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Abstract. We establish the existence of locally positive weak solutions to the homogeneous
Dirichlet problem for ut = uΔu + u

∫
Ω |∇u|2 in bounded domains Ω ⊂ Rn which arises in game

theory. We prove that solutions converge to 0 if the initial mass is small, whereas they undergo
blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the
blow-up set coincides with Ω; i.e., the finite-time blow-up is global.
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1. Introduction. In a bounded domain Ω ⊂ R
N , N ≥ 1, we consider nonnega-

tive solutions to the quasi-linear degenerate and nonlocal parabolic problem

(1.1)

⎧⎪⎪⎨⎪⎪⎩
ut = uΔu+ u

∫
Ω

|∇u|2, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

which arises in a game theoretical description of replicator dynamics in the case of
a Bomze-type infinite dimensional setting [7] when pursuing the modeling procedure
introduced in [21, 22, 36] and which actually assumes steep payoff-kernels of Gaussian
type. For completeness in this direction we include a concise derivation of problem
(1.1) in Appendix A.

Strongly degenerate diffusion meets nonlocal gradient sources. From
a mathematical perspective, the evolution in (1.1) is governed by two characteristic
mechanisms, each of which already gives rise to considerable challenges on its own.
First, diffusion in (1.1) is strongly degenerate at small densities in the sense that
near points where u = 0, typical diffusive effects are substantially inhibited. Indeed,
already in the unforced counterpart of (1.1) with general power-type degeneracy, as
given by

(1.2) ut = upΔu

with p > 0, it is known that the particular value p = 1, corresponding to the choice in
(1.1), marks a borderline between somewhat mild degeneracies and strongly degener-
ate diffusion: In the case when p < 1, namely, (1.2) allows for a transformation into
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the porous medium equation vt = Δvm with m := 1
1−p > 1, thus meaning that in

this case, unique global continuous weak solutions to the associated Dirichlet problem
exist for all reasonably regular nonnegative initial data [2] and that these eventually
become positive and smooth, and hence classical, inside Ω [5]. If p ≥ 1, then nonneg-
ative global weak solutions can still be constructed for any nonnegative continuous
initial data, but they need no longer be continuous [4] nor uniquely determined by
the initial data [31], and moreover their spatial support will not increase with time
[6, 31, 55].

Even in the case when one resorts to continuous initial data which are strictly
positive throughout Ω in which, in fact, unique classical solutions exist for any p > 0,
the value p = 1 corresponds to a critical strength of degeneracy. In particular, for p <
1, after an appropriate waiting time, all solutions will enter the cone K := {ϕ : Ω →
R | ϕ(x) ≥ c dist(x, ∂Ω) for all x ∈ Ω and some c > 0} [5], which reflects a diffusion-
driven effect generalizing the Hopf boundary point property in nondegenerate diffusion
processes. On the other hand, in the case p ≥ 1, solutions to (1.2) emanating from
initial data which are suitably small near ∂Ω will never enter K [54].

Now in (1.1), this degenerate diffusion process interacts with a spatially nonlocal
source which is such that unlike in large bodies of the literature on related nonlo-
cal parabolic equations [39], even basic questions concerning local solvability appear
to be far from trivial. Indeed, in light of an expected loss of appropriate solution
regularity due to strongly degenerate diffusion, even for smooth initial data it seems
a priori unclear whether solutions can be constructed which allow for a meaningful
definition of the Dirichlet integral

∫
Ω|∇u|2 for positive times. This is in stark contrast

to most nonlocal parabolic problems previously studied, in which either diffusion is
nondegenerate, and hence such first-order expressions are controllable by L∞ bounds
for solutions at least for small times, such as, e.g., in the semilinear problem

ut = Δu + um
(∫

Ω

|∇u|2 dx
)r

studied for m ≥ 1, r > 0 in [8, 45], or the nonlocal terms involve only zero-order
expressions which thus in a natural manner also in cases of degeneracies as in (1.2)
allow for local theories based on extensibility criteria in L∞(Ω) only (see [9, 43] and
also the book [39]).

Main results. Previous mathematical studies on the PDE arising in (1.1) have
concentrated on analyzing self-similar solutions only. In [21], the authors constructed
self-similar solutions in the case Ω = R, and in [36] the same could be achieved
in the multidimensional case Ω = R

N with N ≥ 2. More recently, the authors in
[37] investigated the existence of self-similar solutions in the one-dimensional case in
a closely related problem in which the Laplacian is perturbed by a time-dependent
term containing the first derivative as well; all these self-similar solutions are shown to
be regular and to approach Dirac-type distributions as t ↘ 0+. An analogous study
in higher dimensions is provided in [38].

The goals of the present work consist of developing a fundamental theory of local
solvability for (1.1) and of providing a first step toward an understanding of the
qualitative solution behavior. In order to formulate our results, let us concretize the
specific setting within which (1.1) will be studied by requiring that throughout this
paper, Ω denotes a bounded domain in R

N , N ≥ 1, with smooth boundary, and by
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introducing the solution concept that we shall pursue as follows.

Definition 1.1. Let T ∈ (0,∞]. By a weak solution of (1.1) in Ω × (0, T ) we
mean a nonnegative function

u ∈ L∞
loc(Ω̄× [0, T )) ∩ L2

loc([0, T );W
1,2
0 (Ω)) with ut ∈ L2

loc(Ω̄× [0, T )),

which satisfies
(1.3)

−
∫ T

0

∫
Ω

uϕt dxdt+

∫ T

0

∫
Ω

∇u·∇(uϕ) dxdt =

∫
Ω

u0ϕ(·, 0) dx+
∫ T

0

(∫
Ω

uϕdx

)
·
(∫

Ω

|∇u|2 dx
)
dt

for all ϕ ∈ C∞
0 (Ω× [0, T )).

A weak solution u of (1.1) in Ω × (0, T ) will be called locally positive if 1
u ∈

L∞
loc(Ω× [0, T ]).

Remark 1.2. Since u ∈ L2
loc([0, T );W

1,2
0 (Ω)) and ut ∈ L2

loc(Ω̄× [0, T )) imply that
u ∈ C0([0, T );L2(Ω)), (1.3) is equivalent to requiring that u(·, 0) = u0 and that
(1.4)∫ T

0

∫
Ω

utϕdxdt +

∫ T

0

∫
Ω

∇u · ∇(uϕ) dx dt =

∫ T

0

(∫
Ω

uϕdx

)
·
(∫

Ω

|∇u|2 dx
)
dt

holds for any ϕ ∈ C∞
0 (Ω× (0, T )).

In order to construct such locally positive weak solutions, we shall assume that
the initial data satisfy the following:

(H1) u0 ∈ L∞(Ω) ∩W 1,2
0 (Ω),

(H2) u0 ≥ 0 and 1
u0

∈ L∞
loc(Ω), and

(H3) there exists L > 0 such that ‖u0‖Φ,∞ ≤ L.
Here and below, for a measurable function v : Ω → R we have set

‖v‖Φ,∞ := ess sup
x∈Ω

∣∣∣ v
Φ

∣∣∣ ,
where Φ ∈ C2(Ω) denotes the solution to

(1.5) −ΔΦ = 1 in Ω, Φ|∂Ω = 0.

Note that according to the Hopf boundary point lemma, requiring ‖u0‖Φ,∞ to be
finite is an equivalent way of asking for the possibility to estimate u0 by a multiple of
the function measuring the distance of a point to ∂Ω.

In this framework, the first of our main results indeed asserts local existence
of locally positive weak solutions, along with a favorable extensibility criterion only
involving the norm of the solution in L∞(Ω).

Theorem 1.3. Let u0 satisfy (H1)–(H3). Then there exist Tmax ∈ (0,∞] and a
locally positive weak solution u to (1.1) in Ω× (0, Tmax) which satisfies

(1.6) either Tmax = ∞ or lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞,

and which is such that for each smoothly bounded subdomain Ω′ ⊂⊂ Ω there exists
CΩ′ > 0 with
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Ω

|∇u(·, t)|2 ≤
∫
Ω

|∇u0|2(1.7)

· exp
[

1

2CΩ′

(
sup

τ∈(0,t)

∫
Ω

u(·, τ)
)(∫

Ω′
φ lnu(·, t)−

∫
Ω′
φ lnu0 +

∫ t

0

∫
Ω′
u

)]
,

where φ denotes the solution to −Δφ = 1 in Ω′, φ|∂Ω′ = 0, as well as

(1.8) ‖u(·, t)‖Φ,∞ ≤ max

{
‖u0‖Φ,∞ , sup

τ∈(0,t)

∫
Ω

|∇u(x, τ)|2 dx
}

for a.e. t ∈ (0, Tmax).

Remark 1.4. Here, we have to leave open the question of uniqueness of solutions.
In view of precedent nonuniqueness results for weak solutions of ut = uΔu even with
merely local ingredients [31], however, we do not expect the uniqueness property
to hold in the considered generalized solution framework. The reader can find a
uniqueness proof for positive classical solutions to the latter equation in [51]. Since
we do not know whether the solutions provided by Theorem 1.3 are classical, the
argument used there apparently cannot be carried over to the present situation.

We emphasize that the extensibility criterion (1.6) particularly excludes any
gradient blow-up phenomenon in the sense of finite-time blow-up of ∇u despite bound-
edness of u itself. Indeed, the occurrence of unbounded gradients of bounded
solutions appears to be a characteristic qualitative implication of various types of
interplay between diffusion—possibly degenerate—and gradient-dependent nonlinear-
ities [1, 3, 29, 48].

A natural succeeding topic appears to consist of deriving conditions on the initial
data which ensure that the solutions found above either exist for all times or blow
up in finite time. Here, in view of the essentially cubic character of the production
term in (1.1) it is not surprising that this may dominate the smoothing effect of the
merely quadratic-type diffusion term when the initial data are suitably large in an
adequate sense; precedent works indicate that indeed, such intuitive considerations
are appropriate in related nondegenerate and degenerate parabolic equations with
local reaction terms [39, 41, 47, 52].

A remarkable feature of the precise structure of this interplay in (1.1) is that ac-
tually a complete classification of all initial data in this respect is possible, exclusively
involving the size of the total initial mass m :=

∫
Ωu0 as the decisive quantity: In fact,

the second of our main results identifies the value m = 1 to be critical with regard
to global solvability and, moreover, gives some basic information on the asymptotic
behavior of solutions.

Theorem 1.5. Let u0 satisfy (H1)–(H3), and let u and Tmax denote the corre-
sponding locally positive weak solution of (1.1) as well as its maximal time of existence,
provided by Theorem 1.3.

(i) If
∫
Ωu0 < 1, then Tmax = ∞ and∫

Ω

u(x, t) dx→ 0 as t→ ∞.

