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Abstract

This paper aims at providing a first step toward a qualitative theory for a new class of chemotaxis
models derived from the celebrated Keller-Segel system, with the main novelty being that diffusion
is nonlinear with flux delimiter features. More precisely, as a prototypical representative of this
class we study radially symmetric solutions of the parabolic-elliptic system







ut = ∇ ·
( u∇u
√

u2 + |∇u|2
)

− χ∇ ·
( u∇v
√

1 + |∇v|2
)

,

0 = ∆v − µ+ u,

under the initial condition u|t=0 = u0 > 0 and no-flux boundary conditions in balls Ω ⊂ R
n, where

χ > 0 and µ := 1
|Ω|

∫

Ω
u0.

The main results assert the existence of a unique classical solution, extensible in time up to a
maximal Tmax ∈ (0,∞] which has the property that

if Tmax <∞ then lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (⋆)

The proof of this is mainly based on comparison methods, which firstly relate pointwise lower and
upper bounds for the spatial gradient ur to L∞ bounds for u and to upper bounds for z := ut

u
;

secondly, another comparison argument involving nonlocal nonlinearities provides an appropriate
control of z+ in terms of bounds for u and |ur|, with suitably mild dependence on the latter.

As a consequence of (⋆), by means of suitable a priori estimates it is moreover shown that the above
solutions are global and bounded when either

n ≥ 2 and χ < 1, or n = 1, χ > 0 and m < mc,

with mc :=
1√
χ2−1

if χ > 1 and mc := ∞ if χ ≤ 1.

That these conditions are essentially optimal will be shown in a forthcoming paper in which (⋆)
will be used to derive complementary results on the occurrence of solutions blowing up in finite
time with respect to the norm of u in L∞(Ω).
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1 Introduction

Keller-Segel systems with flux limitation. The celebrated model by Keller and Segel [24, 25]
was heuristically derived to model growth phenomena mediated by a chemoattractant, specifically
the aggregation of dictyostelium discoideum due to an attractive chemical substance. The general
structure of the model is as follows:







ut = ∇ (Du(u, v)∇u− S(u, v)u∇v) +H1(u, v),

vt = Dv∆v +H2(u, v),

(1.1)

where u = u(x, t) denotes the cell (or organism) density at position x and time t, and v = v(x, t) is the
density of the chemoattractant. Here the function S measures the chemotactic sensitivity, the positive
functions Du and Dv represent the diffusivity of the cells and of the chemoattractant, respectively,
and H1 and H2 model source terms related to interactions. In a more general framework in which
diffusions are not isotropic, Du and S can be positive definite matrices. See the survey by Hillen and
Painter [21] for a review of modeling issues based on the classical approach of continuum mechanics
closed by empirical models for the closure of conservation equations. The essay by Horstmann [22]
provides an additional source of information concerning modeling and applications in biology. The
recent survey [9] provides a review and qualitative analysis of a variety of mathematical problems and
multiscale derivations of the original model as well as of some recent developments such as the specific
one treated in this paper.

On the other hand, a natural question can be posed, namely if the use of parabolic models is consistent
with the physics of the phenomena under consideration, or if, for instance, the use of hyperbolic models
can be more appropriate. Or even within the approach by parabolic equations, if linear models are
acceptable, while in the nonlinear case whether one should consider degenerate parabolic equations
characterized by a finite propagation velocity. Intuitively, the answer is that phenomena with finite
propagation velocity should be captured by an appropriate choice of nonlinear diffusion terms [31]. A
conceivable approach leads to consider functions Du(u, v) and Dv(u, v) not only depending on u and
v, but also on their derivatives in space and time. A recent study in this direction [7] has shown that
macroscopic models can be obtained from the underlying description at the scale of cells delivered
by suitable developments of kinetic theory methods. More in details, appropriate models of cell-cell
interaction lead to macroscopic expressions for diffusion and cross-diffusion with nonlinear limited flux
terms of the type

∇ ·
(

Du(u, v)
u∇u

√

u2 + ν2

c2
|∇u|2

)

and ∇ ·
(

S(u, v)
u∇v

√

1 + |∇v|2

)

,

respectively, with ν denoting the kinematic viscosity and c the maximum speed of propagation, so
that in combination with an adequate equation for the evolution of the chemoattractant, this appraoch
suggests to consider models of type











ut = ∇ ·
(

Du(u, v)
u∇u

√

u2 + ν2

c2
|∇u|2

− S(u, v)
u∇v

√

1 + |∇v|2

)

+H1(u, v),

vt = Dv∆v +H2(u, v),

(1.2)
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as consistent modifications of the classical Keller-Segel system. This idea, which is somehow related
to the optimal transport framework [12], can be motivated by a natural assumption of cell dynamics,
where overcrowding is naturally avoided [13]. Furthermore, the introduction of this type of terms is
founded in the assumption that particles do not diffuse arbitrarily in space but, on the contrary, move
through some privileged ways such as the border of cells. Moreover, in this new approach the non-
physical diffusion is eliminated and the population moves with a finite speed of propagation, which is
one of the intrinsic characteristics. Indeed, the qualitative analysis of related systems with limited flux
[3, 4] as well as some extensions to biological contexts (transport of morphogens) has been recently
explored [2], inter alia confirming the expected movement of fronts at finite speeds.

Boundedness vs. blow-up. In the framework of chemotaxis systems, however, a different quali-
tative aspect seems even more important, namely the ability of the respective system to spontaneously
generate structures. In this regard, the classical Keller-Segel system, as obtained from (1.1) on letting
Du ≡ Dv ≡ S ≡ 1, H ≡ 0 and K(u, v) = u − v, is known to have the property that some solutions
reflect such aggregation processes even in the extreme mathematical sense of finite-time blow-up of
some solutions when either the spatial dimension n satisfies n ≥ 3 ([34]), or when n = 2 and the total
mass of cells is suitably large ([20, 27]); on the other hand, if either n ≥ 3 and the initial data fulfill
appropriate smallness conditions, or n = 2 and

∫

Ω u(·, 0) is small, or if n = 1, then for various types
of initial-boundary value problems, global bounded solutions are known to exist ([15, 28, 33, 29, 14]).

As for Keller-Segel-type models with flux limitations, the corresponding problem appears to be un-
solved, and it is the goal of the present paper to present a first step into a qualitative theory for such
systems, with a particular focus on the question whether solutions exist globally, as conjectured in
[8], or whether blow-up in finite time may occur for some initial data. Specifically, we will consider
the apparently most prototypical among the systems (1.2) in its parabolic-elliptic simplification, as
suggested in [23]); more precisely, we shall be concerned with the initial-boundary value problem















































ut = ∇ ·
(

u∇u
√

u2 + |∇u|2
)

− χ∇ ·
( u∇v
√

1 + |∇v|2

)

, x ∈ Ω, t > 0,

0 = ∆v − µ+ u, x ∈ Ω, t > 0,

(

u∇u
√

u2 + |∇u|2
− χ

u∇v
√

1 + |∇v|2

)

· ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

in a ball Ω = BR(0) ⊂ R
n, n ≥ 1, where χ > 0 indicates the strength of chemotactic cross-diffusion.

In order to further simplify the analysis, we shall assume the initial data to satisfy

u0 ∈ C3(Ω̄) is radially symmetric and positive in Ω̄ with ∂u0

∂ν
= 0 on ∂Ω, (1.4)

so that the spatial average

µ :=
1

|Ω|

∫

Ω
u0(x)dx (1.5)

is positive.
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Main results. In this framework, the first of our main results asserts local existence of a uniquely
determined classical solution. In its most crucial part, however, the following theorem furthermore
provides the extensibility criterion (1.6) which will be of great importance both for deriving global
existence in Theorem 1.2 below, as well as for characterizing the asymptotic behavior of non-global
solutions near their blow-up time [10].

Theorem 1.1 Suppose that u0 complies with (1.4). Then there exist Tmax ∈ (0,∞] and a uniquely
determined pair (u, v) of positive radially symmetric functions u ∈ C2,1(Ω̄×[0, Tmax)) and v ∈ C2,0(Ω̄×
[0, Tmax)) which solve (1.3) classically in Ω× (0, Tmax), and which are such that

if Tmax <∞ then lim sup
tրTmax

‖u(·, t)‖L∞(Ω) = ∞. (1.6)

In particular, (1.6) rules out the occurrence of any gradient blow-up phenomenon in the present frame-
work; it is thus impossible that ∇u becomes unbounded in finite time, whereas u itself remains
bounded. In view of the complex evolution mechanism in (1.3), inter alia involving doubly degenerate
diffusion, this conclusion seems far from trivial; indeed, various types of gradient-dependent nonlin-
earities and degeneracies are known to enforce unboundedness of gradients for some solutions even
in scalar reaction-diffusion equations [5, 26, 30]. Moreover, the additionally present cross-diffusive
interaction apparently rules out the accessibility of (1.3) to most of the techniques well-established
in contexts of scalar parabolic equations with diffusion degeneracies of related type, such as e.g. the
mean curvature flow equation and derivatives thereof, among others [17, 18], or [11].

A natural next goal consists in identifying circumstances under which the above solutions are global.
Going in this direction, the second of our main results provides conditions on the parameter χ in (1.3)
and, when n = 1, on the mass level m, which turn out to be sufficient not only for global extensibility,
but also for uniform boundedness of all solutions emanating from initial data u0 with

∫

Ω u0 = m.

Theorem 1.2 Assume that u0 satisfies (1.4), and that either

n ≥ 2 and χ < 1, (1.7)

or

n = 1, χ > 0 and

∫

Ω
u0 < mc, (1.8)

where in the case n = 1 we have set

mc :=

{ 1√
χ2−1

if χ > 1,

+∞ if χ ≤ 1.
(1.9)

Then the problem (1.3) possesses a unique global classical solution (u, v) ∈ C2,1(Ω̄× [0,∞))×C2,0(Ω̄×
[0,∞)) which is radially symmetric and such that for some C > 0 we have

‖u(·, t)‖L∞(Ω) ≤ C and ‖v(·, t)‖L∞(Ω) ≤ C for all t > 0. (1.10)

As a first and immediate conclusion thereof, we underline that when χ < 1, in stark contrast to the
original Keller-Segel model, the system (1.3) does not exhibit any critical mass phenomenon, nor any
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phenomenon of critical sizes of initial data with respect to global existence of solutions. Let us secondly
mention that the conditions (1.7) and (1.8), as identified above, are in fact essentially optimal for the
obtained conclusion: Indeed, in [10] the picture will in this respect be basically completed by showing
that if χ > 1 then in both cases n = 1 with m > mc, and n ≥ 2, some initial data can be constructed
such that the corresponding solutions will blow up in finite time. Together with the latter, our results
thus indicate that in comparison to the original Keller-Segel system, the occurrence of a critical mass
phenomenon is shifted from the two-dimensional to the one-dimensional setting, whereas in the case
n ≥ 2 we rather encounter a critical sensitivity phenomenon in that the size of χ becomes the crucial
quantity to determine whether or not blow-up may happen.

Main ideas. Excluding gradient blow-up. In view of the doubly degenerate structure of the

diffusion operator ∇ ·
(

u∇u√
u2+|∇u|2

)

in (1.3), standard theory yields local existence and extensibility

as long as u remains uniformly positive and both u and ∇u remain bounded (Lemma 2.1), where
thanks to our positivity assumption on u0, a corresponding lower bound for u can readily be obtained
(Lemma 3.2).

