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Abstract

The quasilinear chemotaxis system

{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v),

vt = ∆v − v + u,
(⋆)

is considered under homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ R
n,

n ≥ 2, with smooth boundary, where the focus is on cases when herein the diffusivity D(s) decays
exponentially as s → ∞.

It is shown that under the subcriticality condition that

S(s)

D(s)
≤ Csα for all s ≥ 0 (0.1)

with some C > 0 and α < 2

n
, for all suitably regular initial data satisfying an essentially explicit

smallness assumption on the total mass
∫
Ω
u0, the corresponding Neumann initial-boundary value

problem for (⋆) possesses a globally defined bounded classical solution which moreover approaches
a spatially homogeneous steady state in the large time limit. Viewed as a complement of known
results on the existence of small-mass blow-up solutions in cases when in (0.1) the reverse inequality
holds with some α > 2

n
, this confirms criticality of the exponent α = 2

n
in (0.1) with regard to the

singularity formation also for arbitrary n ≥ 2, thereby generalizing a recent result on unconditional
global boundedness in the two-dimensional situation.

As a by-product of our analysis, without any restriction on the initial data, we obtain bounded-
ness and stabilization of solutions to a so-called volume-filling chemotaxis system involving jump
probability functions which decay at sufficiently large exponential rates.
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1 Introduction

In a bounded domain Ω ⊂ R
n, n ≥ 2, we consider the quasilinear parabolic problem





ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

which is used in mathematical biology to describe the evolution of bacterial populations, at density
denoted by u = u(x, t), in response to a chemical signal, at concentration v = v(x, t), produced
by themselves. In generalization of the classical Keller-Segel chemotaxis system obtained upon the
particular choices

D ≡ 1 and S(s) = s, s ≥ 0, (1.3)

the model (1.2) may account for various types of nonlinear diffusion and cross-diffusion mechanisms,
where especially saturation effects at large cell densities appear to play a predominant role in refined
modeling approaches ([10], [18]); accordingly, in such contexts it will be of particular interest to
determine how far choices of D and S substantially below those in (1.3) may still lead to singularity
formation in (1.2), as known to occur for large classes of initial data in the Keller-Segel system (1.2)-
(1.3) when either n ≥ 3 ([16]), or n = 2 and the total mass of cells is suitably large ([5], [9]).

In this respect, previous results indicate that a certain dimension-dependent power-type asymptotic
behavior of the ratio S(s)

D(s) for large values of s should be critical: It is known, for instance, that if D

and S are sufficiently smooth functions on [0,∞) such that D > 0 on (0,∞) and

lim inf
s→∞

s
(

S
D

)′
(s)

(
S
D

)
(s)

>
2

n
, (1.4)

then still some solutions to (1.2) exist which blow up either in finite or infinite time ([15], [2], [3], [7]).
On the other hand, any such unboundedness phenomenon is entirely ruled out if with some ε > 0 and
C > 0 we have

S(s)

D(s)
≤ Cs

2
n
−ε for all s ≥ 1, (1.5)

and if in addition D decays at most algebraically in the sense that

lim inf
s→∞

(
spD(s)

)
> 0 (1.6)

for some p > 0 ([14]; cf. also [12] and [7] for some precedents).

In cases when D decays substantially faster, however, the literature apparently provides only quite
few rigorous results on (1.2) for subcritical behavior of S

D
in the sense that e.g. (1.5) holds; this

may be viewed as reflecting the circumstance that straightforward adaptations of standard regularity
techniques, based e.g. on iterative arguments of Moser or DeGiorgi type, seem inappropriate in such
situations. Correspondingly, the only results available so far seem to concentrate on the mere questions
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of global solvability without asserting boundedness ([1], [2, Theorem 1.6], [17]), or are restricted to
the particular spatially two-dimensional setting with exponentially decaying D, in which the Moser-
Trudinger inequality can be used to firstly derive global bounds for eu in Lp(Ω) for some p > 0, from
which global boundedness of arbitrary classical solutions can be obtained by means of an iterative
argument ([4]).

It is the goal of the present work to provide some further rigorous evidence indicating that also
in higher-dimensional situations, the power-type asymptotic behavior S(s)

D(s) ≃ s
2
n indeed is critical

regarding the global existence and boundedness in (1.2) with rapidly decreasing diffusivities, at least
in cases when this decay occurs at exponential rates. To this end, we shall consider (1.2) under the
assumptions that {

u0 ∈ C0(Ω̄) with u0 > 0 in Ω̄ and

v0 ∈ W 1,ϑ(Ω) for some ϑ > 2 with v0 ≥ 0 in Ω,
(1.7)

and that {
D ∈ C2([0,∞)) is positive and

S ∈ C2([0,∞)) is nonnegative with S(0) = 0.
(1.8)

Moreover, we shall suppose that there exist constants β+ > 0, β− ≥ β+, K1 > 0 and K2 > 0 such that

K1e
−β−s ≤ D(s) ≤ K2e

−β+s for all s ≥ 0, (1.9)

and that
S(s)

D(s)
≤ K3s

α for all s ≥ 0 (1.10)

with some K3 > 0 and α ∈ [0, 2
n
).