(ii) Suppose that
∫
Ω
u0 = 1. Then Tmax = ∞ and∫

Ω

u(x, t) dx = 1 for all t > 0.
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(iii) In the case
∫
Ω
u0 dx > 1, we have Tmax <∞ and

lim sup
t↗Tmax

∫
Ω

u(x, t) dx = ∞.

Remark 1.6. Statement (ii) of Theorem 1.5 says that if the initial data u0 is
a probability measure, then we have conservation of probability in time. This is
actually a desired feature of the replicator dynamics model described by (1.1), since
u(·, t) stands for a probability distribution of the state of some population of players;
see also Appendix A.

In the situation of Theorem 1.5 (iii) when finite-time blow-up occurs, understand-
ing the solution behavior near the respective blow-up time necessarily requires us to
describe the set of all points where the solution becomes unbounded. Accordingly,
next we shall be concerned with the blow-up set

B =
{
x ∈ Ω

∣∣∣there exists a sequence (xk, tk)k∈N ⊂ Ω× (0, Tmax) such that

xk → x, tk → Tmax and u(xk, tk) → ∞ as k → ∞
}

of exploding solutions. In numerous related equations, involving either linear or de-
generate diffusion, blow-up driven by local superlinear production terms is known to
occur only in thin spatial sets, which in radial settings typically reduce to single points
[13, 16, 41]. Only a few exceptional situations detected in the literature lead to re-
gional or even global blow-up, thus referring to cases in which |B| > 0 or even B = Ω
(cf., for instance, [14, 15, 25, 47, 53]). In cases of sources which at least partially con-
sist of nonlocal terms, blow-up in sets of positive measure may occur if the relative
size of a possibly contained local contribution at large densities is predominant, as
compared to the strength of the respective diffusion term [11, 28, 30, 44, 46, 50].

Our main result in this direction will reveal that any of our nonglobal solutions
in fact blow up globally in space, thus indicating a certain balance in the competition
of diffusion and nonlocal production in (1.1).

Theorem 1.7. Suppose that
∫
Ω
u0 dx > 1, and let u denote the locally positive

weak solution of (1.1) from Theorem 1.3. Then u blows up globally in the sense that
its blow-up set satisfies B = Ω.

The outline of the paper is as follows. In section 2 we introduce an approximate
sequence of nondegenerate problems and derive some estimates for their solutions uε.
Here, one key step toward the existence proof will consist of deriving the associated
approximate variant of (2.35) (Lemma 2.6), which will rely on an energy-type argu-
ment combined with an analysis of the functional

∫
Ω′φ lnuε(·, t) for Ω′ ⊂⊂ Ω, t > 0,

and appropriate φ. Another important observation, based on an integral estimate
involving certain singular weights (cf. Lemma 2.5 and in particular (2.31)) will reveal
that the functions ∇uε enjoy a favorable strong compactness property with respect
to spatio-temporal L2-norms (cf. (2.44)) rather than merely the respective weak pre-
compactness feature obtained from corresponding boundedness results. In section 3
we study an ODE problem associated with the evolution of the total mass of the
solution, and depending on whether this total mass initially is equal to, less than, or
greater than 1, we prove global existence and conservation of the total mass, conver-
gence to zero total mass, and finite-time blow-up, respectively. Further, in section
4 we concentrate on the latter case and examine the corresponding blow-up set of
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the solution, and we prove that any such blow-up actually occurs globally in space.
Finally, Appendix A is devoted to the motivation and derivation of the mathematical
model using an evolution game dynamics approach, while Appendix B deals with a
more detailed proof of Lemma 2.1.

2. Weak solutions: Existence and approximation. Following an approach
that is well established in the context of degenerate parabolic equations, we aim
at constructing a solution u to (1.1) as the limit of solutions to certain regularized
problems. For this purpose, let us fix a sequence (εj)j∈N ⊂ (0, 1) such that εj ↘ 0 as
j → ∞, and a sequence (u0ε)ε=εj ⊂ C3(Ω̄) with the properties
(2.1)

u0ε ≥ ε in Ω, u0ε = ε on ∂Ω, Δu0ε = −
∫
Ω

|∇u0ε|2 on ∂Ω for all ε ∈ (εj)j∈N

and

(2.2) lim sup
ε=εj↘0

‖u0ε − ε‖Φ,∞ ≤ L,

with L > max{∫Ω|∇u0|2, ‖u0‖Φ,∞} (cf. (H3)), as well as the property that

(2.3) for any compact set K ⊂ Ω there is CK > 0 such that lim inf
ε↘0

inf
K
u0ε ≥ CK ,

and such that, moreover,

(2.4) u0ε → u0 in W 1,2(Ω) as ε = εj ↘ 0

and

(2.5)

∫
u0ε =

∫
u0 for all ε ∈ (εj)j∈N.

A necessary first observation is that such an approximation actually is possible.

Lemma 2.1. Let u0 satisfy (H1)–(H3). Then there is a sequence (u0ε)ε∈(εj)j∈N
⊂

C3(Ω̄) having the properties (2.1)–(2.5).

Proof. Here we restrict ourselves to giving an outline, and for a slightly more
detailed version of the proof we refer the reader to Appendix B. By modification of
the usual mollification procedure (cf. [56, section 3]) commonly employed to obtain
(2.4), it is possible to obtain the other properties as well. More precisely, we set

u0ε = ε+ C(1 − ρ)Φ + ρ(ϕ+ αϑ),

where ϕ ∈ C∞
0 (Ω) is a mollified version of u0 (after “locally shifting u0 toward the

interior of the domain”), ρ ∈ C∞
0 (Ω), 0 ≤ ρ ≤ 1, such that the supports of ∇ρ and ϕ

are disjoint, 0 ≤ ϑ ∈ C∞
0 with

∫
Ωϑ = 1 (in order to adjust (2.5)), Φ is the solution to

−ΔΦ = 1 in Ω, Φ = 0 on ∂Ω (for achieving the third property in (2.1)), and C and
α are appropriately adjusted constants, depending on ε as well as on several different
integrals containing the functions Φ, ρ, ϑ, their gradients, and u0.

For ε ∈ (εj)j∈N, we consider the regularized problem

(2.6)

⎧⎪⎪⎨⎪⎪⎩
uεt = uεΔuε + uε · ρε

( ∫
Ω|∇uε|2

)
, x ∈ Ω, t > 0,

uε(x, t) = ε, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,
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where

ρε(z) := min

{
z,

1

ε

}
for z ≥ 0.

Lemma 2.2. For all sufficiently small ε ∈ (εj)j∈N, problem (2.6) has a unique
classical global-in-time solution uε ∈ C2,1(Ω× [0,∞)).

Proof. To prove the uniqueness statement for all ε, we assume that both u1 and
u2 are classical solutions of (2.6) from the indicated class in Ω×(0, T ) for some T > 0.
Then w := u1 − u2 satisfies w = 0 on ∂Ω and at t = 0, and

(2.7) wt = u1Δw+Δu2·w+ρε
(∫

Ω

|∇u2|2
)
·w+u1·

[
ρε

(∫
Ω

|∇u1|2
)
−ρε

(∫
Ω

|∇u2|2
)]

for t ∈ (0, T ). Now given T ′ ∈ (0, T ), we can find a constant M > 0 such that
u1, |∇u1|, u2, and |∇u2| are bounded above by M in Ω × (0, T ′), since u1, u2 are
classical solutions. Thus, by Hölder’s inequality and the pointwise estimate

∣∣|∇u1| −
|∇u2|

∣∣ ≤ |∇(u1 − u2)|, we obtain∣∣∣∣ρε(∫
Ω

|∇u1|2
)
− ρε

(∫
Ω

|∇u2|2
)∣∣∣∣ ≤‖ρε′‖L∞((0,∞)) ·

∣∣∣∣ ∫
Ω

(
|∇u1|2 − |∇u2|2

)∣∣∣∣
≤
∫
Ω

∣∣∣|∇u1| − |∇u2|
∣∣∣ · (|∇u1|+ |∇u2|

)
≤ 2M

∫
Ω

|∇w|

≤ 2M |Ω| 12 ·
(∫

Ω

|∇w|2
) 1

2

(2.8)

for all t ∈ (0, T ′), because ‖ρε′‖L∞((0,∞)) ≤ 1. Upon multiplying (2.7) by w and
integrating over Ω, we see that for t ∈ (0, T ′),

(2.9)

1

2

d

dt

∫
Ω

w2 =

∫
Ω

u1Δww +

∫
Ω

w2Δu2 +

∫
Ω

w2ρε

(∫
Ω

|∇u2|2
)

+

∫
Ω

wu1

[
ρε

(∫
Ω

|∇u1|2
)
− ρε

(∫
Ω

|∇u2|2
)]

≤ −
∫
Ω

u1|∇w|2 −
∫
Ω

∇u1∇ww − 2

∫
Ω

w∇w∇u2

+

∫
Ω

w2ρε

(∫
Ω

|∇u2|2
)
+

∫
Ω

|w|u1
∣∣∣∣ρε(∫

Ω

|∇u1|2
)
− ρε

(∫
Ω

|∇u2|2
)∣∣∣∣ .

Together with Young’s inequality, (2.8), and the facts that u1 ≥ ε (which, thanks to
the actual nondegeneracy of problem (2.6) for positive ε, is an immediate consequence
of the maximum principle) and ρε(s) ≤ 1

ε for all s > 0, this entails

1

2

d

dt

∫
Ω

w2 ≤ −ε
∫
Ω

|∇w|2 + ε

4

∫
Ω

|∇w|2 + 1

ε

∫
Ω

w2|∇u1|2 + ε

2

∫
Ω

|∇w|2 + 8

ε

∫
Ω

w2|∇u2|2

+
1

ε

∫
Ω

w2 + 2M |Ω| 12
(∫

Ω

|∇w|2
) 1

2
∫
Ω

|w|u1
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for t ∈ (0, T ′). The choice of M now ensures that

1

2

d

dt

∫
Ω

w2 ≤− ε

4

∫
Ω

|∇w|2 + M2

ε

∫
Ω

w2 +
8M2

ε

∫
Ω

w2 +
1

ε

∫
Ω

w2

+ 2M |Ω| 12
(∫

Ω

|∇w|2
) 1

2
(∫

Ω

|w|2
∫
Ω

u21

) 1
2

≤− ε

4

∫
Ω

|∇w|2 + 9M2 + 1

ε

∫
Ω

w2 +
ε

4

∫
Ω

|∇w|2 + 4M4|Ω|2
ε

∫
Ω

|w|2(2.10)

for t ∈ (0, T ′), so that (2.10) finally turns into

1

2

d

dt

∫
Ω

w2 ≤
(
9M2 + 1

ε
+

4M4|Ω|2
ε

)
·
∫
Ω

w2

for all t ∈ (0, T ′).
Integrating this ODI (ordinary differential inequality) yields that w ≡ 0 in Ω ×

(0, T ′) and hence also in Ω× (0, T ), because T ′ < T was arbitrary.
It remains to be shown that for all T > 0, (2.6) is classically solvable in Ω× (0, T )

provided ε is sufficiently small. To this end, fix T > 0 and let ε ∈ (εj)j∈N be so small
that

∫
Ω|∇u0ε|2 < 1

ε , which is possible due to (2.4). By [26, Thm. V.1.1], there are
K1 > 0 and θ > 0 such that any classical solution w to the problem

wt = wΔw + c(x, t) in Ω× [0, T ], w|∂Ω = ε, w(·, 0) = u0ε,

with c ∈ L∞(Ω× (0, T )) fulfilling 0 ≤ c ≤ 1
ε ‖u0ε‖L∞(Ω) e

T
ε , which in addition obeys

the estimate ε ≤ w ≤ ‖u0ε‖∞ e
T
ε , satisfies

(2.11) ‖w‖
Cθ, θ

2 (Ω×[0,T ])
≤ K1.