The crucial part in the derivation of Theorem 1.1 will thus consist in ruling out the possibility of
gradient blow-up, and in our approach toward this we will substantially make use of the radial sym-
metry of our solutions: Based on two different interpretations of the equation satisfied by ur as linear
inhomogeneous parabolic equations (Lemma 2.3), under the standing assumption that u is non-global
but remains bounded we will first obtain a uniform lower bound for ur by a comparison argument
(Lemma 2.3), and thereafter develop this into a bound for |ur| in Section 5.

The latter step itself will involve the quantity z := ut

u
, as known to be of great importance on various

types of different nonlinear diffusion equations [6, 31]. In the present context, we shall see that ur can
indeed be controlled in terms of the positive part z+ of z through an inequality of the form

‖ur(·, t)‖L∞((0,R)) ≤ C ·
(

1 + ‖z+‖L∞((0,R)×(0,t))

)

for all t ∈ (0, Tmax), (1.11)

where Tmax ∈ (0,∞) denotes the maximal existence time (Corollary 5.3). This will be achieved by
splitting the interval (0, R) in two parts and first performing a testing procedure to estimate ur in
the corresponding inner region in certain weighted Lebesgue spaces and taking limits appropriately
(Lemma 5.1), whereupon a comparison argument in the associated outer region will complete the
proof of (1.11) (Lemma 5.2).

In order to complete the proof of Theorem 1.1 by providing a suitable estimate for z+, we shall make
use of the observation that z satisfies the one-sided nonlocal parabolic inequality

zt(r, t) ≤ Lz + d ·
(

1 + ‖z+‖L∞((0,R)×(0,t))

)

with some d > 0 and some homogeneous linear elliptic operator L (Lemma 5.5). In fact, employing a
maximum principle-type argument will show that this implies a pointwise upper bound for z (Lemma
5.6), which in conjunction with (1.11) will prove Theorem 1.1.

Thanks to the mild extensibility criterion (1.6) thus gained, the proof of Theorem 1.2 thus actually
reduces to the derivation of suitable a priori bounds for solutions with respect to the norm of u in
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L∞(Ω). This will be accomplished in the respective cases detailed in Theorem 1.2 by means of an
essentially straightforward adaptation of the Moser-Alikakos iteration technique to the present setting
in Section 6.

2 Preliminaries

2.1 Local existence and a first extensibility criterion

To begin with, let us suitably reduce (1.3), locally in time, so as to become accessible to standard
existence theory. We thereby obtain the following result on local existence of a smooth solution to
(1.3), extensible as long as such a reduction is possible. As a by-product, this procedure yields the
first basic extensibility criterion (2.2) the improvement of which will be the main objective of the
subsequent Sections 3-5.

Lemma 2.1 Suppose that u0 satisfies (1.4). Then there exist Tmax ∈ (0,∞] and a uniquely determined
pair (u.v) of radially symmetric positive functions

u ∈ C2,1(Ω̄× [0, Tmax)), v ∈ C2,0(Ω̄× [0, Tmax)), (2.1)

which solve (1.3) classically in Ω× (0, Tmax), and which are such that

if Tmax <∞ then either lim inf
tրTmax

inf
x∈Ω

u(x, t) = 0 or lim sup
tրTmax

‖u(·, t)‖W 1,∞(Ω) = ∞. (2.2)

Proof. We let

ε := min

{

1

2
inf
x∈Ω

u0(x) ,
1

2‖u0‖L∞(Ω)
,

1

2‖∇u0‖L∞(Ω)

}

(2.3)

and take cut-off functions ψε ∈ C∞(R) and φε ∈ C∞(R) satisfying

ε

2
≤ ψε(s) ≤

2

ε
for all s ∈ R and ψε(s) = s for all s ∈

(

ε ,
1

ε

)

,

as well as

φε(s) ≤
2

ε
for all s ∈ R and φε(s) = s for all s ≤ 1

ε
·

Then

aε(s, p) :=
ψε(s)

√

ψ2
ε(s) + φ2ε(|p|)

, s ∈ R, p ∈ R
n,

defines a function aε ∈ C∞(R× R
n) fulfilling

aε(s, p) ≤
ψε(s)

√

ψ2
ε(s)

= 1 for all s ∈ R and p ∈ R
n

and

aε(s, p) ≥
ε
2

√

(2
ε
)2 + (2

ε
)2

=
ε2

4
√
2

for all s ∈ R and p ∈ R
n.
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We can therefore adapt a fixed point argument which is well-established in the existence theory of
parabolic-elliptic chemotaxis systems (cf. [16] or [19], for instance) to find Tε > 0 such that the problem















































ut = ∇ ·
( ψε(u)∇u
√

ψ2
ε(u) + φ2ε(|∇u|)

)

− χ∇ ·
( u∇v
√

1 + |∇v|2
)

, x ∈ Ω, t ∈ (0, Tε),

0 = ∆v − µ+ u, x ∈ Ω, t ∈ (0, Tε),

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, Tε),

u(x, 0) = u0(x), x ∈ Ω,

possesses a unique classical solution (uε, vε) such that uε ∈ C2,1(Ω̄× [0, Tε)) and vε ∈ C2,0(Ω̄× [0, Tε)),
and such that both uε and vε are radially symmetric and positive. Furthermore, since 2ε ≤ u0 ≤ 1

2ε
and |∇u0| ≤ 1

2ε in Ω according to our choice of ε, by continuity of uε and ∇uε in Ω̄ × [0, Tε) we can

find T̃ε ∈ (0, Tε) such that

ε ≤ uε ≤
1

ε
and |∇uε| ≤

1

ε
in Ω× (0, T̃ε).

In particular, this implies that ψε(uε) = uε and φε(|∇uε|) = |∇uε| in Ω × (0, T̃ε), and that thus
aε(uε) =

uε√
u2
ε+|∇uε|2

in this region, meaning that (uε, vε) actually solves the original problem (1.3) in

Ω× (0, T̃ε).
Finally, in view of the dependence of ε on u0 as expressed in (2.3), a standard extensibility argument
yields that the above solution can be continued so as to exist up to some maximal time Tmax ≤ ∞ in
such a way that (2.2) is valid. �

2.2 Radial solutions

Since all our solutions are radially symmetric, whenever this appears convenient me may without any
danger of confusion utilize the notation u(r, t) and v(r, t) instead of u(x, t) and v(x, t), respectively,
where r = |x| ∈ (0, R).

In this particular radial setting, u actually fulfills a favorable parabolic equation specified in the
following lemma.

Lemma 2.2 Assume (1.4). Then the solution of (1.3) satisfies

ut =
u3urr

√

u2 + u2r
3 +

u4r
√

u2 + u2r
3 +

n− 1

r
· uur
√

u2 + u2r

−χ urvr
√

1 + v2r
− χ

u(µ− u)
√

1 + v2r
3 − χ · n− 1

r
· uv3r
√

1 + v2r
3 , (2.4)

for all r ∈ (0, R) and t ∈ (0, Tmax).
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Proof. We differentiate on the right-hand side of the first equation in (1.3) to obtain

ut =
1

rn−1
·
(

rn−1 uur
√

u2 + u2r

)

r

− χ

rn−1
·
(

rn−1 uvr
√

1 + v2r

)

r

=
uurr

√

u2 + u2r
+

u2r
√

u2 + u2r
− 1

2
· uur(2uur + 2ururr)

√

u2 + u2r
3 +

n− 1

r
· uur
√

u2 + u2r

−χ uvrr
√

1 + v2r
− χ

urvr
√

1 + v2r
+

1

2
· χuvr · 2vrvrr

√

1 + v2r
3 − χ · n− 1

r
· uvr
√

1 + v2r
(2.5)

for all r ∈ (0, R) and t ∈ (0, Tmax). Here we can rearrange

uurr
√

u2 + u2r
+

u2r
√

u2 + u2r
− 1

2
· uur(2uur + 2ururr)

√

u2 + u2r
3

=
uurr

√

u2 + u2r
3 ·

{

(u2 + u2r)− u2r

}

+
u2r

√

u2 + u2r
3 ·

{

(u2 + u2r)− u2
}

=
u3urr

√

u2 + u2r
3 +

u4r
√

u2 + u2r
3

and, similarly,

−χ uvrr
√

1 + v2r
+

1

2
· χuvr · 2vrvrr

√

1 + v2r
3 − χ · n− 1

r
· uvr
√

1 + v2r

= −χ uvrr
√

1 + v2r
3 ·

{

(1 + v2r )− v2r

}

− χ · n− 1

r
· uvr
√

1 + v2r
3 · (1 + v2r )

= −χu(vrr +
n−1
r
vr)

√

1 + v2r
3 − χ · n− 1

r
· uv3r
√

1 + v2r
3

for r ∈ (0, R) and t ∈ (0, Tmax). Since vrr +
n−1
r
vr = µ − u by (1.3), the identity (2.4) thus results

from (2.5). �

We next differentiate (2.4) to obtain a corresponding equation for ur. Here suitable arrangements will
lead to the two alternative interpretations (2.7) and (2.10) thereof as linear inhomogeneous parabolic
equations. The first of these will be used to establish an estimate from below for ur in Lemma 4.1 by
a straightforward comparison argument, whereas upon some more involved preparations, on the basis
of the latter we will apply another comparison procedure to derive a certain upper bound for ur in
Lemma 5.2.

Lemma 2.3 Assume (1.4). Then

urt =
u3urrr

√

u2 + u2r
3 + 3

u2u3rurr
√

u2 + u2r
5 − 3

u3uru
2
rr

√

u2 + u2r
5

+4
u2u3rurr

√

u2 + u2r
5 +

u5rurr
√

u2 + u2r
5 − 3

uu5r
√

u2 + u2r
5
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−n− 1

r2
· uur
√

u2 + u2r
+
n− 1

r
· u3urr
√

u2 + u2r
3 +

n− 1

r

u4r
√

u2 + u2r
3

−χµ ur
√

1 + v2r
3 + 2χ

uur
√

1 + v2r
3 + 3χµ

uvrvrr
√

1 + v2r
5 − 3χ

u2vrvrr
√

1 + v2r
5

−χ urrvr
√

1 + v2r
− χ

urvrr
√

1 + v2r
+ χ

urv
2
rvrr

√

1 + v2r
3

+χ · n− 1

r2
· uv3r
√

1 + v2r
3 − χ · n− 1

r
· urv

3
r

√

1 + v2r
3 − 3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5 (2.6)

for all r ∈ (0, R) and t ∈ (0, Tmax). In particular,

(Pur)(r, t) = 0 for all r ∈ (0, R) and t ∈ (0, Tmax), (2.7)

where the inhomogeneous linear parabolic operator P is defined by

(Pϕ)(r, t) := ϕt −A1(r, t)ϕrr −A2(r, t)ϕr −A3(r, t)ϕ−A4(r, t), r ∈ (0, R), t ∈ (0, Tmax), (2.8)

with

A1(r, t) :=
u3

√

u2 + u2r
3 ,

A2(r, t) := 3
u2u3r

√

u2 + u2r
5 − 3

u3ururr
√

u2 + u2r
5 + 4

u2u3r
√

u2 + u2r
5 +

u5r
√

u2 + u2r
5 +

n− 1

r
· u3

√

u2 + u2r
3

−χ vr
√

1 + v2r
,

A3(r, t) := −3
uu4r

√

u2 + u2r
5 − n− 1

r2
u

√

u2 + u2r

−χµ 1
√

1 + v2r
3 + 2χ

u
√

1 + v2r
3 − χ

vrr
√

1 + v2r
+ χ

v2rvrr
√

1 + v2r
3 − χ · n− 1

r
· v3r
√

1 + v2r
3 and

A4(r, t) :=
n− 1

r
· u4r
√

u2 + u2r
3

+3χµ
uvrvrr

√

1 + v2r
5 − 3χ

u2vrvrr
√

1 + v2r
5 + χ · n− 1

r2
· uv3r
√

1 + v2r
3 − 3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5 (2.9)

for r ∈ (0, R) and t ∈ (0, Tmax). Likewise,

(Qur)(r, t) = 0 for all r ∈ (0, R) and t ∈ (0, Tmax), (2.10)

with Q given by

(Qϕ)(r, t) := ϕt −A1(r, t)ϕrr −A2(r, t)ϕr − Ã3(r, t)ϕ− Ã4(r, t), r ∈ (0, R), t ∈ (0, Tmax), (2.11)
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where

Ã3(r, t) :=
n− 1

r
· u3r
√

u2 + u2r
3

−χµ 1
√

1 + v2r
3 + 2χ

u
√

1 + v2r
3 − χ

vrr
√

1 + v2r
+ χ

v2rvrr
√

1 + v2r
3 − χ · n− 1

r
· v3r
√

1 + v2r
3 and

Ã4(r, t) := −3
uu5r

√

u2 + u2r
5 − n− 1

r2
· uur
√

u2 + u2r

+3χµ
uvrvrr

√

1 + v2r
5 − 3χ

u2vrvrr
√

1 + v2r
5 + χ · n− 1

r
· uv3r
√

1 + v2r
3 − 3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5 (2.12)

for r ∈ (0, R) and t ∈ (0, Tmax).