In order to precisely state our main results, let us recall that since α < 2
n
and hence W

1, 2
α+1 (Ω) →֒

L2(Ω), a corresponding Poincaré-Sobolev inequality provides KP (α) > 0 such that

‖ϕ− ϕ‖L2(Ω) ≤ KP (α)‖∇ϕ‖
L

2
α+1 (Ω)

for all ϕ ∈ W
1, 2

α+1 (Ω), (1.11)

where, as throughout the sequel, by ϕ := 1
|Ω|

∫
Ω ϕ we denote the spatial average of arbitrary functions

ϕ ∈ L1(Ω).

Our main result then asserts that indeed in the full subcritical range of S
D

consistent with (1.5),
solutions do not only exist globally and remain bounded, but moreover even stabilize toward a spatially
homogeneous equilibrium, provided that a smallness condition on the total mass

∫
Ω u0 is satisfied which

is essentially explicit by merely involving the constant KP from (1.11) beyond the parameters from
(1.10).

Theorem 1.1 Let n ≥ 2 and Ω ⊂ R
n be a bounded domain with smooth boundary, let u0 and v0 be

compatible with (1.7), and assume that D and S are such that (1.8) holds and that there exist positive
constants K1,K2 and K3 with the property that (1.9) and (1.10) are valid with some β+ > 0, β− ≥ β+

and

α ∈
[
0,

2

n

)
.
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Then if furthermore {∫

Ω
u0

}α

<
1

K3K
2
P (α)

, (1.12)

the problem (1.2) possesses a uniquely determined global classical solution (u, v) with

{
u ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

v ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞
loc([0,∞);W 1,ϑ(Ω)),

(1.13)

such that both u and v are nonnegative in Ω× (0,∞). This solution is bounded in the sense that there
exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0, (1.14)

and moreover we have
u(·, t) → u0 in L∞(Ω) as t → ∞ (1.15)

and
v(·, t) → u0 in L∞(Ω) as t → ∞. (1.16)

In order to put our present results in perspective, let us recall that the above assumption that (1.10)
holds with some α < 2

n
cannot substantially be relaxed if global existence of bounded solutions is

required for widely arbitrary choices of initial data. More precisely, inter alia the following is implied
by [15, Theorem 5.1] in conjunction with e.g. Lemma 2.1 and [4, Lemma 2.3].

Theorem A Let n ≥ 2 and Ω ⊂ R
n be a ball. Suppose that D and S satisfy (1.8) as well as (1.4).

Then for any choice of m > 0, there exist nonnegative and radially symmetric functions u0 ∈ C∞(Ω̄)
and v0 ∈ C∞(Ω̄) such that

∫
Ω u0 = m, and such that (1.2) possesses a classical solution which blows up

either in finite or in infinite time in the sense that there exists Tmax ∈ (0,∞] with the property that both
u and v belong to C0(Ω̄× [0, Tmax)) ∩C2,1(Ω̄× (0, Tmax)), but that lim suptրTmax

‖u(·, t)‖L∞(Ω) = ∞.

In contrast to this, our present result states that also in higher dimensions subcritical growth of S
D

in
the sense that (1.10) is valid with some α < 2

n
, plays a critical role: Namely, blow-up phenomena do

not occur at arbitrarily small levels of the total population mass, as underlined in the following.

Corollary 1.2 Let n ≥ 2 and Ω ⊂ R
n be a bounded domain with smooth boundary. Suppose that D

and S comply with (1.8), and that there exist positive constants K1,K2 and K3 with the property that
(1.9) and (1.10) are valid with some β+ > 0, β− ≥ β+ and α ∈ (0, 2

n
). Then there exists ε > 0 such

that whenever u0 and v0 satisfy (1.7) as well as

∫

Ω
u0 < ε, (1.17)

the problem (1.2) possesses a uniquely determined global classical solution (u, v) fulfilling (1.13) which
has the boundedness and convergence properties (1.14), (1.15) and (1.16).

Proof of Corollary 1.2. In view of Theorem 1.1, the desired conclusion holds if we let

ε :=
(
K3KP (α)

) 1
α
,
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for instance. �

Let us finally focus on the particular version of (1.2) obtained by choosing D and S in dependence on
a given function Q with Q(u) measuring the probability that a cell, when localized at a position (x, t)
with population density u(x, t), may find space in some neighboring region; in terms of the function
Q, an accordingly modified random walk approach ([10]) suggests the precise functional relationships
determined by

D(s) = Q(s)− sQ′(s) and S(s) = sQ(s), s ≥ 0. (1.18)

Here choosing

Q(s) := e−βs, s ≥ 0,

for β > 0, for the corresponding volume-filling chemotaxis system





ut = ∇ ·
(
(1 + βu)e−βu∇u

)
−∇ · (ue−βu∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.19)

our analysis will yield the following result on boundedness and stabilization, thus significantly going
beyond previous knowledge on global existence ([2, Theorem 1.6]) and on global boundedness in the
case n = 2 ([4, Theorem 1.2]).