Fix δ > 0. Corresponding to θ,K1, and δ, there is K2 such that any solution w to

wt = a(x, t)Δw + b(x, t) in Ω× [0, T ], w|∂Ω = ε, w(·, 0) = u0ε,

for some a ∈ Cθ, θ2 (Ω× [0, T ]) having the properties a(x, t) = ε for (x, t) ∈ ∂Ω× [0, T ],

ε ≤ a ≤ ‖u0ε‖L∞ e
T
ε , ‖a‖

Cθ, θ
2 (Ω×[0,T ])

≤ K1 and continuous b with b(x, 0) = b0 ∈ R,

‖b‖∞ ≤ K1

ε , by an application of [12, Thm. 7.4] to w − u0ε − tb0, fulfills

(2.12) ‖w‖
C1+δ, δ

2 (Ω×[0,T ])
≤ K2.

With this in mind, in the space X = C1+ δ
2 ,

δ
4 (Ω× [0, T ]) we consider the set

S :=
{
v ∈ X

∣∣∣ v ≥ ε in Ω× (0, T ), v(·, 0) = u0ε and ‖v‖
C1+δ, δ

2 (Ω×[0,T ])
≤ K2

}
,

which is evidently closed, bounded, convex, and compact in X . For each v ∈ S, the
definition of ρε implies that

(2.13) f(t) := ρε

(∫
Ω

|∇v(·, t)|2
)
, t ∈ [0, T ],

defines a nonnegative δ
2 -Hölder continuous function f on [0, T ]. The choices of f ,

S, and ε show that f(0) =
∫
Ω|∇u0ε|2, and thus (2.1) ensures that the compatibility
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condition of first order is satisfied. Therefore, the quasi-linear, actually nondegenerate
parabolic problem

(2.14)

⎧⎪⎪⎨⎪⎪⎩
uεt = uεΔuε + f(t)uε, x ∈ Ω, t > 0,

uε(x, t) = ε, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

possesses a classical solution uε ∈ C2,1(Ω × [0, T ]) by [26, Thm. V.6.1], which, by
comparison, satisfies

(2.15) ε ≤ uε ≤ ‖u0ε‖L∞(Ω) · e T
ε in Ω× (0, T ),

because u(x, t) := ε and u(x, t) := ‖u0ε‖L∞(Ω) · e t
ε are easily seen to define a sub- and

a supersolution of (2.14), respectively.
We now introduce a mapping F : S → X by setting Fv := uε, where uε solves

(2.14) with (2.13).
Then defining c(x, t) := uε(x, t)f(t), x ∈ Ω, t ∈ [0, T ], this function satisfies

‖c‖∞ ≤ 1
ε ‖u0ε‖∞ e

T
ε and, accordingly, as stated in (2.11) above, ‖Fv‖

Cθ, θ
2
≤ K1 for

any v ∈ S.
Using a(x, t) := (Fv)(x, t) and b(x, t) := (Fv)(x, t) · f(t), we see that, again, the

above considerations are applicable, and ‖Fv‖
C1+δ, δ

2 (Ω×[0,T ])
≤ K2 for any v ∈ S by

(2.12). In particular, we observe that FS ⊂ S.
Furthermore invoking [26, IV.5.2], we can conclude the existence of k > 0 and

K3 > 0 such that

(2.16)

‖Fv‖
C2+δ,1+ δ

2 (Ω×[0,T ])
≤ k

(
‖Fv · f‖

Cδ, δ
2 (Ω×[0,T ])

+ ‖u0ε‖C2+δ(Ω×[0,T ]) + ε
)
≤ K3

for all v ∈ S. To see that F is continuous, we suppose that (vk)k∈N ⊂ S and v ∈ S
are such that vk → v in X . Then fk(t) := ρε

( ∫
Ω|∇vk(·, t)|2

)
satisfies

(2.17) fk → f in C0([0, T ])

as k → ∞, with f as given by (2.13). By (2.16) and the theorem of Arzelà–Ascoli,
(Fvk)k∈N is relatively compact in C2,1(Ω× [0, T ]), and if ki → ∞ is any sequence such
that uki := Fvki converges in C2,1(Ω× [0, T ]) to some w as i→ ∞, then in

∂tuki = ukiΔuki + fki(t)uki , x ∈ Ω, t ∈ (0, T ),

we may let ki → ∞ and use (2.17) to obtain that w is a classical solution of (2.14).
Since classical solutions of (2.14) are unique due to the comparison principle, we must
have w = Fv. We thereby derive that the whole sequence (Fvk)k∈N converges to
Fv and hence conclude that F is continuous. Therefore, the Schauder fixed point
theorem asserts the existence of at least one uε ∈ S for which uε = Fuε holds. Since
such a fixed point obviously solves (2.6), the proof is complete.

The basis of both our existence proof and our boundedness result is formed by the
next two lemmata which provide useful a priori estimates for uε in terms of certain
presupposed bounds. The first lemma essentially derives a uniform pointwise bound
for uε from a space-time integral estimate for |∇uε|2.
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Lemma 2.3. For all M > 0 and B > 0 there exists C(M,B) > 0 with the follow-
ing property: If

(2.18) u0ε ≤M in Ω and

∫ T

0

∫
Ω

|∇uε|2 ≤ B

holds for some ε ∈ (εj)j∈N and T ∈ (0,∞], then we have

(2.19) uε ≤ C(M,B) in Ω× [0, T ).

Proof. Our plan is to use a separated function of the form

(2.20) u(x, t) := z(t) · (M +Φ(x)), x ∈ Ω̄, t ∈ [0, T ),

as a comparison function, where M is as in the hypothesis of the lemma, Φ ∈
C2(Ω̄) is the solution of (1.5), and z denotes the solution of

(2.21) z′ = −z2 + (
f(t) + 1

) · z, t ∈ (0, T ), z(0) = 1,

with f(t) :=
∫
Ω
|∇uε(·, t)|2. In fact, it follows from (2.21) that ζ := 1

z is a solution of
ζ′ = 1− (f(t) + 1)ζ, ζ(0) = 1 and hence given by

ζ(t) = e−
∫ t
0
f(s)ds−t +

∫ t

0

e−
∫ t
s
f(σ)dσ−(t−s)ds, t ∈ [0, T ).

We claim that

(2.22) 1 ≤ z(t) ≤ eB+1 for all t ∈ (0, T ).

To see this, we note that if t ∈ (0, T ) satisfies t < 1, then (2.18) implies

ζ(t) ≥ e−
∫

t
0
f(s)ds−t ≥ e−B−t ≥ e−B−1,

whereas if t ∈ [1, T ), then again (2.18) shows

ζ(t) ≥
∫ t

t−1

e−
∫ t
s
f(σ)dσ−(t−s)ds ≥

∫ t

t−1

e−B−(t−s)ds

≥
∫ t

t−1

e−B−1ds = e−B−1.

This yields the right inequality in (2.22), while the left immediately results from an
ODE comparison of z with z(t) ≡ 1, because z′ + z2 − (f(t) + 1)z = −f(t) ≤ 0.
Consequently, since Φ ≥ 0 in Ω, the function u defined by (2.20) satisfies

u(x, 0) =M +Φ(x) ≥M ≥ uε(x, 0) for all x ∈ Ω

due to (2.18), and on the lateral boundary we have

u(x, t) = z(t) ·M ≥M ≥ ε for all x ∈ ∂Ω and t ∈ (0, T ).
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Moreover,

ut − uΔu− f(t) · u = z′ · (M +Φ) + z2 · (M + Φ)− f(t) · z · (M +Φ)

= z · (M +Φ)

≥ 0 for all x ∈ Ω and t ∈ (0, T ),

whence the comparison principle ensures that uε ≤ u in Ω× (0, T ). In view of (2.22),
this entails that

uε(x, t) ≤ eB+1 · (M + ‖Φ‖L∞(Ω)

)
for all x ∈ Ω and t ∈ (0, t),

so that (2.19) is valid upon an obvious choice of C = C(M,B).

Next, the fact that solutions of (2.6) cannot blow up immediately can be turned
into a quantitative local-in-time boundedness estimate in terms of the norm of the
initial data in L∞(Ω)∩W 1,2(Ω). Moreover, our technique at the same time yields an
estimate involving integrals of uεt and ∇uε, as long as uε is appropriately bounded.

Lemma 2.4. (i) For all M > 0 there exist T1(M) > 0 and C1(M) > 0 such that
if

(2.23) u0ε ≤M in Ω and

∫
Ω

|∇u0ε|2 ≤M

hold for some ε ∈ (εj)j∈N, then

(2.24) uε ≤ C1(M) in Ω× [0, T1(M)).

(ii) For each M > 0 and T > 0 there exist T2(M) ∈ (0, T ] and C2(M) > 0 such
that whenever ε ∈ (εj)j∈N is such that

(2.25) uε ≤M in Ω× (0, T ) and

∫
Ω

|∇u0ε|2 ≤M

are satisfied, then

(2.26)

∫ T2(M)

0

∫
Ω

u2εt
uε

+ sup
t∈(0,T2(M))

∫
Ω

|∇uε(·, t)|2 ≤ C2(M).

