
2
n
−2(t)ξ2−

2
nϕ′′2(ξ)

= nB1− 1
n (t)ξ1−

1
n

holds for any such t and s, as claimed. �

Our goal will accordingly consist of controlling the term J1 in (3.29) from above by a suitably negative
quantity. As a first step toward this, we shall make sure that in the root appearing in the denomi-
nator of (3.31), the second summand essentially dominates the first upon appropriate choices of the
parameters.

Lemma 3.8 Let n ≥ 1,m > 0, λ ∈ (0, 1),K > 1 with K ≥
√
bλRn and B0 ∈ (0, 1) be such that

K
√
B0 < Rn and

B0 ≤
K2

4(aλ + bλ)2
. (3.46)

Suppose that for some T > 0, B ∈ C1([0, T )) is positive and nonincreasing and such that B(0) ≤ B0.
Then writing ξ = s

B(t) for s ≥ 0 and t ≥ 0, we have

1

A2(t)B
2
n
−2(t)ξ

2
n
−2ϕ2(ξ)

≤ ω2
n

λ2m2
·
(

1+
aλR

n

K2

)

·K2− 2
nB

3− 3
n

0 for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)).

(3.47)

Proof. Since K ≥
√
bλRn and (3.46) holds, we know from Lemma 3.5 that A(t) ≥ AT for all

t ∈ (0, T ) with AT given by (3.37). Moreover, the fact that ϕ is increasing on [1,∞) allows us to
estimate ϕ(ξ) ≥ 1 for all t ∈ (0, T ) and s > B(t), because for any such t and s we have ξ > 1. Hence,

1

A2(t)B
2
n
−2(t)ξ

2
n
−2ϕ2(ξ)

≤ 1

λ2A2
T

·B2− 2
n (t)ξ2−

2
n for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)).

(3.48)
As 2− 2

n
≥ 0, we may use the restriction ξ < K√

B(t)
implied by the inequality s < K

√

B(t) to estimate

ξ2−
2
n ≤ K2− 2

nB1− 1
n (t) for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)).

Therefore, (3.47) is a consequence of (3.48). �

In order to prepare an estimate for the numerator in (3.31) from below, let us state and prove the
following elementary calculus lemma.
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Lemma 3.9 For λ ∈ (0, 1), let aλ and bλ be as defined in (3.1), and let

ψλ(ξ) :=
ξ(ξ − bλ)

ξ − aλ − bλ
for ξ ≥ 1. (3.49)

Then if the numbers K > 1 and B ∈ (0, 1) satisfy

B ≤ K2

4(aλ + bλ)2
, (3.50)

we have

ψλ(ξ) ≤ max
{ 1

λ
,
2K√
B

}

for all ξ ∈
[

1,
K√
B

]

. (3.51)

Proof. Differentiation in (3.49) yields

ψ′
λ(ξ) =

(2ξ − bλ)(ξ − aλ − bλ)− (ξ2 − bλξ)

(ξ − aλ − bλ)2

=
ξ2 − 2(aλ + bλ)ξ + (aλ + bλ)bλ

(ξ − aλ − bλ)2
for all ξ > 1,

from which we obtain that

ψ′
λ(ξ) < 0 if and only if ξ ∈ (ξ−, ξ+), (3.52)

where ξ+ and ξ− are given by

ξ± = aλ + bλ ±
√

(aλ + bλ)2 − (aλ + bλ)bλ.

Here by (3.1), we recally that aλ + bλ = λ+1
2 in computing

ξ± =
λ+ 1

2
±
√

(λ+ 1

2

)2
− λ+ 1

2
· 3λ− 1

2λ

=
λ+ 1

2
±
√

(λ+ 1) · [λ(λ+ 1)− (3λ− 1)]

4λ

=
λ+ 1

2
±
√

(λ+ 1)(1− λ)2

4λ

=
1

2
·
{

λ+ 1± (1− λ) ·
√

λ+ 1

λ

}

.

Hence,

2(ξ± − 1) = λ− 1± (1− λ) ·
√

λ+ 1

λ

= (1− λ) ·
(

− 1±
√

λ+ 1

λ

)

,
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implying that ξ− < 1 < ξ+. Therefore, (3.52) entails that

ψλ(ξ) ≤ max
{

ψλ(1) , ψλ

( K√
B

)}

for all ξ ∈
[

1,
K√
B

]

, (3.53)

where

ψλ(1) =
1− bλ

1− aλ − bλ
=

1− 3λ−1
2λ

1− λ+1
2

=
1−λ
2λ
1−λ
2

=
1

λ
.