Theorem 1.3 Let n ≥ 2 and Ω ⊂ R
n be a bounded domain with smooth boundary, and suppose that

with KP := KP (0) taken from (1.11) we have

β > K2
P . (1.20)

Then for any (u0, v0) fulfilling (1.7), (1.19) possesses a unique global classical solution (u, v) satisfying
(1.13) which is bounded in Ω × (0,∞) in that (1.14) holds, and the large time behavior of which is
determined by (1.15) and (1.16).

Plan of the paper. At its core, our analysis will be based on the observation that with Φ(s) :=∫ s

1

∫ σ

1
1

S(ξ)dξdσ, s > 0, the quantity

F(t) :=

∫

Ω
Φ(u(·, t)) +

1

2

∫

Ω
|∇v(·, t)|2 +

∫

Ω

(
v(·, t)− v(·, t)

)2
, t ≥ 0,

acts as a genuine Lyapunov functional for (1.2) whenever (1.12) is satisfied (Lemma 3.6). According
to (1.10) and (1.9), the global upper bound for F thereby implied will entail an a priori bound for eu

in L∞((0,∞);Lβ(Ω)) for some β > 0 (Lemma 4.1). This will turn out to be sufficient basic regularity
information for the verification that each of the functionals

G(t) :=

∫

Ω
Ψ(u(·, t)), t ≥ 0,
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where Ψ(s) :=
∫ s

0

∫ σ

0
eγξ

D(ξ)dξdσ, s ≥ 0, with arbitrarily large γ > 0, enjoys a favorable quasi-energy

property ensuring boundedness of eu even in L∞((0,∞);Lβ(Ω)) for any β > 0 (Lemma 4.3). There-
after, a Moser-type iteration for eu will show boundedness of eu and hence of u (Lemma 4.4 and
Lemma 5.1), whereupon also higher-order regularity properties become available (Lemma 4.5) which
can finally be used to derive the claimed stabilization result from the relaxation process expressed in
the energy inequality for F (see (3.15) and (3.16) and the argument in Section 4.3).

2 Preliminaries

To begin with, let us formulate a basic result from local existence theory which can be derived by
well-known arguments (see for instance [7], [13] or [4] and the references therein).

Lemma 2.1 Suppose that D and S satisfy (1.8) and that u0 and v0 fulfill (1.7). Then there exist
Tmax ∈ (0,∞] and a unique couple of nonnegative functions

{
u ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)),

v ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,ϑ(Ω))

such that (u, v) is a classical solution of (1.2) in Ω× (0, Tmax), and such that we have the alternative

either Tmax = ∞, or lim sup
tրTmax

(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,ϑ(Ω)

)
= ∞. (2.1)

This solution has the following evident mass conservation property.

Lemma 2.2 The solution of (1.2) satisfies

∫

Ω
u(·, t) =

∫

Ω
u0 for all t ∈ (0, Tmax). (2.2)

Proof. This directly follows on integrating the first equation in (1.2) over x ∈ Ω. �

3 A conditional energy inequality associated with (1.2)

The goal of this section will be to derive the inequality (3.11) which becomes a genuine energy-type
inequality under the condition (1.12). The key toward this will consist in combining information on
the time evolution of the functional

∫
ΩΦ(u) for

Φ(s) :=

∫ s

1

∫ σ

1

1

S(ξ)
dξdσ, s ≥ 0, (3.1)

with appropriate identities gained from testing procedures applied to the second equation in (1.2).
In fact, this particular choice of Φ entails the following basic identity in which the integral on the
right-hand side reflects the cross-diffusive interaction in (1.2) in a form which will make this term
convenient to handle. Let us mention that the construction in this section partially parallels that
underlying the stabilization analysis performed in [6] for the classical Keller-Segel system.

6



Lemma 3.1 The solution of (1.2) satisfies

d

dt

∫

Ω
Φ(u) +

∫

Ω

D(u)

S(u)
|∇u|2 =

∫

Ω
∇u · ∇v for all t ∈ (0, Tmax), (3.2)

where Φ is given by (3.1).

Proof. By straightforward computation using the first equation in (1.2), we see that

d

dt

∫

Ω
Φ(u) =

∫

Ω
Φ′(u)ut

= −

∫

Ω
Φ′′(u)D(u)|∇u|2 +

∫

Ω
Φ′′(u)S(u)∇u · ∇v for all t ∈ (0, Tmax),

which directly yields (3.2) in view of the fact that Φ′′ = 1
S
. �

In order to conveniently cope with the integral on the right of (3.2), let us introduce the new dependent
variable z by defining

z(x, t) := v(x, t)− v(·, t) for x ∈ Ω̄ and t ∈ [0, Tmax). (3.3)

Then clearly
∫
Ω z(·, t) = 0 for all t ∈ (0, Tmax), and moreover it follows from (1.2) that z satisfies the

Neumann problem 



zt = ∆z − z + u− u0, x ∈ Ω, t ∈ (0, Tmax),
∂z
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

z(x, 0) = v0(x)− v0, x ∈ Ω.