Proof. (i) We multiply (2.6) by uεt

uε
and integrate by parts, use that uεt = 0 on

∂Ω, and apply Hölder’s inequality, together with Young’s inequality, to see that∫
Ω

u2εt
uε

+
1

2

d

dt

∫
Ω

|∇uε|2 =

(∫
Ω

uεt

)
· ρε

(∫
Ω

|∇uε|2
)

≤
(∫

Ω

u2εt
uε

) 1
2
(∫

Ω

uε

) 1
2
∫
Ω

|∇uε|2

≤ 1

2

∫
Ω

u2εt
uε

+
1

2

(∫
Ω

uε

)(∫
Ω

|∇uε|2
)2

(2.27)

for all t > 0, because ρε(ξ) ≤ ξ for all ξ ≥ 0. Hence,

(2.28)

∫
Ω

u2εt
uε

+
d

dt

∫
Ω

|∇uε|2 ≤
(∫

Ω

uε

)(∫
Ω

|∇uε|2
)2

.
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Using the Poincaré inequality, we obtain

∫
Ω

uε(·, t) ≤ c1 ·
((∫

Ω

|∇uε(·, t)|2
) 1

2

+ 1

)

with a positive constant c1 independent of ε ∈ (εj)j∈N ∈ (0, 1) and t > 0. Therefore,
(2.28) yields

(2.29)

∫
Ω

u2εt
uε

+
d

dt

∫
Ω

|∇uε|2 ≤ c1 ·
((∫

Ω

|∇uε|2
) 1

2

+ 1

)(∫
Ω

|∇uε|2
)2

,

which in particular implies that z(t) :=
∫
Ω|∇uε(·, t)|2 satisfies

z′(t) ≤ c(
√
z + 1)z2 for all t > 0, and z(0) ≤M.

Hence, if we let ζ denote the local-in-time solution of{
ζ′(t) = c(

√
ζ + 1)ζ2, t > 0,

ζ(0) =M,

with maximal existence time Tζ > 0, then due to (2.23) and an ODE comparison, we
have z ≤ ζ in (0, Tζ). Defining T1(M) := 1

2Tζ , for instance, we obtain from this that∫
Ω
|∇uε(·, t)|2 ≤ ζ(T1(M)) for all t ∈ [0, T1(M)), whereupon (2.24) now results from

Lemma 2.3.
(ii) If the first inequality in (2.25) holds, then (2.28) entails that z as defined

above even satisfies the nonlinear ODI

z′(t) ≤M |Ω|z2 for all t > 0,

whence we have
∫
Ω
|∇uε(·, t)|2≤ 1

M−1−M|Ω|t for all t∈(0, T2) with T2 :=min{T,1/(M2|Ω|)},
by the second inequality in (2.25). Inserting this into (2.29) again and integrating over
(0, T2) proves (2.26).

When constructing the solution u of (1.1) as the limit of solutions uε of (2.6),
it will be comparatively easy to obtain the approximation property ∇uε → ∇u in
the sense of L2

loc(Ω × [0, T ))-convergence. For handling the nonlocal term in the
equation, however, it seems appropriate to make sure that also

∫
Ω
|∇uε|2 → ∫

Ω
|∇u|2

in L1
loc([0, T )).
In order to achieve the latter we exclude certain boundary concentration phenom-

ena of ∇uε in the following sense.

Lemma 2.5. For any T >0, C>0,M>0, and δ>0, there isK=K(M,C, T, δ)⊂⊂
Ω and η > 0 such that whenever ε ∈ (εj)j∈N is such that ε < η and

(2.30) sup
t∈[0,T ]

∫
Ω

|∇uε(·, t)|2 ≤ C and uε ≤M,

we have ∫ T

0

∫
Ω\K

|∇uε|2 < δ.
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Proof. For q ∈ (0, 1), we multiply (2.6) by uq−1
ε and integrate by parts to obtain

1

q

d

dt

∫
Ω

uqε =

∫
∂Ω

uqε∂νuε −
∫
Ω

quq−1
ε |∇uε|2 +

∫
Ω

uqε ρε

(∫
Ω

|∇uε|2
)
,

where we can use ∂νuε ≤ 0 on ∂Ω and integrate with respect to time to derive
(2.31)

q

∫ T

0

∫
Ω

uq−1
ε |∇uε|2 ≤ −1

q

∫
Ω

uqε(·, T ) +
1

q

∫
Ω

uq0ε +

∫ T

0

(∫
Ω

uqε

∫
Ω

|∇uε|2
)

=: C(T )

for all ε > 0 satisfying (2.30), which gives control on |∇uε|2 wherever uε is small—
which is the case near the boundary, as we ensure next: In order to lay the groundwork
for the corresponding comparison argument, note that by (2.30),

uεt = uεΔuε + uερε

(∫
Ω

|∇uε|2
)

≤ uεΔuε + Cuε, uε|∂Ω = ε, uε(0) = u0ε.

Fix η > 0 such that (2η)1−qC(T )
q < δ. Let Φ solve (1.5). Choose A > C such that

AΦ + η > u0ε for all 0 < ε < η, which is possible due to condition (2.2). Then
u := AΦ + η satisfies

(2.32) ut = 0 ≥ −(AΦ + η)A+ (AΦ + η)C = uAΔΦ+ Cu = uΔu+ Cu.

As long as ε < η, also u|∂Ω ≥ uε|∂Ω holds, and furthermore

u(0) ≥ u0ε.

Therefore, by the comparison principle, we obtain u ≥ uε.
Now choose K ⊂⊂ Ω in such a way that

AΦ ≤ η in Ω \K.

This entails uε ≤ u = AΦ+ η ≤ 2η in Ω \K. Then∫ T

0

∫
Ω\K

|∇uε|2 =

∫ T

0

∫
Ω\K

uq−1
ε |∇uε|2u1−q

ε

≤ (2η)1−q

∫ T

0

∫
Ω\K

uq−1
ε |∇uε|2

≤ (2η)1−q

∫ T

0

∫
Ω

uq−1
ε |∇uε|2 ≤ (2η)1−qC(T )

q
,

by virtue of (2.31).

We are now ready to prove that the uε in fact approach a weak solution of (1.1)
that is locally positive in the sense of Definition 1.1. Before we do so, however, we
prepare the following estimate for uε that will be useful in proving assertions about
the blow-up behavior of u.

Lemma 2.6. Let Ω′ ⊂⊂ Ω be a domain with smooth boundary. Assume also that
φ denotes the solution to −Δφ = 1 in Ω′, φ|∂Ω′ = 0. Then there exists CΩ′ > 0 such
that for each ε ∈ (εj)j∈N and any t > 0 the solution uε of (2.6) satisfies
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∫
Ω

|∇uε(·, t)|2
(2.33)

≤
∫
Ω

|∇u0ε|2 exp
[

1

2CΩ′

(
sup

τ∈(0,t)

∫
Ω

uε(·, τ)
)(∫

Ω′
φ ln uε(·, t)−

∫
Ω′
φ lnu0ε+

∫ t

0

∫
Ω′
uε

)]
.

Proof. As uεt = 0 on ∂Ω, similarly to (2.27), multiplying (2.6) by uεt

uε
and inte-

grating over Ω yields∫
Ω

u2εt
uε

=

∫
Ω

uεtΔuε +

∫
Ω

uεtρε

(∫
Ω

|∇uε|2
)

= −1

2

d

dt

∫
Ω

|∇uε|2 +
∫
Ω

uεtρε

(∫
Ω

|∇uε|2
)
.

After rearranging, by Hölder’s and Young’s inequalities and the definition of ρε this
entails

d

dt

∫
Ω

|∇uε|2 ≤ −2

∫
Ω

u2εt
uε

+ 2

⎡⎣(∫
Ω

(
uεt√
uε

)2
) 1

2 (∫
Ω

√
uε

2

) 1
2

⎤⎦ ρε(∫
Ω

|∇uε|2
)

≤ −2

∫
Ω

u2εt
uε

+ 2

∫
Ω

u2εt
uε

+
1

2

∫
Ω

uερε

(∫
Ω

|∇uε|2
)2

≤ 1

2

∫
Ω

uερε

(∫
Ω

|∇uε|2
)∫

Ω

|∇uε|2 on (0,∞).

This looks like a quadratic differential inequality for z(t) :=
∫
Ω
|∇uε(·, t)|2 and

at first does not seem helpful for obtaining an estimate for this quantity. Therefore,
we shall split the respective quadratic term and apply Gronwall’s lemma to z′(t) ≤
g(t)z(t), where

g(t) =
1

2

∫
Ω

uε(·, t)ρε
(∫

Ω

|∇uε(·, t)|2
)
,

which leads to

(2.34) z(t) ≤ z(0) exp

∫ t

0

g(τ)dτ for all t > 0.

In this situation, however, we are left with a term
∫ t

0
ρε
(∫

Ω
|∇uε|2

)
in the exponent,

and we prepare an estimate for this in the following way: With φ as specified in the
hypothesis, we let CΩ′ =

∫
Ω′ φ > 0. Multiplication of (2.6) by φ

uε
and integrating over

Ω′ then gives

d

dt

∫
Ω′

lnuεφ =

∫
Ω′

Δuεφ+

∫
Ω′
φρε

(∫
Ω

|∇uε|2
)

=

∫
Ω′
uεΔφ+

∫
∂Ω′

∂νuεφ−
∫
∂Ω′

uε∂νφ+ CΩ′ρε

(∫
Ω

|∇uε|2
)

on (0,∞).

Taking into account the definition of φ and its consequence ∂νφ|∂Ω′ ≤ 0 = φ|∂Ω′ , we
infer that

d

dt

∫
Ω′
φ ln uε ≥ −

∫
Ω′
uε + CΩ′ρε

(∫
Ω

|∇uε|2
)

on (0,∞).
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Therefore,∫ t

0

ρε

(∫
Ω

|∇uε|2
)

≤ 1

CΩ′

[∫ t

0

∫
Ω′
uε +

∫
Ω′
φ lnuε(t)−

∫
Ω′
φ lnu0ε

]
for any t > 0, and we can conclude from (2.34) that∫

Ω

|∇uε(·, t)|2

≤
∫
Ω

|∇u0ε|2 · exp
[

1

2CΩ′
sup

τ∈(0,·,t)

∫
Ω

u(τ)

(∫ t

0

∫
Ω′
uε +

∫
Ω′
φ lnuε(t)−

∫
Ω′
φ lnu0ε

)]

for all t > 0.

Another useful piece of information is that a condition like (H3) remains satisfied
for any t > 0.

Lemma 2.7. Let T > 0, M > 0, and ε ∈ (εj)j∈N be such that ‖u0ε − ε‖Φ,∞ <∞.
Then any solution uε of (2.6) which satisfies∫

Ω

|∇uε(·, t)|2 ≤M for any t ∈ [0, T ]

already fulfills

‖uε − ε‖Φ,∞ ≤ max
{
M, ‖u0ε − ε‖Φ,∞

}
.

Proof. Let C = max{M, ‖u0ε − ε‖Φ,∞} and consider u := CΦ + ε with Φ as in
(1.5). Then ut = 0 ≥ (M − C)(CΦ + ε) = uΔu + Mu, whereas uεt = uεΔuε +
uερε

(∫
Ω
|∇uε|2

) ≤ uεΔuε +Muε. Additionally u|∂Ω = ε = uε|∂Ω and u(x, 0) − ε =
CΦ(x) ≥ Φ(x) ‖u0ε − ε‖Φ,∞ ≥ u0ε(x)− ε, and therefore the comparison principle [51]
asserts that uε ≤ u and hence implies the claim.