Proof. Differentiation of (2.4) with respect to r yields

urt =
u3urrr

√

u2 + u2r
3 + 3 · u2ururr

√

u2 + u2r
3 − 3

2
· u

3urr · (2uur + 2ururr)
√

u2 + u2r
5

+4 · u3rurr
√

u2 + u2r
3 − 3

2
· u

4
r · (2uur + 2ururr)

√

u2 + u2r
5

−n− 1

r2
· uur
√

u2 + u2r
+
n− 1

r
· uurr
√

u2 + u2r

+
n− 1

r
· u2r
√

u2 + u2r
− 1

2
· n− 1

r
· uur · (2uur + 2ururr)

√

u2 + u2r
3

−χµ · ur
√

1 + v2r
3 + 2χ · uur

√

1 + v2r
3 +

3

2
χ · u(µ− u) · 2vrvrr

√

1 + v2r
5

−χ · urrvr
√

1 + v2r
− χ · urvrr

√

1 + v2r
+

1

2
χ · urvr · 2vrvrr

√

1 + v2r
3

+χ · n− 1

r2
· uv3r
√

1 + v2r
3 − χ · n− 1

r
· urv

3
r

√

1 + v2r
3

−3χ · n− 1

r
· uv2rvrr
√

1 + v2r
3 +

3

2
χ · n− 1

r
· uv

3
r · 2vrvrr

√

1 + v2r
5 (2.13)

for r ∈ (0, R) and t ∈ (0, Tmax), where

3 · u2ururr
√

u2 + u2r
3 − 3

2
· u

3urr · (2uur + 2ururr)
√

u2 + u2r
5 = 3 · u2ururr

√

u2 + u2r
5 ·

{

(u2 + u2r)− u2
}

− 3 · u3uru
2
rr

√

u2 + u2r
5

= 3 · u2u3rurr
√

u2 + u2r
5 − 3 · u3uru

2
rr

√

u2 + u2r
5

10



and

4 · u3rurr
√

u2 + u2r
3 − 3

2
· u

4
r · (2uur + 2ururr)

√

u2 + u2r
5 =

u3rurr
√

u2 + u2r
5 ·

{

4(u2 + u2r)− 3u2r

}

− 3 · uu5r
√

u2 + u2r
5

= 4 · u2u3rurr
√

u2 + u2r
5 +

u5rurr
√

u2 + u2r
5 − 3 · uu5r

√

u2 + u2r
5

as well as

n− 1

r
· uurr
√

u2 + u2r
+
n− 1

r
· u2r
√

u2 + u2r
− 1

2
· n− 1

r
· uur · (2uur + 2ururr)

√

u2 + u2r
3

=
n− 1

r
· uurr
√

u2 + u2r
3 ·

{

(u2 + u2r)− u2r

}

+
n− 1

r
· u2r
√

u2 + u2r
3 ·

{

(u2 + u2r)− u2
}

=
n− 1

r
· u3urr
√

u2 + u2r
3 +

n− 1

r
· u4r
√

u2 + u2r
3

for r ∈ (0, R) and t ∈ (0, Tmax). Finally simplifying the last two summands in (2.13) according to

−3χ · n− 1

r
· uv2rvrr
√

1 + v2r
3 +

3

2
χ · n− 1

r
· uv

3
r · 2vrvrr

√

1 + v2r
5

= −3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5 ·

{

(1 + v2r )− v2r

}

= −3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5
,

from (2.13) we easily obtain (2.6), and thus also (2.7) and (2.10). �

Thanks to the favorable structure of the equation for v in (1.3), this second solution component can
be expressed explicitly in terms of u. This leads to the following observations which will frequently
be referred to throughout the sequel.

Lemma 2.4 Assume (1.4). Then

vr(r, t) =
µr

n
− r1−n ·

∫ r

0
ρn−1u(ρ, t)dρ for all r ∈ (0, R) and t ∈ (0, Tmax) (2.14)

and

vrr(r, t) =
µ

n
− u+

n− 1

rn
·
∫ r

0
ρn−1u(ρ, t)dρ for all r ∈ (0, R) and t ∈ (0, Tmax). (2.15)

Moreover we have
vrt = − uur

√

u2 + u2r
+ χ · uvr

√

1 + v2r
in (0, R)× (0, Tmax). (2.16)
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Proof. Since by the second equation in (1.3) we have

(rn−1vr)r = rn−1(µ− u) for all r ∈ (0, R) and t ∈ (0, Tmax),

the identity (2.14) easily results by integration, whereupon a differentiation of (2.14) with respect to
r yields (2.15).
Next we differentiate (2.14) with respect to t and use the first equation in (1.3) to see that

vrt(r, t) = − 1

rn−1
·
∫ r

0
ρn−1ut(ρ, t)dρ

= − 1

rn−1
·
∫ r

0
ρn−1 ·

{

1

ρn−1

(

ρn−1 uur
√

u2 + u2r
− χρn−1 uvr

√

1 + v2r

)

}

r

(ρ, t)dρ

= − 1

rn−1
·
{

rn−1 uur
√

u2 + u2r
− χrn−1 uvr

√

1 + v2r

}

for all r ∈ (0, R) and t ∈ (0, Tmax), which shows (2.16). �

Let us note some pointwise estimates resulting from Lemma 2.5 in a straightforward manner.

Lemma 2.5 Let (1.4) hold. Then for each t ∈ (0, Tmax) and any r ∈ (0, R) we have

−µR
n

n
· r1−n ≤ vr(r, t) ≤

µ

n
· r (2.17)

and

|vr(r, t)| ≤
‖u(·, t)‖L∞((0,R))

n
· r (2.18)

as well as
|vrr(r, t)| ≤ ‖u(·, t)‖L∞((0,R)). (2.19)

Proof. Fixing t ∈ (0, Tmax) and writing M := ‖u(·, t)‖L∞((0,R)), we clearly have µ ≤ M , so that
since from Lemma 2.4 we know that

vr(r, t) ≤
µ

n
· r for all r ∈ (0, R)

and

vr(r, t) ≥ − 1

rn−1
·
∫ r

0
ρn−1 ·Mdρ = −Mr

n
for allr ∈ (0, R),

both the right inequality in (2.17) as well as (2.18) are immediate. Similarly, using (2.15) we can
estimate

vrr(r, t) ≤ µ

n
+
n− 1

rn
·
∫ r

0
ρn−1 ·Mdρ =

µ

n
+

(n− 1)M

n

≤ M for all r ∈ (0, R)

and

vrr(r, t) ≥ −M for all r ∈ (0, R),

12



which yields (2.19). Finally, to derive the left inequality in (2.17) we observe that
∫ r

0 ρ
n−1u(ρ, t)dρ ≤ m

ωn

for all r ∈ (0, R) and recall that m
ωn

= µRn

n
by (1.5) to obtain from (2.14) that

vr(r, t) ≥ −r1−n

∫ r

0
ρn−1u(ρ, t)dρ ≥ −r1−n · m

ωn
= −r1−n · µR

n

n
for all r ∈ (0, R).

This completes the proof. �

3 A pointwise estimate from below for u

In order to show that (2.2) actually reduces to (1.6), let us first rule out the occurrence of the first
alternative in (2.2). In proving this, we shall make use of the following elementary inequality.

Lemma 3.1 We have

ξ
√
1 + ξ

3 ≤ 2

3
√
3

for all ξ ≥ 0.

Proof. Since ϕ(ξ) := ξ√
1+ξ

3 , ξ ≥ 0, satisfies ϕ(0) = 0, ϕ(ξ) → 0 as ξ → ∞ and ϕ′(ξ) =

(1 + ξ)−
5
2 · (1− ξ

2) for all ξ > 0, it follows that ϕ(ξ) ≤ ϕ(2) = 2√
3
3 for all ξ ≥ 0. �

By means of a comparison argument applied to (2.4), we can now in fact exclude that solutions attain
zeros within finite time.

Lemma 3.2 If (1.4) holds, then

u(r, t) ≥
(

inf
r∈(0,R)

u0(r)
)

· e−κt for all r ∈ (0, R) and t ∈ (0, Tmax), (3.1)

where

κ := χµ+
2(n− 1)χµ

3
√
3n

. (3.2)

Proof. We rewrite (2.4) in the form

ut = a1(r, t)urr + a21(r, t)ur +
a22(r, t)

r
· ur − χ · u(µ− u)

√

1 + v2r
3 − n− 1

r
· χ uv3r

√

1 + v2r
3 (3.3)

for all r ∈ (0, R) and t ∈ (0, Tmax), where

a1(r, t) :=
u3

√

u2 + u2r
3

and

a21(r, t) :=
u3r

√

u2 + u2r
3 − χ · vr

√

1 + v2r

13



as well as

a22(r, t) := (n− 1) · u
√

u2 + u2r

define continuous functions in [0, R]× (0, Tmax). In (3.3), we can estimate

−χ · u(µ− u)
√

1 + v2r
3 ≥ −χµ · u

√

1 + v2r
3 ≥ −χµu for all r ∈ (0, R) and t ∈ (0, Tmax),

and in order to control the last term in (3.3) we use the one-sided inequality vr ≤ µr
n

provided by
Lemma 2.5, which in conjunction with Lemma 3.1 entails that

−n− 1

r
· χ uv3r

√

1 + v2r
3 = −(n− 1)χ · v2r

√

1 + v2r
3 · vr

r
· u

≥ −(n− 1)χ · 2

3
√
3
· µ
n
· u for all r ∈ (0, R) and t ∈ (0, Tmax).