Since (3.50) ensures that aλ + bλ ≤ K

2
√
B

and thus

ψλ

( K√
B

)

=

K2

B
− bλ · K√

B

K√
B
− aλ − bλ

≤
K2

B
K√
B
− aλ − bλ

≤
K2

B
K

2
√
B

=
2K√
B
,

the inequality (3.53) thus yields (3.51). �

On the basis of the above lemma, we can indeed achieve that in the numerator in (3.31) the positive
summand prevails.

Lemma 3.10 Let n ≥ 1,m > 0, λ ∈ (0, 1),K > 1, δ ∈ (0, 1) and B0 ∈ (0, 1) such that K
√
B0 < Rn

and

B0 ≤
K2

4(aλ + bλ)2
(3.54)

as well as
µ

nAT
·max

{B0

λ
, 2K

√

B0

}

≤ δ (3.55)

with µ and AT as in (1.6) and (3.37), respectively. Furthermore, let T > 0 and B ∈ C1([0, T )) be
positive and such that

B(t) ≤ B0 for all t ∈ (0, T ). (3.56)

Then writing ξ = s
B(t) , we have

A(t)ϕ(ξ)− µ

n
B(t)ξ ≥ (1− δ)A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)). (3.57)

Proof. With ψλ taken from Lemma 3.9, we first observe that

A(t)ϕ(ξ)− µ

n
B(t)ξ = A(t)ϕ(ξ) ·

{

1− µB(t)ξ

nA(t)
· ξ − bλ

ξ − aλ − bλ

}

= A(t)ϕ(ξ) ·
{

1− µB(t)

nA(t)
· ψλ(ξ)

}

(3.58)
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for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). Here thanks to (3.54) and (3.56) we may apply Lemma
3.9, which combined with (3.37) shows that

µB(t)

nA(t)
· ψλ(ξ) ≤ µB(t)

nAT
·max

{ 1

λ
,

2K
√

B(t)

}

≤ µ

nAt
·max

{B0

λ
, 2K

√

B0

}

for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)).

In light of (3.55), the conclusion (3.57) is therefore a consequence of (3.58). �

With the above preparations at hand, we can proceed to show that under the assumptions of Theorem
1.1, if B is a suitably small nonincreasing function satisfying an appropriate differential inequality,
then win indeed becomes a subsolution of (2.3) in the intermediate region where B(t) < s < K

√

B(t).
We shall first demonstrate this in the spatially one-dimensional case, in which the role of the number
mc in (1.10) will become clear through the following lemma.

Lemma 3.11 Let n = 1, χ > 1 and m > mc = 1√
χ2−1

. Then there exist λ ∈ (0, 1), K > 1, κ1 > 0

and B01 ∈ (0, 1) such that K
√
B01 < R, and such that whenever T > 0 and B ∈ C1([0, T )) is a

positive and nonincreasing function fulfilling (3.5) as well as

{

B′(t) ≥ −κ1
√

B(t), t ∈ (0, T ),

B(0) ≤ B01,
(3.59)

then for win as in (3.13) we have

(Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). (3.60)

Proof. As m > mc, we have mχ√
1+m2

> 1, whence it is possible to fix λ ∈ (0, 1) sufficiently close to

1 such that

mχ
√

1
λ2 +m2

> 1.

This in turn allows us to choose some δ ∈ (0, 1) such that

c2 :=
(1− δ)mχ
√

1+δ
λ2 +m2

− 1 (3.61)

is positive. We thereafter pick K > 1 such that with aλ and bλ as in (3.1) we have

K ≥
√

bλR (3.62)

and
aλR

K2
≤ δ. (3.63)
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Finally, we take B01 ∈ (0, 1) conveniently small fulfilling K
√
B01 < R and

B01 ≤
K2

4(aλ + bλ)2
(3.64)

as well as
µ

AT
·max

{B01

λ
, 2K

√

B01

}

≤ δ (3.65)

with AT as in (3.37), and let

κ1 :=
c2

K
. (3.66)

Then given any T > 0 and a positive nonincreasing B ∈ C1([0, T )) satisfying (3.59), from Lemma 3.5
in conjunction with (3.62) we know that A′ ≤ 0 on (0, T ), so that (3.29) yields

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + J1(s, t) + J2(s, t) for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t))

(3.67)
with ξ = s

B(t) and J1 and J2 as given by (3.30) and (3.31).
Here, Lemma 3.7 says that

J1(s, t) ≤ 1 for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)), (3.68)

and in order to compensate this positive contribution in (3.67) appropriately, we first invoke Lemma
3.10, which ensures that thanks to (3.64) and (3.65) we have