With this information at hand, we can proceed to the proof of convergence of the
uε to a solution of (1.1) that still satisfies an inequality like (2.33).

Lemma 2.8. Suppose that u0 satisfies (H1)–(H3). Then there exists T > 0 de-
pending on bounds on ‖u0‖L∞(Ω) and ‖∇u0‖L2(Ω) and a locally positive weak solution

u of (1.1) in Ω× (0, T ). This solution can be obtained as the a.e. pointwise limit of a
subsequence of the solutions uε of (2.6) as ε = εj ↘ 0, and for any smoothly bounded
subdomain Ω′ ⊂⊂ Ω there is CΩ′ > 0 such that

∫
Ω

|∇u(·, t)|2
(2.35)

≤
∫
Ω

|∇u0|2 exp
[

1

2CΩ′

(
sup

τ∈(0,t)

∫
Ω

u(·, τ)
)(∫

Ω′
φ lnu(·, t)−

∫
Ω′
φ lnu0 +

∫ t

0

∫
Ω′
u

)]

as well as

(2.36) ‖u(·, t)‖Φ,∞ ≤ max

{
‖u0‖Φ,∞ , ess sup

τ∈(0,t)

∫
Ω

|∇u(τ)|2
}

for a.e. t ∈ (0, T ).
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Proof. We setM1 := max{‖u0‖L∞(Ω)+1,
∫
Ω
|∇u0|2+1} and let T1 = T1(M1) and

c1 = C1(M1) be as in Lemma 2.4 (i). Then this lemma states that uε ≤ c1 in Ω×(0, T1)
for all ε ∈ (εj)j∈N. Accordingly, corresponding to M2 = max{c1,

∫
Ω
|∇u0|2 + 1},

Lemma 2.4 (ii) provides T = T2(M2) ∈ (0, T1) and c2 = C2(M2) > 0 such that

(2.37)

∫ T

0

∫
Ω

u2εt
uε

+ sup
t∈(0,T )

∫
Ω

|∇uε(·, t)|2 ≤ c2

for all ε ∈ (εj)j∈N, which by uε ≤ c1 can be turned into a uniform bound on
‖uεt‖L2(Ω×(0,T ), from which it follows by means of the fundamental theorem of calcu-
lus that after possibly enlarging c2, we also have

(2.38) ‖uε‖
C

1
2 ([0,T ];L2(Ω))

≤ c2

for such ε.
In order to prove a uniform estimate for uε from below, locally in space, we follow

a standard comparison procedure: Given a compact set K ⊂ Ω, we pick any smoothly
bounded domain Ω′ ⊂⊂ Ω such that K ⊂⊂ Ω′ and let φ ∈ C2(Ω̄′) solve −Δφ = 1
in Ω′ with φ|∂Ω′ = 0. Then the lower estimate in (2.3) guarantees that writing
c3(K) := 1

2‖φ‖L∞(Ω′)
lim infε↘0 infK u0ε, we can find ε0(K) > 0 such that whenever

ε ∈ (εj)j∈N satisfies ε < ε0(K), we have

(2.39) u0ε(x) ≥ 1

2
lim inf
ε↘0

inf
K
u0ε ≥ c3(K)φ(x) for all x ∈ Ω′.

Letting z(t) := c3(K)
1+c3(K)t , t ≥ 0, denote the solution of z′ = −z2 with z(0) = c3(K),

we thus find that u(x, t) := z(t)φ(x) satisfies u ≤ uε on the parabolic boundary of
Ω′ × (0,∞). Since

ut − uΔu = z′φ+ z2φ = 0 in Ω′ × (0,∞)

and

uεt − uεΔuε = uε · ρε
(∫

Ω

|∇uε|2
)

≥ 0 in Ω× (0,∞),

we conclude from the comparison principle (see [51] for an adequate version) that
u ≤ uε and thus, in particular, that for each T ′ > 0 there exists a suitably small
c4(K,T

′) > 0 such that

(2.40) uε ≥ c4(K,T
′) in K × (0, T ′)

holds for all ε ∈ (εj)j∈N satisfying ε < ε0(K). By positivity of each individual uε, one
can readily verify that upon suitably diminishing c4(K,T

′), (2.40) trivially extends
so as to actually be valid for all ε ∈ (εj)j∈N. Now the estimate uε ≤ c1, (2.37),
(2.38), and (2.40) along with standard compactness arguments allow us to extract a
subsequence (εjk)k∈N of (εj)j∈N and a function u : Ω× [0, T ] → R such that

uε → u in C0([0, T );L2(Ω)) and a.e. in Ω× (0, T ),(2.41)

∇uε ⇀ ∇u in L2
loc(Ω̄× [0, T )), and(2.42)

uεt ⇀ ut in L2(Ω× (0, T ))(2.43)
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as ε = εjk ↘ 0. From (2.41), the inequality uε ≤ c1, and (2.40), we know that
u ≤ c1 a.e. in Ω × (0, T ) and u ≥ c4(K,T ) a.e. in K × (0, T ) whenever K ⊂⊂ Ω.
Moreover, since uε − ε vanishes on ∂Ω, (2.42) implies that u ∈ L2((0, T );W 1,2

0 (Ω)),
so that u fulfills all regularity and positivity properties required for a locally positive
weak solution in Ω× (0, T ) in the sense of Definition 1.1.

In order to verify that u is a weak solution of (1.1) it thus remains to check
(1.4). To prepare this, we claim that in addition to (2.42), we also have the strong
convergence properties

(2.44) ∇uε → ∇u in L2
loc(Ω× [0, T ]) and a.e. in Ω× (0, T )

as well as

(2.45)

∫
Ω

|∇uε(x, ·)|2dx→
∫
Ω

|∇u(x, ·)|2dx in L1((0, T ))

as ε = εjk ↘ 0. To see (2.44), we let K ⊂⊂ Ω be given and fix a nonnegative
ψ ∈ C∞

0 (Ω) such that ψ ≡ 1 in K. Then∫ T

0

∫
K

|∇uε −∇u|2 ≤
∫ T

0

∫
Ω

|∇uε −∇u|2ψ

=

∫ T

0

∫
Ω

∇(uε − u) · ∇uε · ψ −
∫ T

0

∫
Ω

∇u · ∇(uε − u) · ψ
=: I1(ε)− I2(ε) for all ε ∈ (εj)j∈N,(2.46)

where I2(ε) → 0 as ε = εjk ↘ 0 by (2.42). Using the equation for uε, however, after
an integration by parts we find that

I1(ε) = −
∫ T

0

∫
Ω

(uε − u)Δuε · ψ −
∫ T

0

∫
Ω

(uε − u)∇uε · ∇ψ

= −
∫ T

0

∫
Ω

(uε − u) · uεt
uε

· ψ +

∫ T

0

∫
Ω

(uε − u) · ρε
(∫

Ω

|∇uε|2
)
· ψ

−
∫ T

0

∫
Ω

(uε − u)∇uε · ∇ψ
=: I11(ε) + I12(ε) + I13(ε) for all ε ∈ (εj)j∈N.

Due to (2.41) and (2.42), we have I13(ε) → 0, and (2.41), together with (2.37) and
Hölder’s inequality, implies that

|I12(ε)| ≤
(∫ T

0

∫
Ω

(uε − u)2
) 1

2

·
[∫ T

0

(∫
Ω

|∇uε|2
)2] 1

2

· ‖ψ‖L2(Ω) → 0

as ε = εjk ↘ 0, where we again have used the fact that ρε(z) ≤ z for any z ≥ 0 and
all ε ∈ (εj)j∈N. We now use Hölder’s inequality and the local lower estimate (2.40),
which in conjunction with (2.37) yields

|I11(ε)| ≤
(∫ T

0

∫
Ω

u2εt
uε

) 1
2

·
(∫ T

0

∫
Ω

(uε − u)2

uε
· ψ2

) 1
2

≤ c
1
2
2 · ‖ψ‖L∞(Ω)

(c4(supp ψ, T ))
1
2

·
(∫ T

0

∫
Ω

(uε − u)2
) 1

2

→ 0
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as ε = εjk ↘ 0, by (2.41). Altogether, we obtain that I1(ε) → 0 and hence, by (2.46),
that ∇uε → ∇u in L2(K × (0, T )) as ε = εjk ↘ 0 for arbitrary K ⊂⊂ Ω.

Having thus proved (2.44), with the aid of Lemma 2.5 we obtain (2.45) as a
straightforward consequence:

Given δ > 0, we let K = K(c1, c2, T,
δ
4 ) and η > 0 be the set and the constant

provided by Lemma 2.5, and we employ the convergence asserted by (2.42) to choose

k0 ∈ N such that for all k, l > k0 we have
∫ T

0

∫
K
||∇uεk |2 − |∇uεl |2| ≤ δ

2 . Then for all
k, l > k0,∫ T

0

∣∣∣∣∫
Ω

|∇uεk |2 −
∫
Ω

|∇uεl |2
∣∣∣∣ ≤ ∫ T

0

∫
K

∣∣|∇uεk |2 − |∇uεl |2
∣∣+ ∫ T

0

∫
Ω\K

|∇uεk |2

+

∫ T

0

∫
Ω\K

|∇uεl |2

≤ δ

2
+
δ

4
+
δ

4

and thanks to the completeness of L2((0, T )) we obtain (2.45). We can now proceed
to verify that (1.4) holds for all ϕ ∈ C∞

0 (Ω × (0, T )). To this end, we multiply (2.6)
by ϕ ∈ C∞

0 (Ω× (0, T )) and integrate to obtain∫ T

0

∫
Ω

uεtϕ+

∫ T

0

∫
Ω

|∇uε|2ϕ+

∫ T

0

∫
Ω

uε∇uε · ∇ϕ =

∫ T

0

∫
Ω

uε · ρε
(∫

Ω

|∇uε|2
)
· ϕ.