(3.4)

Applying a standard testing procedure to this problem will then indeed involve precisely the coupled
quantity appearing in (3.2):

Lemma 3.2 The function z defined in (3.3) satisfies

d

dt

{
1

2

∫

Ω
|∇z|2+

1

2

∫

Ω
z2
}
+

∫

Ω
z2t = −

∫

Ω
∇u ·∇v−

∫

Ω
(u−u0)z+

∫

Ω
(u−u0)

2 for all t ∈ (0, Tmax).

(3.5)

Proof. On testing (3.4) against zt, we obtain
∫

Ω
z2t =

∫

Ω
∆z · zt −

∫

Ω
zzt +

∫

Ω
(u− u0)zt

= −
1

2

d

dt

∫

Ω
|∇z|2 −

1

2

d

dt

∫

Ω
z2 +

∫

Ω
(u− u0)zt for all t ∈ (0, Tmax), (3.6)

where again by (3.4),
∫

Ω
(u− u0)zt =

∫

Ω
(u− u0)(∆z − z + u− u0)

= −

∫

Ω
∇u · ∇z −

∫

Ω
(u− u0)z +

∫

Ω
(u− u0)

2 for all t ∈ (0, Tmax).

As clearly ∇z = ∇v, (3.6) thus implies (3.5). �

Now to appropriately rewrite the second integral on the right of (3.5), we test (3.4) by another standard
multiplier.
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Lemma 3.3 For z as in (3.3) we have

1

2

d

dt

∫

Ω
z2 +

∫

Ω
|∇z|2 +

∫

Ω
z2 =

∫

Ω
(u− u0)z for all t ∈ (0, Tmax). (3.7)

Proof. This immediately results from multiplying (3.4) by z and integrating by parts over Ω. �

A combination of the preceding three lemmata yields the following identity.

Lemma 3.4 Let Φ be taken from (3.1). Then for the solution of (1.2) we have the identity

d

dt

{∫

Ω
Φ(u) +

1

2

∫

Ω
|∇v|2 +

∫

Ω
(v − v)2

}
+

∫

Ω

D(u)

S(u)
|∇u|2 +

∫

Ω
|∇v|2 +

∫

Ω
(v − v)2 +

∫

Ω
(v − v)2t

=

∫

Ω
(u− u0)

2 for all t ∈ (0, Tmax). (3.8)

Proof. We only need to add the identities provided by Lemma 3.1, Lemma 3.2 and Lemma 3.3,
and recall that z = v − v and hence ∇z = ∇v. �

In order to take full advantage of the dissipative action expressed in (3.8), we shall next employ the
Hölder inequality to derive the following.

Lemma 3.5 Under the assumption (1.10), the solution of (1.2) satisfies
∫

Ω

D(u)

S(u)
|∇u|2 ≥

1

K3 ·
{∫

Ω u0

}α · ‖∇u‖2
L

2
α+1 (Ω)

for all t ∈ (0, Tmax). (3.9)

Proof. According to (1.10), we can estimate

∫

Ω

D(u)

S(u)
|∇u|2 ≥

1

K3

∫

Ω

|∇u|2

uα
for all t ∈ (0, Tmax), (3.10)

whereas on the other hand the Hölder inequality along with (2.2) implies that

∫

Ω
|∇u|

2
α+1 =

∫

Ω

(
|∇u|2

uα

) 1
α+1

· u
α

α+1

≤

{∫

Ω

|∇u|2

uα

} 1
α+1

·

{∫

Ω
u

} α
α+1

=

{∫

Ω

|∇u|2

uα

} 1
α+1

·

{∫

Ω
u0

} α
α+1

for all t ∈ (0, Tmax).

Since thus
∫

Ω

|∇u|2

uα
≥

{∫

Ω
u0

}−α

·

{∫

Ω
|∇u|

2
α+1

}α+1

for all t ∈ (0, Tmax),

the inequality (3.9) is a consequence of (3.10). �

The announced conditional energy inequality, along with some evident consequences thereof, can now
be gained on combining Lemma 3.4 with Lemma 3.5.
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Lemma 3.6 Let α ∈ [0, 2
n
) and K3 > 0 be as in (1.10), and let KP (α) > 0 be taken from (1.11).

Then with Φ as defined in (3.1),

d

dt

{∫

Ω
Φ(u) +

1

2

∫

Ω
|∇v|2 +

∫

Ω
(v − v)2

}

+

{
1

K3K
2
P (α) ·

{∫
Ω u0

}α − 1

}
·

∫

Ω
(u− u0)

2 +

∫

Ω
(v − v)2 (3.11)

≤ 0 for all t ∈ (0, Tmax). (3.12)

In particular, if {∫

Ω
u0

}α

<
1

K3K
2
P (α)

, (3.13)

then there exists C > 0 such that
∫

Ω
Φ(u(·, t)) ≤ C for all t ∈ (0, Tmax), (3.14)

and moreover we have ∫ Tmax

0

∫

Ω
(u− u0)

2 < ∞ (3.15)

as well as ∫ Tmax

0

∫

Ω
(v − v)2 < ∞. (3.16)

Proof. Combining the outcome of Lemma 3.5 with (1.11) and (2.2), we see that

∫

Ω

D(u)

S(u)
|∇u|2 ≥

1

K3 ·
{∫

Ω u0

}α ·
1

K2
P (α)