Accordingly, from (3.3) we infer that with κ as in (3.2) we have

ut ≥ a1(r, t)urr + a21(r, t)ur +
a22(r, t)

r
· ur − κu for all r ∈ (0, R) and t ∈ (0, Tmax),

so that for all ε > 0, writing ϕ(r, t) := e(κ+ε)tu(r, t) we see that

ϕt ≥ e(κ+ε)t ·
{

a1(r, t)urr + a21(r, t)ur + a22(r, t)ur − κu+ (κ+ ε)u
}

= a1(r, t)ϕrr + a21(r, t)ϕr + a22(r, t)ϕr + εe(κ+ε)tu for all r ∈ (0, R) and t ∈ (0, Tmax).(3.4)

Now if for some T ∈ (0, Tmax), ϕ attains its minimum over [0, R]×[0, T ] at some (r0, t0) ∈ [0, R]×[0, T ],
then necessarily

ϕr(r0, t0) = 0, ϕrr(r0, t0) ≥ 0 and ϕt(r0, t0) ≤ 0. (3.5)

Therefore, in the case t0 > 0 and r0 > 0 we may directly apply (3.4) to obtain

0 ≥ ϕt(r0, t0) ≥ a1(r0, t0)ϕrr(r0, t0) + a21(r0, t0)ϕr(r0, t0) +
a22(r0, t0)

r0
· ϕr(r0, t0) + εe(κ+ε)t0u(r0, t0)

≥ εe(κ+ε)t0u(r0, t0) > 0,

which is impossible.
However, if t0 > 0 and r0 = 0, then there must exist a sequence (rj)j∈N of numbers rj ∈ (0, R) such
that rj ց 0 as j → ∞ and ϕr(rj , t0) ≥ 0 for all j ∈ N, because otherwise ϕ(·, t0) would have a strict
local maximum at r = 0. Since a3 ≥ 0, evaluating (3.4) at r = rj = we would thus obtain that

ϕt(rj , t0) ≥ a1(rj , t0)ϕrr(rj , t0) + a21(rj , t0)ϕr(rj , t0) +
a22(rj , t0)

rj
· ϕr(rj , t0) + εe(κ+ε)t0u(rj , t0)

≥ a1(rj , t0)ϕrr(rj , t0) + a21(rj , t0)ϕr(rj , t0) + εe(κ+ε)t0u(rj , t0) for all j ∈ N,
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so that since ϕ(·, t0) is smooth in [0, R], we may let j → ∞ here to infer using (3.5) that

0 ≥ ϕt(0, t0) ≥ a1(0, t0)ϕrr(0, t0) + a21(0, t0)ϕr(0, t0) + εe(κ+ε)t0u(0, t0)

≥ εe(κ+ε)t0u(0, t0) > 0.

This absurd conclusion shows that actually t0 = 0, which implies that ϕ ≥ infr∈(0,R) ϕ(r, 0) =
infr∈(0,R) u0(r) throughout [0, R] × [0, T ] for any T ∈ (0, Tmax). Taking T ր Tmax and ε ց 0 we
thereby obtain (3.1). �

4 A pointwise lower estimate for ur

It remains to exclude the possibility of finite-time blow-up of ur despite boundedness of u. A first step
toward this can accomplished by invoking parabolic comparison to derive the following lower bound
for ur from (2.7). Let us emphasize that our argument makes essential use of the fact that on the
right-hand side of (2.6), the most singular term n−1

r2
· uur√

u2+u2
r

therein appears with a negative sign,

and that in consequence a corresponding upper estimate for ur can apparently not be obtained by a
direct approach of the type pursued here, at least not when n ≥ 2.

Lemma 4.1 Assume that Tmax < ∞, but that sup(r,t)∈(0,R)×(0,Tmax) u(r, t) < ∞. Then there exists
C > 0 such that

ur(r, t) ≥ −C for all r ∈ (0, R) and t ∈ (0, Tmax). (4.1)

Proof. According to our hypothesis, we can find c1 > 0 such that

u(r, t) ≤ c1 for all r ∈ (0, R) and t ∈ (0, Tmax), (4.2)

so that Lemma 2.5 provides c2 > 0 and c3 > 0 such that

|vr(r, t)| ≤ c2r and |vrr(r, t)| ≤ c3 for all r ∈ (0, R) and t ∈ (0, Tmax). (4.3)

We now take D ≥ 1 and α > 0 large enough fulfilling

u0r(r) > −D for all r ∈ (0, R) (4.4)

and
α > c4 +

c5

D
, (4.5)

where
c4 := 2c1χ+ c3χ+ c22c3χR

2 + (n− 1)c32χR
2 (4.6)

and
c5 := 3c1c2c3χµ+ 3c21c2c3χR+ (n− 1)c1c

3
2χR+ 3(n− 1)c1c

2
2c3χR, (4.7)

and define a comparison function ϕ by letting

ϕ(r, t) := −Deαt for r ∈ [0, R] and t ≥ 0.
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Then since ϕ
r
= ϕ

rr
≡ 0, with P as in (2.8) we have

(Pϕ)(r, t) = −αDeαt

−3
u4r ·Deαt
√

u2 + u2r
5 − n− 1

r2
· u ·Deαt
√

u2 + u2r
− χµ

Deαt

√

1 + v2r
3

+2χ
u ·Deαt
√

1 + v2r
3 − χ

vrr ·Deαt
√

1 + v2r
+ χ

v2rvrr ·Deαt
√

1 + v2r
3

−χ · n− 1

r
· v

3
r ·Deαt

√

1 + v2r
3

−n− 1

r
· u4r
√

u2 + u2r
3 − 3χµ

uvrvrr
√

1 + v2r
5 + 3χ

u2vrvrr
√

1 + v2r
5

−χ · n− 1

r2
· uv3r
√

1 + v2r
3 + 3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5 (4.8)

for all r ∈ (0, R) and t ∈ (0, Tmax). Here the second, third, fourth and ninth term on the right are
nonpositive, and we claim that each of the remaining summands containing χ can be controlled in
modulus by the first term on the right-hand side suitably. Indeed, repeatedly using (4.2), (4.3) and
(4.4), we can estimate

∣

∣

∣

∣

2χ
u ·Deαt
√

1 + v2r
3

∣

∣

∣

∣

≤ 2χ · c1 ·Deαt,

∣

∣

∣

∣

− χ
vrr ·Deαt
√

1 + v2r

∣

∣

∣

∣

≤ χ · c3 ·Deαt,

∣

∣

∣

∣

χ
v2rvrr ·Deαt
√

1 + v2r
3

∣

∣

∣

∣

≤ χ · c22r2 · c3 ·Deαt ≤ c22c3χR
2 ·Deαt,

∣

∣

∣

∣

− 3χµ
uvrvrr

√

1 + v2r
5

∣

∣

∣

∣

≤ 3χµ · c1 · c2r · c3 ≤ 3c1c2c3χµR

as well as
∣

∣

∣

∣

3χ
u2vrvrr
√

1 + v2r
5

∣

∣

∣

∣

≤ 3χ · c21 · c2r · c3 ≤ 3c21c2c3χR

and finally,

∣

∣

∣

∣

− χ · n− 1

r2
· uv3r
√

1 + v2r
3

∣

∣

∣

∣

≤ χ · n− 1

r2
· c1 · c32r3 ≤ (n− 1)c1c

3
2χR,
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as well as
∣

∣

∣

∣

− χ · n− 1

r
· v

3
r ·Deαt

√

1 + v2r
3

∣

∣

∣

∣

≤ χ · n− 1

r
· c32r3 ·Deαt ≤ (n− 1)c32χR

2 ·Deαt

and
∣

∣

∣

∣

3χ · n− 1

r
· uv2rvrr
√

1 + v2r
5

∣

∣

∣

∣

≤ 3χ · n− 1

r
· c1 · c22r2 · c3 ≤ 3(n− 1)c1c

2
2c3χR.

Therefore, (4.8) implies that with c4 and c5 as in (4.6) and (4.7) we have

(Pϕ)(r, t) ≤ −αDeαt + c4 ·Deαt + c5

≤ −αDeαt +
(

c4 +
c5

D

)

·Deαt for all r ∈ (0, R) and t ∈ (0, Tmax),

whence our assumption (4.5) on α ensures that (Pϕ)(r, t) < 0 for all r ∈ (0, R) and t ∈ (0, Tmax).
Since (Pur)(r, t) = 0 for all (r, t) ∈ (0, R)× (0, Tmax) by Lemma 2.3, and since moreover

ϕ(r, 0) = −D < u0r(r) = ur(0, r) for all r ∈ [0, R]

and, clearly,

ϕ
r
(0, t) = ur(0, t) = 0 as well as ϕ

r
(R, t) = ur(R, t) = 0 for all t ∈ (0, Tmax),

from the comparison principle we conclude that ur(r, t) ≥ ϕ(r, t) for all r ∈ (0, R) and t ∈ (0, Tmax),
and that hence

ur(r, t) ≥ −DeαTmax for all r ∈ (0, R) and t ∈ (0, Tmax),

which proves the claim. �

5 A bound for |ur|. Proof of Theorem 1.1

The goal of this section is to complete the proof of Theorem 1.1 by further developing the one-sided
inequality for ur from Lemma 4.1 into a bound for |ur| in modulus, provided that Tmax is finite but
u itself remains bounded (Corollary 5.7). An important role in our analysis in this direction will be
played by the function z := ut

u
, which is indeed well-defined and continuous in [0, R] × [0, Tmax) by

Lemma 2.1. Furthermore, according to Lemma 2.2 we have the representation

z =
u2urr

√

u2 + u2r
3 +

u4r

u
√

u2 + u2r
3 +

n− 1

r
· ur
√

u2 + u2r

−χ urvr

u
√

1 + v2r
− χ

µ− u
√

1 + v2r
3 − χ · n− 1

r
· v3r
√

1 + v2r
3
, (5.1)

for r ∈ (0, R) and t ∈ (0, Tmax).
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Now in a first key observation, to be presented in Corollary 5.3, we will establish a useful relationship
between ur and the function z, essentially controlling ‖ur(·, t)‖L∞((0,R)) for any fixed t ∈ (0, Tmax) by
the maximum of the positive part z+ of z over the whole memory region (0, R)× (0, t). To achieve this,
we will foremost use an integral technique to estimate |ur| in terms of z+ on the basis of (5.1) and
Lemma 4.1 in a suitably small subinterval (0, R0) of (0, R) (Lemma 5.1). This will in particular imply
an upper bound for ur at r = R0 and therefore allow for applying a comparison argument to (2.10)
which will yield a pointwise upper estimate for ur in the corresponding outer region (R0, R) (Lemma
5.2).

The second essential step will thereafter consist in deriving a nonlocal parabolic inequality for z with a
memory-type nonlinearity (Lemma 5.5). Upon another comparison, this will entail a pointwise upper
bound for z (Lemma 5.6) and hence also for ur.

5.1 A bound for |ur| in terms of z+

5.1.1 Estimating |ur| near the origin

Let us first apply an appropriate testing procedure to (5.1) to find some small R0 ∈ (0, R) with the
property that ur(·, t) can be bounded in certain weighted Lebesgue spaces over (0, R0) in such a way
that on taking limits we can derive a respective L∞ estimate from this.