Here, as ε = εjk ↘ 0 we have ∫ T

0

∫
Ω

uεtϕ→
∫ T

0

∫
Ω

utϕ

by (2.43), whereas (2.44) and (2.41) allow us to conclude that∫ T

0

∫
Ω

|∇uε|2ϕ→
∫ T

0

∫
Ω

|∇u|2ϕ

and ∫ T

0

∫
Ω

uε∇uε · ∇ϕ→
∫ T

0

∫
Ω

u∇u · ∇ϕ,

because ϕ vanishes near ∂Ω and near t = T . Finally,∫ T

0

∫
Ω

uε · ρε
(∫

Ω

|∇uε|2
)
· ϕ→

∫ T

0

∫
Ω

u

(∫
Ω

|∇u|2
)
· ϕ

because of (2.41), (2.45), and the fact that ρε(z) → z for all z ≥ 0 as ε ↘ 0. We
thereby see that (1.4) holds and thus infer that u in fact is a weak solution of (1.1)
in Ω × (0, T ). The inequality (2.35) results from Lemma 2.6 and the convergence
statements. The estimate (2.36) results from Lemma 2.7: By (2.37) and (2.2) we
have the necessary bounds on gradient and initial values, independent of ε ∈ (εj)j∈N.
Furthermore, for any t ∈ [0, T ] we can find a subsequence (εjk)k∈N of (εj)j∈N such
that

uεjk (·, t)− εjk

Φ
⇀∗ u(·, t)

Φ
in L∞(Ω),
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and finally the same bound as in Lemma 2.7 holds for u(t) because

‖u(·, t)‖Φ,∞ =

∥∥∥∥u(·, t)Φ

∥∥∥∥
∞

≤ lim inf
ε=εjk↘0

∥∥∥∥uε(·, t)− ε

Φ

∥∥∥∥
∞

≤ lim inf
ε=εjk↘0

max

{
sup

0<τ<t

∫
Ω

|∇uε(τ)|2, ‖u0ε − ε‖Φ,∞

}
≤ lim inf

ε=εjk↘0
max

{
sup

0<τ<t

∫
Ω

|∇uε(τ)|2, ‖u0‖Φ,∞ + ε

}
≤max

{
ess sup
0<τ<t

∫
Ω

|∇u(τ)|2, ‖u0‖Φ,∞

}
,

where for the last inequality we relied on the pointwise a.e. convergence of
∫
Ω|∇uε(·, t)|2

in (0, T ), due to (2.45) valid along a subsequence.

We are now in the position to prove Theorem 1.3, which asserts the existence of
a locally positive weak solution and Tmax ∈ (0,∞] such that the solution blows up at
Tmax or exists globally.

Proof of Theorem 1.3. According to the statement of Lemma 2.8 there exists T >
0 such that (1.1) possesses a locally positive weak solution u on Ω × (0, T ) which
satisfies (1.7) and (1.8) for a.e. t ∈ (0, T ). Hence, the set

S :=
{
T̃ > 0

∣∣∣∣there exists a locally positive solution u to (1.1) on Ω× (0, T̃ )

satisfying (1.7) and (1.8) for a.e. t ∈ (0, T̃ )
}

is not empty and
Tmax = supS ∈ (0,∞]

is well defined. Assume that Tmax <∞ and lim supt↗Tmax
‖u(·, t)‖L∞(Ω) <∞.

This implies the existence of a constant M > 0 such that u ≤M and hence, due
to (1.7), also that there is C > 0 with

∫
Ω
|∇u|2 ≤ C on [0, Tmax). Lemma 2.8 provides

T > 0 such that for any initial data u0 satisfying u0 ≤ M ,
∫
Ω
|∇u0|2 ≤ C, a locally

positive weak solution existing on Ω× (0, T ) can be constructed.
Choose t0 ∈ (Tmax − T

2 , Tmax) such that u(x, t0) ≤ M and
∫
Ω
|∇u(x, t0)|2 ≤ C

and such that u satisfies (1.7) and (1.8) at t = t0.
Let v denote the corresponding solution with initial value u(·, t0) and define

û(x, t) =

{
u(x, t), x ∈ Ω, t < t0,

v(x, t− t0), x ∈ Ω, t ∈ (t0, t0 + T ).

Then û is a solution of (1.1), and (1.7) and (1.8) obviously hold for a.e. t ∈ (0, t0),
whereas for t ∈ (t0, t0 + T ) we have∫

Ω

|∇û(·, t)|2 ≤
∫
Ω

|∇u(t0)|2

× exp

[
1

2CΩ′

(
sup

τ∈(t0,t)

∫
Ω

û(·, τ)
)(∫

Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu(·, t0) +

∫ t

t0

∫
Ω′
û

)]

≤
∫
Ω

|∇u0|2 exp
[

1

2CΩ′

(
sup

τ∈(0,t0)

∫
Ω

u(·, τ)
)(∫

Ω′
φ lnu(·, t0)−

∫
Ω′
φ ln u0 +

∫ t0

0

∫
Ω′
u

)]
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×exp

[
1

2CΩ′

(
sup

τ∈(t0,t)

∫
Ω

û(·, τ)
)(∫

Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu(·, t0)+

∫ t

t0

∫
Ω′
û

)]

≤
∫
Ω

|∇u0|2 exp
[

1

2CΩ′

(
sup

τ∈(0,t)

∫
Ω

û(·, τ)
)

×
(∫

Ω′
φ lnu(·, t0)−

∫
Ω′
φ lnu0+

∫ t0

0

∫
Ω′
u+

∫
Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu(·, t0)+

∫ t

t0

∫
Ω′
û

)]

=

∫
Ω

|∇u0|2 exp
[

1

2CΩ′

(
sup

τ∈(0,t)

∫
Ω

û(·, τ)
)(∫

Ω′
φ ln û(·, t)−

∫
Ω′
φ lnu0 +

∫ t

0

∫
Ω′
u

)]
.

Also, for a.e. t ∈ (0, t0 + T ),

‖û(·, t)‖Φ,∞ ≤ max

{
‖u(·, t0)‖Φ,∞ , sup

τ∈(t0,t)

∫
Ω

|∇û(·, τ)|2
}

≤ max

{
max

{
‖u0‖Φ,∞ , sup

τ∈(0,t0)

∫
Ω

|∇u(·, τ)|2
}
, sup
τ∈(t0,t)

∫
Ω

|∇û(·, τ)|2
}

≤ max

{
‖u0‖Φ,∞ , sup

τ∈(0,t)

∫
Ω

|∇û(·, τ)|2
}
.

Thus û is defined on (0, Tmax + T
2 ), contradicting the definition of Tmax.

As a direct consequence of (1.8) we obtain that finite-time gradient blow-up
cannot occur. More precisely, we have the following.

Corollary 2.9. Let u and Tmax be as given by Theorem 1.3.
If lim supt↗Tmax

‖u(·, t)‖L∞(Ω) = ∞, then also

lim sup
t↗Tmax

∫
Ω

|∇u(x, t)|2dx = ∞.

Combining now Corollary 2.9 with the estimate (1.7), we can conclude that if
finite-time L∞-blow-up occurs, then also L1-blow-up takes place at the same finite
time.

Corollary 2.10. Let u and Tmax be as given by Theorem 1.3.
If lim supt↗Tmax

‖u(·, t)‖L∞(Ω) = ∞, then also

lim sup
t↗Tmax

∫
Ω

u(x, t)dx = ∞.

3. Total mass. Proof of Theorem 1.5. Let u be a solution of (1.1) on [0, T ].
Consider its mass

(3.1) y(t) =

∫
Ω

u(x, t) dx, t ∈ [0, T ),

and note that (3.1) defines a continuous function on [0, T ]. Indeed, we have the
following.



974 N. I. KAVALLARIS, J. LANKEIT, AND M. WINKLER

Lemma 3.1. For any weak solution u of (1.1) on [0, T ], (3.1) defines an absolutely
continuous function y : [0, T ] → R that satisfies

(3.2) y′(t) = (y(t)− 1)

∫
Ω

|∇u(x, t)|2 dx

for almost every t ∈ (0, T ).

Proof. We will show that whenever 0 < s < t < T ,

(3.3) y(t)− y(s) =

∫ t

s

(
(y(τ)− 1)

∫
Ω

|∇u(x, τ)|2 dx
)
dτ,

where absolute continuity follows from the representation as an integral and the as-
sertion about the derivative is a direct consequence of division by t − s and passing
to the limit s→ t.

Let 0 < s < t < T and 0 < δ < min {s, T − t}. Define the function χ : R → R by
setting

χ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, τ < s− δ,

1 + τ−s
δ , s− δ ≤ τ < s,

1, s ≤ τ < t,

1− τ−t
δ , t ≤ τ < t+ δ,

0, τ ≥ t+ δ.

Then, according to standard approximation arguments, ϕ(x, t) := χ(t) defines an
admissible test function for (1.3) and we obtain

−1

δ

∫ s

s−δ

∫
Ω

u+
1

δ

∫ t+δ

t

∫
Ω

u+

∫ t+δ

s−δ

∫
Ω

|∇u|2ϕ =

∫ t+δ

s−δ

(∫
Ω

uϕ

)
·
(∫

Ω

|∇u|2
)
.

Since u ∈ Cloc([0, T ), L
2(Ω)), we have

1

δ

∫ t+δ

t

∫
Ω

u→ y(t) and
1

δ

∫ s

s−δ

∫
Ω

u→ y(s)

as δ ↘ 0.
Also by Lebesgue’s dominated convergence theorem,∫ t+δ

s−δ

∫
Ω

|∇u|2ϕ→
∫ t

s

∫
Ω

|∇u|2

and ∫ t+δ

s−δ

(∫
Ω

uϕ

)
·
(∫

Ω

|∇u|2
)

→
∫ t

s

(∫
Ω

u

)
·
(∫

Ω

|∇u|2
)

as δ ↘ 0. Hence, (3.3) holds.

This lemma is the main ingredient in the following proof of Theorem 1.5.

Proof of Theorem 1.5. (i) In the case of subcritical initial mass, Lemma 3.1 shows
that y as defined in (3.1) is decreasing, which by Corollary 2.10 entails global existence,
and from the nonnegativity of y we derive that y(t) → c as t → ∞ for some c ≥ 0.
Note that Poincaré’s and Hölder’s inequalities imply that for some CP > 0 we have∫

Ω

|∇u|2 dx ≥ 1

CP

∫
Ω

u2 dx ≥ 1

CP |Ω|
(∫

Ω

u dx

)2

=
1

CP |Ω|y
2 on (0,∞),
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and hence Lemma 3.1, due to the negativity of y(t)− 1, entails that

y′(t) ≤ (y(t)− 1)
1

CP |Ω| y
2(t) ≤ −1− y(0)

CP |Ω| y2(t) ≤ −1− y(0)

CP |Ω| c2

for almost every t > 0. This would lead to a contradiction to the nonnegativity of
y(t) if c were positive, whence actually c = 0.

(ii) If
∫
Ωu0 = 1, then Lemma 3.1 implies that

y(t)− 1 =

∫ t

0

[
(y(s)− 1)

∫
Ω

|∇u(x, s)|2 dx
]
ds,

and by virtue of Gronwall’s lemma we conclude that y(t)−1 ≡ 0 throughout the time
interval on which the solution exists, which combined with Corollary 2.10 also implies
global existence.