A(t)− µB(t)ξ ≥ (1− δ)A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). (3.69)

In particular, this implies that the expression on the left-hand side herein is nonnegative, so that we
can estimate

(

A(t)ϕ(ξ)− µB(t)ξ
)2

≤ A2(t)ϕ2(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). (3.70)

Since (3.62) and (3.64) allow for an application of Lemma 3.8, we moreover know that

1

A2(t)ϕ2(ξ)
≤ 1

λ2m2
·
(

1 +
aλR

K2

)

≤ 1 + δ

λ2m2
for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t))

because of (3.63). Combining this with (3.70) shows that in the denominator in the definition (3.31)
of J2 we have

√

1 +
(

A(t)ϕ(ξ)− µB(t)ξ
)2

≤
√

1 + δ

λ2m2
·A2(t)ϕ2(ξ) +A2(t)ϕ2(ξ)

=

√

1 + δ

λ2m2
+ 1 ·A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)),

24



so that by means of (3.69) we can estimate

−J2(s, t) = χ · A(t)ϕ(ξ)− µB(t)ξ

1 +
(

A(t)ϕ(ξ)− µB(t)ξ
)2

≥ χ · (1− δ)A(t)ϕ(ξ)
√

1+δ
λ2m2 + 1 ·A(t)ϕ(ξ)

=
(1− δ)mχ
√

1+δ
λ2 +m2

for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)).

Together with (3.66) and (3.68), in view of the definition (3.61) of c2 this implies that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + 1− (1− δ)mχ

√

1+δ
λ2 +m2

= −ξB′(t)− c2 for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)).

Once more using that in the considered region we have ξ ≤ K√
B(t)

, due to our choice of κ1 we infer

that

−ξB′(t) + c2 = ξ ·
{

−B′(t)− c2

ξ

}

≤ ξ ·
{

−B′(t)− c2
√

B(t)

K

}

= ξ ·
{

−B′(t)− κ1
√

B(t)
}

≤ 0 for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t))

because of (3.59), whereby the proof is completed. �

In the case n ≥ 2, we follow the same basic strategy as above, but numerous adaptations are necessary
due to the fact that in this case the more involved, and more degenerate, structure of J1 and J2 in
(3.29) allow for choosing actually any positive value of the mass m whenever χ > 1.

Lemma 3.12 Let n ≥ 2, χ > 1 and m > 0, and let λ ∈ (0, 1) be arbitrary. Then there exist K > 1,
κn > 0 and B0n ∈ (0, 1) such that K

√
B0n < Rn, and such that if T > 0 and B ∈ C1([0, T )) is positive

and nonincreasing such that

{

B′(t) ≥ −κnB1− 1
2n (t), t ∈ (0, T ),

B(0) ≤ B0n,
(3.71)

then the function win defined in (3.14) satisfies

(Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). (3.72)
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Proof. We let aλ and bλ as in (3.1), take any K > 1 fulfilling

K >
√

bλRn (3.73)

and use that χ > 1 to pick δ ∈ (0, 1) suitably small such that

c3 := n ·
{

(1− δ)χ√
1 + δ

− 1

}

> 0. (3.74)

It is the possible to fix B0n ∈ (0, 1) such that K
√
B0n < Rn and

B0n ≤ K2

4(aλ + bλ)2
, (3.75)

such that with AT as in (3.37) we have

µ

nAt
·max

{B0n

λ
, 2K

√

B0n

}

≤ δ, (3.76)

and such that
ωn

λ2m2
·
(

1 +
aλR

n

K2

)

·K2− 2
nB0n

3− 3
n ≤ δ, (3.77)

where we note that in achieving the latter we make use of our assumption that n ≥ 2. We finally let

κn := c3K
− 1

n , (3.78)

and suppose that T > 0 and that B ∈ C1([0, T )) is positive and nonincreasing and such that (3.71)
holds.
Then (3.73) and (3.75) warrant that Lemma 3.5 applies so as to yield that A′ ≤ 0 on (0, T ), and that
hence by (3.29),

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + J1(s, t) + J2(s, t) for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)),

(3.79)
where again ξ = s

B(t) , and where J1 and J2 are as defined in (3.30) and (3.31), respectively. Now

thanks to (3.75) and (3.76), Lemma 3.10 shows that

A(t)ϕ(ξ)− µ

n
B(t)ξ ≥ (1− δ)A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)), (3.80)

whereas (3.75) allows for invoking Lemma 3.8 to infer from (3.77) that

1

A2(t)B
2
n
−2(t)ξ

2
n
−2ϕ2(ξ)