Lemma 5.1 Assume that Tmax < ∞, but that sup(r,t)∈(0,R)×(0,Tmax) u(r, t) < ∞. Then there exist
R0 ∈ (0, R) and C > 0 such that

‖ur(·, t)‖L∞((0,R0)) ≤ C ·
(

1 + ‖z+(·, t)‖L∞((0,R0))

)

for all t ∈ (0, Tmax). (5.2)

Proof. We first rearrange (5.1) to obtain

u4r
u3

=

√

u2 + u2r
u2

· z − urr −
n− 1

r
·
√

u2 + u2r
2
ur

u2

+χ
(µ− u)

√

u2 + u2r
3

√

1 + v2r
3 + χ

√

u2 + u2r
3
urvr

u3
√

1 + v2r
+ χ · n− 1

r
·
√

u2 + u2r
3
v3r

u2
√

1 + v2r
3 , (5.3)

where

−urr −
n− 1

r
·
√

u2 + u2r
2
ur

u2
= −

(

urr +
n− 1

r
ur

)

− n− 1

r
· u

3
r

u2

= − 1

rn−1
(rn−1ur)r −

n− 1

r
· u

3
r

u2
(5.4)

for r ∈ (0, R) and t ∈ (0, Tmax). In order to choose R0 appropriately, we use our boundedness
assumption on u to fix c1 ≥ µ and c2 > 0 such that

u(r, t) ≤ c1 for all r ∈ (0, R) and t ∈ (0, Tmax) (5.5)

and
√

u2 + u2r
3 ≤ c2 · (1 + |ur|3) in (0, R)× (0, Tmax), (5.6)
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and recall Lemma 3.2 to find c3 > 0 fulfilling

u(r, t) ≥ c3 for all r ∈ (0, R) and t ∈ (0, Tmax). (5.7)

We claim that then the conclusion of the lemma holds if we pick any R0 ∈ (0, R) satisfying

R0 ≤
nc33

4c31c2χµ
. (5.8)

To see this, we take an arbitrary even integer m ≥ 0, multiply (5.3) by rn−1umr and integrate over
(0, R0) to see using (5.4) that

I(t) :=

∫ R0

0
rn−1u

m+4
r

u3
dr

=

∫ R0

0
rn−1

√

u2 + u2r
3

u2
· umr zdr −

∫ R0

0
(rn−1ur)r · umr dr − (n− 1)

∫ R0

0
rn−2u

m+3
r

u2
dr

+χ

∫ R0

0
rn−1 (µ− u)

√

u2 + u2r
3
umr

u2
√

1 + v2r
3 dr + χ

∫ R0

0
rn−1

√

u2 + u2r
3
um+1
r vr

u3
√

1 + v2r
dr

+(n− 1)χ

∫ R0

0
rn−2

√

u2 + u2r
3
umr v

3
r

u2
√

1 + v2r
3 dr

=: J1(t) + ...+ J6(t) for all t ∈ (0, Tmax). (5.9)

Here by (5.5) we have

I(t) ≥ 1

c31
·
∫ R0

0
rn−1um+4

r dr for all t ∈ (0, Tmax), (5.10)

and our goal is to show that the sum on the right-hand side of (5.9) can be controlled adequately by
the term on the right of (5.10).
For this purpose, we first use Lemma 2.4 in rewriting J5(t) to obtain

J5(t) =
χµ

n

∫ R0

0
rn ·

√

u2 + u2r
3
um+1
r

u3
√

1 + v2r
dr − χ

∫ R0

0

√

u2 + u2r
3
um+1
r

u3
√

1 + v2r
·
(
∫ r

0
ρn−1u(ρ, t)dρ

)

dr

=: J51(t) + J52(t) for all t ∈ (0, Tmax), (5.11)

where (5.6), (5.7) and Young’s inequality enable us to infer that

J51(t) ≤ χµ

n

∫ R0

0
rn · c2 · (1 + |ur|3) · |ur|m+1

c33
dr

=
c2χµ

nc33

∫ R0

0
rn|ur|m+1dr +

c2χµ

nc33

∫ R0

0
rnum+4

r dr

≤ c2χµ

nc33

∫ R0

0
rn(1 + um+4

r )dr +
c2χµ

nc33

∫ R0

0
rnum+4

r dr

=
c2χµR

n+1
0

n(n+ 1)c33
+

2c2χµ

nc33

∫ R0

0
rnum+4

r dr for all t ∈ (0, Tmax).
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Trivially estimating

∫ R0

0
rnum+4

r dr ≤ R0

∫ R0

0
rn−1um+4

r ,

according to (5.10) and our restriction (5.8) on R0 we thus conclude that

J51(t) ≤ c4 +
1

2c31

∫ R0

0
rn−1um+4

r dr for all t ∈ (0, Tmax) (5.12)

with c4 :=
c2χµR

n+1

n(n+1)c33
.

In order to derive an appropriate upper bound for the second term on the right of (5.11), let us apply
Lemma 4.1 to fix a constant L ≥ 1 such that

ur(r, t) ≥ −L for all r ∈ (0, R) and t ∈ (0, Tmax). (5.13)

Then since −um+1
r = (−ur)m+1 due to the fact that m+1 is odd, this in conjunction with (5.6), (5.7)

and (5.3) implies that

J52(t) ≤ χLm+1

∫ R0

0

√

u2 + u2r
3

u3
√

1 + v2r
·
(
∫ r

0
ρn−1u(ρ, t)dρ

)

dr

≤ c1c2χ

c33
Lm+1

∫ R0

0
(1 + |ur|3) ·

(

∫ r

0
ρn−1dρ

)

dr

=
c1c2χ

nc33
Lm+1

∫ R0

0
rn(1 + |ur|3)dr

=
c1c2χR

n+1
0

n(n+ 1)c33
Lm+1 +

c1c2χ

nc33

∫ R0

0
rnLm+1|ur|3dr for all t ∈ (0, Tmax). (5.14)

As by Young’s inequality we have

∫ R0

0
rnLm+1|ur|3dr ≤ 3

m+ 4

∫ R0

0
rnum+4

r dr +
m+ 1

m+ 4

∫ R0

0
rnLm+4dr

≤ 3R

m+ 4

∫ R0

0
rn−1um+4

r dr +
Rn+1

n+ 1
Lm+4,

in view of the fact that L ≥ 1 we obtain from (5.14) that

J52(t) ≤ c5L
m+4 +

c6

m+ 4

∫ R0

0
rn−1um+4

r dr for all t ∈ (0, Tmax) (5.15)

with c5 :=
2c1c2χRn+1

n(n+1)c33
and c6 :=

3c1c2χR
nc33

.

Going back to (5.9), we next apply (5.6), (5.7) and Young’s and Hölder’s inequalities to estimate

J1(t) ≤ c2

c23

∫ R0

0
rn−1(1 + |ur|3) · umr z+dr
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=
c2

c23

∫ R0

0
rn−1umr z+dr +

c2

c23

∫ R0

0
rn−1|ur|m+3z+dr

≤ c2

c23

∫ R0

0
rn−1z+dr +

2c2
c23

∫ R0

0
rn−1|ur|m+3z+dr

≤ c2

c23

(
∫ R0

0
rn−1zm+4

+ dr

)
1

m+4

·
(Rn

0

n

)
m+3
m+4

+
2c2
c23

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

·
(
∫ R0

0
rn−1zm+4

+ dr

)
1

m+4

,

which means that if we let R1 := max{1, R} and c7 := max{ c2
c23

· Rn
1

n
, 2c2

c23
}, then

J1(t) ≤ c7 ·
{

1+

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

·
(
∫ R0

0
rn−1zm+4

+ dr

)
1

m+4

for all t ∈ (0, Tmax). (5.16)

As for the second term on the right of (5.9), in order to remove second-order derivatives, in the case
n ≥ 2 we twice integrate by parts to obtain

J2(t) = m

∫ R0

0
rn−1umr urrdr −Rn−1

0 um+1
r (R0, t)

= −(n− 1)m

m+ 1

∫ R0

0
rn−2um+1

r dr +
m

m+ 1
Rn−1

0 um+1
r (R0, t)−Rn−1

0 um+1
r (R0, t)

= −(n− 1)m

m+ 1

∫ R0

0
rn−2um+1

r dr − 1

m+ 1
Rn−1

0 um+1
r (R0, t) for all t ∈ (0, Tmax).

Once more since m+ 1 is odd, (5.13) again becomes applicable to provide the one-sided estimate

J2(t) ≤ (n− 1)m

m+ 1
Lm+1

∫ R0

0
rn−2 +

1

m+ 1
Rn−1

0 Lm+1

≤ c8L
m+1 for all t ∈ (0, Tmax) (5.17)

with c8 := (n−1)m
m+1 · Rn−1

n−1 + 1
m+1R

n−1 ≡ Rn−1 when n ≥ 2, and it can easily be verified that this
conclusion can be extended so as to include the case n = 1 as well.

Similarly, since also m+ 3 is odd, we may invoke (5.13) and then (5.7) to see that in the case n ≥ 2,

J3(t) ≤ (n− 1)

∫ R0

0
rn−2L

m+3

u2
dr

≤ n− 1

c23
Lm+3R

n−1
0

n− 1

≤ c9L
m+3 for all t ∈ (0, Tmax) (5.18)

with c9 :=
Rn−1

c23
, and note that (5.18) trivially holds when n = 1.
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We next estimate J4(t) by first using (5.6), (5.7) and Young’s inequality according to

J4(t) ≤ c2χµ

c23

∫ R0

0
rn−1(1 + |ur|3)umr dr

≤ c2χµ

c23

∫ R0

0
rn−1dr +

2c2χµ

c23

∫ R0

0
rn−1|ur|m+3dr

=
c2χµR

n
0

nc23
+

2c2χµ

c23

∫ R0

0
rn−1|ur|m+3dr for all t ∈ (0, Tmax).

Since thanks to the Hölder inequality we know that

∫ R0

0
rn−1|ur|m+3dr ≤

(Rn
0

n

)
1

m+4 ·
(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

≤ Rn
1

n
·
(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

, (5.19)

again with R1 = max{1, R}, this entails that

J4(t) ≤ c10 ·
{

1 +

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

for all t ∈ (0, Tmax) (5.20)

if we let c10 := max{ c2χµR
n

nc23
, 2c2χµ

c23
· Rn

1

n
}.

Finally, in treating the last integral in (5.9) we make use of the upper estimate for vr in (2.17) to see,
again recalling (5.6), (5.7) and using Young’s inequality, that

J6(t) ≤ (n− 1)χµ3

n3

∫ R0

0

rn+1
√

u2 + u2r
3
umr

u2
√

1 + v2r
3 dr

≤ (n− 1)c2χµ
3

n3c23

∫ R0

0
rn+1(1 + |ur|3)umr dr

≤ (n− 1)c2χµ
3

n3c23

∫ R0

0
rn+1dr +

2(n− 1)c2χµ
3

n3c23

∫ R0

0
rn+1|ur|m+3dr

=
(n− 1)c2χµ

3Rn+2
0

n3(n+ 2)c23
+

2(n− 1)c2χµ
3

n3c23

∫ R0

0
rn+1|ur|m+3dr for all t ∈ (0, Tmax).

Now due to (5.19),

∫ R0

0
rn+1|ur|m+3dr ≤ R2

0

∫ R0

0
rn−1|ur|m+3dr

≤ Rn+2
1

n

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

,
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whence we obtain that

J6(t) ≤ c11 ·
{

1 +

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

for all t ∈ (0, Tmax) (5.21)

with c11 := max
{

(n−1)c2χµ3Rn+2

n3(n+2)c23
,
2(n−1)c2χµ3

n3c32
· Rn+2

1

n

}

.

In summary, (5.10), (5.16), (5.17), (5.18), (5.11), (5.12), (5.15) and (5.21) combined with (5.9) show
that

1

c31

∫ R0

0
rn−1um+4

r dr ≤ c7 ·
{

1 +

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

·
(
∫ R0

0
rn−1zm+4

+ dr

)
1

m+4

+c8L
m+1 + c9L

m+3

+c10 ·
{

1 +

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

+c4 +
1

2c31

∫ R0

0
rn−1um+4

r dr

+c5L
m+4 +

c6

m+ 4

∫ R0

0
rn−1um+4

r dr

+c11

{

1 +

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

for all t ∈ (0, Tmax).

Since L ≥ 1, this means that if m⋆ is sufficiently large such that

c6

m⋆ + 4
≤ 1

4c31
, (5.22)

and if m ≥ m⋆, then

1

4c31

∫ R0

0
rn−1um+4

r dr ≤ c7 ·
{

1 +

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

}

·
(
∫ R0

0
rn−1zm+4

+ dr

)
1

m+4

+c12

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

+c13L
m+4 for all t ∈ (0, Tmax), (5.23)

where c12 := c10 + c11 and c13 := c8 + c9 + c10 + c4 + c5 + c11.