(iii) In the case when the total mass is supercritical initially, Lemma 3.1 entails
that y is nondecreasing, and again Poincaré’s and Hölder’s inequalities imply that

y′(t) ≥ y(0)− 1

CP |Ω| y
2(t) for a.e. t ∈ [0, Tmax)

with some CP > 0. Now let z denote the solution to

z′(t) =
y(0)− 1

CP |Ω| z(t)
2, z(0) = z0,

for some 1 < z0 < y(0), defined up to its maximal existence time T0 > 0. Then T :=
Tmax < T0, because y ≥ z, and the assertion follows by Theorem 1.3 in combination
with Corollary 2.10.

4. Global blow-up. Proof of Theorem 1.7. We proceed to prove that blow-
up of our solutions always occurs globally, as stated in Theorem 1.7.

Proof of Theorem 1.7. Assume to the contrary that the closed set B is strictly
contained in Ω. Then there exists a smoothly bounded subdomain Ω′ ⊂ Ω \ B such
that u is bounded in Ω′ × (0, Tmax). Let φ be a solution to −Δφ = 1 in Ω′, φ = 0 on
∂Ω′.

Consider T ′ < Tmax. Due to the local positivity of u, we have φ
u ∈ L∞(Ω×(0, T ′))

and∇φ
u = ∇φ

u − φ
u2∇u ∈ L2(Ω′×(0, T ′)) and hence φ

u ∈ L2((0, T ′),W 1,2
0 (Ω′))∩L∞(Ω×

(0, T ′)) ⊂ L2((0, T ′),W 1,2
0 (Ω))∩L∞(Ω× (0, T ′)). Therefore, we can readily verify by

approximation arguments that it is possible to use ϕ = φ
u as a test function in (1.4),

which then leads to∫ t

0

∫
Ω′

ut
u
φdx ds+

∫ t

0

∫
Ω′
∇u · ∇φdx ds =

∫ t

0

(∫
Ω′
φdx

)
·
(∫

Ω

|∇u|2 dx
)
ds

for any t ∈ (0, Tmax). Hence, with CΩ′ :=
∫
Ω′φ and because of ∂νφ

∣∣
∂Ω′ ≤ 0,∫

Ω′
φ lnu(t) dx−

∫
Ω′
φ ln u0 dx−

∫ t

0

∫
Ω′
u ·Δφdx ds ≥ CΩ′

∫ t

0

∫
Ω

|∇u|2 dx ds,

that is

(4.1)

∫ t

0

∫
Ω′
u dx ds+

∫
Ω′
φ lnu(t) dx−

∫
Ω′
φ lnu0 dx ≥ CΩ′h(t),
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where h(t) :=
∫ t

0

∫
Ω
|∇u(x, s)|2 dx ds and where—due to the choice of Ω′—the left-

hand side is bounded from above.
On the other hand, from Lemma 3.1 we know that

y′(t)
y(t)− 1

=

∫
Ω

|∇u|2 dx

for y(t) =
∫
Ω
u(x, t) dx. Therefore,

h(t)=

∫ t

0

∫
Ω

|∇u|2 dx ds=
∫ t

0

y′(τ)
y(τ) − 1

ds=ln(y(t)−1)−ln(y(0)−1)=ln

∫
Ωu(x, t) dx − 1∫

Ωu0 dx− 1

and, by Theorem 1.5 (iii), lim supt↗Tmax
h(t) = ∞, contradicting the boundedness of

the left-hand side of (4.1).

We have seen that the question of global existence versus blow-up of solutions to
(1.1) is intimately connected with the size of the initial data. If

∫
Ωu0 > 1, the solution

blows up globally; if
∫
Ω
u0 < 1, we have proven convergence toward 0. The missing

case of solutions emanating from initial data with unit mass must exhibit a behavior
different from either, as Theorem 1.5 (ii) shows. For a study of these solutions, which
are actually very important for the described replicator dynamics model, we refer the
reader to the article [27].

Appendix A: Modeling background. Evolutionary game dynamics is a
major part of modern game theory. It was appropriately fostered by evolutionary
biologists such as W. D. Hamilton and J. Maynard Smith (see [10] for a collection of
survey papers and [42] for a popularized account) and it actually brought a conceptual
revolution to game theory analogous to that of population dynamics in biology. The
resulting population-based approach has also found many applications in nonbiological
fields such as economics and learning theory and introduces a significant enrichment
of classical game theory which focuses on the concept of a rational individual.

The main focus of evolutionary game dynamics is to explain how a population of
players updates their strategies in the course of a game according to the strategies’
success. This contrasts with classical noncooperative game theory, which analyzes
how rational players will behave through static solution concepts such as the Nash
equilibrium (NE) (i.e., a strategy choice for each player whereby no individual has a
unilateral incentive to change his or her behavior).

As Hofbauer and Sigmund [19] pointed out, strategies with high payoff will spread
within the population through learning, imitation, or inheriting processes, or even by
infection. The payoffs depend on the actions of the coplayers, i.e., the frequencies
in which the various strategies appear, and since these frequencies change according
to the payoffs, a feedback loop appears. The dynamics of this feedback loop will
determine the long time progress of the game, and its investigation is exactly the
course of evolutionary game theory.

According to the extensive survey paper [19] there is a variety of different dy-
namics in evolutionary game theory such as replicator dynamics, imitation dynamics,
best response dynamics, Brown–von Neumann–Nash dynamics, etc. However, the
dynamics most widely used and studied in the literature on evolutionary game the-
ory are the replicator dynamics which were introduced in [49] and christened in [40].
Such dynamics illustrate the idea that in a dynamic process of evolution, a strategy
should increase in frequency if it is a successful strategy in the sense that individuals
employing this strategy obtain a higher than average payoff.
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Let us consider a game with m discrete pure strategies, forming the strategy
space S = {1, 2, . . . ,m} and corresponding frequencies pi(t), i = 1, 2, . . . ,m, for any
t ≥ 0. (Alternatively, S could be considered as the set of different states (genetic
programs) of a biological population.) The frequency (probability) vector p(t) =
(p1(t), p2(t), . . . , pm(t))T belongs to the invariant simplex

S(m) =

{
y = (y1, y2, . . . , ym)T ∈ R

m : yi ≥ 0, i = 1, 2, . . . ,m and

m∑
i=1

yi = 1

}
.

The game is actually determined by the payoff matrix A = (aij), which is a realm×m
symmetric matrix. Payoff means expected gain, and if an individual plays strategy
i against another individual following strategy j, then the payoff to i is defined to
be aij , while the payoff to j is aji. For symmetric games, matrix A is considered to
be symmetric. (In the case of a biological population, payoff represents fitness, or
reproductive success.)

Then the expected payoff for an individual playing strategy i can be expressed as

(A · p(t))i =
m∑
j=1

aijpj(t),

whereas the average payoff over the whole population is given by

(p(t)T ·A · p(t)) =
m∑
i=1

m∑
j=1

aijpi(t)pj(t).

Consider that our game is symmetric with infinitely many players (or that the bio-
logical population is infinitely large and its generations blend continuously into each
other); then we obtain that pi(t) evolve as differentiable functions. Note that the rate
of increase of the per capita rate of growth ṗi/pi of strategy (type) i is a measure
of its evolutionary success; here ṗi stands for the time derivative of pi. A reasonable
assumption, which is also in agreement with the basic tenet of Darwinism, is that
the per capita rate of growth (i.e., the logarithmic derivative) ṗi/pi is given by the
difference between the payoff for strategy (type) i and the average payoff. This yields
the replicator dynamical system,

(A.1)
dpi
dt

=

⎛⎝ m∑
j=1

aijpj(t)−
m∑
i=1

m∑
j=1

aijpi(t)pj(t)

⎞⎠ pi(t), i = 1, 2, . . . ,m, t > 0.

The dynamical system (A.1) actually describes the mechanism by which individuals
tend to switch to strategies that are doing well, or that individuals bear offspring who
tend to use the same strategies as their parents, and the fitter the individual, the
more numerous the offspring.

Most of the work on replicator dynamics has focused on games that have a finite
strategy space, thus leading to a dynamical system for the frequencies of the pop-
ulation which is finite dimensional. However, interesting applications arise in both
biology and economics where the strategy space is not finite or, even, not discrete;
see [7, 33, 34, 35]. In the case when the strategy space S is discrete but consists of an
infinite number of strategies, e.g., S = Z, then the replicator dynamics describing the
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evolution of the infinite dimensional vector p(t) = (. . . , p1(t), p2(t), . . . ) are described
by

dpi
dt

=

⎛⎝∑
j∈Z

aijpj(t)−
∑
j∈Z

∑
i∈Z

aijpi(t)pj(t)

⎞⎠ pi(t), t > 0,

which is an infinite dynamical system with pi(t) ≥ 0 for i ∈ Z and ||p(t)||�1(Z) = 1 for
any t > 0.

In the current paper we are concentrating on games whose pure strategies belong
to a continuum. For instance, this could be the aspiration level of a player or the size
of an investment in economics, or it might arise in situations where the pure strategies
correspond to geographical points as in economic geography [24]. On the other hand,
in biology such strategies correspond to some continuously varying trait such as the
sex ratio in a litter or the virulence of an infection [19]. There are different ways of
modeling the evolutionary dynamics in this case; however, in the current work we
adapt the approach introduced in [7]. In that case the strategy set Ω is an arbitrary,
not necessarily bounded, Borel set of RN , N ≥ 2, and hence strategies can be identified
by x ∈ Ω. For the case of symmetric two-player games, the payoff can be given by a
Borel measurable function f : Ω×Ω → R, where f(x, y) is the payoff for player 1 when
she follows strategy x and player 2 plays strategy y. A population is now characterized
by its state, a probability measure P in the measure space (Ω,A ), where A is the
Borel algebra of subsets of Ω. The average (mean) payoff of a subpopulation in state
P against the overall population in state Q is given by the form

E(P,Q) :=

∫
Ω

∫
Ω

f(x, y)Q(dy)P(dx).

Then, the success (or lack of success) of a strategy x followed by population Q is
provided by the difference

σ(x,Q) :=

∫
Ω

f(x, y)Q(dy)−
∫
Ω

∫
Ω

f(x, y)Q(dy)Q(dx) = E(δx,Q)− E(Q,Q),

where δx is the unit mass concentrated on the strategy x.
The evolution in time of the population state Q(t) is given by the replicator

dynamics equation

(A.2)
dQ

dt
(A) =

∫
A

σ(x,Q(t))Q(t)(dx), t > 0, Q(0) = P ,

for any A ∈ A , where the time derivative should be understood with respect to the
variational norm of a subspace of the linear span M of A . The well-posedness of
(A.2) and related stability issues were investigated in [34, 35] under the assumption
that the payoff function f(x, y) is bounded.