∫

Ω
(u− u0)

2 for all t ∈ (0, Tmax),

so that Lemma 3.4 in particular implies (3.11). As herein

1

K3K
2
P (α) ·

{∫
Ω u0

}α − 1 > 0

according to (3.13), on integration this readily yields (3.14), (3.15) and (3.16). �

4 Estimating
∫
Ω e

βu for arbitrary β > 0

In this section we shall see that under the assumptions of Theorem 1.1, the function eu belongs to
L∞((0, Tmax);L

β(Ω)) for arbitrary β > 0. This will be achieved in Lemma 4.3 by means of another
testing procedure in the first equation of (1.2) on the basis of a corresponding estimate in Lβ0(Ω) for
some suitably small β0 > 0 (Lemma 4.1) when combined with a pointwise boundedness property of
∇v thereby implied (Lemma 4.2).
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4.1 An estimate for
∫
Ω
eβu with some β > 0

Let us first make sure that according to our assumptions on D and S, the boundedness property (3.14)
implies that eu lies in L∞((0, Tmax);L

β(Ω)) for all sufficiently small β > 0.

Lemma 4.1 Suppose that the assumptions of Theorem 1.1 as well as (3.13) hold. Then for all β ∈
(0, β+) there exists C = C(β) > 0 such that

∫

Ω
eβu(·,t) ≤ C for all t ∈ (0, Tmax). (4.1)

Proof. Given β ∈ (0, β+), we can fix c1 > 0 such that

sαe−β+s ≤ c1e
−βs for all s ≥ 0,

so that combining (1.10) with the right inequality in (1.9) shows that

S(s) ≤ K3s
αD(s)

≤ K2K3s
αe−β+s

≤ K2K3c1e
−βs for all s ≥ 0.

Therefore, for Φ as in (3.1) we have

Φ(s) =

∫ s

1

∫ σ

1

1

S(ξ)
dξdσ

≥
1

K2K3c1

∫ s

1

∫ σ

1
eβξdξdσ

=
1

K2K3c1
·

{
1

β2
· eβs −

eβ

β
· s−

eβ

β2
+

eβ

β

}
for all s ≥ 0

and hence
∫

Ω
eβu ≤ K2K3c1β

2

∫

Ω
Φ(u) + βeβ

∫

Ω
u+ eβ |Ω| for all t ∈ (0, Tmax),

so that (4.1) is a consequence of Lemma 3.6 and (2.2). �

4.2 Bounds for ∇v in L∞ and for
∫
Ω
eβu with arbitrary β > 0

As a straightforward by-product, on choosing any β ∈ (0, β+) and using that then 0 ≤ s 7→ eβs grows
faster than any algebraic function, from Lemma 4.1 together with a standard argument from parabolic
regularity theory we obtain the following (see the reasoning e.g. in [7, Lemma 4.1])

Lemma 4.2 Under the assumptions of Theorem 1.1 one can find C > 0 such that

|∇v(x, t)| ≤ C for all x ∈ Ω and t ∈ (τ, Tmax), (4.2)

where τ := min{1, 12Tmax}.
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With this information together with that of Lemma 4.1 at hand, by tracking the time evolution of
another family of exponentially growing functionals of u we can now establish the following extension
of Lemma 4.1.

Lemma 4.3 Let the assumptions of Theorem 1.1 be satisfied. Then for all β > 0 there exists C(β) > 0
with the property that ∫

Ω
eβu(·,t) ≤ C(β) for all t ∈ (τ, Tmax), (4.3)

where again τ := min{1, 12Tmax}.

Proof. According to Lemma 4.1 and Lemma 4.2, we can find β0 > 0, c1 > 0 and c2 > 0 such that

∫

Ω
eβ0u ≤ c1 for all t ∈ (0, Tmax) (4.4)

and
|∇v(x, t)| ≤ c2 for all x ∈ Ω and t ∈ (0, Tmax), (4.5)

and for the proof of the lemma it is evidently sufficient to restrict our considerations to the case when
β > 0 is large enough fulfilling

β > max
{
β0 + β+ ,

(n− 2)β−

2
+ β+

}
, (4.6)

which in particular ensures that γ := β − β+ is positive. Writing

Ψ(s) :=

∫ s

0

∫ σ

0

eγξ

D(ξ)
dξdσ, s ≥ 0, (4.7)

from the first equation in (1.2) and the fact that Ψ′′(s) = eγs

D(s) for all s ≥ 0, we obtain on using
Young’s inequality that

d

dt

∫

Ω
Ψ(u) =

∫

Ω
Ψ′(u)ut

= −

∫

Ω
Ψ′′(u)D(u)|∇u|2 +

∫

Ω
Ψ′′(u)S(u)∇u · ∇v

= −

∫

Ω
eγu|∇u|2 +

∫

Ω
eγu

S(u)

D(u)
∇u · ∇v

≤ −
1

2

∫

Ω
eγu|∇u|2 +

1

2

∫

Ω
eγu

( S(u)

D(u)

)2
|∇v|2

= −
2

γ2

∫

Ω

∣∣∣∇e
γ
2
u
∣∣∣
2
+

1

2

∫

Ω
eγu

( S(u)