Now in order to prove (5.2) for some suitably large C > 0 independent of t ∈ (0, Tmax), we fix any
such t and first consider the case when there exists a sequence of even numbers m = mj ≥ m⋆, j ∈ N,
such that mj → ∞ as j → ∞ and

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

≤ Lm+4 for all m ∈ (mj)j∈N. (5.24)
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Then taking j → ∞ here, we directly obtain that

‖ur(·, t)‖L∞((0,R0)) = lim
j→∞

(
∫ R0

0
rn−1u

mj+4
r (r, t)dr

)
1

mj+4

= lim
j→∞

L

mj+4

mj+3 = L. (5.25)

If conversely, such a sequence does not exist, then we can find m⋆⋆ ≥ m⋆ such that for all even
m ≥ m⋆⋆,

(
∫ R0

0
rn−1um+4

r dr

)
m+3
m+4

> Lm+4.

Using that L ≥ 1, we thus infer from (5.23) that for any such m we have

1

4c31

∫ R0

0
rn−1um+4

r (r, t)dr < 2c7

(
∫ R0

0
rn−1um+4

r (r, t)dr

)
m+3
m+4

·
(
∫ R0

0
rn−1zm+4

+ (r, t)dr

)
1

m+4

+c12

(
∫ R0

0
rn−1um+4

r (r, t)dr

)
m+3
m+4

+ c13

(
∫ R0

0
rn−1um+4

r (r, t)dr

)
m+3
m+4

and hence

1

4c31

(
∫ R0

0
rn−1um+4

r (r, t)dr

)
1

m+4

≤ 2c7

(
∫ R0

0
rn−1zm+4

+ (r, t)dr

)
1

m+4

+ c12 + c13.

In the limit m→ ∞, we therefore conclude that in this case,

1

4c31
· ‖ur(·, t)‖L∞((0,R0)) ≤ 2c7 · ‖z+(·, t)‖L∞((0,R0)) + c12 + c13. (5.26)

Since c7, c12 and c13 as well as L are independent of t ∈ (0, Tmax), (5.25) and (5.26) establish (5.2). �

5.1.2 Estimating |ur| near the boundary

For fixed t ∈ (0, Tmax), the above lemma in particular implies an upper bound for ur in terms of
‖z+‖L∞((0,t)×(0,R0)) on the lateral boundary line r = R0 of the parabolic cylinder (R0, R)× (0, t). This
will enable us to apply a comparison argument to derive an estimate from above for ur in this region
on the basis of (2.10) to achieve the following.

Lemma 5.2 Assume that Tmax < ∞, but that sup(r,t)∈(0,R)×(0,Tmax) u(r, t) < ∞. Then with R0 ∈
(0, R) taken from Lemma 5.1, we can find C > 0 such that

‖ur(·, t)‖L∞((R0,R)) ≤ C ·
(

1 + ‖z+‖L∞((0,R0)×(0,t))

)

for all t ∈ (0, Tmax). (5.27)

Proof. According to Lemma 5.1, we can pick c1 > 0 such that

ur(R0, t) ≤ c1 ·
(

1 + ‖z+(·, t)‖L∞((0,R0))

)

for all t ∈ (0, Tmax),
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which in particular implies that given any t0 ∈ (0, Tmax) we have

ur(R0, t) ≤ D1(t0) := c1 ·
(

1 + ‖z+‖L∞((0,R0)×(0,t0))

)

for all t ∈ (0, t0). (5.28)

Let us next use our hypothesis and recall Lemma 3.2 to pick c2 > 0 and c3 > 0 fulfilling

c2 ≤ u(r, t) ≤ c3 for all r ∈ (0, R) and t ∈ (0, Tmax), (5.29)

and apply Lemma 2.5 to find c4 > 0 and c5 > 0 such that

|vr(r, t)| ≤ c4r and |vrr(r, t)| ≤ c5 for all r ∈ (0, R) and t ∈ (0, Tmax). (5.30)

Therefore, the coefficient functions Ã3 and Ã4 in (2.12) can be estimated according to

Ã3(r, t) ≤ c6 :=
n− 1

R0
+

2χ

c22
+ χc5 + χ · c24R2 · c5 + (n− 1)χ · c34R2 (5.31)

and

Ã4(r, t) ≤ C7 := 3c3 +
n− 1

R2
0

· c2 + 3χµ · c3 · c4R · c5 + 3χ · c23 · c4R · c5 (5.32)

+(n− 1)χ · c3 · c34R+ 3(n− 1) · ·c3 · c24R · c5 (5.33)

for all r ∈ (0, R) and t ∈ (0, Tmax). We now fix α > 0 large such that

α > c6 +
c7

D
(5.34)

and, given t0 ∈ (0, Tmax), define

ϕ(r, t) := D eαt for r ∈ [R0, R] and t ∈ [0, t0],

where
D := max

{

D1(t0) , sup
r∈(R0,R)

u0r(r)
}

+ 1. (5.35)

Then (5.28) asserts that

ur(R0, t) ≤ ϕ(R0, t) for all t ∈ (0, t0),

whereas clearly

ur(R, t) = ϕ(R, t) = 0 for all t ∈ (0, t0)

and

ur(r, 0) = u0r(r) < D = ϕ(r, 0) for all r ∈ [R0, R].
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Moreover, since ϕ is positive and ϕr = ϕrr ≡ 0, we may use (5.31), (5.32) and (5.34) to see that with
Q as in (2.11) we have

Qϕ = ϕt − Ã3(r, t)ϕ− Ã4(r, t)

= αDeαt − Ã3(r, t) ·Deαt − Ã4(r, t)

≥ (α− c6) ·Deαt − c7

≥ (α− c6)D − c7

> 0 for all r ∈ (R0, R) and t ∈ (0, t0).

As Qur ≡ 0 due to Lemma 2.3, by comparison we conclude that ur ≤ ϕ in (R0, R)× (0, t0), which in
view of (5.35) and (5.28) readily entails (5.27). �

5.1.3 A bound for |ur| in the entire domain

Let us summarize the outcome of Lemma 5.1 and Lemma 5.2:

Corollary 5.3 If Tmax <∞ but sup(r,t)∈(0,R)×(0,Tmax) u(r, t) <∞, then there exists C > 0 such that

‖ur(·, t)‖L∞((0,R)) ≤ C ·
(

1 + ‖z+‖L∞((0,R)×(0,t))

)

for all t ∈ (0, Tmax).

Proof. We only need to combine Lemma 5.1 with Lemma 5.2. �

5.2 A nonlocal parabolic inequality for z

In order to bound z from above, let us first identify a linear inhomogeneous parabolic equation satisfied
by this function.

Lemma 5.4 The function z = ut

u
satisfies

zt = B1(r, t)zrr+B21(r, t)zr+
B22(r, t)

r
zr+B3(r, t)z+B4(r, t) for all r ∈ (0, R) and t ∈ (0, Tmax),

(5.36)
where






















































































B1(r, t) :=
u3

√

u2 + u2r
3 ,

B21(r, t) := 2
u2ur

√

u2 + u2r
3 − 3

u3ururr
√

u2 + u2r
5 + 4

u3r
√

u2 + u2r
3 − 3

u5r
√

u2 + u2r
5 − χ

vr
√

1 + v2r
,

B22(r, t) := (n− 1)
u3

√

u2 + u2r
3 ,

B3(r, t) := χ
u

√

1 + v2r
3 and

B4(r, t) := −3χ
u(µ− u)urvr

√

u2 + u2r ·
√

1 + v2r
5 + 3χ2u(µ− u)v2r

(1 + v2r )
3

+ χ
u2r

√

u2 + u2r ·
√

1 + v2r
3 − χ2 urvr

(1 + v2r )
2

+3χ · n−1
r

· uurv
2
r√

u2+u2
r·
√

1+v2r
5 − 3χ2 · n−1

r
· uv3r
(1+v2r)

3

(5.37)
for r ∈ (0, R) and t ∈ (0, Tmax).
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Proof. We divide (2.4) by u and differentiate each term on the right-hand side of the resulting
identity separately. Using that ut = uz and hence urt = uzr + urz and urrt = uzrr + 2urzr + urrz, we
first obtain

(

u2urr
√

u2 + u2r
3

)

t

=
u2urrt

√

u2 + u2r
3 + 2

uuturr
√

u2 + u2r
3 − 3

2
· u

2urr · (2uut + 2ururt)
√

u2 + u2r
5

=
u3

√

u2 + u2r
3 · zrr + 2

u2ur
√

u2 + u2r
3 · zr +

u2urr
√

u2 + u2r
3 · z + 2

u2urr
√

u2 + u2r
3 · z

−3
u4urr

√

u2 + u2r
5 · z − 3

u3ururr
√

u2 + u2r
5 · zr − 3

u2u2rurr
√

u2 + u2r
5 · z.

Since

u2urr
√

u2 + u2r
3 · z + 2

u2urr
√

u2 + u2r
3 · z − 3

u4urr
√

u2 + u2r
5 · z − 3

u2u2rurr
√

u2 + u2r
5 · z

=
u2urr

√

u2 + u2r
5 ·

{

(u2 + u2r) + 2(u2 + u2r)− 3u2 − 3u2r

}

= 0,

this yields
(

u2urr
√

u2 + u2r
3

)

t

=
u3

√

u2 + u2r
3 · zrr +

{

2
u2ur

√

u2 + u2r
3 − 3

u3ururr
√

u2 + u2r
5

}

· zr (5.38)

for all r ∈ (0, R) and t ∈ (0, Tmax).
Next,

(

u4r

u
√

u2 + u2r
3

)

t

= 4
u3rurt

u
√

u2 + u2r
3 − u4rut

u2
√

u2 + u2r
3 − 3

2
· u

4
r · (2uut + 2ururt)

u
√

u2 + u2r
5

= 4
u3r

√

u2 + u2r
3 · zr + 4

u4r

u
√

u2 + u2r
3 · z − u4r

u
√

u2 + u2r
3 · z

−3
uu4r

√

u2 + u2r
5 · z − 3

u5r
√

u2 + u2r
5 · zr − 3

u6r

u
√

u2 + u2r
5 · z,

where again the zero-order terms have a vanishing sum in the sense that

4
u4r

u
√

u2 + u2r
3 · z − u4r

u
√

u2 + u2r
3 · z − 3

uu4r
√

u2 + u2r
5 · z − 3

u6r

u
√

u2 + u2r
5 · z

=
u4r

u
√

u2 + u2r
5 ·

{

4(u2 + u2r)− (u2 + u2r)− 3u2 − 3u2r

}

· z

= 0,
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so that
(

u4r

u
√

u2 + u2r
3

)

t

=

{

4
u3r

√

u2 + u2r
3 − 3

u5r
√

u2 + u2r
5

}

· zr (5.39)

for all r ∈ (0, R) and t ∈ (0, Tmax).
Likewise,
(

ur
√

u2 + u2r

)

t

=
urt

√

u2 + u2r
− 1

2
· ur · (2uut + 2ururt)

√

u2 + u2r
3

=
u

√

u2 + u2r
· zr +

ur
√

u2 + u2r
· z − u2ur

√

u2 + u2r
3 · z − uu2r

√

u2 + u2r
3 · zr −

u3r
√

u2 + u2r
3 · z

=
u

√

u2 + u2r
3 ·

{

(u2 + u2r)− u2r

}

· zr

+
ur

√

u2 + u2r
3 ·

{

(u2 + u2r)− u2 − u2r

}

· z

=
u3

√

u2 + u2r
3 · zr,

whence
(

n− 1

r

ur
√

u2 + u2r

)

t

=
n− 1

r
· u3

√

u2 + u2r
3 · zr (5.40)

for r ∈ (0, R) and t ∈ (0, Tmax).
As for the respective terms originating from the rightmost three summands in (2.4), we make use of
(2.16) to express vrt conveniently. We thereby compute