≤ ω2
n

λ2m2
·
(

1 +
aλR

n

K2

)

·K2− 2
nB0n

3− 3
n

≤ δ for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). (3.81)
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By means of (3.80), (3.81) and the fact that δ < 1, we can thus estimate J2 according to

−J2(s, t) = nχ · A(t)ϕ(ξ)− µ
n
B(t)ξ

√

1 +B
2
n
−2(t)ξ

2
n
−2
(

A(t)ϕ(ξ)− µ
n
B(t)ξ

)2

≥ nχ · (1− δ)A(t)ϕ(ξ)
√

1 +B
2
n
−2(t)ξ

2
n
−2
(

A(t)ϕ(ξ)− µ
n
B(t)ξ

)2

≥ nχ · (1− δ)A(t)ϕ(ξ)
√

1 +B
2
n
−2(t)ξ

2
n
−2A2(t)ϕ2(ξ)

≥ nχ · (1− δ)A(t)ϕ(ξ)
√

(δ + 1) ·B 2
n
−2(t)ξ

2
n
−2A2(t)ϕ2(ξ)

=
(1− δ)nχ√

1 + δ
·B1− 1

n (t)ξ1−
1
n for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t)).

Since on the other hand

J1(s, t) ≤ nB1− 1
n (t)ξ1−

1
n for all t ∈ (0, T ) and s ∈ (B(t),K

√

B(t))

due to Lemma 3.10, we therefore conclude from (3.79) that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + nB1− 1

n (t)ξ1−
1
n − (1− δ)nχ√

1 + δ
·B1− 1

n (t)ξ1−
1
n

= −ξB′(t)− c3B
1− 1

n (t)ξ1−
1
n (3.82)

for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)). We finally observe that ξ < K√
B(t)

whenever s < K
√

B(t),

and that hence by (3.78),

−ξB′(t)− c3B
1− 1

n (t)ξ1−
1
n = ξ ·

{

−B′(t)− c3B
1− 1

n (t)ξ−
1
n

}

≤ ξ ·
{

−B′(t)− c3B
1− 1

n (t) ·K− 1
nB

1
2n (t)

}

= ξ ·
{

−B′(t)− κnB
1− 1

2n (t)
}

for all t ∈ (0, T ) and s ∈ (B(t),K
√

B(t)), so that (3.71) and (3.82) guarantee that indeed the claimed
inequality (3.72) holds. �

4 Blow-up. Proof of Theorem 1.1

Now our main result on blow-up of solutions to the original problem can be derived by a combination
of Lemma 3.3 with Lemma 3.6 as well Lemma 3.11 and Lemma 3.12 in the cases n = 1 and n ≥ 2,
respectively, along with a straightforward comparison argument.
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Proof of Theorem 1.1. Thanks to our assumptions (1.12) and (1.13), depending on whether
n = 1 or n ≥ 2 we may invoke either Lemma 3.11 or Lemma 3.12 to obtain λ ∈ (0, 1),K > 0, κn > 0
and B0n ∈ (0, 1) with the respective properties listed there. We then fix B0 ∈ (0, B0n] such that (3.19),
(3.39) and (3.40) hold, and thereafter we take some κ ∈ (0, κn] satisfying

κ ≤ nmχK

2(aλ + bλ)ωnRn

√

1 +K
2
n
−2m2

ω2
n

(4.1)

as well as
κ ≤ n

4
. (4.2)

In view of Lemma 3.3 Lemma 3.6, Lemma 3.11 and Lemma 3.12, these choices ensure that if we let
B denote the solution of

{

B′(t) = −κB1− 1
2n (t), t ∈ (0, T ),

B(0) = B0,
(4.3)

extended up to its extinction time T ∈ (0,∞), that is, if we define

B(t) :=
{

B
1
2n

0 − κ

2n
t
}2n

, t ∈ [0, T ), (4.4)

with

T :=
2n

κ
·B

1
2n

0 , (4.5)

then the functions wout and win given by (3.14) and (3.13) are well-defined and satisfy

(Pwout)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (K
√

B(t), Rn) (4.6)

as well as

(Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (0, B(t)) ∪ (B(t),K
√

B(t)). (4.7)

Here in employing Lemma 3.3 we make use of (4.1), whereas in applying 3.6 we note that−κB1− 1
2n (t) ≥