D(u)

)2
|∇v|2 for all t ∈ (0, Tmax). (4.8)

In order to estimate the rightmost summand herein, let us fix δ > 0 small such that

δ < min
{ 2γ

n− 2
,
2β0
n

}
(4.9)
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and thereafter pick c3 > 0 large enough fulfilling

s2αeγs ≤ c3e
(γ+δ)s for all s ≥ 0, (4.10)

so that using (1.9) and recalling (4.5) we see that

1

2

∫

Ω
eγu

( S(u)

D(u)

)2
|∇v|2 ≤

c22K
2
3

2

∫

Ω
eγu · u2α

≤
c22c3K

2
3

2

∫

Ω
e(γ+δ)u for all t ∈ (τ, Tmax). (4.11)

We next observe that by the first restriction contained in (4.6) we have γ > β0 and hence

2(γ + δ)

γ
>

2β0
γ

, (4.12)

and that moreover in the case n ≥ 3 we know from (4.9) that

2(γ+δ)
γ

2n
n−2

=
(n− 2)(γ + δ)

nγ
<

(n− 2) ·
(
γ + 2γ

n−2

)

nγ
= 1

and that thus
2(γ + δ)

γ
<

2n

n− 2
(4.13)

holds for any n ≥ 2. Now thanks to (4.12) and (4.13) we may invoke the Gagliardo-Nirenberg inequality
to find c4 > 0 such that for all t ∈ (0, Tmax)

c22c3K
2
3

2

∫

Ω
e(γ+δ)u =

c22c3K
2
3

2
‖e

γ
2
u‖

2(γ+δ)
γ

L
2(γ+δ)

γ (Ω)

≤ c4‖∇e
γ
2
u‖

2(γ+δ)
γ

·a

L2(Ω)
‖e

γ
2
u‖

2(γ+δ)
γ

·(1−a)

L
2β0
γ (Ω)

+ c4‖e
γ
2
u‖

2(γ+δ)
γ

L
2β0
γ (Ω)

(4.14)

with a ∈ (0, 1) given by

a =

nγ
2β0

− nγ
2(γ+δ)

1− n
2 + nγ

2β0

,

where we note that since γ > β0 by (4.6), we have 1 − n
2 + nγ

2β0
> 1 > 0. As moreover the second

condition on δ entailed by (4.9) guarantees that θ := γ+δ
γ

· a satisfies

(
1−

n

2
+

nγ

2β0

)
· (θ − 1) =

(n(γ + δ)

2β0
−

n

2

)
−
(
1−

n

2
+

nγ

2β0

)

=
nδ

2β0
− 1 < 0

12



and hence θ < 1, observing that

‖e
γ
2
u‖

2β0
γ

L
2β0
γ (Ω)

=

∫

Ω
eβ0u ≤ c1 for all t ∈ (0, Tmax) (4.15)

by (4.4), we may employ Young’s inequality to infer from (4.14) that with some c5 > 0 we have

c22c3K
2
3

2

∫

Ω
e(γ+δ)u ≤ c

(γ+δ)(1−a)
β0

1 c4‖∇e
γ
2
u‖2θL2(Ω) + c

γ+δ
β0
1 c4

≤
1

γ2

∫

Ω

∣∣∣∇e
γ
2
u
∣∣∣
2
+ c5 for all t ∈ (0, Tmax). (4.16)

We next go back to the definition (4.7) of Ψ to see that according to (1.9),

Ψ(s) ≤
1

K1

∫ s

0

∫ σ

0
e(γ+β−)ξdξdσ

=
1

K1(γ + β−)2
· e(γ+β−)s −

1

K1(γ + β−)
· s−

1

K1(γ + β−)2

≤
1

K1(γ + β−)2
· e(γ+β−)s for all s ≥ 0.

Next we recall that in view of the second restriction in (4.6)

β >
n

2
β− −

(
β− − β+

)
>

n

2
β−

and hence by the definition of γ, γ + β− = β > n
2β

−, so that

γ >
n− 2

2
β−,

which implies

2(γ+β−)
γ

2n
n−2

=
(n− 2)(γ + β−)

nγ
=

(n− 2)
(
1 + β−

γ

)

n
<

(n− 2)
(
1 + β−

(n−2)β−

2

)

n
= 1 when n ≥ 3.

Moreover due to γ + β− > γ > β0 we have

2β0
γ

<
2(γ + β−)

γ
<

2n

n− 2

for any n ≥ 2, so that we may once more employ the Gagliardo-Nirenberg inequality to find c6 > 0
satisfying

∫

Ω
Ψ(u) ≤

1

K1(γ + β−)2
‖e

γ
2
u‖

2(γ+β−)
γ

L
2(γ+β−)

γ (Ω)

≤ c6‖∇e
γ
2
u‖

2(γ+β−)
γ

·b

L2(Ω)
‖e

γ
2
u‖

2(γ+β−)
γ

·(1−b)

L
2β0
γ (Ω)

+ c6‖e
γ
2
u‖

2(γ+β−)
γ

L
2β0
γ (Ω)

for all t ∈ (0, Tmax),
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where

b :=

nγ
2β0

− nγ
2(γ+β−)

1− n
2 + nγ

2β0

∈ (0, 1).