(

− χ
µ− u

√

1 + v2r
3

)

t

= χ
ut

√

1 + v2r
3 +

3

2
χ

µ− u
√

1 + v2r
5 · 2vrvrt

= χ
u

√

1 + v2r
3 · z + 3χ

(µ− u)vr
√

1 + v2r
5 ·

{

− uur
√

u2 + u2r
+ χ

uvr
√

1 + v2r

}

= χ
u

√

1 + v2r
3 · z − 3χ

u(µ− u)urvr
√

u2 + u2r ·
√

1 + v2r
5 + 3χ2u(µ− u)v2r

(1 + v2r )
3

(5.41)

and
(

− χ
urvr

u
√

1 + v2r

)

t

= −χ urtvr

u
√

1 + v2r
− χ

urvrt

u
√

1 + v2r
+ χ

urvrut

u2
√

1 + v2r
+

1

2
χ

urvr

u
√

1 + v2r
3 · 2vrvrt

= −χ vr
√

1 + v2r
· zr − χ

urvr

u
√

1 + v2r
· z

−χ ur

u
√

1 + v2r
·
{

− uur
√

u2 + u2r
+ χ

uvr
√

1 + v2r

}

+χ
urvr

u
√

1 + v2r
· z + χ

urv
2
r

u
√

1 + v2r
3 ·

{

− uur
√

u2 + u2r
+ χ

uvr
√

1 + v2r

}
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= −χ vr
√

1 + v2r
· zr + χ

u2r
√

u2 + u2r ·
√

1 + v2r
− χ2 urvr

(1 + v2r )
2

= −χ vr
√

1 + v2r
· zr + χ

u2r
√

u2 + u2r ·
√

1 + v2r
3 − χ2 urvr

(1 + v2r )
2
, (5.42)

and observe that
(

v3r
√

1 + v2r
3

)

t

=
{ 3v2r
√

1 + v2r
3 − 3

2
· v3r · 2vr
√

1 + v2r
5

}

· vrt

= −3
uurv

2
r

√

u2 + u2r ·
√

1 + v2r
5 + 3χ

uv3r
(1 + v2r )

3

to obtain
(

− χ · n− 1

r
· v3r
√

1 + v2r
3

)

t

= 3χ · n− 1

r
· uurv

2
r

√

u2 + u2r ·
√

1 + v2r
5 − 3χ2 · n− 1

r
· uv3r
(1 + v2r )

3
(5.43)

for r ∈ (0, R) and t ∈ (0, Tmax). In light of (5.38)-(5.43), (2.4) easily yields (5.36) with B1, B21, B22, B3

and B4 as in (5.37). �

On suitably estimating the inhomogeneous term B4 herein by means of Corollary 5.3, we can develop
(5.36) into a nonlocal parabolic inequality for z as follows.

Lemma 5.5 Suppose that Tmax < ∞, but that sup(r,t)∈(0,R)×(0,Tmax) u(r, t) < ∞. Then there exist a
constant d > 0 and continuous functions b1, b21, b22 and b3 on [0, R]× [0, Tmax) with the properties that
b1 and b22 are nonnegative, that b3 is bounded on (0, R)× (0, Tmax), and such that z = ut

u
satisfies

zt(r, t) ≤ b1(r, t)zrr + b21(r, t)zr +
b22(r, t)

r
zr + b3(r, t)z + d ·

(

1 + ‖z+‖L∞((0,R)×(0,t))

)

(5.44)

for all r ∈ (0, R) and t ∈ (0, Tmax).

Proof. With B1, B21, B22, B3 and B4 taken from Lemma 5.4, we let b1 := B1, b21 := B21, b22 := B22

and b3 := B3. Then from (5.37) we immediately obtain that b1, b21, b22 and b3 are continuous in
[0, R]× [0, Tmax), and that b1 ≥ 0 and b22 ≥ 0. Since our boundedness assumption on u ensures that
b3 is bounded, it remains to control the inhomogeneity B4 in (5.36) adequately. To this end, we once
more use our hypothesis along with Lemma 2.5 to pick positive constants c1, c2 and c3 such that

u(r, t) ≤ c1, |vr(r, t)| ≤ c2r and |vrr(r, t)| ≤ c3 for all r ∈ (0, R) and t ∈ (0, Tmax). (5.45)

Then in (5.37) we can estimate

−3χ
u(µ− u)urvr

√

u2 + u2r ·
√

1 + v2r
5 ≤ 3χ · c1(µ+ c1) · c2R · |ur|

√

u2 + u2r

≤ 3c1(µ+ c1)c2χR
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and

3χ2u(µ− u)vrvrr
(1 + v2r )

3
≤ 3χ2c1(µ+ c1) · c2R · c3

≤ 3c1(µ+ c1)c2c3χ
2R

as well as

3χ · n− 1

r
· uurv

2
r

√

u2 + u2r ·
√

1 + v2r
5 ≤ 3χ · n− 1

r
· c1 · c22r2 ·

|ur|
√

u2 + u2r

≤ 3(n− 1)c1c
2
2χR

and

−3χ2 · n− 1

r
· uv3r
(1 + v2r )

3
≤ 3χ2 · n− 1

r
· c1 · c32r3

≤ 3(n− 1)c1c
3
2χ

2R2

for all r ∈ (0, R) and t ∈ (0, Tmax). In the third and fourth summands in the definition (5.37) of B4,
however, apparently we can only estimate

χ
u2r

√

u2 + u2r ·
√

1 + v2r
3 ≤ χ

u2r
√

u2 + u2r
≤ χ|ur|

and

−χ2 urvr

(1 + v2r )
2
≤ χ2|ur|

for all r ∈ (0, R) and t ∈ (0, Tmax), with the possibly unbounded factors |ur| remaining. Fortunately,
applying Corollary 5.3 yields c4 > 0 such that

|ur(r, t)| ≤ c4 ·
(

1 + ‖z+‖L∞((0,R)×(0,t))

)

for all r ∈ (0, R) and t ∈ (0, Tmax).

Therefore, (5.44) results from (5.36) if we choose d > 0 conveniently large. �

5.3 Boundedness of z from above

Apparently, nonlocal parabolic inequalities of type (5.44) do not allow for general comparison priciples.
After all, the fact that here the memory term enjoys a certain linear boundedness property with respect
to z+ enables us to follow a maximum principle-type reasoning to establish an essentially exponential
upper bound for z and thereby obtain the following.

Lemma 5.6 Assume that Tmax < ∞ and sup(r,t)∈(0,R)×(0,Tmax) u(r, t) < ∞. Then there exists C > 0
such that z = ut

u
satisfies

z(r, t) ≤ C for all r ∈ (0, R) and t ∈ (0, Tmax). (5.46)
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Proof. We let b1, b21, b22, b3 and d be as provided by Lemma 5.5, so that by boundedness of b3 we
can find c1 > 0 such that

b3(r, t) ≤ c1 for all r ∈ (0, R) and t ∈ (0, Tmax). (5.47)

We than fix α > 0 large enough fulfilling
α > c1 + d (5.48)

and let

ϕ(r, t) := e−αtz(r, t)− dt for r ∈ [0, R] and t ∈ [0, Tmax).

Then according to Lemma 5.5,

ϕt = e−αt(zt − αz)− d

≤ e−αt ·
{

b1(r, t)zrr + b21(r, t)zr +
b22

r
zr + b3(r, t)z + d‖z+‖L∞((0,R)×(0,t)) + d− αz

}

− d

= b1(r, t)ϕrr + b21(r, t)ϕr +
b22(r, t)

r
ϕr +

(

b3(r, t)− α
)

·
(

ϕ+ dt
)

+de−αt‖z+‖L∞((0,R)×(0,t)) + de−αt − d for all r ∈ (0, R) and t ∈ (0, Tmax), (5.49)

and since zr = (ut

u
)r = urt

u
− urut

u2 in [0, R] × [0, Tmax), the fact that ur(0, t) = ur(R, t) = 0 for all
t ∈ (0, Tmax) entails that

ϕr(0, t) = ϕr(R, t) = 0 for all t ∈ (0, Tmax). (5.50)

Now if for some T ∈ (0, Tmax), the value S := sup(r,t)∈(0,R)×(0,T ) ϕ(r, t) was positive and attained at
some point (r0, t0) ∈ [0, R]× [0, T ] with t0 > 0, then necessarily

ϕt(r0, t0) ≥ 0, (5.51)

and (5.50) ensures that in both cases r0 ∈ (0, R) and r0 ∈ {0, R} we moreover must have

ϕr(r0, t0) = 0 andϕrr(r0, t0) ≤ 0. (5.52)

We claim that these properties imply that

0 ≤
(

b3(r0, t0)− α
)

·
(

ϕ(r0, t0) + dt0

)

+ de−αt0‖z+‖L∞((0,R)×(0,t0)) + de−αt0 − d. (5.53)

Indeed, in the case r0 ∈ (0, R) we may directly apply (5.49) to easily deduce this from (5.51) and
(5.52). When r0 = R, by continuity of ϕ,ϕt, ϕr and ϕrr in [0, R] × (0, Tmax) it is clear that (5.49)
actually remains valid at (r0, t0), so that (5.53) follows from the same argument. If r0 = 0, however,
we make use of the favorable sign of the singular term b22

r
in (5.49) by first choosing, once more relying

on the extremal property of ϕ(r0, t0), a sequence (rj)j∈N ⊂ (0, R) such that rj ց 0 as j → ∞ and

ϕr(rj , t0) ≤ 0 for all j ∈ N,
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and then evaluating (5.49) at r = rj to see that

ϕt(rj , t0) ≤ b1(rj , t0)ϕrr(rj , t0) + b21(rj , t0)ϕr(rj , t0) +
(

b3(rj , t0)− α
)

·
(

ϕ(rj , t0) + dt0

)

+de−αt0‖z+‖((0,R)×(0,t0)) + de−αt0 − d

for all j ∈ N. Again by continuity of ϕ,ϕt, ϕr and ϕrr, we may take j → ∞ to conclude that

ϕt(0, t0) ≤ b1(0, t0)ϕrr(0, t0) + b21(0, t0)ϕr(0, t0) +
(

b3(0, t0)− α
)

·
(

ϕ(0, t0) + dt0

)

+de−αt0‖z+‖((0,R)×(0,t0)) + de−αt0 − d,

whereupon one more application of (5.51) and (5.52) yields (5.53) also in this case.

Now observing that e−αt0 ≤ 1 and using that S = ϕ(r0, t0) is positive, in view of (5.47) we obtain
from (5.53) that

0 ≤ (c1 − α) ·
(

ϕ(r0, t0) + dt0

)

+ de−αt0‖z+‖L∞((0,R)×(0,t0)). (5.54)

Here we rewrite z = eαtϕ+ dteαt and use that if f and g are two functions on a set D ⊂ R
N , N ≥ 1,

then both (f + g)+ and supD{f + g} ≤ supD f + supD g. We thereby obtain that

de−αt0‖z+‖L∞((0,R)×(0,t0)) = de−αt0 · sup
(r,s)∈(0,R)×(0,t0)

{

eαsϕ(r, s) + dseαs
}

≤ deαt0 · sup
(r,s)∈(0,R)×(0,t0)

{

eαsϕ+(r, s) + dseαs
}

≤ deαt0 ·
{

sup
(r,s)∈(0,R)×(0,t0)

{

eαsϕ+(r, s)
}

+ sup
s∈(0,t0)

{

dseαs
}

}

≤ deαt0 · sup
(r,s)∈(0,R)×(0,t0)

{

eαsϕ+(r, s)
}

+ d2t0.