−n
4B

1− 1
n (t) for all t ∈ (0, T ) due to (4.2) and the fact that B(t) ≤ B0 < 1 for all t ∈ (0, T ). According

to (4.6) and (4.7), Lemma 3.2 asserts that

w(s, t) :=

{

win(s, t) if t ∈ [0, T ) and s ∈ [0,K
√

B(t)],

wout(s, t) if t ∈ [0, T ) and s ∈ (K
√

B(t), Rn],

defines a function w ∈ C1([0, Rn] × [0, T )) which satisfies w(·, t) ∈ C2([0, Rn] \ {B(t),K
√

B(t)}) for
all t ∈ [0, T ) as well as

(Pw)(s, t) ≤ 0 for all t ∈ [0, T ) and s ∈ (0, Rn) \ {B(t),K
√

B(t)}.

Therefore, if u0 satisfies (1.5) and is such that

∫

Br(0)
u0(x)dx ≥Mm(r) := ωnw(r

n, 0) for all r ∈ [0, R],
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then the solution w of (2.3) defined through (2.1) satisfies

w(s, 0) ≥ w(s, 0) for all s ∈ (0, Rn), (4.8)

and furthermore it is clear that

w(0, t) = w(0, t) = 0 and w(Rn, t) = w(Rn, t) =
m

ωn
for all t ∈ (0, T̃ ), (4.9)

where T̃ := min{Tmax, T}. In order to assert applicability of the comparison principle from Lemma
5.1 below, we abbreviate α := 2− 2

n
≥ 0 and let

φ(s, t, y0, y1, y2) := n2 · sαy1y2
√

y21 + n2sαy22
+ nχ · (y0 − µ

n
s)y1

√

1 + s−α(y0 − µ
n
s)2

for (s, t, y0, y1, y2) ∈ G := (0, Rn)× (0,∞)× R× (0,∞)× R, so that φ ∈ C1(G) with

∂φ

∂y2
(s, t, y0, y1, y2) = n2 · sαy31

√

y21 + n2sαy22

≥ 0 for all (s, t, y0, y1, y2) ∈ G (4.10)

and

∂φ

∂y1
(s, t, y0, y1, y2) = n4 · s2αy32

√

y21 + n2sαy22
+ nχ · y0 − µ

n
s

√

1 + s−α(y0 − µ
n
s)2

for all (s, t, y0, y1, y2) ∈ G

as well as

∂φ

∂y0
(s, t, y0, y1, y2) = nχ · y1

√

1 + s−α(y0 − µ
n
s)2

for all (s, t, y0, y1, y2) ∈ G.

Therefore, we can estimate

∣

∣

∣

∂φ

∂y1
(s, t, y0, y1, y2)

∣

∣

∣
≤ ns

α
2 ·

√

n2sαy22
3

√

y21 + n2sαy22
3 + nχs

α
2 ·

√

s−α(y0 − µ
n
s)2

√

1 + s−α(y0 − µ
n
s)2

≤ nR
2α
n + nχR

2α
n for all (s, t, y0, y1, y2) ∈ G (4.11)

and
∣

∣

∣

∂φ

∂y0
(s, t, y0, y1, y2)

∣

∣

∣
≤ nχ|y1| for all (s, t, y0, y1, y2) ∈ G. (4.12)

Since the inequalities (4.10), (4.11) and (4.12) warrant the validity of the hypotheses (5.1), (5.3) and
(5.2) of Lemma 5.1, as a consequence of the latter we obtain that

w(s, t) ≥ w(s, t) for all s ∈ [0, Rn] and t ∈ [0, T̃ ).
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As w(0, t) = w(0, t) = 0 for all t ∈ (0, T̃ ), by the mean value theorem this implies that for each
t ∈ (0, T̃ ) we can find some θ(t) ∈ (0, Rn) with the property that

ws(θ(t), t) =
w(B(t), t)

B(t)
≥ w(B(t), t)

B(t)
=
A(t)ϕ(1)

B(t)
= λ · A(t)

B(t)
for all t ∈ (0, T̃ ).

Recalling that u(r, t) = ws(r
1
n , t) for all r ∈ (0, R) and t ∈ (0, Tmax), we thereby infer that

sup
r∈(0,R)

u(r, t) ≥ ws(θ(t), t) = λ · A(t)
B(t)

for all t ∈ (0, T̃ ).