The abstract form of (A.2) does not actually allow us to obtain insight into the
form of its solutions and thus a better understanding of the evolutionary dynamics
of the corresponding game. In order to give a better overview of the evolutionary
game, following the approach in [21, 22] we restrict our attention to measures Q(t)
which, for each t > 0, are absolutely continuous with respect to the Lebesgue measure,
with probability density u(x, t). Then the replicator dynamics equation (A.2) can be
reduced to the integro-differential equation
(A.3)
∂u

∂t
=

(∫
Ω

f(x, y)u(y, t) dy −
∫
Ω

∫
Ω

f(z, y)u(y, t)u(z, t)dy dz

)
u(x, t), t > 0, x ∈ Ω,
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also taking into account that the probability density u satisfies

(A.4)

∫
Ω

∫
Ω

u(y, t)u(z, t) dy dz = 1,

and hence we can skip the denominator from the average payoff term in (A.3).
There are applications in both biology and computer science in which the payoff

kernel has the form f(x, y) = G(x−y), with G being a steep function of Gaussian type;
see [17, 18, 20, 32]. This case, in general, models games where the payoff is measured
as the distance from some reference strategy and, finally, under some proper scaling
leads to

(A.5)

∫
Ω

f(x, y)u(y, t) dy ≈ Δu(x, t)

(see also [23]), which by virtue of (A.2) yields

(A.6)
∂u

∂t
≈
(
Δu−

∫
Ω

uΔu dx

)
u.

Another alternative way to get payoffs of this type is to consider a game with a
discrete strategy space and take the appropriate scaling limit. In that case a Taylor
expansion and a proper scaling give a similar approximation to (A.5); see also [21, 22].

Therefore, in the case when Ω is a bounded and smooth domain of RN , it is easily
seen that via integration by parts the nonlocal integro-differential dynamics equation
(A.3) is approximated by the degenerate nonlocal parabolic equation

(A.7)
∂u

∂t
= u

(
Δu+

∫
Ω

|∇u|2 dx
)
, x ∈ Ω, t > 0.

The nonlocal equation (A.7) is associated with initial data

(A.8) u(x, 0) = u0(x), x ∈ Ω,

which in the relevant case satisfy

(A.9)

∫
Ω

u0(x) dx = 1,

and with homogeneous Dirichlet boundary conditions

(A.10) u(x, t) = 0, x ∈ ∂Ω, t > 0,

when the agents avoid playing the strategies located on the boundary of the strategy
space, since they are assumed to be too risky, or when the individuals of the biological
population do not interact when they are close to the spatial boundary, where the
“food” is assumed to be sparse. We remark that when individuals on the boundary
of the strategy space do not distinguish between nearby strategies but rather pop-
ulate them equally, the nonlocal equation (A.7) should rather be complemented by
homogeneous Neumann boundary conditions not explicitly considered here; see [22].

Our analysis will inter alia reveal that initial unit mass is preserved and guarantees
that

(A.11)

∫
Ω

u(x, t) dx = 1;

see also Theorem 1.5 (ii), which in this case provides an a posteriori justification for
(A.4).
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Appendix B: A convenient approximation of the initial data. In this
paper, we have kept the proof of Lemma 2.1 very short. Here we give a more detailed
version, which still suppresses some of the more involved technical calculations.

Proof. Choose γ > 0 and a domain Uϑ ⊂ Ω such that dist(Uϑ, ∂Ω) > γ. Let
ϑ ∈ C∞

0 (Uϑ) with ϑ ≥ 0 and
∫
Ωϑ = 1. Let ε > 0, and let ϕ ∈ C∞

0 (Ω) be such
that ‖ϕ− u0‖W 1,2(Ω) < ε and ‖ϕ‖Φ,∞ ≤ C + ζ(ε), where ζ : [0,∞) → [0,∞) is a

function satisfying limε→0 ζ(ε) = 0. In order to see that this is possible, recall how
smooth approximations ϕ of W 1,2(Ω)-functions u0 are usually constructed (see [56,
section 3]): With the aid of a partition of unity {αi}, the function is written as a
sum, where the single summands are supported in small patches only and those close
to the boundary are shifted toward the interior by application of shift operators si;
finally, the function is smoothed by convolution with a standard mollifier jε.

We observe that the same procedure applied to Φ does not violate too much the
inequality ‖u0‖Φ,∞ ≤ C, i.e., u0 ≤ CΦ; that is,

C
∑

jε � (αisi(Φ)) ≤ C
∑

αiΦ+ ζΦ = CΦ + ζΦ

holds for some ζ with limε↘0 ζ(ε) = 0. (The calculations showing this use the facts
that mollification of smooth functions converge in C1 and that Φ grows toward the
interior, and use the mean value theorem.) Hence, the fact that mollification preserves
pointwise estimates that hold everywhere shows that also ϕ satisfies ϕ(x) ≤ CΦ(x).

Let K be a compact subset of Ω such that |Ω \K| < ε and dist(∂Ω,K) < ε. Let
ρ ∈ C∞

0 (Ω) such that ρ = 1 on K̂ ∪ supp ϕ, |∇ρ(x)| < 2
dist(K̂,∂Ω)

, and 0 ≤ ρ ≤ 1.

Denoting

A = A(ε) =

∫
Ω

Φ2|∇ρ|2 +
∫
Ω

(1− ρ)2|∇Φ|2 +
∫
Ω

|∇ϑ|2
(∫

Ω

(1− ρ)Φ

)2

,

B = B(ε) = −1− 2

∫
Ω

(1− ρ)Φ

∫
Ω

∇ϕ∇ϑ

− 2

∫
Ω

(1− ρ)Φ

∫
Ω

(u0 − ϕ)

∫
Ω

|∇ϑ|2 + 2ε|Ω|
∫
Ω

(1− ρ)Φ

∫
Ω

|∇ϑ|2,

Γ = Γ(ε) =

∫
Ω

|∇ϕ|2 + 2

∫
Ω

(u0 − ϕ)

∫
Ω

∇ϕ∇ϑ

− 2ε|Ω|
∫
Ω

∇ϕ∇ϑ− 2ε|Ω|
∫
Ω

(u0 − ϕ)

∫
Ω

|∇ϑ|2

+

(∫
Ω

(u0 − ϕ)

)2 ∫
Ω

|∇ϑ|2 + ε2|Ω|2
∫
Ω

|∇ϑ|2,

we let C = C(ε) = − 2Γ
B−√

B2−4AΓ
. Then C solves

(B.1) AC2 +BC + Γ = 0.

As Φ and ∇Φ are bounded, as 1 − ρ is supported on a small set with measure
smaller than ε, and as we have Φ|∇ρ| ≤ 2D2, where Φ(x) ≤ D2dist(x, ∂Ω), most
integrals from the definition of A, B, Γ can be estimated, yielding A → 0, B → −1,
Γ → ∫

Ω
|∇u0|2 as ε→ 0. Therefore,

C = − 2Γ

B −√
B2 − 4AΓ

→ − 2
∫
Ω|∇u0|2

−1−√
1− 0

=

∫
Ω

|∇u0|2 > 0,
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as ε→ 0, and in particular, lim sup(C −L) ≤ 0. Furthermore, for sufficiently small ε,
we have C > 0. We also observe that

α =

∫
Ω

(u0 − ϕ)− ε|Ω| − C

∫
Ω

(1− ρ)Φ → 0

as ε→ 0. If ε is small enough, therefore, |α| <
1
2 essinf{x;dist(x,∂Ω)>

γ
2 }u0

supϑ , and hence

|αϑ| ≤ 1
2 inf{x∈Ω,dist(x,∂Ω)> γ

2 } ϕ on Ω (as supp ϑ ⊂ supp ϕ). Therefore,

(B.2) ϕ(x) + αϑ(x) ≥ 1

2
inf

{x∈Ω;dist(x,∂Ω)> d
2}
ϕ =: CK

for x ∈ K and

(B.3) ϕ+ αϑ ≥ 0

on Ω, because ϕ ≥ 0 and αϑ �= 0 only on Uϑ, where (B.2) guarantees (B.3) already.
We also have

ϕ+ αϑ ≤
(
L+

ε

2

)
Φ+ αϑ ≤

(
L+

ε

2

)
Φ+ ϑ

∫
Ω

|u0 − ϕ|

≤(L+ ζ(ε))Φ

with some ζ fulfilling limε↘0 ζ(ε) = 0. Finally, define

(B.4) u0ε = ε+ C(1 − ρ)Φ + ρ(ϕ+ αϑ).

Estimate (B.3) and the positivity of C and of Φ in Ω, together with (B.4), entail
u0ε ≥ ε. Accordingly (2.1) holds, for we clearly obtain u0ε = ε, and Δu0ε = −C =
− ∫

Ω|∇u0ε|2 on ∂Ω, because∫
Ω

|∇u0ε|2 =

∫
Ω

|∇(ε+ C(1 − ρ)Φ + ρ(ϕ+ αϑ))|2 = AC2 + (B + 1)C + Γ = C

by (B.1). Furthermore,∫
Ω

u0ε =

∫
Ω

ε+

∫
Ω

C(1− ρ)Φ +

∫
Ω

ρϕ+ α

∫
Ω

ρϑ =

∫
Ω

u0

which is (2.5). The smoothness assertion follows from the smoothness of ϕ (as molli-
fication) and that of Φ and that of ρ, ϑ ∈ C∞

0 (Ω). By definition of u0ε,

‖u0ε − ε‖Φ,∞ = ‖CΦ(1− ρ) + ρ(ϕ+ αϑ)‖Φ,∞ .

In every point x ∈ Ω, u0ε − ε is a convex combination of CΦ and ϕ+αϑ, which both
satisfy the estimate “≤ (L+ ζ(ε))Φ.” Therefore (2.2) holds. Furthermore,

‖u0ε − u0‖W 1,2(Ω) = ‖ε+ CΦ(1− ρ) + ρ(ϕ+ αϑ)− u0‖W 1,2(Ω)

≤ ε
√
|Ω|+ C ‖∇Φ(1− ρ)‖L2(Ω)

+ C ‖Φ∇ρ‖L2(Ω) + C ‖Φ(1− ρ)‖L2(Ω)

≤ ε
√
|Ω|+ C sup |∇Φ|√ε+ 2CD2

√
ε

+ C supΦ
√
ε+ ε+ ε+ α ‖ϑ‖W 1,2(Ω) → 0

as ε ↘ 0, where we have used, once again, the facts that ‖Φ∇ρ‖L2(Ω) ≤ 2D2
√
ε,

‖u0‖W 1,2(Ω\K) < ε, and ‖u0 − ϕ‖W 1,2(Ω) < ε. In total, we obtain (2.4). Finally, given

K ⊂⊂ Ω, the estimate in (2.3) holds for 0 < ε < dist(K, ∂Ω) and with the choice of
CK as in (B.2).
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