Since from the definition of S we know that

sup
(r,s)∈(0,R)×(0,t0)

{

eαsϕ+(r, s)
}

≤ eαt0 · sup
(r,s)∈(0,R)×(0,t0)

ϕ+(r, s) = eαt0 · ϕ(r0, t0),

this entails that

de−αt0‖z+‖L∞((0,R)×(0,t0)) ≤ de−αt0‖z+‖L∞((0,R)×(0,t0)) ≤ dϕ(r0, t0) + d2t0,

so that (5.54) yields the inequality

0 ≤ (c1 − α) ·
(

ϕ(r0, t0) + dt0

)

+ dϕ(r0, t0) + dt0

= (c1 − α+ d) ·
(

ϕ(r0, t0) + dt0

)

.

In light of our restriction (5.48) on α, however, this contradicts the positivity of ϕ(r0, t0) and thereby
proves that actually ϕ cannot attain a positive maximum over any such region [0, R] × [0, T ], T ∈
(0, Tmax), at a positive time t0. This means that in fact

ϕ(r, t) ≤ ‖ϕ+(·, 0)‖L∞((0,R)) = ‖z+(·, 0)‖L∞((0,R)) for all r ∈ (0, R) and t ∈ (0, Tmax)
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and hence

z(r, t) = eαt
(

ϕ(r, t) + dt
)

≤ eαTmax ·
{

‖z+(·, 0)‖L∞((0,R)) + dTmax

}

for all r ∈ (0, R) and t ∈ (0, Tmax),

which establishes (5.46). �

5.4 Boundedness of u implies extensibility. Proof of Theorem 1.1

Combining the latter lemma with Corollary 5.3 now directly yields the desired bound for ur.

Corollary 5.7 If Tmax <∞ but sup(r,t)∈(0,R)×(0,Tmax) u(r, t) <∞, then there exists C > 0 such that

‖ur(·, t)‖L∞((0,R)) ≤ C for all t ∈ (0, Tmax).

Proof. Thanks to the upper estimate for z obtained in Lemma 5.6, this is an immediate conse-
quence of Corollary 5.3. �

We can thereby readily verify our main statement on local existence and extensibility.

Proof of Theorem 1.1. In view of the local existence result established in Lemma 2.1, we only need
to verify (1.6). Indeed, if (1.6) was false, then for some solution the respective maximal existence time
would satisfy Tmax < ∞ but lim suptրTmax

‖u(·, t)‖L∞(Ω) < ∞. Then, however, Corollary 5.7 would
apply to assert that also lim suptրTmax

‖∇u(·, t)‖L∞(Ω) would be finite. Along with the lower bound
for u provided by Lemma 3.2, this would contradict the extensibility criterion (2.2) in Lemma 2.1. �

6 Boundedness for small χ. Proof of Theorem 1.2

In light of the extensibility criterion provided by Theorem 1.1, in order to prove both global existence
and boundedness of a solution it is sufficient to derive an a priori estimate for (u, v) in (L∞(Ω×(0, T )))2

which does not explicitly depend on T < Tmax ≤ ∞. As a preparation for the proof of this in Theorem
1.2 below, let us state the following elementary inequality.

Lemma 6.1 Let p ≥ 1. Then

∫

Ω
up−1|∇u| ≤

∫

Ω

up−1|∇u|2
√

u2 + |∇u|2
+

∫

Ω
up for all t ∈ (0, Tmax). (6.1)

Proof. By means of Young’s inequality, we see that

∫

Ω
up−1|∇u| ≤ 1

2

∫

Ω

up−1|∇u|2
√

u2 + |∇u|2
+

1

2

∫

Ω
up−1

√

u2 + |∇u|2 for all t ∈ (0, Tmax), (6.2)

where using the elementary inequality
√
X + Y ≤

√
X +

√
Y , valid for all X ≥ 0 and Y ≥ 0, we can

estimate

1

2

∫

Ω
up−1

√

u2 + |∇u|2 ≤ 1

2

∫

Ω
up +

1

2

∫

Ω
up−1|∇u|.
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Therefore, (6.1) results from (6.2). �

We are now in the position to make sure that if either n ≥ 2, χ < 1 and u0 is an arbitrary function
satisfying (1.4), or n = 1, χ > 0 and

∫

Ω u0 < mc with mc as in (1.9), then the solution of (1.3) in fact
is global and remains bounded:

Proof of Theorem 1.2. We let pk := 2k and, given T ∈ (0, Tmax), introduce

Mk := sup
t∈(0,T )

∫

Ω
upk(x, t)dx (6.3)

for nonnegative integers k. Then clearly Mk is well-defined for any such T and k, and in order to
control Mk appropriately, we fix k ≥ 1 and multiply the first equation in (1.3) by pup−1 for p := pk to
see upon integrating by parts that

d

dt

∫

Ω
up + p(p− 1)

∫

Ω

up−1|∇u|2
√

u2 + |∇u|2
= p(p− 1)χ

∫

Ω

up−1∇u · ∇v
√

1 + |∇v|2

≤ p(p− 1)χ

∫

Ω
up−1|∇u| · |∇v|

√

1 + |∇v|2
(6.4)

for all t ∈ (0, Tmax). Here in the multi-dimensional case, in which no evident uniform a priori bound

for |∇v| seems available, we use the trivial pointwise inequality |∇v|√
1+|∇v|2

≤ 1 to obtain

d

dt

∫

Ω
up+p(p−1)

∫

Ω

up−1|∇u|2
√

u2 + |∇u|2
≤ p(p−1)χ

∫

Ω
up−1|∇u| for all t ∈ (0, Tmax) if n ≥ 2. (6.5)

In the one-dimensional setting, however, from (2.17) and (1.5) we know that |∇v| = |vr| ≤ m through-
out Ω× (0, Tmax), whence by monotonicity of 0 ≤ ξ 7→ ξ√

1+ξ2
we infer from (6.4) that

d

dt

∫

Ω
up+p(p−1)

∫

Ω

up−1|∇u|2
√

u2 + |∇u|2
≤ p(p−1)χ· m√

1 +m2
·
∫

Ω
up−1|∇u| for all t ∈ (0, Tmax) if n = 1.

(6.6)
In both (6.5) and (6.6) we now apply Lemma 6.1 to estimate

p(p− 1)

∫

Ω

up−1|∇u|2
√

u2 + |∇u|2
≥ p(p− 1)

∫

Ω
up−1|∇u| − p(p− 1)

∫

Ω
up

and thus obtain on writing

Λ :=

{

m√
1+m2

if n = 1,

1 if n ≥ 2,
(6.7)

and adding
∫

Ω u
p on both sides of (6.5) and (6.6), respectively, that

d

dt

∫

Ω
up +

∫

Ω
up + p(p− 1)(1− χΛ)

∫

Ω
up−1|∇u| ≤

{

p(p− 1) + 1
}

·
∫

Ω
up

≤ p2
∫

Ω
up for all t ∈ (0, Tmax). (6.8)
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We next invoke the Gagliardo-Nirenberg inequality ([32]) to find c1 > 0 such that with a := n
n+1 we

have

‖ϕ‖L1(Ω) ≤ c1‖∇ϕ‖aL1(Ω)‖ϕ‖1−a

L
1
2 (Ω)

+ c1‖ϕ‖
L

1
2 (Ω)

for all ϕ ∈W 1,1(Ω),

and thereby obtain that
∫

Ω
up ≤ c1

(

∫

Ω
|∇up|

)a

·
(

∫

Ω
u

p

2

)2(1−a)
for all t ∈ (0, Tmax).

Since our specification of p = pk = 2k allows us to use the definition (6.3) of Mk−1 in estimating
∫

Ω
u

p

2 ≤Mk−1 for all t ∈ (0, T ),

this implies that
∫

Ω
up ≤ c1

(

∫

Ω
|∇up|

)a

·M2(1−a)
k−1 + c1M

2
k−1 for all t ∈ (0, T ).

Thanks to the fact that our assumptions ensure that χΛ < 1, another application of Young’s inequality
therefore provides c2 > 0 fulfilling

p2
∫

Ω
up ≤ (p− 1)(1− χΛ)

∫

Ω
|∇up|+ c2p

2
1−aM2

k−1 + c1p
2M2

k−1 for all t ∈ (0, T ),

from which due to the evident fact that p2 ≤ p
2

1−a we obtain that

p2
∫

Ω
up ≤ p(p− 1)(1− χΛ)

∫

Ω
up−1|∇u|+ c3p

2
1−aM2

k−1 for all t ∈ (0, T )

with c3 := c1 + c2. Therefore, (6.8) entails the autonomous ODI

d

dt

∫

Ω
up +

∫

Ω
up ≤ c3p

2
1−aM2

k−1, t ∈ (0, T ),

for (0, T ) ∋ t 7→
∫

Ω u
p(x, t)dx, which upon a comparison argument implies that

Mk ≤ max

{
∫

Ω
u
pk
0 , c3p

2
1−a

k M2
k−1

}

for all k ≥ 1. (6.9)

Now if there exists a sequence (kj)j∈N ⊂ N such that kj → ∞ as j → ∞ and

Mkj ≤
∫

Ω
u
pkj
0 for all j ∈ N, (6.10)

we may take the pkj -th root on both sides here to see that according to the definition (6.3) of Mkj we
have

sup
t∈(0,T )

‖u(·, t)‖
L
pkj (Ω)

≤ ‖u0‖Lpkj (Ω)
,
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which on letting j → ∞ implies that

sup
t∈(0,T )

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) (6.11)

in this case.
Conversely, if no such sequence exists, then (6.9) means that with some suitably large k0 ∈ N we have

Mk ≤ c3p
2

1−a

k Mk−1 for all k ≥ k0.

Since p
2

1−a

k = (2
2

1−a )k, it is easy to see that this entails the existence of a number b > 1 independent
of T which satisfies

Mk ≤ bkMk−1 for all k ≥ 1. (6.12)

By a straightforward induction, this warrants that

Mk ≤ b
∑k

j=0 j·2k−j ·M2k

0 for all k ≥ 1,

where by an elementary computation,

k
∑

j=0

j · 2k−j = 2k−1 ·
k

∑

j=0

j ·
(1

2

)j−1

= 2k−1 · k · (
1
2)

k+1 − (k + 1) · (12)k + 1

(12)
2

= k − 2(k + 1) + 2k+1

≤ 2k+1 for all k ≥ 1.

Thus,

Mk ≤ B2k+1 ·M2k

0 for all k ≥ 1,

by (6.3) implying that

sup
t∈(0,T )

‖u(·, t)‖Lpk (Ω) =M
1

2k

k ≤ b2M0 for all k ≥ 1. (6.13)

Now as by the evident mass conservation property in (1.3) we have
∫

Ω u(x, t)dx =
∫

Ω u0(x)dx for all
t ∈ (0, Tmax) and hence M0 = ‖u0‖L1(Ω), taking k → ∞ in (6.13) shows that in this second case,

sup
t∈(0,T )

‖u(·, t)‖L∞(Ω) ≤ b2‖u0‖L1(Ω). (6.14)

Since all expressions on the right-hand sides of (6.11) and (6.14) do not depend on T ∈ (0, Tmax), and
since boundedness of u clearly implies boundedness of v by standard elliptic estimates, the proof is
complete. �
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