In view of the fact that B(t) → 0 as t ր T , and that hence A(t) → m
ωn

as t ր T according to (3.6),
this entails that we necessarily must have Tmax ≤ T < ∞, so that (1.15) becomes a consequence of
the extensibility criterion (1.7). �

Proof of Proposition 1.2. As a preparation for both parts of the proof, let us fix a nonincreasing
ζ ∈ C∞([0,∞)) such that ζ ≡ 0 in [1,∞), ζ > 0 in [0, 12 ] and

∫ 1
0 σ

n−1ζ(σ)dσ = 1, and note that then
ζ ≥ c4 := ζ(12) throughout [0,

1
2 ].

i) In order to construct um for m > 0 fulfilling (1.13), given any such m we pick numbers m0 and m1

such that 0 < m0 < m1 < m and such that if n = 1 we moreover have m0 > mc, and thereafter we
choose r0 ∈ (0, R) small enough satisfying

c4m1

2nnωnr
n
0

≥ 1 + sup
r∈(0,R)

Mm0
(r)

|Br(0)|
, (4.13)

where we rely on Theorem 1.1 in observing that the expression on the right-hand side herein indeed
is finite. Then with δ := m−m1

|Ω| and θ := m1

ωnr
n
0
,

um(r) := δ + θ · ζ
( r

r0

)

, r ∈ [0, R],

evidently defines a positive radial function um ∈ C∞(Ω̄) satisfying ∂um

∂ν
= 0 on ∂Ω, and moreover our

selection of ζ warrants that

∫

Ω
um = δ|Ω|+ ωnθr

n
0

∫ R
r0

0
σn−1ζ(σ)dσ = δ|Ω|+m1 = m,

because R
r0
> 1. Apart from that, since δ ≥ 0 we similarly see that

−
∫

Br(0)
um ≥ m1

ωnrn

∫ r
r0

0
σn−1ζ(σ)dσ for all r ∈ (0, R),

so that in the case r ≤ r0
2 we can use our definition of c4 to estimate

−
∫

Br(0)
um ≥ m1

ωnrn
· c4
∫ r

r0

0
σn−1dσ =

c4m1

nωnr
n
0

,
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whereas if r0
2 < r < r0, then

−
∫

Br(0)
um ≥ m1

ωnrn

∫ 1
2

0
σn−1ζ(σ)dσ ≥ c4m1

ωnrn

∫ 1
2

0
σn−1dσ =

c4m1

2nnωnrn
≥ c4m1

2nnωnr
n
0

.

In view of (4.13), we thus conclude that

−
∫

Br(0)
um ≥ 1 +

Mm0
(r)

|Br(0)|
for all r ∈ (0, r0), (4.14)

while evidently
∫

Br(0)
um = δ|Br(0)|+m1 ≥ m1 for all r ∈ [r0, R]. (4.15)

We now let ε := min{1, m1−m0

|Ω| } and suppose that u0 satisfies (1.5) and is such that ‖u0−um‖L∞(Ω) ≤ ε.

Then from (4.14) we infer that since ε ≤ 1,

−
∫

Br(0)
u0 ≥ −

∫

Br(0)
um − ε ≥ 1 +

Mm0
(r)

|Br(0)|
− ε ≥ Mm0

(r)

|Br(0)|
for all r ∈ (0, r0),

and (4.15) guarantees that
∫

Br(0)
u0 ≥

∫

Br(0)
um − ε|Br(0)| ≥ m1 − ε|Ω| ≥ m0 ≥Mm0

(r) for all r ∈ [r0, R],

since ε ≤ m1−m0

|Ω| and since Mm0
is nondecreasing with Mm0

(R) ≤ m0 by Theorem 1.1. Therefore,
∫

Br(0)
u0 ≥ Mm0

(r) for all r ∈ [0, R], so that Theorem 1.1 asserts that indeed for any such u0 the

corresponding solution of (1.4) must blow up.

ii) To verify the claimed density property, we fix an arbitrary m > 0 fulfilling (1.13), and choose any
(rk)k∈N ⊂ (0, R) such that rk → 0 as k → ∞. Then taking ζ as above, for each k ∈ N the function
u0k defined by

u0k(r) := u0(r) + θk · ζ
( r

rk

)

, r ∈ [0, R],

with θk := m
ωnr

n
k
, evidently satisfies (1.5), and for all p ∈ (0, 1) we have

‖u0k − u0‖pLp(Ω) = ωnθ
p
kr

n
k

∫ 1

0
σn−1ζp(σ)dσ → 0 as k → ∞,

because θpkr
n
k → 0 as k → ∞ for any such p. In view of Theorem 1.1, for completing the proof it is

thus sufficient to make sure that if we fix k0 ∈ N large enough fulfilling

c4m

2nnωnr
n
k

≥ sup
r∈(0,R)