Again in view of (4.15), this yields c7 > 0 such that with κ := (γ+β−)b
γ

we have

∫

Ω
Ψ(u) ≤ c7‖∇e

γ
2
u‖2κL2(Ω) + c7 for all t ∈ (0, Tmax)

and hence

∫

Ω

∣∣∣∇e
γ
2
u
∣∣∣
2

≥

{
1

c7

∫

Ω
Ψ(u)− 1

} 1
κ

≥
1

(2c7)
1
κ

{∫

Ω
Ψ(u)

} 1
κ

− 1 for all t ∈ (0, Tmax), (4.17)

because (A− b)
1
κ
+ ≥ 2−

1
κA

1
κ −B

1
κ for all A ≥ 0 and B ≥ 0.

We now collect (4.11), (4.16) and (4.17) to conclude from (4.8) that if we abbreviate c8 := 1

(2c7)
1
κ γ2

and c9 := c5 +
1
γ2 , then y(t) :=

∫
ΩΨ(u(·, t)), t ∈ [τ, Tmax), satisfies

y′(t) + c8y
1
κ (t) ≤ c9 for all t ∈ (τ, Tmax),

which by an ODE comparison implies that

y(t) ≤ c10 := max

{
y(τ) ,

(c9
c8

)κ
}

for all t ∈ [τ, Tmax). (4.18)

As by (4.7) and (1.9) we have

Ψ(s) ≥
1

K5

∫ s

0

∫ σ

0
e(γ+β+)ξdξdσ

=
1

K2(γ + β+)2
· e(γ+β+)s −

1

K2(γ + β+)
· s−

1

K2(γ + β+)2
for all s ≥ 0,

from (4.18) and (2.2) we infer that by the definition of γ,

∫

Ω
eβu =

∫

Ω
e(γ+β+)u

≤ K2(γ + β+)2
∫

Ω
Ψ(u) + (γ + β+)

∫

Ω
u+ |Ω|

≤ K2(γ + β+)2c10 + (γ + β+)

∫

Ω
u0 + |Ω| for all t ∈ [τ, Tmax),

which implies (4.3), for the number supt∈(0,τ) e
βu(·,t) is clearly finite due to the continuity of u. �
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4.3 Boundedness of u. Proof of the main results

Thanks to a general result of a Moser-type iteration, to be provided in Lemma 5.1 in the Appendix,
apart from Lemma 4.3 and Lemma 4.2 no further efforts are necessary to derive the following.

Lemma 4.4 Under the assumptions of Theorem 1.1, the solution (u, v) of (1.2) is global in time, and
there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0. (4.19)

Proof. An application of Lemma 5.1 to b(x, t) := ∇v(x, t), (x, t) ∈ Ω̄ × (0, Tmax), shows that
as a consequence of Lemma 4.2 and Lemma 4.3, u belongs to L∞(Ω × (τ, Tmax)), where once more
τ = min{1, 12Tmax}. As moreover also ∇v is bounded in Ω × (τ, Tmax), in view of the extensibility
criterion in Lemma 2.1 this guarantees that indeed Tmax = ∞ and that (4.19) holds. �

In order to prepare our arguments concerning the large time behavior of solutions, let us briefly note
that the above also implies the following Hölder regularity property.

Lemma 4.5 Suppose that the hypotheses of Theorem 1.1 are valid. Then there exist θ ∈ (0, 1) and
C > 0 such that

‖u‖
Cθ, θ2 (Ω̄×[t,t+1])

+ ‖v‖
Cθ, θ2 (Ω̄×[t,t+1])

≤ C for all t ≥ 2. (4.20)

Proof. Since u and ∇v are bounded in Ω × (1,∞) according to Lemma 4.4 and Lemma 4.2, the
claim readily results from two straightforward applications of well-known Hölder estimates for scalar
parabolic problems ([11, Theorem 1.3]). �

A proof of Theorem 1.1 can now be achieved by means of a standard argument.

Proof of Theorem 1.1. The statement on global existence and the boundedness property (1.14)
have already been asserted by Lemma 4.4. The claims concerning the large time behavior of u and
v result from combining Lemma 4.5 with the preliminary decay information implicitly contained in
(3.15) and (3.16) in a straightforward manner: In fact, assuming (1.15) to be false we could find δ > 0,
(tk)k∈N ⊂ (2,∞) and (xk)k∈N ⊂ Ω such that tk → ∞ as k → ∞ and

∣∣∣u(xk, tk)− u0

∣∣∣ ≥ δ for all k ∈ N.

According to the equicontinuity property of the set of function uk := u|Ω̄×[k,k+1] expressed in (4.20),
we could thus find r > 0 and η > 0 such that

∣∣∣u(x, t)− u0

∣∣∣ ≥ δ

2
for all x ∈ Br(xk) ∩ Ω, each t ∈ (tk, tk + η) and any k ∈ N.