Mm(r)

|Br(0)|
for all k ≥ k0, (4.16)

then
∫

Br(0)
u0k ≥Mm(r) for all r ∈ [0, R] and any k ≥ k0. (4.17)
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In fact, for any such k we may use that u0 ≥ 0 and proceed in a way quite similar to that in part i)
to estimate

−
∫

Br(0)
u0k ≥ m

ωnrn

∫ r
rk

0
σn−1ζ(σ)dσ for all r ∈ (0, R),

whence by (4.16),

−
∫

Br(0)
u0k ≥ c4m

ωnrn

∫ r
rk

0
σn−1dσ =

c4m

nωnr
n
k

≥ Mm(r)

|Br(0)|
for all r ∈

(

0,
rk

2

]

and

−
∫

Br(0)
u0k ≥ m

ωnrn

∫ 1
2

0
σn−1ζ(σ)dσ ≥ c4m

2nnωnrn
≥ c4m

2nnωnr
n
k

≥ Mm(r)

|Br(0)|
for all r ∈

(rk

2
, rk

)

.

As moreover
∫

Br(0)
u0k ≥ m ≥Mm(r) for all r ∈ [rk, R]

due to the monotonicity of Mm and the fact that
∫ t

0 σ
n−1ζ(σ)dσ = 1, we thus infer that (4.17) indeed

holds. �

5 Appendix: A comparison lemma

An ingredient essential to our argument is the following variant of the parabolic comparison principle.
Since we could not find an appropriate reference precisely covering the present situation, especially
involving the present particular type of degenerate diffusion and nonsmooth comparison functions, we
include a proof for completeness.

Lemma 5.1 Let L > 0, T > 0, G := (0, L)× (0, T )× R× (0,∞)× R and φ ∈ C1(G) be such that

∂φ

∂y2
(s, t, y0, y1, y2) ≥ 0 for all (s, t, y0, y1, y2) ∈ G, (5.1)

that for all T0 ∈ (0, T ) and Λ > 0 there exists C(T0,Λ) > 0 fulfilling

∣

∣

∣

∂φ

∂y0
(s, t, y0, y1, y2)

∣

∣

∣
≤ C(T0,Λ) for all (s, t, y0, y1, y2) ∈ G with t ∈ (0, T0) and y1 ∈ (0,Λ),

(5.2)
and such that for any t0 ∈ (0, T ) we have

∂φ

∂y1
(·, t, ·, ·, ·) ∈ L∞

loc((0, L)× R× (0,∞)× R). (5.3)

Suppose that w and ow are two functions which belong to C1([0, L]× [0, T )) and satisfy

ws(s, t) > 0 and w(s, t) > 0 for all s ∈ (0, L) and t ∈ (0, T ) (5.4)
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as well as

w(·, t) ∈W
2,∞
loc ((0, L)) and w(·, t) ∈W

2,∞
loc ((0, L)) for all t ∈ (0, T ). (5.5)

If moreover

wt ≤ φ(s, t, w, ws, wss) and wt ≥ φ(s, t, w, ws, wss) for all t ∈ (0, T ) and a.e. s ∈ (0, L) (5.6)

and
w(s, 0) ≤ w(s, 0) for all s ∈ (0, L) (5.7)

as well as
w(0, t) ≤ w(0, t) and w(L, t) ≤ w(L, t) for all t ∈ (0, T ), (5.8)

then
w(s, t) ≤ w(s, t) for all s ∈ [0, L] and t ∈ [0, T ). (5.9)

Proof. We fix an arbitrary T0 ∈ (0, T ) and then obtain from (5.4) and the assumed regularity
properties of w and w that there exists Λ = Λ(T0) > 0 such that

0 < ws(s, t) < Λ and 0 < ws(s, t) < Λ for all s ∈ (0, L) and t ∈ (0, T0). (5.10)

For ε > 0, we then let c5 := C(T0,Λ) with C(T0,Λ) > 0 as in (5.2), define

z(s, t) := w(s, t)− w(s, t)− ε e2c5t for s ∈ [0, L] and t ∈ [0, T0], (5.11)

and claim that
z(s, t) < 0 for all s ∈ [0, L] and t ∈ [0, T0). (5.12)

To verify this, supposing for contradiction that (5.12) be false, from (5.7) and (5.8) we would infer the
existence of s0 ∈ (0, L) and t0 ∈ (0, T0) such that

max
(s,t)∈[0,L]×[0,t0]

z(s, t) = z(s0, t0) = 0, (5.13)

in particular implying that
zt(s0, t0) ≥ 0 (5.14)

and
zs(s0, t0) = 0. (5.15)