Noting that by smoothness of ∂Ω the number c1 := infk∈N |Br(xk)∩Ω| must be positive, from this we
would obtain that

∫ tk+η

tk

∫

Ω

∣∣∣u(x, t)− u0

∣∣∣
2
dxdt ≥

δ2ηc1

4
for all k ∈ N,

which contradicts (3.15) and thereby establishes (1.15).
The corresponding statement (1.16) on v can be verified similarly. �
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The statements from both Theorem 1.2 and Theorem 1.3 thereby become immediate.

Proof of Theorem 1.3. We only need to note that for D(s) := (1 + βs)e−βs and S(s) := se−βs,
s ≥ 0, fixing any ε ∈ (0, β) we can clearly find c1 > 0 such that

e−βs ≤ D(s) ≤ c1e
−(β−ε)s for all s ≥ 0,

and that moreover

S(s)

D(s)
=

s

1 + βs
≤

1

β
for all s ≥ 0.

Therefore, namely, all statements result on applying Theorem 1.1 with the particular choices β− :=
β, β+ := β − ε, α := 0,K1 := 1,K2 := c1 and K3 :=

1
β
. �

5 Appendix: A general boundedness property

This appendix identifies a rather general setting under which bounds for
∫
Ω eβu with appropriately

large β > 0 imply boundedness of subsolutions u to a scalar parabolic problem associated with the
first equation in (1.2).

Lemma 5.1 Suppose that D and S satisfy (1.8), that (1.9) holds with some β+ ∈ R, β− ≥ β+,K1 > 0
and K2 > 0, and that there exist λ > 0 and K4 > 0 fulfilling

S(s)

D(s)
≤ K4e

λs for all s ≥ 0. (5.1)

Moreover, let T ∈ (0,∞] and b ∈ C1,0(Ω̄× (0, T )) be such that

b · ν ≤ 0 on ∂Ω× (0, T ) (5.2)

and that
b ∈ L∞(Ω× (0, T )). (5.3)

Then if u ∈ C0(Ω̄× [0, T )) ∩ C2,1(Ω̄× (0, T )) is a nonnegative function which is such that

{
ut ≤ ∇ · (D(u)∇u)−∇ · (S(u)b(x, t)), x ∈ Ω, t ∈ (0, T ),
∂u
∂ν

≤ 0, x ∈ ∂Ω, t ∈ (0, T ),
(5.4)

and such that furthermore

eu ∈ L∞((0, T );Lβ(Ω)) for all β > 1, (5.5)

we also have
eu ∈ L∞(Ω× (0, T )). (5.6)
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Proof. We let

w(x, t) := eu(x,t), x ∈ Ω̄, t ∈ [0, T ),

and then obtain from (5.4) that
∂w

∂ν
≤ 0 on ∂Ω× (0, T ) (5.7)

and that

wt = euut

≤ eu∇ · (D(u)∇u)− eu∇ · (S(u)b) (5.8)

= ∇ ·
(
euD(u)∇u

)
− euD(u)|∇u|2

−∇ ·
(
euS(u)b

)
+ euS(u)b · ∇u in Ω× (0, T ). (5.9)

Herein, employing Young’s inequality and using (5.1) and (1.9) as well as (5.3) we can estimate

euS(u)b · ∇u ≤ euD(u)|∇u|2 +
1

4
eu

S2(u)

D(u)
|b|2

= euD(u)|∇u|2 +
1

4
euD(u)

( S(u)

D(u)

)2
|b|2

≤ euD(u)|∇u|2 +
1

4
eu ·K2e

−β+u ·K2
4e

2λu · ‖b‖2L∞(Ω×(0,T ))

= euD(u)|∇u|2 + c1e
(1−β++2λ)u in Ω× (0, T )

with c1 :=
1
4K2K

2
4‖b‖

2
L∞(Ω×(0,T )). Writing

D̂(s) := D(ln s) for s ≥ 1, (5.10)

we see that furthermore

euD(u)∇u = D̂(w)∇w in Ω× (0, T ),

whence (5.8) implies that

wt ≤ ∇ ·
(
D̂(w)∇w

)
+∇ · f(x, t) + g(x, t) in Ω× (0, T ) (5.11)

with

f(x, t) := −eu(x,t)S(u(x, t))b(x, t), g(x, t) := c1e
(1−β++2λ)u x ∈ Ω, t ∈ (0, T ),

where again by (5.1), (1.9) and (5.3) we find that

|f | ≤ eu ·K4e
λuD(u) · |b|

≤ K2K4‖b‖L∞(Ω×(0,T )) · e
(1−β++λ)u in Ω× (0, T ).
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Using (5.5), we thus infer that

f, g ∈ L∞((0, T );Lp(Ω)) for all p > 1, (5.12)

and that moreover also
w ∈ L∞((0, T );Lp(Ω)) for all p > 1. (5.13)

Now since (5.10) and the left inequality in (1.9) guarantee that D̂ satisfies the algebraic lower estimate

D̂(s) ≥ K1e
−β−·ln s = K1s

−β−

for all s ≥ 1,

in view of (5.11), (5.7), (5.12) and (5.13) we see that a well-known result of a Moser-type reasoning
([14, Lemma A.1]) directly applies to the present situation so as to assert (5.6). �
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