Moreover, using (5.15) we obtain that z(·, t0) ∈W
2,∞
loc ((0, L)), so that we can find a null set N ⊂ (0, L)

such that zss(s, t0) exists for all s ∈ (0, L) \N and

zs(s, t0) =

∫ s

s0

zss(σ, t0)dσ for all s ∈ [0, L] (5.16)

according to (5.15), where for later use we note that enlarging N if necessary we can furthermore
achieve that both inequalities in (5.6) are valid at (s, t0) for all s ∈ (0, L) \N . As z(·, t0) attains its
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maximum at s0 by (5.13), the identity (5.16) necessarily requires that there exists (sj)j∈N ⊂ (s0, L)\N
such that sj ց s0 as j → ∞ and

zss(sj , t0) ≤ 0 for all j ∈ N, (5.17)

for otherwise (5.16) would imply that zs(s, t0) > 0 for all s ∈ (s0, s⋆) with some s⋆ ∈ (s0, L), which
would clearly contradict (5.13).
Now differentiating (5.11), in view of (5.6) and our choice of N we see that

zt = wt − wt − 2c5εe
2c5t0

≤ φ(s, t0, w, ws, wss)− φ(s, t0, w, ws, wss)− 2c5εe
2c5t0 for all s ∈ N,

so that from (5.17) we infer that

zt(sj , t0) ≤ φ
(

sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)
)

− φ
(

sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)
)

−2c5εe
2c5εt0 for all j ∈ N. (5.18)

Here by the mean value theorem we have

φ
(

sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)
)

− φ
(

sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)
)

= ξj ·
(

w(sj , t0)− w(sj , t0

)

+ λj ·
(

ws(sj , t0)− ws(sj , t0

)

(5.19)

with

ξj :=

∫ 1

0

∂φ

∂y0

(

sj , t0, w(sj , t0) + σ(w(sj , t0)− w(sj , t0)), ws(sj , t0) + σ(ws(sj , t0)− ws(sj , t0)), wss(sj , t0)
)

dσ

and

λj :=

∫ 1

0

∂φ

∂y1

(

sj , t0, w(sj , t0) + σ(w(sj , t0)− w(sj , t0)), ws(sj , t0) + σ(ws(sj , t0)− ws(sj , t0)), wss(sj , t0)
)

dσ

for j ∈ N. Since sj → s0 as j → ∞, by continuity of w(·, t0) and w(·, t0) in (0, L), by continuity
and positivity of ws(·, t0) and ws(·, t0) in (0, L), and by local boundedness of wss(·, t0) in (0, L) \ N
asserted by (5.5), we can find δ > 0 such that

sj ∈ [δ, L− δ], w(sj , t0) ∈
[

− 1

δ
,
1

δ

]

, w(sj , t0) ∈
[

− 1

δ
,
1

δ

]

,

ws(sj , t0) ∈
[

δ,
1

δ

]

, ws(sj , t0) ∈
[

δ,
1

δ

]

and wss(sj , t0) ∈
[

− 1

δ
,
1

δ

]

for all j ∈ N. As a consequence of this and (5.3), there exists c6 > 0 fulfilling

|ηj | ≤ c6 for all j ∈ N. (5.20)

Moreover, combining (5.10) with (5.2), by definition of c5 we obtain that

|ξj | ≤ c5 for all j ∈ N. (5.21)
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Collecting (5.19), (5.20) and (5.21), in (5.18) we can further estimate

zt(sj , t0) ≤ c5 · |w(sj , t0)− w(sj , t0)|+ c6 · |ws(sj , t0)− ws(sj , t0)| − 2c5εe
2c5t0 for all j ∈ N.

Thanks to the fact that both w and w belong to C1((0, L)× (0, T0)), we may take j → ∞ here to see
that

zt(s0, t0) ≤ c5 · |w(s0, t0)− w(s0, t0)|+ c6 · |ws(s0, t0)− ws(s0, t0)| − 2c5εe
2c5t0 .

Now observing that w(s0, t0) − w(s0, t0) = εe2c5t0 by (5.13), and that ws(s0, t0) − ws(s0, t0) = 0 by
(5.15), as a consequence of (5.14) we infer that

0 ≤ zt(s0, t0) ≤ c5εe
2c5t0 − 2c5εe

2c5t0 < 0.

This absurd conclusion shows that actually (5.12) indeed holds, so that on letting ε ց 0 and then
T0 ր T we end up with (5.9). �
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